1
|
Fletcher R, Hoppe M, McQuail JA, Hernandez CM, Hernandez AR. Ketogenic Diet-Induced Alterations in Neuronal Signaling-Related Proteins are Not Due to Differences in Synaptosome Protein Levels. Mol Neurobiol 2025:10.1007/s12035-025-04988-1. [PMID: 40299298 DOI: 10.1007/s12035-025-04988-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/18/2025] [Indexed: 04/30/2025]
Abstract
Impaired cognitive function is a hallmark of advancing age, and the potential to reverse or delay these cognitive deficits through dietary intervention holds promise for improving quality of life for older adults. Specifically, ketogenic diets (KDs) have now been widely used for the treatment of several neurological and peripheral disorders, including diseases profoundly affecting cognitive health, of which advanced age is the single greatest risk factor. However, the precise mechanisms of the efficacy of KD-based interventions to reverse age-related cognitive and neurobiological declines are not fully elucidated. We have previously demonstrated that a KD improves cognitive function, with concurrent increases in global levels of proteins related to synaptic signaling in the aging hippocampus (HPC) and prefrontal cortex (PFC). Despite these advances, it remains unclear as to whether these changes reflect biochemical modifications specifically localized to synaptic terminals. To address this important, unanswered question, we purified synaptosomes from the HPC and PFC of aging rats fed a KD or control diet (CD) for a minimum of 4 months and quantified 10 proteins related to synaptic transmission. In contrast to previous studies of global protein expression, the signaling proteins measured did not show significant differences between diet groups in synaptosomes isolated from either region. When pre-mortem performance on an Object-Place Paired Association task was considered, we found a significant correlation between several proteins within the HPC and PFC synaptosomes of CD-fed rats, more pronounced in CD-fed aged rats, that are conspicuously absent in KD-fed rats from both age groups. Moreover, there is a significant alteration in the ratio of VGAT/VGluT1, markers of excitatory and inhibitory synaptic vesicles, in the PFC with dietary intervention that is absent in the HPC, confirming prior reports of regionally specific alterations in excitatory and inhibitory signaling post KD. These new and extended findings reveal important, naturally occurring associations between protein levels localized to synaptic terminals, while clarifying that effects KD likely increase synaptic abundance without altering the biochemical composition of isolated synapses.
Collapse
Affiliation(s)
| | - Meagan Hoppe
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Joseph A McQuail
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, USA
| | - Caesar M Hernandez
- Department of Medicine, Division of Geriatrics, University of Alabama at Birmingham, Gerontology & Palliative Care, 845 19th St. South Rm 768, Birmingham, AL, 35205, USA
| | - Abbi R Hernandez
- Department of Medicine, Division of Geriatrics, University of Alabama at Birmingham, Gerontology & Palliative Care, 845 19th St. South Rm 768, Birmingham, AL, 35205, USA.
| |
Collapse
|
2
|
Hernandez AR, Hoffman JM, Hernandez CM, Cortes CJ, Jumbo-Lucioni P, Baxter MG, Esser KA, Liu AC, McMahon LL, Bizon JL, Burke SN, Buford TW, Carter CS. Reuniting the Body "Neck Up and Neck Down" to Understand Cognitive Aging: The Nexus of Geroscience and Neuroscience. J Gerontol A Biol Sci Med Sci 2022; 77:e1-e9. [PMID: 34309630 PMCID: PMC8751793 DOI: 10.1093/gerona/glab215] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Indexed: 02/01/2023] Open
Affiliation(s)
- Abbi R Hernandez
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham (UAB), USA
| | | | - Caesar M Hernandez
- Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA
| | - Constanza J Cortes
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, USA
| | - Patricia Jumbo-Lucioni
- Department of Biology, University of Alabama at Birmingham, USA.,Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, Alabama,USA
| | - Mark G Baxter
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Karyn A Esser
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Andrew C Liu
- Department of Physiology and Functional Genomics, University of Florida College of Medicine, Gainesville, USA
| | - Lori L McMahon
- UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,Department of Cellular, Development, and Integrative Biology, School of Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| | - Jennifer L Bizon
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Sara N Burke
- Department of Neuroscience and Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida College of Medicine, Gainesville, USA
| | - Thomas W Buford
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA.,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL, USA
| | - Christy S Carter
- Division of Gerontology, Geriatrics and Palliative Care, School of Medicine, University of Alabama at Birmingham, USA.,UAB Center for Exercise Medicine, University of Alabama at Birmingham, USA.,UAB Nathan Shock Center for the Basic Biology of Aging, University of Alabama at Birmingham, USA.,UAB Integrative Center for Aging Research, University of Alabama at Birmingham, USA
| |
Collapse
|
3
|
Igwe O, Sone M, Matveychuk D, Baker GB, Dursun SM. A review of effects of calorie restriction and fasting with potential relevance to depression. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110206. [PMID: 33316333 DOI: 10.1016/j.pnpbp.2020.110206] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 11/21/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
In recent years, there has been a great deal of interest in the effects of calorie reduction (calorie restriction) and fasting on depression. In the current paper, we have reviewed the literature in this area, with discussion of the possible neurobiological mechanisms involved in calorie restriction and intermittent fasting. Factors which may play a role in the effects of these dietary manipulations on health include changes involving free fatty acids, ketone bodies, neurotransmitters, cyclic adenosine monophosphate response element binding protein (CREB), brain-derived neurotrophic factor (BDNF), cytokines, orexin, ghrelin, leptin, reactive oxygen species and autophagy. Several of these factors are potential contributors to improving symptoms of depression. Challenges encountered in research on calorie restriction and intermittent fasting are also discussed. Although much is now known about the acute effects of calorie restriction and intermittent fasting, further long term clinical studies are warranted.
Collapse
Affiliation(s)
- Ogechi Igwe
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Mari Sone
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Dmitriy Matveychuk
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Glen B Baker
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Serdar M Dursun
- Neurochemical Research Unit, Department of Psychiatry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
4
|
Drulis-Fajdasz D, Gostomska-Pampuch K, Duda P, Wiśniewski JR, Rakus D. Quantitative Proteomics Reveals Significant Differences between Mouse Brain Formations in Expression of Proteins Involved in Neuronal Plasticity during Aging. Cells 2021; 10:2021. [PMID: 34440790 PMCID: PMC8393337 DOI: 10.3390/cells10082021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/30/2021] [Accepted: 08/05/2021] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with a general decline in cognitive functions, which appears to be due to alterations in the amounts of proteins involved in the regulation of synaptic plasticity. Here, we present a quantitative analysis of proteins involved in neurotransmission in three brain regions, namely, the hippocampus, the cerebral cortex and the cerebellum, in mice aged 1 and 22 months, using the total protein approach technique. We demonstrate that although the titer of some proteins involved in neurotransmission and synaptic plasticity is affected by aging in a similar manner in all the studied brain formations, in fact, each of the formations represents its own mode of aging. Generally, the hippocampal and cortical proteomes are much more unstable during the lifetime than the cerebellar proteome. The data presented here provide a general picture of the effect of physiological aging on synaptic plasticity and might suggest potential drug targets for anti-aging therapies.
Collapse
Affiliation(s)
- Dominika Drulis-Fajdasz
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Kinga Gostomska-Pampuch
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
- Department of Biochemistry and Immunochemistry, Wrocław Medical University, Chałubińskiego 10, 50-368 Wrocław, Poland
| | - Przemysław Duda
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| | - Jacek Roman Wiśniewski
- Biochemical Proteomics Group, Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany; (K.G.-P.); (J.R.W.)
| | - Dariusz Rakus
- Department of Molecular Physiology and Neurobiology, University of Wrocław, Sienkiewicza 21, 50-335 Wrocław, Poland; (D.D.-F.); (P.D.)
| |
Collapse
|
5
|
Queen NJ, Hassan QN, Cao L. Improvements to Healthspan Through Environmental Enrichment and Lifestyle Interventions: Where Are We Now? Front Neurosci 2020; 14:605. [PMID: 32655354 PMCID: PMC7325954 DOI: 10.3389/fnins.2020.00605] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/18/2020] [Indexed: 12/11/2022] Open
Abstract
Environmental enrichment (EE) is an experimental paradigm that is used to explore how a complex, stimulating environment can impact overall health. In laboratory animal experiments, EE housing conditions typically include larger-than-standard cages, abundant bedding, running wheels, mazes, toys, and shelters which are rearranged regularly to further increase stimulation. EE has been shown to improve multiple aspects of health, including but not limited to metabolism, learning and cognition, anxiety and depression, and immunocompetence. Recent advances in lifespan have led some researchers to consider aging as a risk factor for disease. As such, there is a pressing need to understand the processes by which healthspan can be increased. The natural and predictable changes during aging can be reversed or decreased through EE and its underlying mechanisms. Here, we review the use of EE in laboratory animals to understand mechanisms involved in aging, and comment on relative areas of strength and weakness in the current literature. We additionally address current efforts toward applying EE-like lifestyle interventions to human health to extend healthspan. Although increasing lifespan is a clear goal of medical research, improving the quality of this added time also deserves significant attention. Despite hurdles in translating experimental results toward clinical application, we argue there is great potential in using features of EE toward improving human healthy life expectancy or healthspan, especially in the context of increased global longevity.
