1
|
Koyun AH, Wendiggensen P, Roessner V, Beste C, Stock AK. Neurophysiological insights into catecholamine-dependent tDCS modulation of cognitive control. Commun Biol 2025; 8:375. [PMID: 40050533 PMCID: PMC11885824 DOI: 10.1038/s42003-025-07805-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 02/24/2025] [Indexed: 03/09/2025] Open
Abstract
Goal-directed behavior requires resolving both consciously and subconsciously induced response conflicts. Neuronal gain control, which enhances processing efficacy, is crucial for conflict resolution and can be increased through pharmacological or brain stimulation interventions, though it faces inherent physical limits. This study examined the effects of anodal transcranial direct current stimulation (atDCS) and methylphenidate (MPH) on conflict processing. Healthy adults (n = 105) performed a flanker task, with electroencephalography (EEG) used to assess alpha and theta band activity (ABA, TBA). Results showed that combining atDCS with MPH enhanced cognitive control and reduced response conflicts more effectively than atDCS alone, particularly when both conflict types co-occurred. Both atDCS and atDCS + MPH exhibited similar task-induced ABA and TBA modulations in the (pre)supplementary motor area, indicating heightened gain control. Overlapping neuroanatomical effects in mid-superior frontal areas suggest that atDCS and MPH share a common neuronal mechanism of gain control, especially in high-conflict/-demand situations.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany.
- German Center for Child and Adolescent Health (DZKJ), partner site Leipzig/Dresden, Dresden, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
- University Neuropsychology Center, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
2
|
Warden ACM, McAllister C, Ruitenberg MFL, MacDonald HJ. Impulse control in Parkinson's disease: Distinct effects between action and choice. Neurosci Biobehav Rev 2025; 169:106026. [PMID: 39875083 DOI: 10.1016/j.neubiorev.2025.106026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/14/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025]
Abstract
Aside from typical motor symptoms, impulse control issues related to engaging in actions or decision-making can manifest in Parkinson's disease (PD). The lack of direct comparisons between impulsive action and impulsive choice domains hinders a comprehensive understanding of impaired impulse control in this population. Therefore, the current review integrates findings across behavioural measures of impulsive action and choice in PD samples, both on and off dopaminergic medication. The qualitative review of studies revealed a distinction between the two impulsivity domains in the context of PD. While impulsive action impairments present in early, non-medicated PD and persist throughout the disease, impulsive choice deficits may only emerge after time on medication. Research on impulsive choice, especially in non-medicated PD, is limited, and the impact of medication status and disease progression on both domains remains inconclusive. We recommend that future studies integrate impulsive action and choice task types within the same sample and employ longitudinal designs to monitor how disease progression and corresponding medication changes affect impulse control over time.
Collapse
Affiliation(s)
- Aliya C M Warden
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Craig McAllister
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Marit F L Ruitenberg
- Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands; Leiden Institute for Brain and Cognition, Leiden, the Netherlands
| | - Hayley J MacDonald
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway.
| |
Collapse
|
3
|
Koyun AH, Talebi N, Werner A, Wendiggensen P, Kuntke P, Roessner V, Beste C, Stock AK. Interactions of catecholamines and GABA+ in cognitive control: Insights from EEG and 1H-MRS. Neuroimage 2024; 293:120619. [PMID: 38679186 DOI: 10.1016/j.neuroimage.2024.120619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/01/2024] Open
Abstract
Catecholamines and amino acid transmitter systems are known to interact, the exact links and their impact on cognitive control functions have however remained unclear. Using a multi-modal imaging approach combining EEG and proton-magnetic resonance spectroscopy (1H-MRS), we investigated the effect of different degrees of pharmacological catecholaminergic enhancement onto theta band activity (TBA) as a measure of interference control during response inhibition and execution. It was central to our study to evaluate the predictive impact of in-vivo baseline GABA+ concentrations in the striatum, the anterior cingulate cortex (ACC) and the supplemental motor area (SMA) of healthy adults under varying degrees of methylphenidate (MPH) stimulation. We provide evidence for a predictive interrelation of baseline GABA+ concentrations in cognitive control relevant brain areas onto task-induced TBA during response control stimulated with MPH. Baseline GABA+ concentrations in the ACC, the striatum, and the SMA had a differential impact on predicting interference control-related TBA in response execution trials. GABA+ concentrations in the ACC appeared to be specifically important for TBA modulations when the cognitive effort needed for interference control was high - that is when no prior task experience exists, or in the absence of catecholaminergic enhancement with MPH. The study highlights the predictive role of baseline GABA+ concentrations in key brain areas influencing cognitive control and responsiveness to catecholaminergic enhancement, particularly in high-effort scenarios.
Collapse
Affiliation(s)
- Anna Helin Koyun
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Nasibeh Talebi
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Annett Werner
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Paul Wendiggensen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Paul Kuntke
- Institute of Diagnostic and Interventional Neuroradiology, TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, Dresden D-01307, Germany.
