1
|
Wendt S, Lin AJ, Ebert SN, Brennan DJ, Cai W, Bai Y, Kong DY, Sorrentino S, Groten CJ, Lee C, Frew J, Choi HB, Karamboulas K, Delhaye M, Mackenzie IR, Kaplan DR, Miller FD, MacVicar BA, Nygaard HB. A 3D human iPSC-derived multi-cell type neurosphere system to model cellular responses to chronic amyloidosis. J Neuroinflammation 2025; 22:119. [PMID: 40275379 PMCID: PMC12023538 DOI: 10.1186/s12974-025-03433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/31/2025] [Indexed: 04/26/2025] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is characterized by progressive amyloid beta (Aβ) deposition in the brain, with eventual widespread neurodegeneration. While the cell-specific molecular signature of end-stage AD is reasonably well characterized through autopsy material, less is known about the molecular pathways in the human brain involved in the earliest exposure to Aβ. Human model systems that not only replicate the pathological features of AD but also the transcriptional landscape in neurons, astrocytes and microglia are crucial for understanding disease mechanisms and for identifying novel therapeutic targets. METHODS In this study, we used a human 3D iPSC-derived neurosphere model to explore how resident neurons, microglia and astrocytes and their interplay are modified by chronic amyloidosis induced over 3-5 weeks by supplementing media with synthetic Aβ1 - 42 oligomers. Neurospheres under chronic Aβ exposure were grown with or without microglia to investigate the functional roles of microglia. Neuronal activity and oxidative stress were monitored using genetically encoded indicators, including GCaMP6f and roGFP1, respectively. Single nuclei RNA sequencing (snRNA-seq) was performed to profile Aβ and microglia driven transcriptional changes in neurons and astrocytes, providing a comprehensive analysis of cellular responses. RESULTS Microglia efficiently phagocytosed Aβ inside neurospheres and significantly reduced neurotoxicity, mitigating amyloidosis-induced oxidative stress and neurodegeneration following different exposure times to Aβ. The neuroprotective effects conferred by the presence of microglia was associated with unique gene expression profiles in astrocytes and neurons, including several known AD-associated genes such as APOE. These findings reveal how microglia can directly alter the molecular landscape of AD. CONCLUSIONS Our human 3D neurosphere culture system with chronic Aβ exposure reveals how microglia may be essential for the cellular and transcriptional responses in AD pathogenesis. Microglia are not only neuroprotective in neurospheres but also act as key drivers of Aβ-dependent APOE expression suggesting critical roles for microglia in regulating APOE in the AD brain. This novel, well characterized, functional in vitro platform offers unique opportunities to study the roles and responses of microglia to Aβ modelling key aspects of human AD. This tool will help identify new therapeutic targets, accelerating the transition from discovery to clinical applications.
Collapse
Affiliation(s)
- Stefan Wendt
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| | - Ada J Lin
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Sarah N Ebert
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Declan J Brennan
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Wenji Cai
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Yanyang Bai
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Da Young Kong
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Stefano Sorrentino
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher J Groten
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Christopher Lee
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Jonathan Frew
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Opalia Co, Montreal, QC, H2X 3Y7, Canada
| | - Hyun B Choi
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Konstantina Karamboulas
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
| | - Mathias Delhaye
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Ian R Mackenzie
- Department of Pathology, Vancouver General Hospital, University of British Columbia, Vancouver, BC, V5Z 1M9, Canada
| | - David R Kaplan
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, M5G 0 A4, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, M5S 1 A8, Canada
| | - Freda D Miller
- Department of Medical Genetics, University of British Columbia, Vancouver, V6 T 1Z3, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, V6 T 1Z4, Canada
| | - Brian A MacVicar
- Department of Psychiatry, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada
| | - Haakon B Nygaard
- Division of Neurology, Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, V6 T 1Z3, Canada.
| |
Collapse
|
2
|
Miranda O, Jiang C, Qi X, Kofler J, Sweet RA, Wang L. Exploring Potential Medications for Alzheimer's Disease with Psychosis by Integrating Drug Target Information into Deep Learning Models: A Data-Driven Approach. Int J Mol Sci 2025; 26:1617. [PMID: 40004081 PMCID: PMC11855865 DOI: 10.3390/ijms26041617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 01/24/2025] [Accepted: 02/11/2025] [Indexed: 02/27/2025] Open
Abstract
Approximately 50% of Alzheimer's disease (AD) patients develop psychotic symptoms, leading to a subtype known as psychosis in AD (AD + P), which is associated with accelerated cognitive decline compared to AD without psychosis. Currently, no FDA-approved medication specifically addresses AD + P. This study aims to improve psychosis predictions and identify potential therapeutic agents using the DeepBiomarker deep learning model by incorporating drug-target interactions. Electronic health records from the University of Pittsburgh Medical Center were analyzed to predict psychosis within three months of AD diagnosis. AD + P patients were classified as those with either a formal psychosis diagnosis or antipsychotic prescriptions post-AD diagnosis. Two approaches were employed as follows: (1) a drug-focused method using individual medications and (2) a target-focused method pooling medications by shared targets. The updated DeepBiomarker model achieved an area under the receiver operating curve (AUROC) above 0.90 for psychosis prediction. A drug-focused analysis identified gabapentin, amlodipine, levothyroxine, and others as potentially beneficial. A target-focused analysis highlighted significant proteins, including integrins, calcium channels, and tyrosine hydroxylase, confirming several medications linked to these targets. Integrating drug-target information into predictive models improves the identification of medications for AD + P risk reduction, offering a promising strategy for therapeutic development.
Collapse
Affiliation(s)
- Oshin Miranda
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (O.M.); (C.J.); (X.Q.)
| | - Chen Jiang
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (O.M.); (C.J.); (X.Q.)
| | - Xiguang Qi
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (O.M.); (C.J.); (X.Q.)
| | - Julia Kofler
- Division of Neuropathology, Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Robert A. Sweet
- Alzheimer Disease Research Center, University of Pittsburgh, Pittsburgh, PA 15213, USA;
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Lirong Wang
- Computational Chemical Genomics Screening Center, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA 15213, USA; (O.M.); (C.J.); (X.Q.)
| |
Collapse
|
3
|
Chongtham A, Sharma A, Nath B, Murtha K, Gorbachev K, Ramakrishnan A, Schmidt EF, Shen L, Pereira AC. Common and divergent pathways in early stages of glutamate and tau-mediated toxicities in neurodegeneration. Exp Neurol 2024; 382:114967. [PMID: 39326823 DOI: 10.1016/j.expneurol.2024.114967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 09/17/2024] [Accepted: 09/21/2024] [Indexed: 09/28/2024]
Abstract
It has been shown that excitotoxicity and tau-mediated toxicities are major contributing factors to neuronal death in Alzheimer's disease (AD). The excitatory amino acid transporter 2 (EAAT2 or GLT-1), the major glutamate transporter in the brain that regulates glutamate levels synaptically and extrasynaptically, has been shown to be deficient in AD brains, leading to excitotoxicity and subsequent cell death. Similarly, buildup of neurofibrillary tangles, which consist of hyperphosphorylated tau protein, correlates with cognitive decline and neuronal atrophy in AD. However, common genes and pathways that are critical in the aforementioned toxicities have not been well elucidated. To investigate the impact of glutamate dyshomeostasis and tau accumulation on translational profiles of affected hippocampal neurons, we used mouse models of excitotoxicity and tau-mediated toxicities (GLT-1-/- and P301S, respectively) in conjunction with BAC-TRAP technology. Our data show that GLT-1 deficiency in CA3 pyramidal neurons leads to translational signatures characterized by dysregulation of pathways associated with synaptic plasticity and neuronal survival, while the P301S mutation induces changes in endocytic pathways and mitochondrial dysfunction. Finally, the commonly dysregulated pathways include impaired ion homeostasis and metabolic pathways. These common pathways may shed light on potential therapeutic targets for ameliorating glutamate and tau-mediated toxicities in AD.