Collapse
Affiliation(s)
- Nicholas J. Queen
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| | - Quais N. Hassan
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
- Medical Scientist Training Program, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Lei Cao
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University, Columbus, OH, United States
- The Ohio State University Comprehensive Cancer Center, Columbus, OH, United States
| |
Collapse
|
6
|
Sasik MUT, Eravsar ETK, Kinali M, Ergul AA, Adams MM. Expression Levels of SMAD Specific E3 Ubiquitin Protein Ligase 2 (Smurf2) and its Interacting Partners Show Region-specific Alterations During Brain Aging. Neuroscience 2020; 436:46-73. [PMID: 32278060 DOI: 10.1016/j.neuroscience.2020.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 02/08/2023]
Abstract
Aging occurs due to a combination of several factors, such as telomere attrition, cellular senescence, and stem cell exhaustion. The telomere attrition-dependent cellular senescence is regulated by increased levels of SMAD specific E3 ubiquitin protein ligase 2 (smurf2). With age smurf2 expression increases and Smurf2 protein interacts with several regulatory proteins including, Smad7, Ep300, Yy1, Sirt1, Mdm2, and Tp53, likely affecting its function related to cellular aging. The current study aimed at analyzing smurf2 expression in the aged brain because of its potential regulatory roles in the cellular aging process. Zebrafish were used because like humans they age gradually and their genome has 70% similarity. In the current study, we demonstrated that smurf2 gene and protein expression levels altered in a region-specific manner during the aging process. Also, in both young and old brains, Smurf2 protein was enriched in the cytosol. These results imply that during aging Smurf2 is regulated by several mechanisms including post-translational modifications (PTMs) and complex formation. Also, the expression levels of its interacting partners defined by the STRING database, tp53, mdm2, ep300a, yy1a, smad7, and sirt1, were analyzed. Multivariate analysis indicated that smurf2, ep300a, and sirt1, whose proteins regulate ubiquitination, acetylation, and deacetylation of target proteins including Smad7 and Tp53, showed age- and brain region-dependent patterns. Our data suggest a likely balance between Smurf2- and Mdm2-mediated ubiquitination, and Ep300a-mediated acetylation/Sirt1-mediated deacetylation, which most possibly affects the functionality of other interacting partners in regulating cellular and synaptic aging and ultimately cognitive dysfunction.
Collapse
Affiliation(s)
- Melek Umay Tuz- Sasik
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey
| | - Elif Tugce Karoglu- Eravsar
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Selcuk University, Konya, Turkey
| | - Meric Kinali
- Graduate School of Informatics, Department of Health Informatics, Middle East Technical University, Ankara, Turkey
| | - Ayca Arslan- Ergul
- Stem Cell Research and Application Center, Hacettepe University, Ankara, Turkey
| | - Michelle M Adams
- Interdisciplinary Program in Neuroscience, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey; Department of Molecular Biology and Genetics, Zebrafish Facility, Bilkent University, Ankara, Turkey; Department of Psychology, Bilkent University, Ankara, Turkey.
| |
Collapse
|
7
|
Rojic-Becker D, Portero-Tresserra M, Martí-Nicolovius M, Vale-Martínez A, Guillazo-Blanch G. Caloric restriction modulates the monoaminergic and glutamatergic systems in the hippocampus, and attenuates age-dependent spatial memory decline. Neurobiol Learn Mem 2019; 166:107107. [DOI: 10.1016/j.nlm.2019.107107] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 12/27/2022]
|
8
|
Iwamura H, Kondo K, Kikuta S, Nishijima H, Kagoya R, Suzukawa K, Ando M, Fujimoto C, Toma-Hirano M, Yamasoba T. Caloric restriction reduces basal cell proliferation and results in the deterioration of neuroepithelial regeneration following olfactotoxic mucosal damage in mouse olfactory mucosa. Cell Tissue Res 2019; 378:175-193. [PMID: 31168693 DOI: 10.1007/s00441-019-03047-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 05/10/2019] [Indexed: 01/18/2023]
Abstract
The effects of caloric restriction (CR) on cell dynamics and gene expression in the mouse olfactory neuroepithelium are evaluated. Eight-week-old male C57BL/6 mice were fed either control pellets (104 kcal/week) or CR pellets (67 kcal/week). The cytoarchitecture of the olfactory neuroepithelium in the uninjured condition and its regeneration after injury by an olfactotoxic chemical, methimazole, were compared between mice fed with the control and CR diets. In the uninjured condition, there were significantly fewer olfactory marker protein (OMP)-positive olfactory receptor neurons and Ki67-positive proliferating basal cells at 3 months in the CR group than in the control group. The number of Ki67-positive basal cells increased after methimazole-induced mucosal injury in both the control and the CR groups, but the increase was less robust in the CR group. The recovery of the neuroepithelium at 2 months after methimazole administration was less complete in the CR group than in the control group. These histological changes were region-specific. The decrease in the OMP-positive neurons was prominent in the anterior region of the olfactory mucosa. Gene expression analysis using a DNA microarray and quantitative real-time polymerase chain reaction demonstrated that the expression levels of two inflammatory cytokines, interleukin-6 and chemokine ligand 1, were elevated in the olfactory mucosa of the CR group compared with the control group. These findings suggest that CR may be disadvantageous to the maintenance of the olfactory neuroepithelium, especially when it is injured.
Collapse
Affiliation(s)
- Hitoshi Iwamura
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Kenji Kondo
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan.
| | - Shu Kikuta
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Hironobu Nishijima
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Ryoji Kagoya
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Keigo Suzukawa
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Mizuo Ando
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Chisato Fujimoto
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Makiko Toma-Hirano
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology-Head and Neck Surgery, The University of Tokyo Graduate School of Medicine, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8655, Japan
| |
Collapse
|
9
|
Altered expression of ionotropic L-Glutamate receptors in aged sensory neurons of Aplysia californica. PLoS One 2019; 14:e0217300. [PMID: 31120976 PMCID: PMC6532900 DOI: 10.1371/journal.pone.0217300] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 05/08/2019] [Indexed: 11/19/2022] Open
Abstract
The simplified nervous system of Aplysia californica (Aplysia) allows for detailed studies of physiological and molecular changes in small sets of neurons. Sensory neurons of the biting and tail withdrawal reflexes are glutamatergic and show reduced L-Glutamate current density in aged animals, making them a good candidate to study age-related changes in glutamatergic responses. To examine if changes in ionotropic L-Glu receptor (iGluR) transcription underlie reduced physiology, mRNA expression of iGluR was quantified in two sensory neuron clusters of two cohorts of Aplysia at both sexual maturity (~8 months) and advanced age (~12 months). Sensory neuron aging resulted in a significant overall decrease in expression of iGluR subunits in both sensory neuron clusters and cohorts. Although the individual subunits differentially expressed varied between sensory neuron clusters and different cohorts of animals, all differentially expressed subunits were downregulated, with no subunits showing significantly increased expression with age. Overall declines in transcript expression suggest that age-related declines in L-Glu responsiveness in Aplysia sensory neurons could be linked to overall declines in iGluR expression, rather than dysregulation of specific subunits. In both sensory neuron clusters tested the N-methyl-D-aspartate receptor subtype was expressed at significantly greater levels than other iGluR subtypes, suggesting an in vivo role for NMDAR-like receptors in Aplysia sensory neurons.