| |
Collapse
|
4
|
Palmer JA, Whitaker AA, Payne AM, Bartsch BL, Reisman DS, Boyne PE, Billinger SA. Aerobic Exercise Improves Cortical Inhibitory Function After Stroke: A Preliminary Investigation. J Neurol Phys Ther 2024; 48:83-93. [PMID: 37436187 PMCID: PMC10776819 DOI: 10.1097/npt.0000000000000453] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
BACKGROUND AND PURPOSE Aerobic exercise can elicit positive effects on neuroplasticity and cognitive executive function but is poorly understood after stroke. We tested the effect of 4 weeks of aerobic exercise training on inhibitory and facilitatory elements of cognitive executive function and electroencephalography markers of cortical inhibition and facilitation. We investigated relationships between stimulus-evoked cortical responses, blood lactate levels during training, and aerobic fitness postintervention. METHODS Twelve individuals with chronic (>6 months) stroke completed an aerobic exercise intervention (40 minutes, 3×/wk). Electroencephalography and motor response times were assessed during congruent (response facilitation) and incongruent (response inhibition) stimuli of a Flanker task. Aerobic fitness capacity was assessed as o2peak during a treadmill test pre- and postintervention. Blood lactate was assessed acutely (<1 minute) after exercise each week. Cortical inhibition (N2) and facilitation (frontal P3) were quantified as peak amplitudes and latencies of stimulus-evoked electroencephalographic activity over the frontal cortical region. RESULTS Following exercise training, the response inhibition speed increased while response facilitation remained unchanged. A relationship between earlier cortical N2 response and faster response inhibition emerged postintervention. Individuals who produced higher lactate during exercise training achieved faster response inhibition and tended to show earlier cortical N2 responses postintervention. There were no associations between o2peak and metrics of behavioral or neurophysiologic function. DISCUSSION AND CONCLUSIONS These preliminary findings provide novel evidence for selective benefits of aerobic exercise on inhibitory control during the initial 4-week period after initiation of exercise training and implicate a potential therapeutic effect of lactate on poststroke inhibitory control.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Department of Neurology (J.A.P., S.A.B.), School of Medicine, University of Kansas Medical Center, Kansas City; University of Kansas Alzheimer's Disease Research Center (J.A.P., S.A.B.), Fairway; Department of Physical Therapy, Rehabilitation Science, and Athletic Training (A.A.W., B.L.B.), University of Kansas Medical Center, Kansas City; Department of Psychology (A.M.P.), College of Arts and Sciences, Florida State University, Tallahassee; Department of Physical Therapy (D.S.R.), College of Health Sciences, University of Delaware, Newark; and Department of Rehabilitation, Exercise and Nutrition Sciences (P.E.B.), College of Allied Health Sciences, University of Cincinnati, Cincinnati, Ohio
| | | | | | | | | | | | | |
Collapse
|
5
|
Elmers J, Colzato LS, Akgün K, Ziemssen T, Beste C. Neurofilaments - Small proteins of physiological significance and predictive power for future neurodegeneration and cognitive decline across the life span. Ageing Res Rev 2023; 90:102037. [PMID: 37619618 DOI: 10.1016/j.arr.2023.102037] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Neurofilaments (NFs) are not only important for axonal integrity and nerve conduction in large myelinated axons but they are also thought to be crucial for receptor and synaptic functioning. Therefore, NFs may play a critical role in cognitive functions, as cognitive processes are known to depend on synaptic integrity and are modulated by dopaminergic signaling. Here, we present a theory-driven interdisciplinary approach that NFs may link inflammation, neurodegeneration, and cognitive functions. We base our hypothesis on a wealth of evidence suggesting a causal link between inflammation and neurodegeneration and between these two and cognitive decline (see Fig. 1), also taking dopaminergic signaling into account. We conclude that NFs may not only serve as biomarkers for inflammatory, neurodegenerative, and cognitive processes but also represent a potential mechanical hinge between them, moreover, they may even have predictive power regarding future cognitive decline. In addition, we advocate the use of both NFs and MRI parameters, as their synthesis offers the opportunity to individualize medical treatment by providing a comprehensive view of underlying disease activity in neurological diseases. Since our society will become significantly older in the upcoming years and decades, maintaining cognitive functions and healthy aging will play an important role. Thanks to technological advances in recent decades, NFs could serve as a rapid, noninvasive, and relatively inexpensive early warning system to identify individuals at increased risk for cognitive decline and could facilitate the management of cognitive dysfunctions across the lifespan.
Collapse
Affiliation(s)
- Julia Elmers
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Lorenza S Colzato
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| | - Katja Akgün
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Hospital Carl Gustav Carus, TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Germany; Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Jinan, China.
| |
Collapse
|
6
|
Bejr-Kasem H, Martínez-Horta S, Pagonabarraga J, Marín-Lahoz J, Horta-Barba A, Sampedro F, Aracil-Bolaños I, Pérez-Pérez J, Campolongo A, Izquierdo C, Pascual-Sedano B, Kulisevsky J. The role of attentional control over interference in minor hallucinations in Parkinson's disease. Parkinsonism Relat Disord 2022; 102:101-107. [PMID: 35987038 DOI: 10.1016/j.parkreldis.2022.07.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/10/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Minor hallucinations in Parkinson's disease are associated with connectivity changes in attentional networks and increased risk of structured hallucinations. However, the clinical translation of these abnormalities in attention processes is not well-defined, and commonly used neuropsychological tests are not able to detect significant deficits in Parkinson's disease patients with isolated minor hallucinations. OBJECTIVES To analyze the behavioral and electrophysiological correlates of minor hallucinations in Parkinson's disease during an attentional task assessing response inhibition and interference control. METHODS Fifty-five non-demented Parkinson's disease patients with (PD-mH; n = 27) and without minor hallucinations (PD-NH; n = 28) were included in the analysis. An Ericksen flanker task was performed to compare the effect of presenting congruent and incongruent stimuli on accuracy, reaction times and stimulus-locked event-related potentials morphology. RESULTS Although both groups showed equivalent performance in a standard neuropsychological assessment, in the flanker task accuracy rates were lower in the PD-mH group in incongruent trials (p = 0.005). In the event-related potentials, PD-mH patients showed increased amplitude of the N2 at Fz [t(53); p < 0.05] and decreased amplitude of the P300 at Pz [t(53); p < 0.05] for the incongruent trials. CONCLUSIONS Parkinson's disease patients with isolated minor hallucinations were more susceptible to interference mediated by irrelevant stimuli and had less cognitive control for suppressing these interferences. The failure of these systems could precipitate the intrusion and overrepresentation of peripheral irrelevant stimuli perceived as minor hallucinations. The Ericksen flanker task could be used as a sensitive clinical marker of the attentional defects leading to hallucinations in Parkinson's disease.