Collapse
Affiliation(s)
- Anjalika Chongtham
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Abhijeet Sharma
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Banshi Nath
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kaitlin Murtha
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Kirill Gorbachev
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Aarthi Ramakrishnan
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Eric F Schmidt
- The Rockefeller University, Laboratory of Molecular Biology, New York, NY 10065, United States of America
| | - Li Shen
- Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Ana C Pereira
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Fishberg Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
4
|
Cui Y, Rolova T, Fagerholm SC. The role of integrins in brain health and neurodegenerative diseases. Eur J Cell Biol 2024; 103:151441. [PMID: 39002282 DOI: 10.1016/j.ejcb.2024.151441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
Integrins are heterodimeric membrane proteins expressed on the surface of most cells. They mediate adhesion and signaling processes relevant for a wealth of physiological processes, including nervous system development and function. Interestingly, integrins are also recognized therapeutic targets for inflammatory diseases, such as multiple sclerosis. Here, we discuss the role of integrins in brain development and function, as well as in neurodegenerative diseases affecting the brain (Alzheimer's disease, multiple sclerosis, stroke). Furthermore, we discuss therapeutic targeting of these adhesion receptors in inflammatory diseases of the brain.
Collapse
Affiliation(s)
- Yunhao Cui
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland
| | - Taisia Rolova
- Neuroscience Center, HiLIFE, University of Helsinki, Helsinki 00290, Finland
| | - Susanna C Fagerholm
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki 00790, Finland.
| |
Collapse
|
5
|
Awuson-David B, Williams AC, Wright B, Hill LJ, Di Pietro V. Common microRNA regulated pathways in Alzheimer's and Parkinson's disease. Front Neurosci 2023; 17:1228927. [PMID: 37719162 PMCID: PMC10502311 DOI: 10.3389/fnins.2023.1228927] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/02/2023] [Indexed: 09/19/2023] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs involved in gene regulation. Recently, miRNA dysregulation has been found in neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The diagnosis of Alzheimer's and Parkinson's is currently challenging, mainly occurring when pathology is already present, and although treatments are available for both diseases, the role of treatment is primarily to prevent or delay the progress of the diseases instead of fully overcoming the diseases. Therefore, the challenge in the near future will be to determine effective drugs to tackle the dysregulated biological pathways in neurodegenerative diseases. In the present study, we describe the dysregulation of miRNAs in blood of Alzheimer's and Parkinson's patients with the aim to identify common mechanisms between the 2 pathologies and potentially to identify common therapeutic targets which can stop or delay the progression of two most frequent neuropathologies. Two independent systematic reviews, bioinformatic analysis, and experiment validation were performed to identify whether AD and PD share common pathways. A total of 15 common miRNAs were found in the literature and 13 common KEGG pathways. Among the common miRNAs, two were selected for validation in a small cohort of AD and PD patients. Let-7f-5p and miR-29b-3p showed to be good predictors in blood of PD patients.
Collapse
Affiliation(s)
- Betina Awuson-David
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Adrian C. Williams
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Benjamin Wright
- Department of Neurology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Lisa J. Hill
- School of Biomedical Sciences, Institute of Clinical Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Valentina Di Pietro
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
6
|
Recombinant Integrin β1 Signal Peptide Blocks Gliosis Induced by Aβ Oligomers. Int J Mol Sci 2022; 23:ijms23105747. [PMID: 35628557 PMCID: PMC9146559 DOI: 10.3390/ijms23105747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/19/2022] [Indexed: 01/27/2023] Open
Abstract
Glial cells participate actively in the early cognitive decline in Alzheimer’s disease (AD) pathology. In fact, recent studies have found molecular and functional abnormalities in astrocytes and microglia in both animal models and brains of patients suffering from this pathology. In this regard, reactive gliosis intimately associated with amyloid plaques has become a pathological hallmark of AD. A recent study from our laboratory reports that astrocyte reactivity is caused by a direct interaction between amyloid beta (Aβ) oligomers and integrin β1. Here, we have generated four recombinant peptides including the extracellular domain of integrin β1, and evaluated their capacity both to bind in vitro to Aβ oligomers and to prevent in vivo Aβ oligomer-induced gliosis and endoplasmic reticulum stress. We have identified the minimal region of integrin β1 that binds to Aβ oligomers. This region is called signal peptide and corresponds to the first 20 amino acids of the integrin β1 N-terminal domain. This recombinant integrin β1 signal peptide prevented Aβ oligomer-induced ROS generation in primary astrocyte cultures. Furthermore, we carried out intrahippocampal injection in adult mice of recombinant integrin β1 signal peptide combined with or without Aβ oligomers and we evaluated by immunohistochemistry both astrogliosis and microgliosis as well as endoplasmic reticulum stress. The results show that recombinant integrin β1 signal peptide precluded both astrogliosis and microgliosis and endoplasmic reticulum stress mediated by Aβ oligomers in vivo. We have developed a molecular tool that blocks the activation of the molecular cascade that mediates gliosis via Aβ oligomer/integrin β1 signaling.
Collapse
|
7
|
Jaudon F, Thalhammer A, Cingolani LA. Integrin adhesion in brain assembly: From molecular structure to neuropsychiatric disorders. Eur J Neurosci 2020; 53:3831-3850. [PMID: 32531845 DOI: 10.1111/ejn.14859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 05/21/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Integrins are extracellular matrix receptors that mediate biochemical and mechanical bi-directional signals between the extracellular and intracellular environment of a cell thanks to allosteric conformational changes. In the brain, they are found in both neurons and glial cells, where they play essential roles in several aspects of brain development and function, such as cell migration, axon guidance, synaptogenesis, synaptic plasticity and neuro-inflammation. Although there are many successful examples of how regulating integrin adhesion and signaling can be used for therapeutic purposes, for example for halting tumor progression, this is not the case for the brain, where the growing evidence of the importance of integrins for brain pathophysiology has not translated yet into medical applications. Here, we review recent literature showing how alterations in integrin structure, expression and signaling may be involved in the etiology of autism spectrum disorder, epilepsy, schizophrenia, addiction, depression and Alzheimer's disease. We focus on common mechanisms and recurrent signaling pathways, trying to bridge studies on the genetics and molecular structure of integrins with those on synaptic physiology and brain pathology. Further, we discuss integrin-targeting strategies and their potential benefits for therapeutic purposes in neuropsychiatric disorders.