Collapse
|
10
|
Adams MM, Kafaligonul H. Zebrafish-A Model Organism for Studying the Neurobiological Mechanisms Underlying Cognitive Brain Aging and Use of Potential Interventions. Front Cell Dev Biol 2018; 6:135. [PMID: 30443547 PMCID: PMC6221905 DOI: 10.3389/fcell.2018.00135] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Affiliation(s)
- Michelle M Adams
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,Department of Psychology, Bilkent University, Ankara, Turkey.,National Nanotechnology Research Center (UNAM), Bilkent University, Ankara, Turkey.,Department of Molecular Biology and Genetics Department Zebrafish Facility, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | - Hulusi Kafaligonul
- Interdisciplinary Neuroscience Program, Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey.,National Magnetic Resonance Research Center (UMRAM), Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| |
Collapse
|
11
|
Kumar A, Foster TC. Alteration in NMDA Receptor Mediated Glutamatergic Neurotransmission in the Hippocampus During Senescence. Neurochem Res 2018; 44:38-48. [PMID: 30209673 DOI: 10.1007/s11064-018-2634-4] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/07/2018] [Accepted: 09/08/2018] [Indexed: 12/17/2022]
Abstract
Glutamate is the primary excitatory neurotransmitter in neurons and glia. N-methyl-D-aspartate (NMDA), α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA), and kainate receptors are major ionotropic glutamate receptors. Glutamatergic neurotransmission is strongly linked with Ca2+ homeostasis. Research has provided ample evidence that brain aging is associated with altered glutamatergic neurotransmission and Ca2+ dysregulation. Much of the work has focused on the hippocampus, a brain region critically involved in learning and memory, which is particularly susceptible to dysfunction during senescence. The current review examines Ca2+ regulation with a focus on the NMDA receptors in the hippocampus. Integrating the knowledge of the complexity of age-related alterations in Ca2+ homeostasis and NMDA receptor-mediated glutamatergic neurotransmission will positively shape the development of highly effective therapeutics to treat brain disorders including cognitive impairment.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, PO Box 100244, Gainesville, FL, 32610-0244, USA.
- Genetics and Genomics Program, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
12
|
Portero-Tresserra M, Martí-Nicolovius M, Tarrés-Gatius M, Candalija A, Guillazo-Blanch G, Vale-Martínez A. Intra-hippocampal D-cycloserine rescues decreased social memory, spatial learning reversal, and synaptophysin levels in aged rats. Psychopharmacology (Berl) 2018; 235:1463-1477. [PMID: 29492616 DOI: 10.1007/s00213-018-4858-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 02/15/2018] [Indexed: 01/08/2023]
Abstract
RATIONALE Aging is characterized by a decrease in N-methyl-D-aspartate receptors (NMDARs) in the hippocampus, which might be one of the factors involved in the age-dependent cognitive decline. D-Cycloserine (DCS), a partial agonist of the NMDAR glycine recognition site, could improve memory deficits associated to neurodegenerative disorders and cognitive deficits observed in normal aging. OBJECTIVES AND METHODS The aim of the present study was to explore whether DCS would reverse age-dependent memory deficits and decreases in NMDA receptor subunits (GluN1, GluN2A, and GluN2B) and the presynaptic protein synaptophysin in Wistar rats. We investigated the effects of pre-training infusions of DCS (10 μg/hemisphere) in the ventral hippocampus on two hippocampal-dependent learning tasks, the social transmission of food preference (STFP), and the Morris water maze (MWM). RESULTS The results revealed that infusions of DCS administered before the acquisition sessions rescued deficits in the STFP retention and MWM reversal learning in old rats. DCS also significantly increased the hippocampal levels of synaptophysin in old rats, which correlated with STFP and MWM performance in all tests. Moreover, although the levels of the GluN1 subunit correlated with the MWM acquisition and reversal, DCS did not enhance the expression of such synaptic protein. CONCLUSIONS The present behavioral results support the role of DCS as a cognitive enhancer and suggest that enhancing the function of NMDARs and synaptic plasticity in the hippocampus may be related to improvement in social memory and spatial learning reversal in aged animals.
Collapse
Affiliation(s)
- Marta Portero-Tresserra
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Margarita Martí-Nicolovius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Mireia Tarrés-Gatius
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ana Candalija
- Departament de Bioquímica i Biologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Guillazo-Blanch
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Anna Vale-Martínez
- Departament de Psicobiologia i Metodologia de les Ciències de la Salut, Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Malek M, Sarkaki A, Zahedi-Asl S, Farbood Y, Rajaei Z. Effect of intra-hippocampal injection of human recombinant growth hormone on synaptic plasticity in the nucleus basalis magnocellularis-lesioned aged rats. ARQUIVOS DE NEURO-PSIQUIATRIA 2017; 75:477-483. [PMID: 28746436 DOI: 10.1590/0004-282x20170074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 03/30/2017] [Indexed: 11/21/2022]
Abstract
In this study, we proposed that administration of hippocampal growth hormone in ageing animals with growth hormone deficiency can compensate long-term potentiation and synaptic plasticity in nucleus basalis magnocellularis (NBM)-lesioned rats. Aged male Wistar rats were randomly divided into six groups (seven in each) of sham-operated healthy rats (Cont); NBM-lesioned rats (L); NBM-lesioned rats and intrahippocampal injection of growth hormone vehicle (L + Veh); NBM-lesioned and intrahippocampal injection of growth hormone (10, 20 and 40 µg.2 µl-1) (L + GH). In vivo electrophysiological recording techniques were used to characterize maintenance of long-term potentiation at distinct times (1, 2, 3, 24 and 48 hours) after high-frequency stimulation. The population spike was enhanced significantly for about 48 hours following tetanic stimulation in rats treated with a dose-dependent growth hormone compared to the vehicle group (p < 0.05), possibly through neuronal plasticity and neurogenesis in affected areas.
Collapse
Affiliation(s)
- Maryam Malek
- Isfahan University of Medical Sciences, School of Medicine, Department of Physiology, Isfahan, Iran
| | - Alireza Sarkaki
- Ahvaz Jundishapur University of Medical Sciences, Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Department of Physiology, Ahvaz, Iran
| | - Saleh Zahedi-Asl
- Shaheed Beheshti University of Medical Sciences, Research Institute for Endocrine Sciences, Endocrine Research Center, Tehran, Iran
| | - Yaghoob Farbood
- Ahvaz Jundishapur University of Medical Sciences, Physiology Research Center, Ahvaz, Iran.,Ahvaz Jundishapur University of Medical Sciences, School of Medicine, Department of Physiology, Ahvaz, Iran
| | - Ziba Rajaei
- Isfahan University of Medical Sciences, School of Medicine, Department of Physiology, Isfahan, Iran
| |
Collapse
|
14
|
Karoglu ET, Halim DO, Erkaya B, Altaytas F, Arslan-Ergul A, Konu O, Adams MM. Aging alters the molecular dynamics of synapses in a sexually dimorphic pattern in zebrafish ( Danio rerio ). Neurobiol Aging 2017; 54:10-21. [DOI: 10.1016/j.neurobiolaging.2017.02.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/09/2017] [Accepted: 02/10/2017] [Indexed: 10/20/2022]
|
15
|
Kugathasan P, Waller J, Westrich L, Abdourahman A, Tamm JA, Pehrson AL, Dale E, Gulinello M, Sanchez C, Li Y. In vivo and in vitro effects of vortioxetine on molecules associated with neuroplasticity. J Psychopharmacol 2017; 31:365-376. [PMID: 27678087 DOI: 10.1177/0269881116667710] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Neuroplasticity is fundamental for brain functions, abnormal changes of which are associated with mood disorders and cognitive impairment. Neuroplasticity can be affected by neuroactive medications and by aging. Vortioxetine, a multimodal antidepressant, has shown positive effects on cognitive functions in both pre-clinical and clinical studies. In rodent studies, vortioxetine increases glutamate neurotransmission, promotes dendritic branching and spine maturation, and elevates hippocampal expression of the activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) at the transcript level. The present study aims to assess the effects of vortioxetine on several neuroplasticity-related molecules in different experimental systems. Chronic (1 month) vortioxetine increased Arc/Arg3.1 protein levels in the cortical synaptosomes of young and middle-aged mice. In young mice, this was accompanied by an increase in actin-depolymerizing factor (ADF)/cofilin serine 3 phosphorylation without altering the total ADF/cofilin protein level, and an increase in the GluA1 subunit of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor phosphorylation at serine 845 (S845) without altering serine 831 (S831) GluA1 phosphorylation nor the total GluA1 protein level. Similar effects were detected in cultured rat hippocampal neurons: Acute vortioxetine increased S845 GluA1 phosphorylation without changing S831 GluA1 phosphorylation or the total GluA1 protein level. These changes were accompanied by an increase in α subunit of Ca2+/calmodulin-dependent kinase (CaMKIIα) phosphorylation (at threonine 286) without changing the total CaMKIIα protein level in cultured neurons. In addition, chronic (1 month) vortioxetine, but not fluoxetine, restored the age-associated reduction in Arc/Arg3.1 and c-Fos transcripts in the frontal cortex of middle-aged mice. Taken together, these results demonstrated that vortioxetine modulates molecular targets that are related to neuroplasticity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yan Li
- 1 Lundbeck Research, Paramus, NJ, USA
| |
Collapse
|
16
|
Arslan-Ergul A, Erbaba B, Karoglu ET, Halim DO, Adams MM. Short-term dietary restriction in old zebrafish changes cell senescence mechanisms. Neuroscience 2016; 334:64-75. [DOI: 10.1016/j.neuroscience.2016.07.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 07/20/2016] [Accepted: 07/20/2016] [Indexed: 10/25/2022]
|
17
|
What is hormesis and its relevance to healthy aging and longevity? Biogerontology 2015; 16:693-707. [PMID: 26349923 DOI: 10.1007/s10522-015-9601-0] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/16/2022]
Abstract
This paper provides a broad overview of hormesis, a specific type of biphasic dose response, its historical and scientific foundations as well as its biomedical applications, especially with respect to aging. Hormesis is a fundamental component of adaptability, neutralizing many endogenous and environmental challenges by toxic agents, thereby enhancing survival. Hormesis is highly conserved, broadly generalizable, and pleiotrophic, being independent of biological model, endpoint measured, inducing agent, level of biological organization and mechanism. The low dose stimulatory hormetic response has specific characteristics which defines both the quantitative features of biological plasticity and the potential for maximum biological performance, thereby estimating the limits to which numerous medical and pharmacological interventions may affect humans. The substantial degrading of some hormetic processes in the aged may profoundly reduce the capacity to respond effectively to numerous environmental/ischemic and other stressors leading to compromised health, disease and, ultimately, defining the bounds of longevity.