Collapse
Affiliation(s)
- Helena Bejr-Kasem
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain; Hospital Universitari de Vic, Barcelona, Spain
| | - Saül Martínez-Horta
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Javier Pagonabarraga
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Juan Marín-Lahoz
- Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Neurology Department, Miguel Servet University Hospital, Zaragoza, Spain; Instituto de Investigación Sanitaria de Aragón, Zaragoza, Spain
| | - Andrea Horta-Barba
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Frederic Sampedro
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Ignacio Aracil-Bolaños
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Jesús Pérez-Pérez
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Antonia Campolongo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Cristina Izquierdo
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Berta Pascual-Sedano
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| | - Jaime Kulisevsky
- Movement Disorders Unit, Neurology Department, Sant Pau Hospital, Barcelona, Spain; Universitat Autònoma de Barcelona (U.A.B.), Medicine Department. Barcelona, Spain; Institut d'Investigacions Biomèdiques- Sant Pau (IIB-Sant Pau), Barcelona, Spain; Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Spain; Faculty of Health Sciences, Universitat Oberta de Catalunya (UOC), Barcelona, Spain
| |
Collapse
|
7
|
Pezzetta R, Wokke ME, Aglioti SM, Ridderinkhof KR. Doing it Wrong: A Systematic Review on Electrocortical and Behavioral Correlates of Error Monitoring in Patients with Neurological Disorders. Neuroscience 2021; 486:103-125. [PMID: 33516775 DOI: 10.1016/j.neuroscience.2021.01.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/23/2022]
Abstract
Detecting errors in one's own and other's actions is a crucial ability for learning and adapting behavior to everchanging, highly volatile environments. Studies in healthy people demonstrate that monitoring errors in one's own and others' actions are underpinned by specific neural systems that are dysfunctional in a variety of neurological disorders. In this review, we first briefly discuss the main findings concerning error detection and error awareness in healthy subjects, the current theoretical models, and the tasks usually applied to investigate these processes. Then, we report a systematic search for evidence of dysfunctional error monitoring among neurological populations (basal ganglia, neurodegenerative, white-matter diseases and acquired brain injury). In particular, we examine electrophysiological and behavioral evidence for specific alterations of error processing in neurological disorders. Error-related negativity (ERN) amplitude were reduced in most (although not all) neurological patient groups, whereas Positivity Error (Pe) amplitude appeared not to be affected in most patient groups. Also theta activity was reduced in some neurological groups, but consistent evidence on the oscillatory activity has not been provided thus far. Behaviorally, we did not observe relevant patterns of pronounced dysfunctional (post-) error processing. Finally, we discuss limitations of the existing literature, conclusive points, open questions and new possible methodological approaches for clinical studies.
Collapse
Affiliation(s)
- R Pezzetta
- IRCCS San Camillo Hospital, Venice, Italy.
| | - M E Wokke
- Programs in Psychology and Biology, The Graduate Center of the City University of New York, New York, NY, USA; Department of Psychology, The University of Cambridge, Cambridge, UK
| | - S M Aglioti
- Sapienza University of Rome and CNLS@Sapienza at Istituto Italiano di Tecnologia, Via Regina Elena 295, 00161 Rome, Italy; Fondazione Santa Lucia, IRCCS, Rome, Italy
| | - K R Ridderinkhof
- Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 129B, 1018, WS, Amsterdam, The Netherlands; Amsterdam Brain & Cognition (ABC), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Bluschke A, Chmielewski WX, Roessner V, Beste C. Intact Context-Dependent Modulation of Conflict Monitoring in Childhood ADHD. J Atten Disord 2020; 24:1503-1510. [PMID: 27114409 DOI: 10.1177/1087054716643388] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: Conflict monitoring is well known to be modulated by context. This is known as the Gratton effect, meaning that the degree of interference is smaller when a stimulus-response conflict had been encountered previously. It is unclear to what extent these processes are changed in ADHD. Method: Children with ADHD (combined subtype) and healthy controls performed a modified version of the sequence flanker task. Results: Patients with ADHD made significantly more errors than healthy controls, indicating general performance deficits. However, there were no differences regarding reaction times, indicating an intact Gratton effect in ADHD. These results were supported by Bayesian statistics. Conclusion: The results suggest that the ability to take contextual information into account during conflict monitoring is preserved in patients with ADHD despite this disorder being associated with changes in executive control functions overall. These findings are discussed in light of different theoretical accounts on contextual modulations of conflict monitoring.