Collapse
Affiliation(s)
- Fanny Jaudon
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Agnes Thalhammer
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Lorenzo A Cingolani
- Center for Synaptic Neuroscience and Technology, Istituto Italiano di Tecnologia (IIT), Genoa, Italy.,Department of Life Sciences, University of Trieste, Trieste, Italy
| |
Collapse
|
8
|
Park K, Lee J, Jang HJ, Richards BA, Kohl MM, Kwag J. Optogenetic activation of parvalbumin and somatostatin interneurons selectively restores theta-nested gamma oscillations and oscillation-induced spike timing-dependent long-term potentiation impaired by amyloid β oligomers. BMC Biol 2020; 18:7. [PMID: 31937327 PMCID: PMC6961381 DOI: 10.1186/s12915-019-0732-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Background Abnormal accumulation of amyloid β1–42 oligomers (AβO1–42), a hallmark of Alzheimer’s disease, impairs hippocampal theta-nested gamma oscillations and long-term potentiation (LTP) that are believed to underlie learning and memory. Parvalbumin-positive (PV) and somatostatin-positive (SST) interneurons are critically involved in theta-nested gamma oscillogenesis and LTP induction. However, how AβO1–42 affects PV and SST interneuron circuits is unclear. Through optogenetic manipulation of PV and SST interneurons and computational modeling of the hippocampal neural circuits, we dissected the contributions of PV and SST interneuron circuit dysfunctions on AβO1–42-induced impairments of hippocampal theta-nested gamma oscillations and oscillation-induced LTP. Results Targeted whole-cell patch-clamp recordings and optogenetic manipulations of PV and SST interneurons during in vivo-like, optogenetically induced theta-nested gamma oscillations in vitro revealed that AβO1–42 causes synapse-specific dysfunction in PV and SST interneurons. AβO1–42 selectively disrupted CA1 pyramidal cells (PC)-to-PV interneuron and PV-to-PC synapses to impair theta-nested gamma oscillogenesis. In contrast, while having no effect on PC-to-SST or SST-to-PC synapses, AβO1–42 selectively disrupted SST interneuron-mediated disinhibition to CA1 PC to impair theta-nested gamma oscillation-induced spike timing-dependent LTP (tLTP). Such AβO1–42-induced impairments of gamma oscillogenesis and oscillation-induced tLTP were fully restored by optogenetic activation of PV and SST interneurons, respectively, further supporting synapse-specific dysfunctions in PV and SST interneurons. Finally, computational modeling of hippocampal neural circuits including CA1 PC, PV, and SST interneurons confirmed the experimental observations and further revealed distinct functional roles of PV and SST interneurons in theta-nested gamma oscillations and tLTP induction. Conclusions Our results reveal that AβO1–42 causes synapse-specific dysfunctions in PV and SST interneurons and that optogenetic modulations of these interneurons present potential therapeutic targets for restoring hippocampal network oscillations and synaptic plasticity impairments in Alzheimer’s disease.
Collapse
Affiliation(s)
- Kyerl Park
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaedong Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Hyun Jae Jang
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Blake A Richards
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, M1C 1A4, Canada
| | - Michael M Kohl
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Jeehyun Kwag
- Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
9
|
Dourlen P, Kilinc D, Malmanche N, Chapuis J, Lambert JC. The new genetic landscape of Alzheimer's disease: from amyloid cascade to genetically driven synaptic failure hypothesis? Acta Neuropathol 2019; 138:221-236. [PMID: 30982098 PMCID: PMC6660578 DOI: 10.1007/s00401-019-02004-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/30/2019] [Accepted: 04/02/2019] [Indexed: 12/18/2022]
Abstract
A strong genetic predisposition (60–80% of attributable risk) is present in Alzheimer’s disease (AD). In view of this major genetic component, identification of the genetic risk factors has been a major objective in the AD field with the ultimate aim to better understand the pathological processes. In this review, we present how the genetic risk factors are involved in APP metabolism, β-amyloid peptide production, degradation, aggregation and toxicity, innate immunity, and Tau toxicity. In addition, on the basis of the new genetic landscape, resulting from the recent high-throughput genomic approaches and emerging neurobiological information, we propose an over-arching model in which the focal adhesion pathway and the related cell signalling are key elements in AD pathogenesis. The core of the focal adhesion pathway links the physiological functions of amyloid precursor protein and Tau with the pathophysiological processes they are involved in. This model includes several entry points, fitting with the different origins for the disease, and supports the notion that dysregulation of synaptic plasticity is a central node in AD. Notably, our interpretation of the latest data from genome wide association studies complements other hypotheses already developed in the AD field, i.e., amyloid cascade, cellular phase or propagation hypotheses. Genetically driven synaptic failure hypothesis will need to be further tested experimentally within the general AD framework.
Collapse
Affiliation(s)
- Pierre Dourlen
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Devrim Kilinc
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Nicolas Malmanche
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Julien Chapuis
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France
| | - Jean-Charles Lambert
- Unité INSERM 1167, RID-AGE-Risk Factors and Molecular Determinants of Aging-Related Diseases, Institut Pasteur de Lille, University of Lille, U1167-Excellence Laboratory LabEx DISTALZ, BP 245, 1, rue du professeur Calmette, 59019, Lille Cedex, France.
| |
Collapse
|
10
|
Perez DR, Sklar LA, Chigaev A. Clioquinol: To harm or heal. Pharmacol Ther 2019; 199:155-163. [PMID: 30898518 DOI: 10.1016/j.pharmthera.2019.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 03/14/2019] [Indexed: 12/13/2022]
Abstract
Clioquinol, one of the first mass-produced drugs, was considered safe and efficacious for many years. It was used as an antifungal and an antiprotozoal drug until it was linked to an outbreak of subacute myelo-optic neuropathy (SMON), a debilitating disease almost exclusively confined to Japan. Today, new information regarding clioquinol targets and its mechanism of action, as well as genetic variation (SNPs) in efflux transporters in the Japanese population, provide a unique interpretation of the existing phenomena. Further understanding of clioquinol's role in the inhibition of cAMP efflux and promoting apoptosis might offer promise for the treatment of cancer and/or neurodegenerative diseases. Here, we highlight recent developments in the field and discuss possible connections, hypotheses and perspectives in clioquinol-related research.
Collapse
Affiliation(s)
- Dominique R Perez
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Larry A Sklar
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
| | - Alexandre Chigaev
- University of New Mexico Center for Molecular Discovery, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA; Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
11
|
Sethi MK, Zaia J. Extracellular matrix proteomics in schizophrenia and Alzheimer's disease. Anal Bioanal Chem 2017; 409:379-394. [PMID: 27601046 PMCID: PMC5203946 DOI: 10.1007/s00216-016-9900-6] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 12/17/2022]
Abstract
Brain extracellular matrix (ECM) is a highly organized system that consists of collagens, noncollagenous proteins, glycoproteins, hyaluronan, and proteoglycans. Recognized physiological roles of ECM include developmental regulation, tissue homeostasis, cell migration, cell proliferation, cell differentiation, neuronal plasticity, and neurite outgrowth. Aberrant ECM structure is associated with brain neurodegenerative conditions. This review focuses on two neurodegenerative conditions, schizophrenia and Alzheimer's disease, and summarizes recent findings of altered ECM components, including proteoglycans, glycosaminoglycans, proteins, and glycoproteins, and proteins and genes related to other brain components. The scope includes immunohistochemical, genomics, transcriptomics, proteomics, and glycomics studies, and a critical assessment of current state of proteomic studies for neurodegenerative disorders. The intent is to summarize the ECM molecular alterations associated with neurodegenerative pathophysiology. Graphical Abstract Brain extracellular matrix showing HSPGs, CSPGs, HA, collagens, and other glycoproteins.