Collapse
|
18
|
Tesic V, Perovic M, Lazic D, Kojic S, Smiljanic K, Ruzdijic S, Rakic L, Kanazir S. Long-term intermittent feeding restores impaired GR signaling in the hippocampus of aged rat. J Steroid Biochem Mol Biol 2015; 149:43-52. [PMID: 25616002 DOI: 10.1016/j.jsbmb.2015.01.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 11/22/2022]
Abstract
Diminished glucocorticoid signaling is associated with an age-related decline in hippocampal functioning. In this study we demonstrate the effect of intermittent, every other day (EOD) feeding on the glucocorticoid hormone/glucocorticoid receptor (GR) system in the hippocampus of middle-aged (18-month-old) and aged (24-month-old) Wistar rats. In aged ad libitum-fed rats, a decrease in the level of total GR and GR phosphorylated at Ser(232) (pGR) was detected. Conversely, aged rats subjected to EOD feeding, starting from 6 months of age, showed an increase in GR and pGR levels and a higher content of hippocampal corticosterone. Furthermore, prominent nuclear staining of pGR was observed in CA1 pyramidal and DG granule neurons of aged EOD-fed rats. These changes were accompanied by increased Sgk-1 and decreased GFAP transcription, pointing to upregulated transcriptional activity of GR. EOD feeding also induced an increase in the expression of the mineralocorticoid receptor. Our results reveal that intermittent feeding restores impaired GR signaling in the hippocampus of aged animals by inducing rather than by stabilizing GR signaling during aging.
Collapse
Affiliation(s)
- Vesna Tesic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Milka Perovic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Divna Lazic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Snezana Kojic
- Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | - Kosara Smiljanic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | - Sabera Ruzdijic
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia
| | | | - Selma Kanazir
- Institute for Biological Research, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
19
|
Labarrière M, Thomas F, Dutar P, Pollegioni L, Wolosker H, Billard JM. Circuit-specific changes in D-serine-dependent activation of the N-methyl-D-aspartate receptor in the aging hippocampus. AGE (DORDRECHT, NETHERLANDS) 2014; 36:9698. [PMID: 25138794 PMCID: PMC4453931 DOI: 10.1007/s11357-014-9698-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/27/2014] [Indexed: 05/29/2023]
Abstract
Age-related memory deficits have recently been associated with the impaired expression of D-serine-dependent synaptic plasticity in neuronal networks of the hippocampal CA1 area. However, whether such functional alterations are common to the entire hippocampus during aging remains unknown. Here, we found that D-serine was also required for the induction of N-methyl-D-aspartate receptor (NMDA-R)-dependent long-term potentiation (LTP) at perforant path-granule cell synapses of the dentate gyrus. LTP as well as isolated NMDA-R synaptic potentials were impaired in slices from aged rats, but in contrast to the CA1, this defect was not reversed by exogenous D-serine. The lower activation of the glycine-binding site by the endogenous co-agonist does not therefore appear to be a critical mechanism underlying age-related deficits in NMDA-R activation in the dentate gyrus. Instead, our data highlight the role of changes in presynaptic inputs as illustrated by the weaker responsiveness of afferent glutamatergic fibers, as well as changes in postsynaptic NMDA-R density. Thus, our study indicates that although NMDA-R-dependent mechanisms driving synaptic plasticity are quite similar between hippocampal circuits, they show regional differences in their susceptibility to aging, which could hamper the development of effective therapeutic strategies aimed at reducing cognitive aging.
Collapse
Affiliation(s)
- M. Labarrière
- />Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| | - F. Thomas
- />Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| | - P. Dutar
- />Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| | - L. Pollegioni
- />Dipartimento di Biotecnologie e Scienze della Vita, Università degli studi dell’Insubria, via J.H. Dunant 3, 21100 Varese, Italy
- />The Protein Factory, Centro Interuniversitario di Biotecnologie Proteiche, Politecnico di Milano, ICRM CNR Milano, and Università degli Studi dell’Insubria, via Mancinelli 7, 20137 Milano, Italy
| | - H. Wolosker
- />Department of Biochemistry, Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, 31036 Israel
| | - J.-M. Billard
- />Centre de Psychiatrie et Neurosciences, Université Paris Descartes, Sorbonne Paris Cité, UMR 894, Paris, 75014 France
| |
Collapse
|
20
|
Zhao G, Guo S, Somel M, Khaitovich P. Evolution of human longevity uncoupled from caloric restriction mechanisms. PLoS One 2014; 9:e84117. [PMID: 24400080 PMCID: PMC3882206 DOI: 10.1371/journal.pone.0084117] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 11/12/2013] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction (CR) and chemical agents, such as resveratrol and rapamycin that partially mimic the CR effect, can delay morbidity and mortality across a broad range of species. In humans, however, the effects of CR or other life-extending agents have not yet been investigated systematically. Human maximal lifespan is already substantially greater compared to that of closely related primate species. It is therefore possible that humans have acquired genetic mutations that mimic the CR effect. Here, we tested this notion by comparing transcriptome differences between humans and other primates, with the transcriptome changes observed in mice subjected to CR. We show that the human transcriptome state, relative to other primate transcriptomes, does not match that of the CR mice or mice treated with resveratrol, but resembles the transcriptome state of ad libitum fed mice. At the same time, the transcriptome changes induced by CR in mice are enriched among genes showing age-related changes in primates, concentrated in specific expression patterns, and can be linked with specific functional pathways, including insulin signalling, cancer, and the immune response. These findings indicate that the evolution of human longevity was likely independent of CR-induced lifespan extension mechanisms. Consequently, application of CR or CR-mimicking agents may yet offer a promising direction for the extension of healthy human lifespan.
Collapse
Affiliation(s)
- Guodong Zhao
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Graduate School of Chinese Academy of Sciences, Beijing, China
| | - Song Guo
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mehmet Somel
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- * E-mail: (MS); (PK)
| | - Philipp Khaitovich
- CAS-MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Max Planck Institutes for Evolutionary Anthropology, Leipzig, Germany
- * E-mail: (MS); (PK)
| |
Collapse
|
21
|
Molina DP, Ariwodola OJ, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone and insulin-like growth factor-I alter hippocampal excitatory synaptic transmission in young and old rats. AGE (DORDRECHT, NETHERLANDS) 2013; 35:1575-87. [PMID: 22851280 PMCID: PMC3776110 DOI: 10.1007/s11357-012-9460-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/11/2012] [Indexed: 06/01/2023]
Abstract
In rats, as in humans, normal aging is characterized by a decline in hippocampal-dependent learning and memory, as well as in glutamatergic function. Both growth hormone (GH) and insulin-like growth factor-I (IGF-I) levels have been reported to decrease with age, and treatment with either GH or IGF-I can ameliorate age-related cognitive decline. Interestingly, acute GH and IGF-I treatments enhance glutamatergic synaptic transmission in the rat hippocampus of juvenile animals. However, whether this enhancement also occurs in old rats, when cognitive impairment is ameliorated by GH and IGF-I (des-IGF-I), remains to be determined. To address this issue, we used an in vitro CA1 hippocampal slice preparation and extracellular recording techniques to study the effects of acute application of GH and IGF-I on compound field excitatory postsynaptic potentials (fEPSPs), as well as AMPA- and NMDA-dependent fEPSPs, in young adult (10 months) and old (28 months) rats. The results indicated that both GH and IGF-I increased compound-, AMPA-, and NMDA-dependent fEPSPs to a similar extent in slices from both age groups and that this augmentation was likely mediated via a postsynaptic mechanism. Initial characterization of the signaling cascades underlying these effects revealed that the GH-induced enhancement was not mediated by the JAK2 signaling element in either young adult or old rats but that the IGF-I-induced enhancement involved a PI3K-mediated mechanism in old, but not young adults. The present findings are consistent with a role for a GH- or IGF-I-induced enhancement of glutamatergic transmission in mitigating age-related cognitive impairment in old rats.