Collapse
|
9
|
Steinke A, Lange F, Seer C, Hendel MK, Kopp B. Computational Modeling for Neuropsychological Assessment of Bradyphrenia in Parkinson's Disease. J Clin Med 2020; 9:E1158. [PMID: 32325662 PMCID: PMC7230210 DOI: 10.3390/jcm9041158] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 12/13/2022] Open
Abstract
The neural mechanisms of cognitive dysfunctions in neurological diseases remain poorly understood. Here, we conjecture that this unsatisfying state-of-the-art is in part due to the non-specificity of the typical behavioral indicators for cognitive dysfunctions. Our study addresses the topic by advancing the assessment of cognitive dysfunctions through computational modeling. We investigate bradyphrenia in Parkinson's disease (PD) as an exemplary case of cognitive dysfunctions in neurological diseases. Our computational model conceptualizes trial-by-trial behavioral data as resulting from parallel cognitive and sensorimotor reinforcement learning. We assessed PD patients 'on' and 'off' their dopaminergic medication and matched healthy control (HC) participants on a computerized version of the Wisconsin Card Sorting Test. PD patients showed increased retention of learned cognitive information and decreased retention of learned sensorimotor information from previous trials in comparison to HC participants. Systemic dopamine replacement therapy did not remedy these cognitive dysfunctions in PD patients but incurred non-desirable side effects such as decreasing cognitive learning from positive feedback. Our results reveal novel insights into facets of bradyphrenia that are indiscernible by observable behavioral indicators of cognitive dysfunctions. We discuss how computational modeling may contribute to the advancement of future research on brain-behavior relationships and neuropsychological assessment.
Collapse
Affiliation(s)
- Alexander Steinke
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Florian Lange
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Behavioral Engineering Research Group, KU Leuven, Naamsestraat 69, 3000 Leuven, Belgium
| | - Caroline Seer
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Tervuursevest 101, 3001 Leuven, Belgium
- LBI - KU Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | - Merle K. Hendel
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
10
|
Adelhöfer N, Beste C. EEG Signal Decomposition Evidence for a Role of Perceptual Processes during Conflict-related Behavioral Adjustments in Middle Frontal Regions. J Cogn Neurosci 2020; 32:1381-1393. [PMID: 32163322 DOI: 10.1162/jocn_a_01558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Conflict monitoring processes are central to cope with fluctuating environmental demands. However, the efficacy of these processes depends on previous trial history/experience, which is reflected in the "congruency sequence effect" (CSE). Several theoretical accounts have been put forward to explain this effect. Some accounts stress the role of perceptual processes in the emergence of the CSE. As yet, it is elusive how these perceptual processes are implemented on a neural level. We examined this question using a newly developed moving dots flanker task. We combine decomposition methods of EEG data and source localization. We show that perceptual processes modulate the CSE and can be isolated in neurophysiological signals, especially in the N2 ERP time window. However, mechanisms relating perception to action are also coded and modulated in this time window. We show that middle frontal regions (BA 6) are associated with processes dealing with purely perceptual processes. Inferior frontal regions (BA 45) are associated with processes dealing with stimulus-response transition processes. Likely, the neurophysiological modulations reflect unbinding processes at the perceptual level, and stimulus-response translation level needed to respond correctly on the presented (changed) stimulus-response relationships. The data establish a direct relationship between psychological concepts focusing on perceptual processes during conflict monitoring and neurophysiological processes using signal decomposition.
Collapse
|
11
|
Hsieh S, Yu YT, Chen EH, Yang CT, Wang CH. ERP correlates of a flanker task with varying levels of analytic-holistic cognitive style. PERSONALITY AND INDIVIDUAL DIFFERENCES 2020. [DOI: 10.1016/j.paid.2019.109673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Lennox K, Miller RK, Martin FH. Habitual exercise affects inhibitory processing in young and middle age men and women. Int J Psychophysiol 2019; 146:73-84. [DOI: 10.1016/j.ijpsycho.2019.08.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 08/19/2019] [Accepted: 08/20/2019] [Indexed: 12/12/2022]
|
13
|
Beste C, Mückschel M, Rosales R, Domingo A, Lee L, Ng A, Klein C, Münchau A. The Basal Ganglia Striosomes Affect the Modulation of Conflicts by Subliminal Information-Evidence from X-Linked Dystonia Parkinsonism. Cereb Cortex 2019; 28:2243-2252. [PMID: 28505262 DOI: 10.1093/cercor/bhx125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 05/02/2017] [Indexed: 11/12/2022] Open
Abstract
Cognitive control is relevant when distracting information induces behavioral conflicts. Such conflicts can be produced consciously and by subliminally processed information. Interestingly, both sources of conflict interact suggesting that they share neural mechanisms. Here, we ask whether conjoint effects between different sources of conflict are modulated by microstructural basal ganglia dysfunction. To this end, we carried out an electroencephalography study and examined event-related potentials (ERPs) including source localization using a combined flanker-subliminal priming task in patients with X-linked dystonia Parkinsonism (XDP) and a group of healthy controls. XDP in its early stages is known to predominantly affect the basal ganglia striosomes. The results suggest that conjoint effects between subliminal and conscious sources of conflicts are modulated by the striosomes and were stronger in XDP patients. The neurophysiological data indicate that this effect is related to modulations in conflict monitoring and response selection (N2 ERP) mechanisms engaging the anterior cingulate cortex. Bottom-up perceptual gating, attentional selection, and motor response activation processes in response to the stimuli (P1, N1, and lateralized readiness potential ERPs) were unaffected. Taken together, these data indicate that striosomes modulate the processing of conscious and subliminal sources of conflict suggesting that microstructural basal ganglia properties are relevant for cognitive control.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden, Germany.,Experimental Neurobiology, National Institute of Mental Health, Topolova 748, Klecany, Czech Republic