Collapse
Affiliation(s)
- Manveen K Sethi
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Joseph Zaia
- Center for Biomedical Mass Spectrometry, Department of Biochemistry, Cell Biology & Genomics, Boston University School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
12
|
Dao AT, Zagaar MA, Levine AT, Alkadhi KA. Comparison of the Effect of Exercise on Late-Phase LTP of the Dentate Gyrus and CA1 of Alzheimer's Disease Model. Mol Neurobiol 2016; 53:6859-6868. [PMID: 26660327 DOI: 10.1007/s12035-015-9612-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 12/03/2015] [Indexed: 01/15/2023]
Abstract
We investigated the neuroprotective effect of regular treadmill exercise training on long-term memory and its correlate: the late-phase long-term potentiation (L-LTP) and plasticity- and memory-related signaling molecules in the DG and CA1 areas of a rat model of Alzheimer's disease (AD) (i.c.v. infusion of Aβ1-42 peptides, 2 weeks, 250 pmol/day). Testing in the radial arm water maze revealed severe impairment of spatial long-term memory in Aβ-infused sedentary rats but not in exercised Aβ-infused rats. The L-LTP, measured as changes in the field (f)EPSP and in the amplitude of population spike (pspike), was induced by multiple high-frequency stimulation in the CA1 and DG areas of anesthetized rats. The L-LTP of fEPSP in both areas was severely impaired in the sedentary Aβ rats but not in exercised Aβ rats. However, L-LTP of the pspike was severely suppressed in the CA1 area but not in the DG of sedentary Aβ rats. Immunoblot analysis revealed no increase in the levels of phosphorylated (p)-CREB, CaMKIV, and brain-derived neurotrophic factor (BDNF) in both CA1 and DG areas of sedentary Aβ rats during L-LTP, whereas the levels of these molecules were robustly increased in exercised Aβ rats. Impairment of synaptic function may be due to deleterious changes in the molecular signaling cascades that mediate synaptic structural and functional changes. The protective effect of regular exercise can be a promising therapeutic measure for countering or delaying the AD-like pathology.
Collapse
Affiliation(s)
- An T Dao
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Munder A Zagaar
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Amber T Levine
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA
| | - Karim A Alkadhi
- Department of PPS, College of Pharmacy, University of Houston, Houston, TX, 77204-5037, USA.
| |
Collapse
|
13
|
Abstract
Integrins are a large family of extracellular matrix (ECM) receptors. In the developing and adult brain, many integrins are present at high levels at synapses. The tetrapartite structure of synapses - which comprises presynaptic and postsynaptic neurons, the ECM and glial processes - places synaptic integrins in an excellent position to sense dynamic changes in the synaptic environment and use this information to coordinate further changes in synapse structure and function that will shape neural circuit properties. Recent developments in our understanding of the cellular and physiological roles of integrins, which range from control of neural process outgrowth and synapse formation to regulation of synaptic plasticity and memory, enable us to attempt a synthesis of synaptic integrin function.
Collapse
|
14
|
Dardiotis E, Siokas V, Zafeiridis T, Paterakis K, Tsivgoulis G, Dardioti M, Grigoriadis S, Simeonidou C, Deretzi G, Zintzaras E, Jagiella J, Hadjigeorgiou GM. Integrins AV and B8 Gene Polymorphisms and Risk for Intracerebral Hemorrhage in Greek and Polish Populations. Neuromolecular Med 2016; 19:69-80. [PMID: 27476161 DOI: 10.1007/s12017-016-8429-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/20/2016] [Indexed: 12/21/2022]
Abstract
Α limited number of genetic variants have been linked to the development of intracerebral hemorrhage (ICH). Ιntegrin AV and/or B8-deficient mice were found to develop ICH. The present candidate gene association study was designed to investigate possible influence of integrin AV (ITGAV) and integrin B8 (ITGB8) gene region polymorphisms on the risk of ICH. 1015 participants (250 Greek and 193 Polish patients with primary ICH and 250 Greek and 322 Polish controls) were included in the study. Using logistic regression analyses, 11 tag single nucleotide polymorphisms (SNPs) for ITGAV and 11 for ITGB8 gene were tested for associations with ICH risk, lobar ICH risk and non-lobar ICH after adjustment for age, gender, history of hypertension and country of origin. Linear regression models were used to test the effect of tag SNPs on the ICH age of onset. Correction for multiple comparisons was carried out. The rs7565633 tag SNP of the ITGAV gene was independently associated with the risk of lobar ICH in the codominant model of inheritance [odds ratio (95 % confidence interval (CI)) 0.56 (0.36-0.86), p = 0.0013]. Furthermore, heterozygous individuals of the rs10251386 and the rs10239099 of the ITGB8 gene had significantly lower age of ICH onset compared to the wild-type genotypes [regression coefficient (b) -3.884 (95 % CI -6.519, -1.249), p = 0.0039 and b = -4.502 (95 % CI -7.159, -1.845), p = 0.0009, respectively]. The present study provides preliminary indication for an influence of ITGAV gene tag SNP in the development of lobar ICH and of ITGB8 gene variants in the age of ICH onset.
Collapse
Affiliation(s)
- Efthimios Dardiotis
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Vasileios Siokas
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | | | - Konstantinos Paterakis
- Department of Neurosurgery, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Georgios Tsivgoulis
- Second Department of Neurology, University of Athens, School of Medicine, "Attikon" University Hospital, Athens, Greece.,International Clinical Research Center, St. Anne's University Hospital in Brno, Brno, Czech Republic
| | - Maria Dardioti
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece
| | - Savas Grigoriadis
- Second Department of Neurosurgery, Hippokration University Hospital, Aristotle University of Thessaloniki, Thessaloníki, Greece
| | | | - Georgia Deretzi
- Department of Neurology, Papageorgiou General Hospital, Thessaloníki, Greece
| | - Elias Zintzaras
- Department of Biomathematics, University of Thessaly School of Medicine, Larissa, Greece
| | - Jeremiasz Jagiella
- Department of Neurology, Medical College Jagiellonian University, Kraków, Poland
| | - Georgios M Hadjigeorgiou
- Laboratory of Neurogenetics, Department of Neurology, Faculty of Medicine, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100, Larissa, Greece.
| |
Collapse
|
15
|
Protection against β-amyloid-induced synaptic and memory impairments via altering β-amyloid assembly by bis(heptyl)-cognitin. Sci Rep 2015; 5:10256. [PMID: 26194093 PMCID: PMC4508546 DOI: 10.1038/srep10256] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/07/2015] [Indexed: 12/15/2022] Open
Abstract
β-amyloid (Aβ) oligomers have been closely implicated in the pathogenesis of Alzheimer’s disease (AD). We found, for the first time, that bis(heptyl)-cognitin, a novel dimeric acetylcholinesterase (AChE) inhibitor derived from tacrine, prevented Aβ oligomers-induced inhibition of long-term potentiation (LTP) at concentrations that did not interfere with normal LTP. Bis(heptyl)-cognitin also prevented Aβ oligomers-induced synaptotoxicity in primary hippocampal neurons. In contrast, tacrine and donepezil, typical AChE inhibitors, could not prevent synaptic impairments in these models, indicating that the modification of Aβ oligomers toxicity by bis(heptyl)-cognitin might be attributed to a mechanism other than AChE inhibition. Studies by using dot blotting, immunoblotting, circular dichroism spectroscopy, and transmission electron microscopy have shown that bis(heptyl)-cognitin altered Aβ assembly via directly inhibiting Aβ oligomers formation and reducing the amount of preformed Aβ oligomers. Molecular docking analysis further suggested that bis(heptyl)-cognitin presumably interacted with the hydrophobic pockets of Aβ, which confers stabilizing powers and assembly alteration effects on Aβ. Most importantly, bis(heptyl)-cognitin significantly reduced cognitive impairments induced by intra-hippocampal infusion of Aβ oligomers in mice. These results clearly demonstrated how dimeric agents prevent Aβ oligomers-induced synaptic and memory impairments, and offered a strong support for the beneficial therapeutic effects of bis(heptyl)-cognitin in the treatment of AD.