Collapse
Affiliation(s)
- Doris P. Molina
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Olusegun J. Ariwodola
- />Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Jeff L. Weiner
- />Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Judy K. Brunso-Bechtold
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Roena Kulynych Center for Memory and Cognition Research, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
| | - Michelle M. Adams
- />Departments of Neurobiology and Anatomy, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Roena Kulynych Center for Memory and Cognition Research, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010 USA
- />Department of Psychology, Bilkent University, 06800 Bilkent, Ankara, Turkey
| |
Collapse
|
22
|
Fusco S, Pani G. Brain response to calorie restriction. Cell Mol Life Sci 2013; 70:3157-70. [PMID: 23269433 PMCID: PMC11114019 DOI: 10.1007/s00018-012-1223-y] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 11/09/2012] [Accepted: 11/26/2012] [Indexed: 01/04/2023]
Abstract
Calorie restriction extends longevity and delays ageing in model organisms and mammals, opposing the onset and progression of an array of age-related diseases. These beneficial effects also extend to the maintenance of brain cognitive functions at later age and to the prevention, at least in rodents, of brain senescence and associated neurodegenerative disorders. In recent years, the molecular mechanisms underlying brain response to calorie restriction have begun to be elucidated, revealing the unanticipated role of a number of key nutrient sensors and nutrient-triggered signaling cascades in the translation of metabolic cues into cellular and molecular events that ultimately lead to increased cell resistance to stress, enhanced synaptic plasticity, and improved cognitive performance. Of note, the brain's role in CR also includes the activation of nutrient-sensitive hypothalamic circuitries and the implementation of neuroendocrine responses that impact the entire organism. The present review addresses emerging molecular themes in brain response to dietary restriction, and the implications of this knowledge for the understanding and the prevention of brain disorders associated with ageing and metabolic disease.
Collapse
Affiliation(s)
- Salvatore Fusco
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, Basic Science Building, room 405, Rome, Italy
| | - Giovambattista Pani
- Institute of General Pathology, Laboratory of Cell Signaling, Catholic University Medical School, Largo F. Vito 1, Basic Science Building, room 405, Rome, Italy
| |
Collapse
|
23
|
Cognitive improvement by acute growth hormone is mediated by NMDA and AMPA receptors and MEK pathway. Prog Neuropsychopharmacol Biol Psychiatry 2013; 45:11-20. [PMID: 23590874 DOI: 10.1016/j.pnpbp.2013.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/05/2013] [Accepted: 04/09/2013] [Indexed: 12/24/2022]
Abstract
It has been reported that Growth hormone (GH) has an immediate effect enhancing excitatory postsynaptic potentials mediated by AMPA and NMDA receptors in hippocampal area CA1. As GH plays a role in adult memory processing, this work aims to study the acute effects of GH on working memory tasks in rodents and the possible involvement of NMDA and AMPA receptors and also the MEK/ERK signalling pathway. To evaluate memory processes, two different tests were used, the spatial working memory 8-arm radial maze, and the novel object recognition as a form of non-spatial working memory test. Acute GH treatment (1mg/kg i.p., 1h) improved spatial learning in the radial maze respect to the control group either in young rats (reduction of 46% in the performance trial time and 61% in the number of errors), old rats (reduction of 38% in trial time and 48% in the number of errors), and adult mice (reduction of 32% in the performance time and 34% in the number of errors). GH treatment also increased the time spent exploring the novel object respect to the familiar object compared to the control group in young rats (from 63% to 79%), old rats (from 53% to 70%), and adult mice (from 61 to 68%). The improving effects of GH on working memory tests were blocked by the NMDA antagonist MK801 dizocilpine (0.025 mg/kg i.p.) injected 10 min before the administration of GH, in both young and old rats. In addition, the AMPA antagonist DNQX (1mg/kg i.p.) injected 10 min before the administration of GH to young rats, blocked the positive effect of GH. Moreover, in mice, the MEK inhibitor SL 327 (20mg/kg i.p.) injected 30 min before the administration of GH, blocked the positive effect of GH on radial maze and the novel object recognition. In conclusion, GH improved working memory processes through both glutamatergic receptors NMDA and AMPA and it required the activation of extracellular MEK/ERK signalling pathway. These effects could be related to the enhancement of excitatory synaptic transmission in the hippocampus reported by GH.
Collapse
|
24
|
Sarlak G, Jenwitheesuk A, Chetsawang B, Govitrapong P. Effects of Melatonin on Nervous System Aging: Neurogenesis and Neurodegeneration. J Pharmacol Sci 2013; 123:9-24. [DOI: 10.1254/jphs.13r01sr] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
25
|
Dickstein DL, Weaver CM, Luebke JI, Hof PR. Dendritic spine changes associated with normal aging. Neuroscience 2012; 251:21-32. [PMID: 23069756 DOI: 10.1016/j.neuroscience.2012.09.077] [Citation(s) in RCA: 179] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 09/25/2012] [Accepted: 09/27/2012] [Indexed: 12/14/2022]
Abstract
Given the rapid rate of population aging and the increased incidence of cognitive decline and neurodegenerative diseases with advanced age, it is important to ascertain the determinants that result in cognitive impairment. It is also important to note that much of the aged population exhibit 'successful' cognitive aging, in which cognitive impairment is minimal. One main goal of normal aging studies is to distinguish the neural changes that occur in unsuccessful (functionally impaired) subjects from those of successful (functionally unimpaired) subjects. In this review, we present some of the structural adaptations that neurons and spines undergo throughout normal aging and discuss their likely contributions to electrophysiological properties and cognition. Structural changes of neurons and dendritic spines during aging, and the functional consequences of such changes, remain poorly understood. Elucidating the structural and functional synaptic age-related changes that lead to cognitive impairment may lead to the development of drug treatments that can restore or protect neural circuits and mediate cognition and successful aging.
Collapse
Affiliation(s)
- D L Dickstein
- Fishberg Department of Neuroscience, Friedman Brain Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Computational Neurobiology and Imaging Center, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
26
|
Sutcu R, Kirbas A, Kirbas S, Kutluhan S, Delibas N. Effects of lisinopril on NMDA receptor subunits 2A and 2B levels in the hippocampus of rats with L-NAME-induced hypertension. J Recept Signal Transduct Res 2012; 32:279-84. [PMID: 22943192 DOI: 10.3109/10799893.2012.714788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hypertension is major risk factor leading to cerebrovascular pathologies. N-methyl D-aspartate receptors (NMDARs) and renin-angiotensin system are involved in neuronal plasticity, as well as cognitive functions in the hippocampus. In this study, we examined the effects of lisinopril, an ACE inhibitor, on the levels of hippocampal NMDAR subunits; NR2A and NR2B in L-NAME (N(ε)-nitro-L-arginine Methyl Ester)-induced hypertensive rats. In addition, malondialdehyde (MDA) levels were measured as a marker for lipid peroxidation. Compared with the control group, the MDA level was significantly increased after 8 weeks in the L-NAME-treated group. Rats treated with lisinopril and L-NAME plus lisinopril were found to have significantly decreased hippocampal MDA levels. Regarding the hippocampal concentrations of NR2A and NR2B, there were no statistically significant differences between groups. We demonstrated that lisinopril treatment has no direct regulatory effect on the levels of NR2A and NR2B in the rat hippocampus. Our results showed that Lisinopril could act as an antioxidant agent against hypertension-induced oxidative stress in rat hippocampus. The findings support that the use of lisinopril may offer a good alternative in the treatment of hypertension by reducing not only blood pressure but also prevent hypertensive complications in the brain.