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstrasse 74, Dresden, Germany
| | - Raymond Rosales
- XDP Study Group, Philippine Children's Medical Center, Quezon Avenue Corner Agham Road, Quezon City, Manila, Philippines
| | - Aloysius Domingo
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, Lübeck, Germany
| | - Lillian Lee
- Faculty of Neurology and Psychiatry, University of Santo Tomas, España Boulevard, Manila, Philippines
| | - Arlene Ng
- XDP Study Group, Philippine Children's Medical Center, Quezon Avenue Corner Agham Road, Quezon City, Manila, Philippines
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, Lübeck, Germany
| | - Alexander Münchau
- Institute of Neurogenetics, University of Lübeck, Maria-Goeppert-Straße 1, Lübeck, Germany
| |
Collapse
|
14
|
Opitz A, Hubert J, Beste C, Stock AK. Alcohol Hangover Slightly Impairs Response Selection but not Response Inhibition. J Clin Med 2019; 8:jcm8091317. [PMID: 31461971 PMCID: PMC6780538 DOI: 10.3390/jcm8091317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/22/2022] Open
Abstract
Alcohol hangover commonly occurs after an episode of heavy drinking. It has previously been demonstrated that acute high-dose alcohol intoxication reduces cognitive control, while automatic processes remain comparatively unaffected. However, it has remained unclear whether alcohol hangover, as a consequence of binge drinking, modulates the interplay between cognitive control and automaticity in a comparable way. Therefore, the purpose of this study was to investigate the effects of alcohol hangover on controlled versus automatic response selection and inhibition. N = 34 healthy young men completed a Simon Nogo task, once sober and once hungover. Hangover symptoms were experimentally induced by a standardized administration of alcoholic drinks (with high congener content) on the night before the hangover appointment. We found no significant hangover effects, which suggests that alcohol hangover did not produce the same functional deficits as an acute high-dose intoxication. Yet still, add-on Bayesian analyses revealed that hangover slightly impaired response selection, but not response inhibition. This pattern of effects cannot be explained with the current knowledge on how ethanol and its metabolite acetaldehyde may modulate response selection and inhibition via the dopaminergic or GABAergic system.
Collapse
Affiliation(s)
- Antje Opitz
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Jan Hubert
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Fetscherstr. 74, 01307 Dresden, Germany.
| |
Collapse
|
15
|
Stock AK, Rädle M, Beste C. Methamphetamine-associated difficulties in cognitive control allocation may normalize after prolonged abstinence. Prog Neuropsychopharmacol Biol Psychiatry 2019; 88:41-52. [PMID: 29953935 DOI: 10.1016/j.pnpbp.2018.06.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/21/2018] [Accepted: 06/23/2018] [Indexed: 12/24/2022]
Abstract
Chronic heavy methamphetamine use likely causes dopaminergic neurotoxicity, which is commonly thought to result in cognitive control deficits. Both of these alterations may persist even after the use is discontinued, but tend to (partly) improve with increasing duration of abstinence. While several studies have demonstrated that the reinstatement of comparatively normal dopaminergic signaling may take months, if not years, the amelioration of cognitive deficits has predominantly been investigated in much shorter intervals of several weeks to less than half a year. Against this background, we set out to investigate the effects on prolonged abstinence in n = 27 abstinent former methamphetamine users in a cross-sectional design using behavioral and neurophysiological measures of cognitive control. Our behavioral results suggest that former users struggled to identify and adapt to different degrees of cognitive control requirements, which made their behavioral performance less expedient than that of healthy controls. On the neurophysiological level, this was reflected by reduced modulations of the N2-N450 amplitude in response to high vs. low cognitive control requirements. Yet, those effects could only be observed in methamphetamine users who had been abstinent for a relatively short time (mean 9.9; max. 18 months), but not in former users who had been abstinent two years or longer. While this finding alone does not allow for causal inferences, it suggests that the amelioration of control deficits may take longer than what is commonly investigated (1-6 months). Hence, some of the statements about permanent/irreversible dopamine-dependent executive dysfunctions in former methamphetamine users should be interpreted with caution.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Marion Rädle
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
16
|
Gajewski PD, Ferdinand NK, Kray J, Falkenstein M. Understanding sources of adult age differences in task switching: Evidence from behavioral and ERP studies. Neurosci Biobehav Rev 2018; 92:255-275. [DOI: 10.1016/j.neubiorev.2018.05.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 05/18/2018] [Accepted: 05/28/2018] [Indexed: 01/14/2023]
|
17
|
Schreiter ML, Chmielewski W, Beste C. Neurophysiological processes and functional neuroanatomical structures underlying proactive effects of emotional conflicts. Neuroimage 2018. [DOI: 10.1016/j.neuroimage.2018.03.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
18
|