Collapse
|
16
|
Slingshot-Cofilin activation mediates mitochondrial and synaptic dysfunction via Aβ ligation to β1-integrin conformers. Cell Death Differ 2015; 22:921-34. [PMID: 25698445 PMCID: PMC4423195 DOI: 10.1038/cdd.2015.5] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 11/19/2014] [Accepted: 12/16/2014] [Indexed: 02/08/2023] Open
Abstract
The accumulation of amyloid-β protein (Aβ) is an early event associated with synaptic and mitochondrial damage in Alzheimer's disease (AD). Recent studies have implicated the filamentous actin (F-actin) severing protein, Cofilin, in synaptic remodeling, mitochondrial dysfunction, and AD pathogenesis. However, whether Cofilin is an essential component of the AD pathogenic process and how Aβ impinges its signals to Cofilin from the neuronal surface are unknown. In this study, we found that Aβ42 oligomers (Aβ42O, amyloid-β protein 1–42 oligomers) bind with high affinity to low or intermediate activation conformers of β1-integrin, resulting in the loss of surface β1-integrin and activation of Cofilin via Slingshot homology-1 (SSH1) activation. Specifically, conditional loss of β1-integrin prevented Aβ42O-induced Cofilin activation, and allosteric modulation or activation of β1-integrin significantly reduced Aβ42O binding to neurons while blocking Aβ42O-induced reactive oxygen species (ROS) production, mitochondrial dysfunction, depletion of F-actin/focal Vinculin, and apoptosis. Cofilin, in turn, was required for Aβ42O-induced loss of cell surface β1-integrin, disruption of F-actin/focal Talin–Vinculin, and depletion of F-actin-associated postsynaptic proteins. SSH1 reduction, which mitigated Cofilin activation, prevented Aβ42O-induced mitochondrial Cofilin translocation and apoptosis, while AD brain mitochondria contained significantly increased activated/oxidized Cofilin. In mechanistic support in vivo, AD mouse model (APP (amyloid precursor protein)/PS1) brains contained increased SSH1/Cofilin and decreased SSH1/14-3-3 complexes, indicative of SSH1–Cofilin activation via release of SSH1 from 14-3-3. Finally, genetic reduction in Cofilin rescued APP/Aβ-induced synaptic protein loss and gliosis in vivo as well as deficits in long-term potentiation (LTP) and contextual memory in APP/PS1 mice. These novel findings therefore implicate the essential involvement of the β1-integrin–SSH1–Cofilin pathway in mitochondrial and synaptic dysfunction in AD.
Collapse
|
17
|
Regulation of presynaptic Ca2+, synaptic plasticity and contextual fear conditioning by a N-terminal β-amyloid fragment. J Neurosci 2015; 34:14210-8. [PMID: 25339735 DOI: 10.1523/jneurosci.0326-14.2014] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Soluble β-amyloid has been shown to regulate presynaptic Ca(2+) and synaptic plasticity. In particular, picomolar β-amyloid was found to have an agonist-like action on presynaptic nicotinic receptors and to augment long-term potentiation (LTP) in a manner dependent upon nicotinic receptors. Here, we report that a functional N-terminal domain exists within β-amyloid for its agonist-like activity. This sequence corresponds to a N-terminal fragment generated by the combined action of α- and β-secretases, and resident carboxypeptidase. The N-terminal β-amyloid fragment is present in the brains and CSF of healthy adults as well as in Alzheimer's patients. Unlike full-length β-amyloid, the N-terminal β-amyloid fragment is monomeric and nontoxic. In Ca(2+) imaging studies using a model reconstituted rodent neuroblastoma cell line and isolated mouse nerve terminals, the N-terminal β-amyloid fragment proved to be highly potent and more effective than full-length β-amyloid in its agonist-like action on nicotinic receptors. In addition, the N-terminal β-amyloid fragment augmented theta burst-induced post-tetanic potentiation and LTP in mouse hippocampal slices. The N-terminal fragment also rescued LTP inhibited by elevated levels of full-length β-amyloid. Contextual fear conditioning was also strongly augmented following bilateral injection of N-terminal β-amyloid fragment into the dorsal hippocampi of intact mice. The fragment-induced augmentation of fear conditioning was attenuated by coadministration of nicotinic antagonist. The activity of the N-terminal β-amyloid fragment appears to reside largely in a sequence surrounding a putative metal binding site, YEVHHQ. These findings suggest that the N-terminal β-amyloid fragment may serve as a potent and effective endogenous neuromodulator.
Collapse
|
18
|
Venkatasubramaniam A, Drude A, Good T. Role of N-terminal residues in Aβ interactions with integrin receptor and cell surface. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2568-77. [DOI: 10.1016/j.bbamem.2014.06.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 05/26/2014] [Accepted: 06/13/2014] [Indexed: 01/12/2023]
|
19
|
β-Amyloid inhibits E-S potentiation through suppression of cannabinoid receptor 1-dependent synaptic disinhibition. Neuron 2014; 82:1334-45. [PMID: 24945775 DOI: 10.1016/j.neuron.2014.04.039] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/17/2014] [Indexed: 02/08/2023]
Abstract
It has been widely reported that β-amyloid peptide (Aβ) blocks long-term potentiation (LTP) of hippocampal synapses. Here, we show evidence that Aβ more potently blocks the potentiation of excitatory postsynaptic potential (EPSP)-spike coupling (E-S potentiation). This occurs, not by direct effect on excitatory synapses or postsynaptic neurons, but rather through an indirect mechanism: reduction of endocannabinoid-mediated peritetanic disinhibition. During high-frequency (tetanic) stimulation, somatic synaptic inhibition is suppressed by endocannabinoids. We find that Aβ prevents this endocannabinoid-mediated disinhibition, thus leaving synaptic inhibition more intact during tetanic stimulation. This intact inhibition opposes the normal depolarization of hippocampal pyramidal neurons that occurs during tetanus, thus opposing the induction of synaptic plasticity. Thus, a pathway through which Aβ can act to modulate neural activity is identified, relevant to learning and memory and how it may mediate aspects of the cognitive decline seen in Alzheimer's disease.
Collapse
|
20
|
Cochran JN, Hall AM, Roberson ED. The dendritic hypothesis for Alzheimer's disease pathophysiology. Brain Res Bull 2014; 103:18-28. [PMID: 24333192 PMCID: PMC3989444 DOI: 10.1016/j.brainresbull.2013.12.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 11/28/2013] [Accepted: 12/02/2013] [Indexed: 01/02/2023]
Abstract
Converging evidence indicates that processes occurring in and around neuronal dendrites are central to the pathogenesis of Alzheimer's disease. These data support the concept of a "dendritic hypothesis" of AD, closely related to the existing synaptic hypothesis. Here we detail dendritic neuropathology in the disease and examine how Aβ, tau, and AD genetic risk factors affect dendritic structure and function. Finally, we consider potential mechanisms by which these key drivers could affect dendritic integrity and disease progression. These dendritic mechanisms serve as a framework for therapeutic target identification and for efforts to develop disease-modifying therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- J Nicholas Cochran
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Alicia M Hall
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States
| | - Erik D Roberson
- Center for Neurodegeneration and Experimental Therapeutics, Departments of Neurology and Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294, United States.