Collapse
Affiliation(s)
- Recep Sutcu
- Medical Faculty Department of Biochemistry, Izmir Katip Celebi University, Izmir, Turkey.
| | | | | | | | | |
Collapse
|
27
|
Molina DP, Ariwodola OJ, Linville C, Sonntag WE, Weiner JL, Brunso-Bechtold JK, Adams MM. Growth hormone modulates hippocampal excitatory synaptic transmission and plasticity in old rats. Neurobiol Aging 2011; 33:1938-49. [PMID: 22015312 DOI: 10.1016/j.neurobiolaging.2011.09.014] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 08/10/2011] [Accepted: 09/10/2011] [Indexed: 11/19/2022]
Abstract
Alterations in the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPA-R) and N-methyl-D-aspartate receptor (NMDA-R) have been documented in aged animals and may contribute to changes in hippocampal-dependent memory. Growth hormone (GH) regulates AMPA-R and NMDA-R-dependent excitatory transmission and decreases with age. Chronic GH treatment mitigates age-related cognitive decline. An in vitro CA1 hippocampal slice preparation was used to compare hippocampal excitatory transmission and plasticity in old animals treated for 6-8 months with either saline or GH. Our findings indicate that GH treatment restores NMDA-R-dependent basal synaptic transmission in old rats to young adult levels and enhances both AMPA-R-dependent basal synaptic transmission and long-term potentiation. These alterations in synaptic function occurred in the absence of changes in presynaptic function, as measured by paired-pulse ratios, the total protein levels of AMPA-R and NMDA-R subunits or in plasma or hippocampal levels of insulin-like growth factor-I. These data suggest a direct role for GH in altering age-related changes in excitatory transmission and provide a possible cellular mechanism through which GH changes the course of cognitive decline.
Collapse
Affiliation(s)
- Doris P Molina
- Department of Neurobiology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Yilmaz N, Vural H, Yilmaz M, Sutcu R, Sirmali R, Hicyilmaz H, Delibas N. Calorie restriction modulates hippocampal NMDA receptors in diet-induced obese rats. J Recept Signal Transduct Res 2011; 31:214-9. [PMID: 21470075 DOI: 10.3109/10799893.2011.569724] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Calorie restriction (CR) has attracted increased interest since CR enhances lifespan and alters age-related decline in hippocampal-dependent cognitive functions. Obesity is associated with poor neurocognitive outcome including impaired hippocampal synaptic plasticity and cognitive abilities such as learning and memory. N-Methyl-D-aspartate receptors (NMDARs) are linked to hippocampal-dependent learning and memory, which may be stabilized by CR. In the present study, we aimed to establish the effects of CR on NMDARs in CA1 region of hippocampus in obese and non-obese rats. In addition, malondialdehyde (MDA) levels were determined as a marker for lipid peroxidation (LPO) in hippocampus. Four groups were constituted as control group (C, n = 9), obese group (OB, n = 10), obese calorie-restricted group (OCR, n = 9), and non-obese calorie-restricted group (NCR, n = 10). OCR and NCR were fed with a 60% CR diet for 10 weeks. After 10 weeks of CR, the MDA levels significantly decreased in the calorie-restricted groups. Obesity caused significant decreases in NR2A and NR2B subunit expressions in the hippocampus. The hippocampal NR2A and NR2B levels significantly increased in the OCR group compared with the OB group (P < 0.05). In contrast, the hippocampal NR2A and NR2B levels significantly decreased in the NCR group compared with the C group (P < 0.05). Oxidative stress can be prevented by CR, and these data may provide a molecular and cellular mechanism by which CR may regulate NMDAR-mediated response against obesity-induced changes in the hippocampus.
Collapse
Affiliation(s)
- Nigar Yilmaz
- Department of Biochemistry, Mustafa Kemal University Medical School, Hatay, Turkey.
| | | | | | | | | | | | | |
Collapse
|
29
|
Magnusson KR, Das SR, Kronemann D, Bartke A, Patrylo PR. The effects of aging and genotype on NMDA receptor expression in growth hormone receptor knockout (GHRKO) mice. J Gerontol A Biol Sci Med Sci 2011; 66:607-19. [PMID: 21459761 DOI: 10.1093/gerona/glr024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Caloric restriction enhances N-methyl-D-aspartate (NMDA) receptor binding and upregulates messenger RNA expression of the GluN1 subunit during aging. Old growth hormone receptor knockout mice resemble old calorically restricted rodents in enhanced life span and brain function, as compared with aged controls. This study examined whether aged growth hormone receptor knockout mice also show enhanced expression of NMDA receptors. Six or 23- to 24-month-old male normal-sized control or dwarf growth hormone receptor knockout mice were assayed for NMDA-displaceable [(3)H]glutamate binding (autoradiography) and GluN1 subunit messenger RNA (in situ hybridization). There was slight sparing of NMDA receptor binding densities within aged medial prefrontal and motor cortices, similar to caloric restriction, but there were greater age-related declines in GluN1 messenger RNA in growth hormone receptor knockout versus control mice. These results suggest that some of the functional improvements in aged mice with altered growth hormone signaling may be due to enhancement of NMDA receptors, but not through the upregulation of messenger RNA for the GluN1 subunit.
Collapse
Affiliation(s)
- Kathy Ruth Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, 105 Magruder Hall, Corvallis, OR 97331, USA.
| | | | | | | | | |
Collapse
|
30
|
Okvist A, Fagergren P, Whittard J, Garcia-Osta A, Drakenberg K, Horvath MC, Schmidt CJ, Keller E, Bannon MJ, Hurd YL. Dysregulated postsynaptic density and endocytic zone in the amygdala of human heroin and cocaine abusers. Biol Psychiatry 2011; 69:245-52. [PMID: 21126734 PMCID: PMC3017476 DOI: 10.1016/j.biopsych.2010.09.037] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2010] [Revised: 08/02/2010] [Accepted: 09/02/2010] [Indexed: 11/24/2022]
Abstract
BACKGROUND Glutamatergic transmission in the amygdala is hypothesized as an important mediator of stimulus-reward associations contributing to drug-seeking behavior and relapse. Insight is, however, lacking regarding the amygdala glutamatergic system in human drug abusers. METHODS We examined glutamate receptors and scaffolding proteins associated with the postsynaptic density in the human postmortem amygdala. Messenger RNA or protein levels were studied in a population of multidrug (seven heroin, eight cocaine, seven heroin/cocaine, and seven controls) or predominant heroin (29 heroin and 15 controls) subjects. RESULTS The amygdala of drug abusers was characterized by a striking positive correlation (r > .8) between α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid glutamate receptor subunit 1 (GluA1) and postsynaptic density protein-95 (PSD-95) mRNA levels, which was not evident in control subjects. Structural equation multigroup analysis of protein correlations also identified the relationship between GluA1 and PSD-95 protein levels as the distinguishing feature of abusers. In line with the GluA1-PSD-95 implications of enhanced synaptic plasticity, Homer 1b/c protein expression was increased in both heroin and cocaine users as was its binding partner, dynamin-3. Furthermore, there was a positive relationship between Homer 1b/c and dynamin-3 in drug abusers that reflected an increase in the direct physical coupling between the proteins. A noted age-related decline of Homer 1b/c-dynamin-3 interactions, as well as GluA1 levels, was blunted in abusers. CONCLUSIONS Impairment of key components of the amygdala postsynaptic density and coupling to the endocytic zone, critical for the regulation of glutamate receptor cycling, may underlie heightened synaptic plasticity in human drug abusers.
Collapse
|
31
|
Cerqueira FM, Kowaltowski AJ. Commonly adopted caloric restriction protocols often involve malnutrition. Ageing Res Rev 2010; 9:424-30. [PMID: 20493280 DOI: 10.1016/j.arr.2010.05.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 02/08/2023]
Abstract
Undernutrition without malnutrition is an intervention that enhances laboratory animal life span, and is widely studied to uncover factors limiting longevity. In a search of the literature over a course of four years, we found that most protocols currently adopted as caloric restriction do not meet micronutrient standards set by the National Research Council for laboratory rats and mice. We provide evidence that the most commonly adopted caloric restriction protocol, a 40% restriction of the AIN-93 diet without vitamin or mineral supplementation, leads to malnutrition in both mice and rats. Furthermore, others and we find that every other day feeding, another dietary intervention often referred to as caloric restriction, does not limit the total amount of calories consumed. Altogether, we propose that the term "caloric restriction" should be used specifically to describe diets that decrease calorie intake but not micronutrient availability, and that protocols adopted should be described in detail in order to allow for comparisons and better understanding of the effects of these diets.