Beste C, Adelhöfer N, Gohil K, Passow S, Roessner V, Li SC. Dopamine Modulates the Efficiency of Sensory Evidence Accumulation During Perceptual Decision Making. Int J Neuropsychopharmacol 2018; 21:649-655. [PMID: 29618012 PMCID: PMC6030879 DOI: 10.1093/ijnp/pyy019] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/28/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Perceptual decision making is the process through which available sensory information is gathered and processed to guide our choices. However, the neuropsychopharmacological basis of this important cognitive function is largely elusive. Yet, theoretical considerations suggest that the dopaminergic system may play an important role. METHODS In a double-blind, randomized, placebo-controlled study design, we examined the effect of methylphenidate in 2 dosages (0.25 mg/kg and 0.5 mg/kg body weight) in separate groups of healthy young adults. We used a moving dots task in which the coherency of the direction of moving dots stimuli was manipulated in 3 levels (5%, 15%, and 35%). Drift diffusion modelling was applied to behavioral data to capture subprocesses of perceptual decision making. RESULTS The findings show that only the drift rate (v), reflecting the efficiency of sensory evidence accumulation, but not the decision criterion threshold (a) or the duration of nondecisional processes (Ter), is affected by methylphenidate vs placebo administration. Compared with placebo, administering 0.25 mg/kg methylphenidate increased v, but only in the 35% coherence condition. Administering 0.5 mg/kg methylphenidate did not induce modulations. CONCLUSIONS The data suggest that dopamine selectively modulates the efficacy of evidence accumulation during perceptual decision making. This modulation depends on 2 factors: (1) the degree to which the dopaminergic system is modulated using methylphenidate (i.e., methylphenidate dosage) and (2) the signal-to-noise ratio of the visual information. Dopamine affects sensory evidence accumulation only when dopamine concentration is not shifted beyond an optimal level and the incoming information is less noisy.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany,Correspondence: Christian Beste, PhD, Faculty of Medicine Carl Gustav Carus, TU Dresden, Department of Child and Adolescent Psychiatry, Fetscherstrasse 74, 01307 Dresden, Germany ()
| | - Nico Adelhöfer
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Krutika Gohil
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universitat Dresden, Dresden, Germany
| | - Susanne Passow
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universitat Dresden, Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universitat Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Chair of Lifespan Developmental Neuroscience, Technische Universitat Dresden, Dresden, Germany
| |
Collapse
|
19
|
Zhao G, Chen F, Zhang Q, Shen M, Gao Z. Feature-based information filtering in visual working memory is impaired in Parkinson's disease. Neuropsychologia 2018; 111:317-323. [PMID: 29427571 DOI: 10.1016/j.neuropsychologia.2018.02.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 02/05/2018] [Accepted: 02/05/2018] [Indexed: 12/22/2022]
Abstract
Increasing attention has been given to working memory (WM) impairment in Parkinson's disease (PD) patients. Previous studies revealed that the space-orientated feature-based filtering (target and distractors in distinct locations) was impaired in PD patients. However, the object-orientated feature-based filtering (target and distractor information pertaining to one object) ability in PD patients remains unclear. In this study, we examined the object-orientated feature-based filtering ability of 14 PD patients and 14 healthy controls in a change detection task under EEG monitoring. Participants were asked to remember the colors of two different objects while ignoring their shapes. Critically, the irrelevant feature could be changed in the probe. A failure in complete feature-based filtering would lead to an "irrelevant-change distracting effect," where the change of the irrelevant feature would impair the performance of the target feature, and lead to an enhanced anterior N2. We found that the distracting effect was larger in PD patients than in the control group in terms of d'; however, the N2 amplitude evoked by the irrelevant change was smaller in PD patients than in the control group. These results suggested that the object-orientated feature-based filtering ability was impaired in PD, which might derive from the deficit of their executive control.
Collapse
Affiliation(s)
- Guohua Zhao
- Department of Neurology, Second Affiliated Hospital, College of Medicine, Zhejiang University, China
| | - Feiyan Chen
- Bio-X Laboratory, Department of Physics, Zhejiang University, China
| | - Qiong Zhang
- Department of Psychology and Behavioral Sciences, Zhejiang University, China.
| | - Mowei Shen
- National Key Lab of Human Factors, Department of Psychology and Behavioral Sciences, Zhejiang University, China; Department of Psychology and Behavioral Sciences, Zhejiang University, China.
| | - Zaifeng Gao
- National Key Lab of Human Factors, Department of Psychology and Behavioral Sciences, Zhejiang University, China; Department of Psychology and Behavioral Sciences, Zhejiang University, China
| |
Collapse
|
20
|
Specific neurophysiological mechanisms underlie cognitive inflexibility in inflammatory bowel disease. Sci Rep 2017; 7:13943. [PMID: 29066846 PMCID: PMC5655331 DOI: 10.1038/s41598-017-14345-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 10/09/2017] [Indexed: 12/17/2022] Open
Abstract
Inflammatory bowel disease (IBD) is highly prevalent. While the pathophysiological mechanisms of IBD are increasingly understood, there is a lack of knowledge concerning cognitive dysfunctions in IBD. This is all the more the case concerning the underlying neurophysiological mechanisms. In the current study we focus on possible dysfunctions of cognitive flexibility (task switching) processes in IBD patients using a system neurophysiological approach combining event-related potential (ERP) recordings with source localization analyses. We show that there are task switching deficits (i.e. increased switch costs) in IBD patients. The neurophysiological data show that even though the pathophysiology of IBD is diverse and wide-spread, only specific cognitive subprocesses are altered: There was a selective dysfunction at the response selection level (N2 ERP) associated with functional alterations in the anterior cingulate cortex and the right inferior frontal gyrus. Attentional selection processes (N1 ERP), perceptual categorization processes (P1 ERP), or mechanisms related to the flexible implementation of task sets and related working memory processes (P3 ERP) do not contribute to cognitive inflexibility in IBD patients and were unchanged. It seems that pathophysiological processes in IBD strongly compromise cognitive-neurophysiological subprocesses related to fronto-striatal networks. These circuits may become overstrained in IBD when cognitive flexibility is required.