| |
Collapse
|
21
|
Han HY, Zhang JP, Ji SQ, Liang QM, Kang HC, Tang RH, Zhu SQ, Xue Z. αν and β1 Integrins mediate Aβ-induced neurotoxicity in hippocampal neurons via the FAK signaling pathway. PLoS One 2013; 8:e64839. [PMID: 23755149 PMCID: PMC3670848 DOI: 10.1371/journal.pone.0064839] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
αν and β1 integrins mediate Aβ-induced neurotoxicity in primary hippocampal neurons. We treated hippocampal neurons with 2.5 µg/mL 17E6 and 5 µg/mL ab58524, which are specific αν and β1 integrin antagonists, respectively, for 42 h prior to 10 µM Aβ treatment. Next, we employed small interfering RNA (siRNA) to silence focal adhesion kinase (FAK), a downstream target gene of integrins. The siRNAs were designed with a target sequence, an MOI of 10 and the addition of 5 µg/mL polybrene. Under these conditions, the neurons were transfected and the apoptosis of different cell types was detected. Moreover, we used real-time PCR and Western blotting analyses to detect the expression of FAK and ρFAK genes in different cell types and investigated the underlying mechanism and signal pathway by which αν and β1 integrins mediate Aβ-induced neurotoxicity in hippocampal neurons. An MTT assay showed that both 17E6 and ab58524 significantly increased cell viability compared with the Aβ-treated neurons (P<0.01 and P<0.05, respectively). However, this protective effect was markedly attenuated after transfection with silencing FAK (siFAK). Moreover, TUNEL immunostaining and flow cytometry indicated that both 17E6 and ab58524 significantly protected hippocampal neurons against apoptosis induced by Aβ (P<0.05) compared with the Aβ-treated cells. However, this protective effect was reversed with siFAK treatment. Both the gene and protein expression of FAK increased after Aβ treatment. Interestingly, as the gene and protein levels of FAK decreased, the ρFAK protein expression markedly increased. Furthermore, both the gene and protein expression of FAK and ρFAK were significantly diminished. Thus, we concluded that both αν and β1 integrins interfered with Aβ-induced neurotoxicity in hippocampal neurons and that this mechanism partially contributes to the activation of the Integrin-FAK signaling pathway.
Collapse
Affiliation(s)
- Hai-Yan Han
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Jin-Ping Zhang
- Department of Neurology, Qianfoshan Hospital, Shan Dong University, Jinan, Shandong Province, China
| | - Su-Qiong Ji
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Qi-Ming Liang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Hui-Cong Kang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Rong-Hua Tang
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Sui-Qiang Zhu
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
22
|
Amyloid β precursor protein as a molecular target for amyloid β--induced neuronal degeneration in Alzheimer's disease. Neurobiol Aging 2013; 34:2525-37. [PMID: 23714735 DOI: 10.1016/j.neurobiolaging.2013.04.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 04/17/2013] [Accepted: 04/20/2013] [Indexed: 11/23/2022]
Abstract
A role of amyloid β (Aβ) peptide aggregation and deposition in Alzheimer's disease (AD) pathogenesis is widely accepted. Significantly, abnormalities induced by aggregated Aβ have been linked to synaptic and neuritic degeneration, consistent with the "dying-back" pattern of degeneration that characterizes neurons affected in AD. However, molecular mechanisms underlying the toxic effect of aggregated Aβ remain elusive. In the last 2 decades, a variety of aggregated Aβ species have been identified and their toxic properties demonstrated in diverse experimental systems. Concurrently, specific Aβ assemblies have been shown to interact and misregulate a growing number of molecular effectors with diverse physiological functions. Such pleiotropic effects of aggregated Aβ posit a mayor challenge for the identification of the most cardinal Aβ effectors relevant to AD pathology. In this review, we discuss recent experimental evidence implicating amyloid β precursor protein (APP) as a molecular target for toxic Aβ assemblies. Based on a significant body of pathologic observations and experimental evidence, we propose a novel pathologic feed-forward mechanism linking Aβ aggregation to abnormalities in APP processing and function, which in turn would trigger the progressive loss of neuronal connectivity observed early in AD.
Collapse
|
23
|
Furutani Y, Kawasaki M, Matsuno H, Mitsui S, Mori K, Yoshihara Y. Vitronectin induces phosphorylation of ezrin/radixin/moesin actin-binding proteins through binding to its novel neuronal receptor telencephalin. J Biol Chem 2012; 287:39041-9. [PMID: 23019340 DOI: 10.1074/jbc.m112.383851] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Vitronectin (VN) is an extracellular matrix protein abundantly present in blood and a wide variety of tissues and plays important roles in a number of biological phenomena mainly through its binding to αV integrins. However, its definite function in the brain remains largely unknown. Here we report the identification of telencephalin (TLCN/ICAM-5) as a novel VN receptor on neuronal dendrites. VN strongly binds to TLCN, a unique neuronal member of the ICAM family, which is specifically expressed on dendrites of spiny neurons in the mammalian telencephalon. VN-coated microbeads induce the formation of phagocytic cup-like plasma membrane protrusions on dendrites of cultured hippocampal neurons and trigger the activation of TLCN-dependent intracellular signaling cascade including the phosphorylation of ezrin/radixin/moesin actin-binding proteins and recruitment of F-actin and phosphatidylinositol 4,5-bisphosphate for morphological transformation of the dendritic protrusions. These results suggest that the extracellular matrix molecule VN and its neuronal receptor TLCN play a pivotal role in the phosphorylation of ezrin/radixin/moesin proteins and the formation of phagocytic cup-like structures on neuronal dendrites.
Collapse
Affiliation(s)
- Yutaka Furutani
- Laboratory for Neurobiology of Synapse, RIKEN Brain Science Institute, Saitama 351-0198, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Wright S, Parham C, Lee B, Clarke D, Auckland L, Johnston J, Lawrence AL, Dickeson SK, Santoro SA, Griswold-Prenner I, Bix G. Perlecan domain V inhibits α2 integrin-mediated amyloid-β neurotoxicity. Neurobiol Aging 2012; 33:1379-88. [DOI: 10.1016/j.neurobiolaging.2010.10.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 10/18/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
25
|
Hunter S, Brayne C. Relationships between the amyloid precursor protein and its various proteolytic fragments and neuronal systems. Alzheimers Res Ther 2012; 4:10. [PMID: 22498202 PMCID: PMC3583130 DOI: 10.1186/alzrt108] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease and in its familial form is associated with mutations in the amyloid precursor protein (APP) and the presenilins (PSs). Much data regarding the interactions of APP, its proteolytic fragments and PS have been generated, expanding our understanding of the roles of these proteins in mechanisms underlying cognitive function and revealing many complex relationships with wide ranging cellular systems. In this review, we examine the multiple interactions of APP and its proteolytic fragments with other neuronal systems in terms of feedback loops and use these relationships to build a map. We highlight the complexity involved in the APP proteolytic system and discuss alternative perspectives on the roles of APP and its proteolytic fragments in dynamic processes associated with disease progression in AD. We highlight areas where data are missing and suggest potential confounding factors. We suggest that a systems biology approach enhances representations of the data and may be more useful in modelling both normal cognition and disease processes.