Collapse
|
32
|
Altered distribution of mGlu2 receptors in β-amyloid-affected brain regions of Alzheimer cases and aged PS2APP mice. Brain Res 2010; 1363:180-90. [PMID: 20875805 DOI: 10.1016/j.brainres.2010.09.072] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Revised: 09/16/2010] [Accepted: 09/19/2010] [Indexed: 01/28/2023]
Abstract
Altered glutamatergic synaptic transmission is among the key events defining the course of Alzheimer's disease (AD). mGlu2 receptors, a subtype of group II metabotropic glutamate receptors, regulate (as autoreceptors) fast synaptic transmission in the CNS via the controlled release of the excitatory amino acid glutamate. Since their pharmacological manipulation in rodents has been reported to affect cognition, they are potential drug targets for AD therapy. We examined the fate of these receptors in cases of AD as well as in aging PS2APP mice--a proposed model of the disease. In vitro binding of [(3)H]LY354740, a selective group II agonist (with selective affinity for mGlu2 receptors, under the assay conditions used) and quantitative radioautography revealed a partial, but highly significant, loss of receptors in amyloid-affected discrete brain regions of AD cases and PS2APP mice. Among the mouse brain regions affected were, above all, the subiculum but also frontolateral cortex, dentate gyrus, lacunosum moleculare and caudate putamen. In AD, significant receptor losses were registered in entorhinal cortex and lacunosum moleculare (40% and 35%, respectively). These findings have implications for the development of selective ligands for symptomatic therapy in AD and for its diagnosis.
Collapse
|
33
|
Adams MM, Donohue HS, Linville MC, Iversen EA, Newton IG, Brunso-Bechtold JK. Age-related synapse loss in hippocampal CA3 is not reversed by caloric restriction. Neuroscience 2010; 171:373-82. [PMID: 20854882 DOI: 10.1016/j.neuroscience.2010.09.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Revised: 09/01/2010] [Accepted: 09/14/2010] [Indexed: 01/01/2023]
Abstract
Caloric restriction (CR) is a reduction of total caloric intake without a decrease in micronutrients or a disproportionate reduction of any one dietary component. While CR attenuates age-related cognitive deficits in tasks of hippocampal-dependent memory, the cellular mechanisms by which CR improves this cognitive decline are poorly understood. Previously, we have reported age-related decreases in key synaptic proteins in the CA3 region of the hippocampus that are stabilized by lifelong CR. In the present study, we examined possible age-related changes in the functional microcircuitry of the synapses in the stratum lacunosum-molecular (SL-M) of the CA3 region of the hippocampus, and whether lifelong CR might prevent these age-related alterations. We used serial electron microscopy to reconstruct and classify SL-M synapses and their postsynaptic spines. We analyzed synapse number and size as well as spine surface area and volume in young (10 months) and old (29 months) ad libitum fed rats and in old rats that were calorically restricted from 4 months of age. We limited our analysis to SL-M because previous work demonstrated age-related decreases in synaptophysin confined to this specific layer and region of the hippocampus. The results revealed an age-related decrease in macular axo-spinous synapses that was not reversed by CR that occurred in the absence of changes in the size of synapses or spines. Thus, the benefits of CR for CA3 function and synaptic plasticity may involve other biological effects including the stabilization of synaptic proteins levels in the face of age-related synapse loss.
Collapse
Affiliation(s)
- M M Adams
- Department of Neurobiology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157-1010, USA.
| | | | | | | | | | | |
Collapse
|
34
|
Uranga RM, Bruce-Keller AJ, Morrison CD, Fernandez-Kim SO, Ebenezer PJ, Zhang L, Dasuri K, Keller JN. Intersection between metabolic dysfunction, high fat diet consumption, and brain aging. J Neurochem 2010; 114:344-61. [PMID: 20477933 PMCID: PMC2910139 DOI: 10.1111/j.1471-4159.2010.06803.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Deleterious neurochemical, structural, and behavioral alterations are a seemingly unavoidable aspect of brain aging. However, the basis for these alterations, as well as the basis for the tremendous variability in regards to the degree to which these aspects are altered in aging individuals, remains to be elucidated. An increasing number of individuals regularly consume a diet high in fat, with high-fat diet consumption known to be sufficient to promote metabolic dysfunction, although the links between high-fat diet consumption and aging are only now beginning to be elucidated. In this review we discuss the potential role for age-related metabolic disturbances serving as an important basis for deleterious perturbations in the aging brain. These data not only have important implications for understanding the basis of brain aging, but also may be important to the development of therapeutic interventions which promote successful brain aging.
Collapse
Affiliation(s)
- Romina M. Uranga
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
- Instituto de Investigaciones Bioquímicas de Bahía Blanca, Universidad Nacional del Sur and Consejo Nacional de Investigaciones Científicas y Técnicas, Bahía Blanca, Argentina
| | | | - Christopher D. Morrison
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Sun Ok Fernandez-Kim
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Philip J. Ebenezer
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Le Zhang
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Kalavathi Dasuri
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| | - Jeffrey N. Keller
- Pennington Biomedical Research Center/Louisiana State University System, Baton Rouge, LA, USA
| |
Collapse
|
35
|
Magnusson KR, Brim BL, Das SR. Selective Vulnerabilities of N-methyl-D-aspartate (NMDA) Receptors During Brain Aging. Front Aging Neurosci 2010; 2:11. [PMID: 20552049 PMCID: PMC2874396 DOI: 10.3389/fnagi.2010.00011] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/02/2010] [Indexed: 01/07/2023] Open
Abstract
N-methyl-D-aspartate (NMDA) receptors are present in high density within the cerebral cortex and hippocampus and play an important role in learning and memory. NMDA receptors are negatively affected by aging, but these effects are not uniform in many different ways. This review discusses the selective age-related vulnerabilities of different binding sites of the NMDA receptor complex, different subunits that comprise the complex, and the expression and functions of the receptor within different brain regions. Spatial reference, passive avoidance, and working memory, as well as place field stability and expansion all involve NMDA receptors. Aged animals show deficiencies in these functions, as compared to young, and some studies have identified an association between age-associated changes in the expression of NMDA receptors and poor memory performance. A number of diet and drug interventions have shown potential for reversing or slowing the effects of aging on the NMDA receptor. On the other hand, there is mounting evidence that the NMDA receptors that remain within aged individuals are not always associated with good cognitive functioning. This may be due to a compensatory response of neurons to the decline in NMDA receptor expression or a change in the subunit composition of the remaining receptors. These studies suggest that developing treatments that are aimed at preventing or reversing the effects of aging on the NMDA receptor may aid in ameliorating the memory declines that are associated with aging. However, we need to be mindful of the possibility that there may also be negative consequences in aged individuals.
Collapse
Affiliation(s)
- Kathy R Magnusson
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University Corvallis, OR, USA
| | | | | |
Collapse
|
36
|
Conner KR, Payne VS, Forbes ME, Robbins ME, Riddle DR. Effects of the AT1 receptor antagonist L-158,809 on microglia and neurogenesis after fractionated whole-brain irradiation. Radiat Res 2010; 173:49-61. [PMID: 20041759 DOI: 10.1667/rr1821.1] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Cognitive dysfunction develops in approximately 50% of patients who receive fractionated whole-brain irradiation and survive 6 months or more. The mechanisms underlying these deficits are unknown. A recent study demonstrated that treatment with the angiotensin II type 1 receptor antagonist (AT(1)RA) L-158,809 before, during and after fractionated whole-brain irradiation prevents or ameliorates radiation-induced cognitive deficits in adult rats. Given that (1) AT(1)RAs may function as anti-inflammatory drugs, (2) inflammation is thought to contribute to radiation injury, and (3) radiation-induced inflammation alters progenitor cell populations, we tested whether the cognitive benefits of L-158,809 treatment were associated with amelioration of the sustained neuroinflammation and changes in neurogenesis that are induced by fractionated whole-brain irradiation. In rats examined 28 and 54 weeks after irradiation, L-158,809 treatment did not alter the effects of radiation on the number and activation of microglia in the perirhinal cortex and hippocampus, nor did it prevent the radiation-induced decrease in proliferating cells and immature neurons in the hippocampus. These findings suggest that L-158,809 does not prevent or ameliorate radiation-induced cognitive deficits by modulation of chronic inflammatory mechanisms, but rather may reduce radiation-induced changes that occur earlier in the postirradiation period and that lead to cognitive dysfunction.