Collapse
|
21
|
Brandt VC, Stock AK, Münchau A, Beste C. Evidence for enhanced multi-component behaviour in Tourette syndrome - an EEG study. Sci Rep 2017; 7:7722. [PMID: 28798371 PMCID: PMC5552788 DOI: 10.1038/s41598-017-08158-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/07/2017] [Indexed: 12/30/2022] Open
Abstract
Evidence suggests that Tourette syndrome is characterized by an increase in dopamine transmission and structural as well as functional changes in fronto-striatal circuits that might lead to enhanced multi-component behaviour integration. Behavioural and neurophysiological data regarding multi-component behaviour was collected from 15 patients with Tourette syndrome (mean age = 30.40 ± 11.10) and 15 healthy controls (27.07 ± 5.44), using the stop-change task. In this task, participants are asked to sometimes withhold responses to a Go stimulus (stop cue) and change hands to respond to an alternative Go stimulus (change cue). Different onset asynchronies between stop and change cues were implemented (0 and 300 ms) in order to vary task difficulty. Tourette patients responded more accurately than healthy controls when there was no delay between stop and change stimulus, while there was no difference in the 300 ms delay condition. This performance advantage was reflected in a smaller P3 event related potential. Enhanced multi-component behaviour in Tourette syndrome is likely based on an enhanced ability to integrate information from multiple sources and translate it into an appropriate response sequence. This may be a consequence of chronic tic control in these patients, or a known fronto-striatal networks hyperconnectivity in Tourette syndrome.
Collapse
Affiliation(s)
- Valerie C Brandt
- Department of Psychology, Centre for Innovation in Mental Health, University of Southampton, Southampton, UK.
- Department of Paediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany.
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
| | - Alexander Münchau
- Department of Paediatric and Adult Movement Disorders and Neuropsychiatry, Institute of Neurogenetics, Center for Brain, Behaviour and Metabolism, University of Lübeck, Lübeck, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Dresden, Germany
- Experimental Neurobiology, National Institute of Mental Health, Klecany, Czech Republic
| |
Collapse
|
22
|
Zhang R, Brandt MD, Schrempf W, Beste C, Stock AK. Neurophysiological mechanisms of circadian cognitive control in RLS patients - an EEG source localization study. NEUROIMAGE-CLINICAL 2017; 15:644-652. [PMID: 28664035 PMCID: PMC5480014 DOI: 10.1016/j.nicl.2017.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 05/09/2017] [Accepted: 06/10/2017] [Indexed: 01/18/2023]
Abstract
The circadian variation of sensory and motor symptoms with increasing severity in the evening and at night is a key diagnostic feature/symptom of the restless legs syndrome (RLS). Even though many neurological diseases have shown a strong nexus between motor and cognitive symptoms, it has remained unclear whether cognitive performance of RLS patients declines in the evening and which neurophysiological mechanisms are affected by the circadian variation. In the current study, we examined daytime effects (morning vs. evening) on cognitive performance in RLS patients (n = 33) compared to healthy controls (n = 29) by analyzing flanker interference effects in combination with EEG and source localization techniques. RLS patients showed larger flanker interference effects in the evening than in the morning (p = .023), while healthy controls did not display a comparable circadian variation. In line with this, the neurophysiological data showed smaller N1 amplitudes in RLS patients compared to controls in the interfering task condition in the evening (p = .042), but not in the morning. The results demonstrate diurnal cognitive changes in RLS patients with intensified impairments in the evening. It seems that not all dopamine-regulated cognitive processes are altered in RLS and thus show daytime-dependent impairments. Instead, the daytime-related cognitive impairment emerges from attentional selection processes within the extra-striate visual cortex, but not from later cognitive processes such as conflict monitoring and response selection. RLS patients have larger flanker interference effect in the evening. RLS patients have enhanced impairment of attentional selection in the evening. Nocturnal attentional impairment relies on the extra-striate visual cortex. Conflict monitoring and response selection are not affected by RLS.
Collapse
Affiliation(s)
- Rui Zhang
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstr. 42, 01307 Dresden, Germany.
| | - Moritz D Brandt
- Department of Neurology, Carl Gustav Carus University Hospital Dresden, Fetscherstraße 74, 01307 Dresden, Germany; German Center for Neurodegenerative Diseases (DZNE) Dresden, 01307 Dresden, Germany
| | - Wiebke Schrempf
- Department of Neurology, Carl Gustav Carus University Hospital Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstr. 42, 01307 Dresden, Germany; Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 250 67 Klecany, Czech Republic
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstr. 42, 01307 Dresden, Germany
| |
Collapse
|
23
|
Bluschke A, von der Hagen M, Papenhagen K, Roessner V, Beste C. Conflict processing in juvenile patients with neurofibromatosis type 1 (NF1) and healthy controls - Two pathways to success. NEUROIMAGE-CLINICAL 2017; 14:499-505. [PMID: 28289600 PMCID: PMC5338893 DOI: 10.1016/j.nicl.2017.02.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 02/10/2017] [Accepted: 02/17/2017] [Indexed: 01/11/2023]
Abstract
Neurofibromatosis Type 1 (NF1) is a monogenetic autosomal-dominant disorder with a broad spectrum of clinical symptoms and is commonly associated with cognitive deficits. Patients with NF1 frequently exhibit cognitive impairments like attention problems, working memory deficits and dysfunctional inhibitory control. The latter is also relevant for the resolution of cognitive conflicts. However, it is unclear how conflict monitoring processes are modulated in NF1. To examine this question in more detail, we used a system neurophysiological approach combining high-density ERP recordings with source localisation analyses in juvenile patients with NF1 and controls during a flanker task. Behaviourally, patients with NF1 perform significantly slower than controls. Specifically on trials with incompatible flanker-target pairings, however, the patients with NF1 made significantly fewer errors than healthy controls. Yet, importantly, this overall successful conflict resolution was reached via two different routes in the two groups. The healthy controls seem to arrive at a successful conflict monitoring performance through a developing conflict recognition via the N2 accompanied by a selectively enhanced N450 activation in the case of perceived flanker-target conflicts. The presumed dopamine deficiency in the patients with NF1 seems to result in a reduced ability to process conflicts via the N2. However, NF1 patients show an increased N450 irrespective of cognitive conflict. Activation differences in the orbitofrontal cortex (BA11) and anterior cingulate cortex (BA24) underlie these modulations. Taken together, juvenile patients with NF1 and juvenile healthy controls seem to accomplish conflict monitoring via two different cognitive neurophysiological pathways.