Collapse
Affiliation(s)
- Sally Hunter
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Forvie site, Robinson Way, Cambridge CB2 0SR, UK
| |
Collapse
|
26
|
Pivotal role of the RanBP9-cofilin pathway in Aβ-induced apoptosis and neurodegeneration. Cell Death Differ 2012; 19:1413-23. [PMID: 22361682 DOI: 10.1038/cdd.2012.14] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Neurodegeneration associated with amyloid β (Aβ) peptide accumulation, synaptic loss, neuroinflammation, tauopathy, and memory impairments encompass the pathophysiological features of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9, which is overall increased in brains of AD patients, simultaneously promotes Aβ generation and focal adhesion disruption by accelerating the endocytosis of amyloid precursor protein (APP) and β1-integrin, respectively. Here, we show that RanBP9 protein levels are increased by fourfold in FAD mutant APP transgenic mice. Accordingly, RanBP9 transgenic mice demonstrate significantly increased synapse loss, neurodegeneration, gliosis, and spatial memory deficits. RanBP9 overexpression promotes apoptosis and potentiates Aβ-induced neurotoxicity independent of its capacity to promote Aβ generation. Conversely, RanBP9 reduction by siRNA or gene dosage mitigates Aβ-induced neurotoxicity. Importantly, RanBP9 activates/dephosphorylates cofilin, a key regulator of actin dynamics and mitochondria-mediated apoptosis, and siRNA knockdown of cofilin abolishes both Aβ and RanBP9-induced apoptosis. These findings implicate the RanBP9-cofilin pathway as critical therapeutic targets not only for stemming Aβ generation but also antagonizing Aβ-induced neurotoxicity.
Collapse
|
27
|
Woo JA, Roh SE, Lakshmana MK, Kang DE. Pivotal role of RanBP9 in integrin-dependent focal adhesion signaling and assembly. FASEB J 2012; 26:1672-81. [PMID: 22223749 DOI: 10.1096/fj.11-194423] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Accumulation of the amyloid β (Aβ) peptide derived from the amyloid precursor protein (APP) plays a central role in the pathogenesis of Alzheimer's disease (AD). We previously reported that the scaffolding protein RanBP9 is markedly increased in AD brains and promotes Aβ generation by scaffolding APP/BACE1/LRP complexes together and accelerating APP endocytosis. Because APP, LRP, and RanBP9 all physically interact with β-integrins, we investigated whether RanBP9 alters integrin-dependent cell adhesion and focal adhesion signaling. Here, we show that RanBP9 overexpression dramatically disrupts integrin-dependent cell attachment and spreading in NIH3T3 and hippocampus-derived HT22 cells, concomitant with strongly decreased Pyk2/paxillin signaling and talin/vinculin localization in focal adhesion complexes. Conversely, RanBP9 knockdown robustly promotes cell attachment, spreading, and focal adhesion signaling and assembly. Cell surface biotinylation and endocytosis assays reveal that RanBP9 overexpression and RanBP9 siRNA potently reduces and increases surface β1-integrin and LRP by accelerating and inhibiting their endocytosis, respectively. Primary hippocampal neurons derived from RanBP9-transgenic mice also demonstrate severely reduced levels of surface β1-integrin, LRP, and APP, as well as neurite arborization. Therefore, these data indicate that RanBP9 simultaneously inhibits cell-adhesive processes and enhances Aβ generation by accelerating APP, LRP, and β1-integrin endocytosis.
Collapse
Affiliation(s)
- Jung A Woo
- World Class University-Neurocytomics Program, Seoul National University College of Medicine, Seoul, Korea
| | | | | | | |
Collapse
|
28
|
Kang DE, Roh SE, Woo JA, Liu T, Bu JH, Jung AR, Lim Y. The Interface between Cytoskeletal Aberrations and Mitochondrial Dysfunction in Alzheimer's Disease and Related Disorders. Exp Neurobiol 2011; 20:67-80. [PMID: 22110363 PMCID: PMC3213703 DOI: 10.5607/en.2011.20.2.67] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2011] [Accepted: 05/17/2011] [Indexed: 01/19/2023] Open
Abstract
The major defining pathological hallmarks of Alzheimer's disease (AD) are the accumulations of Aβ in senile plaques and hyperphosphorylated tau in neurofibrillary tangles and neuropil threads. Recent studies indicate that rather than these insoluble lesions, the soluble Aβ oligomers and hyperphosphorylated tau are the toxic agents of AD pathology. Such pathological protein species are accompanied by cytoskeletal changes, mitochondrial dysfunction, Ca2+ dysregulation, and oxidative stress. In this review, we discuss how the binding of Aβ to various integrins, defects in downstream focal adhesion signaling, and activation of cofilin can impact mitochondrial dysfunction, cytoskeletal changes, and tau pathology induced by Aβ oligomers. Such pathological consequences can also feedback to further activate cofilin to promote cofilin pathology. We also suggest that the mechanism of Aβ generation by the endocytosis of APP is mechanistically linked with perturbations in integrin-based focal adhesion signaling, as APP, LRP, and β-integrins are physically associated with each other.
Collapse
Affiliation(s)
- David E Kang
- Department of Neurosciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Randall AD, Witton J, Booth C, Hynes-Allen A, Brown JT. The functional neurophysiology of the amyloid precursor protein (APP) processing pathway. Neuropharmacology 2010; 59:243-67. [PMID: 20167227 DOI: 10.1016/j.neuropharm.2010.02.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/11/2010] [Indexed: 01/12/2023]
Abstract
Amyloid beta (Abeta) peptides derived from proteolytic cleavage of amyloid precursor protein (APP) are thought to be a pivotal toxic species in the pathogenesis of Alzheimer's disease (AD). Furthermore, evidence has been accumulating that components of APP processing pathway are involved in non-pathological normal function of the CNS. In this review we aim to cover the extensive body of research aimed at understanding how components of this pathway contribute to neurophysiological function of the CNS in health and disease. We briefly outline changes to clinical neurophysiology seen in AD patients before discussing functional changes in mouse models of AD which range from changes to basal synaptic transmission and synaptic plasticity through to abnormal synchronous network activity. We then describe the various neurophysiological actions that are produced by application of exogenous Abeta in various forms, and finally discuss a number or other neurophysiological aspects of the APP pathway, including functional activities of components of secretase complexes other than Abeta production.
Collapse
Affiliation(s)
- A D Randall
- MRC Centre for Synaptic Plasticity, Department of Anatomy, University of Bristol School of Medical Sciences, Bristol, UK.
| | | | | | | | | |
Collapse
|
30
|
GluN2B subunit-containing NMDA receptor antagonists prevent Abeta-mediated synaptic plasticity disruption in vivo. Proc Natl Acad Sci U S A 2009; 106:20504-9. [PMID: 19918059 DOI: 10.1073/pnas.0908083106] [Citation(s) in RCA: 125] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Currently, treatment with the relatively low-affinity NMDA receptor antagonist memantine provides limited benefit in Alzheimer's disease (AD). One probable dose-limiting factor in the use of memantine is the inhibition of NMDA receptor-dependent synaptic plasticity mechanisms believed to underlie certain forms of memory. Moreover, amyloid-beta protein (Abeta) oligomers that are implicated in causing the cognitive deficits of AD potently inhibit this form of plasticity. Here we examined if subtype-preferring NMDA receptor antagonists could preferentially protect against the inhibition of NMDA receptor-dependent plasticity of excitatory synaptic transmission by Abeta in the hippocampus in vivo. Using doses that did not affect control plasticity, antagonists selective for NMDA receptors containing GluN2B but not other GluN2 subunits prevented Abeta(1-42) -mediated inhibition of plasticity. Evidence that the proinflammatory cytokine TNFalpha mediates this deleterious action of Ass was provided by the ability of TNFalpha antagonists to prevent Abeta(1-42) inhibition of plasticity and the abrogation of a similar disruptive effect of TNFalpha using a GluN2B-selective antagonist. Moreover, at nearby synapses that were resistant to the inhibitory effect of TNFalpha, Abeta(1-42) did not significantly affect plasticity. These findings suggest that preferentially targeting GluN2B subunit-containing NMDARs may provide an effective means of preventing cognitive deficits in early Alzheimer's disease.