Collapse
Affiliation(s)
- Kelly R Conner
- Program in Neuroscience, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1010, USA
| | | | | | | | | |
Collapse
|
37
|
Kasckow J, Xiao C, Herman JP. Glial glucocorticoid receptors in aged Fisher 344 (F344) and F344/Brown Norway rats. Exp Gerontol 2009; 44:335-43. [PMID: 19249343 DOI: 10.1016/j.exger.2009.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 02/04/2009] [Accepted: 02/16/2009] [Indexed: 01/15/2023]
Abstract
Glucocorticoid receptors (GR) regulate glial function, and changes in astrocyte gene expression are implicated in age-related pathology. We evaluated changes in astroglial GR expression in two strains of rats--Fisher 344 (F344; 4, 12 and 24 months) and F344/Brown Norway strain (F344/BN; 4, 12 and 30 months). In both strains basal levels of corticosterone were higher in the oldest groups of rats. Age-related increases in GR (+) astrocytes but not the percent of astrocytes expressing GR were observed in the hippocampus CA1 region in F344 rats. Age-related decreases in CA1 GR (+) astrocytes and the percentage of GR (+) astrocytes were observed in the F344/BN strain only. Similar strain-specific changes were observed in the dentate gyrus. In the hypothalamic paraventricular nucleus: (1) F344 rats exhibited significant decreases in the overall number of glial profiles with age, (2) F344/BN rats exhibited decreases in the numbers of GR (+) astrocytes with aging and (3) the proportion of GR (+) astrocytes decreased in older F344/BN, but not F344 rats. Overall, the data demonstrate age- and strain-related alterations in GR astrocytic expression that may explain unique phenotypic differences in brain function observed in both strains.
Collapse
Affiliation(s)
- J Kasckow
- VA Pittsburgh Health Care System (116A), Behavioral Health, 7180 Highland Dr. Pittsburgh, PA 15206, USA.
| | | | | |
Collapse
|
38
|
Jones TT, Brewer GJ. Critical age-related loss of cofactors of neuron cytochrome C oxidase reversed by estrogen. Exp Neurol 2008; 215:212-9. [PMID: 18930048 DOI: 10.1016/j.expneurol.2008.09.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2008] [Revised: 08/22/2008] [Accepted: 09/11/2008] [Indexed: 11/25/2022]
Abstract
The mechanistic basis for the correlation between mitochondrial dysfunction and neurodegenerative disease is unclear, but evidence supports involvement of cytochrome C oxidase (CCO) deficits with age. Neurons isolated from the brains of 24 month and 9 month rats and cultured in common conditions provide a model of intrinsic neuronal aging. In situ CCO activity was decreased in 24 month neurons relative to 9 month neurons. Possible CCO-related deficits include holoenzyme activity, cofactor, and substrate. No difference was found between neurons from 24 month and 9 month rats in mitochondrial counts per neuron, CCO activity in submitochondrial particles, or basal respiration. Immunostaining for cytochrome C in individual mitochondria revealed an age-related deficit of this electron donor. 24 month neurons did not have adequate respiratory capacity to upregulate respiration after a glutamate stimulus, in spite of a two-fold upregulation of respiration seen in 9 month neurons. Respiration in 24 month neurons was inhibited by lower concentrations of potassium cyanide, suggesting a 50% deficit in functional enzyme in 24 month compared to 9 month neurons. In addition to cytochrome C, CCO requires cardiolipin to function. Staining with nonylacridine orange revealed an age-related deficit in cardiolipin. Treatment of 24 month neurons with 17-beta-estradiol restored cardiolipin levels (10 ng/mL) and upregulated respiration under glutamate stress (1 pg/mL). Attempts to induce mitochondrial turnover by neuronal multiplication also rejuvenated CCO activity in 24 month neurons. These data suggest cytochrome C and cardiolipin levels are deficient in 24 month neurons, preventing normal upregulation of respiration needed for oxidative phosphorylation in response to stress. Furthermore, the data suggest this deficit can be corrected with estrogen treatment.
Collapse
Affiliation(s)
- Torrie T Jones
- Department of Medical Microbiology, Immunology, and Cell Biology, Southern Illinois University School of Medicine, 825 Rutledge, Springfield, IL 62702, USA.
| | | |
Collapse
|
39
|
Roberge MC, Messier C, Staines WA, Plamondon H. Food restriction induces long-lasting recovery of spatial memory deficits following global ischemia in delayed matching and non-matching-to-sample radial arm maze tasks. Neuroscience 2008; 156:11-29. [PMID: 18672030 DOI: 10.1016/j.neuroscience.2008.05.062] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 05/30/2008] [Accepted: 05/30/2008] [Indexed: 12/29/2022]
Abstract
Food restriction has been shown to be beneficial for a number of brain processes. In the current study, we characterized the impact of food restriction on hippocampal damage 70 days following ischemia. We assessed memory and cognitive flexibility of ad libitum fed (AL) and food-restricted (FR) animals using complex delayed non-matching- and matching-to-sample tasks in the radial arm maze. Our findings demonstrate that food restriction led to significant improvement of ischemia-induced memory impairments. FR ischemic animals rapidly reached comparable performance as both AL and FR sham animals in delayed-non-matching (win-shift) and matching (win-stay) radial arm maze tasks. They also made considerably fewer microchoices in the retention trials than AL ischemic animals. In contrast, AL ischemic rats showed persistent spatial memory impairments in the same paradigms. Assessment of basal and stress-induced corticosterone (CORT) secretion revealed no significant differences in baseline levels in AL and FR rats prior to or following global ischemia. However, FR animals showed a more pronounced attenuation of CORT secretion 45 min following restraint. Both FR and AL ischemic rats had comparable cell loss within CA1 and CA3 subfields of Ammon's horn (CA1 and CA3) at 70 days following reperfusion, although a trend toward increased CA3 cell survival was observed in FR ischemic rats. The functional sparing in the FR ischemic animals in the face of equivalent hippocampal cell loss suggests that food restriction somehow enhanced the efficacy of remaining hippocampal or extrahippocampal neurons following ischemia. In the current study, this phenomenon was not associated with diet- and or ischemia-related alterations of vesicular glutamate transporter 1 expression in various hippocampal regions although lower vesicular GABA transporter immunostaining was present in the CA1 stratum oriens and the CA3 stratum radiatum in FR sham and ischemic rats.
Collapse
Affiliation(s)
- M-C Roberge
- University of Ottawa, School of Psychology, 11, Marie Curie, Vanier Building Room 204, Ottawa, ON, Canada K1N 9A4
| | | | | | | |
Collapse
|
40
|
Adams MM, Shi L, Linville MC, Forbes ME, Long AB, Bennett C, Newton IG, Carter CS, Sonntag WE, Riddle DR, Brunso-Bechtold JK. Caloric restriction and age affect synaptic proteins in hippocampal CA3 and spatial learning ability. Exp Neurol 2008; 211:141-9. [PMID: 18342310 DOI: 10.1016/j.expneurol.2008.01.016] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 01/17/2008] [Accepted: 01/21/2008] [Indexed: 11/27/2022]
Abstract
Caloric restriction (CR) is a daily reduction of total caloric intake without a decrease in micronutrients or disproportionate reduction of any one dietary component. CR can increase lifespan reliably in a wide range of species and appears to counteract some aspects of the aging process throughout the body. The effects on the brain are less clear, but moderate CR seems to attenuate age-related cognitive decline. Thus, we determined the effects of age and CR on key synaptic proteins in the CA3 region of the hippocampus and whether these changes were correlated with differences in behavior on a hippocampal-dependent learning and memory task. We observed an overall, age-related decline in the NR1, N2A and N2B subunits of the N-methyl-d-aspartate (NMDA)-type and the GluR1 and GluR2 subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)-type ionotropic glutamate receptors. Interestingly, we found that CR initially lowers the glutamate receptor subunit levels as compared to young AL animals, and then stabilizes the levels across lifespan. Synaptophysin, a presynaptic vesicle protein, showed a similar pattern. We also found that both CR and ad libitum (AL) fed animals exhibited age-related cognitive decline on the Morris water maze task. However, AL animals declined between young and middle age, and between middle age and old, whereas CR rats only declined between young and middle age. Thus, the decrease in key synaptic proteins in CA3 and cognitive decline occurring across lifespan are stabilized by CR. This age-related decrease and CR-induced stabilization are likely to affect CA3 synaptic plasticity and, as a result, hippocampal function.
Collapse
Affiliation(s)
- Michelle M Adams
- Department of Neurobiology and Anatomy, Wake Forest University Health Sciences, Winston-Salem, NC 27157, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|