Collapse
|
31
|
Ondrejcak T, Klyubin I, Hu NW, Barry AE, Cullen WK, Rowan MJ. Alzheimer's disease amyloid beta-protein and synaptic function. Neuromolecular Med 2009; 12:13-26. [PMID: 19757208 DOI: 10.1007/s12017-009-8091-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 08/25/2009] [Indexed: 12/15/2022]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by the deposition of different forms of amyloid beta-protein (A beta) including variable amounts of soluble species that correlate with severity of dementia. The extent of synaptic loss in the brain provides the best morphological correlate of cognitive impairment in clinical AD. Animal research on the pathophysiology of AD has therefore focussed on how soluble A beta disrupts synaptic mechanisms in vulnerable brain regions such as the hippocampus. Synaptic plasticity in the form of persistent activity-dependent increases or decreases in synaptic strength provide a neurophysiological substrate for hippocampal-dependent learning and memory. Acute treatment with human-derived or chemically prepared soluble A beta that contains certain oligomeric assemblies, potently and selectively disrupts synaptic plasticity causing inhibition of long-term potentiation (LTP) and enhancement of long-term depression (LTD) of glutamatergic transmission. Over time these and related actions of A beta have been implicated in reducing synaptic integrity. This review addresses the involvement of neurotransmitter intercellular signaling in mediating or modulating the synaptic plasticity disrupting actions of soluble A beta, with particular emphasis on the different roles of glutamatergic and cholinergic mechanisms. There is growing evidence to support the view that NMDA and possibly nicotinic receptors are critically involved in mediating the disruptive effect of A beta and that targeting muscarinic receptors can indirectly modulate A beta's actions. Such studies should help inform ongoing and future clinical trials of drugs acting through the glutamatergic and cholinergic systems.
Collapse
Affiliation(s)
- Tomas Ondrejcak
- Department of Pharmacology and Therapeutics, Biotechnology Building and Institute of Neuroscience, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | |
Collapse
|
32
|
Klyubin I, Wang Q, Reed MN, Irving EA, Upton N, Hofmeister J, Cleary JP, Anwyl R, Rowan MJ. Protection against Aβ-mediated rapid disruption of synaptic plasticity and memory by memantine. Neurobiol Aging 2009; 32:614-23. [PMID: 19446369 DOI: 10.1016/j.neurobiolaging.2009.04.005] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Revised: 03/30/2009] [Accepted: 04/06/2009] [Indexed: 12/18/2022]
Abstract
Soluble amyloid-β protein (Aβ) may cause cognitive impairment in Alzheimer's disease in the absence of significant neurodegeneration. Here, the ability of the NMDA receptor (NMDAR) antagonist memantine to prevent synthetic Aβ-mediated rapid functional deficits in learned behavior and synaptic plasticity was assessed in the rat. In vitro, pretreatment with a clinically relevant, NMDAR blocking concentration of memantine partially inhibited the induction of long-term potentiation (LTP) in the dentate gyrus and prevented further inhibition caused by exposure to Aβ(1-42). Whereas systemic injection with memantine alone inhibited LTP in the CA1 area in vivo, a subthreshold dose partially abrogated the inhibition of LTP by intracerebroventricular soluble Aβ(1-42). Similarly, systemic treatment with memantine alone impaired performance of an operant learning task and a subthreshold dose prevented the Aβ(1-42)-mediated increase in perseveration errors. The acute protection afforded by memantine, albeit in a narrow dose range, against the rapid disruptive effects of soluble Aβ(1-42) on synaptic plasticity and learned behavior strongly implicate NMDAR-dependent reversible dysfunction of synaptic mechanisms in Aβ-mediated cognitive impairment.
Collapse
Affiliation(s)
- Igor Klyubin
- Department of Pharmacology and Therapeutics, Trinity College, Dublin 2, Ireland
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Synaptic memory mechanisms: Alzheimer's disease amyloid beta-peptide-induced dysfunction. Biochem Soc Trans 2008; 35:1219-23. [PMID: 17956317 DOI: 10.1042/bst0351219] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
There is growing evidence that mild cognitive impairment in early AD (Alzheimer's disease) may be due to synaptic dysfunction caused by the accumulation of non-fibrillar, oligomeric Abeta (amyloid beta-peptide), long before widespread synaptic loss and neurodegeneration occurs. Soluble Abeta oligomers can rapidly disrupt synaptic memory mechanisms at extremely low concentrations via stress-activated kinases and oxidative/nitrosative stress mediators. Here, we summarize experiments that investigated whether certain putative receptors for Abeta, the alphav integrin extracellular cell matrix-binding protein and the cytokine TNFalpha (tumour necrosis factor alpha) type-1 death receptor mediate Abeta oligomer-induced inhibition of LTP (long-term potentiation). Ligands that neutralize TNFalpha or genetic knockout of TNF-R1s (type-1 TNFalpha receptors) prevented Abeta-triggered inhibition of LTP in hippocampal slices. Similarly, antibodies to alphav-containing integrins abrogated LTP block by Abeta. Protection against the synaptic plasticity-disruptive effects of soluble Abeta was also achieved using systemically administered small molecules targeting these mechanisms in vivo. Taken together, this research lends support to therapeutic trials of drugs antagonizing synaptic plasticity-disrupting actions of Abeta oligomers in preclinical AD.
Collapse
|
34
|
Lin CY, Hilgenberg LGW, Smith MA, Lynch G, Gall CM. Integrin regulation of cytoplasmic calcium in excitatory neurons depends upon glutamate receptors and release from intracellular stores. Mol Cell Neurosci 2008; 37:770-80. [PMID: 18289871 DOI: 10.1016/j.mcn.2008.01.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2007] [Revised: 11/27/2007] [Accepted: 01/03/2008] [Indexed: 01/12/2023] Open
Abstract
Integrins regulate cytoplasmic calcium levels ([Ca(2+)]i) in various cell types but information on activities in neurons is limited. The issue is of current interest because of the evidence that both integrins and changes in [Ca(2+)]i are required for Long-Term Potentiation. Accordingly, the present studies evaluated integrin ligand effects in cortical neurons. Integrin ligands or alpha5beta1 integrin activating antisera rapidly increased [Ca(2+)]i with effects greater in glutamatergic than GABAergic neurons, absent in astroglia, and blocked by beta1 integrin neutralizing antisera and the tyrosine kinase antagonist genistein. Increases depended upon extracellular calcium and intracellular store release. Ligand-induced effects were reduced by voltage-sensitive calcium channel and NMDA receptor antagonists, but blocked by tetrodotoxin or AMPA receptor antagonists. These results indicate that integrin ligation triggers AMPA receptor/depolarization-dependent calcium influx followed by intracellular store release and suggest the possibility that integrin modulation of activity-induced changes in [Ca(2+)]i contributes importantly to lasting synaptic plasticity in forebrain neurons.
Collapse
Affiliation(s)
- C-Y Lin
- Department of Anatomy and Neurobiology, University of California, Irvine CA 92697-4292, USA
| | | | | | | | | |
Collapse
|