Collapse
Affiliation(s)
- Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Maja von der Hagen
- Abteilung Neuropädiatrie, Medizinische Fakultät Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Katharina Papenhagen
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine to the TU Dresden, Germany; Experimental Neurobiology, National Institute of Mental Health, Czech Republic, Germany
| |
Collapse
|
24
|
Stock AK, Mückschel M, Beste C. Reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing. Addict Biol 2017; 22:246-256. [PMID: 26358755 DOI: 10.1111/adb.12296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 05/21/2015] [Accepted: 07/16/2015] [Indexed: 12/21/2022]
Abstract
Recent research has drawn interest to the effects of binge drinking on response selection. However, choosing an appropriate response is a complex endeavor that usually requires us to process and integrate several streams of information. One of them is proprioceptive information about the position of limbs. As to now, it has however remained elusive how binge drinking affects the processing of proprioceptive information during response selection and control in healthy individuals. We investigated this question using neurophysiological (EEG) techniques in a response selection task, where we manipulated proprioceptive information. The results show a reversal of alcohol-induced effects on response control due to changes in proprioceptive information processing. The most likely explanation for this finding is that proprioceptive information does not seem to be properly integrated in response selection processes during acute alcohol intoxication as found in binge drinking. The neurophysiological data suggest that processes related to the preparation and execution of the motor response, but not upstream processes related to conflict monitoring and spatial attentional orienting, underlie these binge drinking-dependent modulations. Taken together, the results show that even high doses of alcohol have very specific effects within the cascade of neurophysiological processes underlying response control and the integration of proprioceptive information during this process.
Collapse
Affiliation(s)
- Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine; TU Dresden; Dresden Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine; TU Dresden; Dresden Germany
| |
Collapse
|
25
|
Event-related potentials and cognition in Parkinson’s disease: An integrative review. Neurosci Biobehav Rev 2016; 71:691-714. [DOI: 10.1016/j.neubiorev.2016.08.003] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 06/30/2016] [Accepted: 08/02/2016] [Indexed: 12/14/2022]
|
26
|
Zhang T, Wang C, Tan F, Mou D, Zheng L, Chen A. Different relationships between central dopamine system and sub-processes of inhibition: Spontaneous eye blink rate relates with N2 but not P3 in a Go/Nogo task. Brain Cogn 2016; 105:95-103. [DOI: 10.1016/j.bandc.2016.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 04/09/2016] [Accepted: 04/14/2016] [Indexed: 02/06/2023]
|
27
|
Thurm F, Schuck NW, Fauser M, Doeller CF, Stankevich Y, Evens R, Riedel O, Storch A, Lueken U, Li SC. Dopamine modulation of spatial navigation memory in Parkinson's disease. Neurobiol Aging 2016; 38:93-103. [DOI: 10.1016/j.neurobiolaging.2015.10.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 10/15/2015] [Accepted: 10/23/2015] [Indexed: 01/13/2023]
|
28
|
Chmielewski WX, Mückschel M, Dippel G, Beste C. Concurrent information affects response inhibition processes via the modulation of theta oscillations in cognitive control networks. Brain Struct Funct 2015; 221:3949-3961. [DOI: 10.1007/s00429-015-1137-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/20/2015] [Indexed: 12/16/2022]
|
29
|
Chmielewski WX, Roessner V, Beste C. Predictability and context determine differences in conflict monitoring between adolescence and adulthood. Behav Brain Res 2015; 292:10-8. [DOI: 10.1016/j.bbr.2015.05.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 02/01/2023]
|
30
|
Haag L, Quetscher C, Dharmadhikari S, Dydak U, Schmidt-Wilcke T, Beste C. Interrelation of resting state functional connectivity, striatal GABA levels, and cognitive control processes. Hum Brain Mapp 2015; 36:4383-93. [PMID: 26354091 DOI: 10.1002/hbm.22920] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 12/24/2022] Open
Abstract
Important issues for cognitive control are response selection processes, known to depend on fronto-striatal networks with recent evidence suggesting that striatal gamma-amino butyric acid (GABA) levels play an important role. Regional GABA concentrations have also been shown to modulate intrinsic connectivity, e.g. of the default mode network. However, the interrelation between striatal GABA levels, basal ganglia network (BGN) connectivity, and performance in cognitive control is elusive. In the current study, we measure striatal GABA levels using magnetic resonance spectroscopy (MRS) and resting state parameters using functional magnetic resonance imaging (fMRI). Resting state parameters include activity within the BGN, as determined by the low frequency power (LFP) within the network, and the functional connectivity between the BGN and somatomotor network (SMN). Specifically, we examine the interrelation between GABA, resting state parameters, and performance (i.e., accuracy) in conflict monitoring using a Simon task. Response control was affected by striatal GABA+ levels and activity within the BGN, especially when response selection was complicated by altered stimulus-response mappings. The data suggest that there are two mechanisms supporting response selection accuracy. One is related to resting state activity within the BGN and modulated by striatal GABA+ levels. The other is related to decreased cortico-striatal network connectivity, unrelated to the GABAergic system. The inclusion of all three factors (i.e., striatal GABA+ levels, activity within the BGN, and BGN-SMN network connectivity) explained a considerable amount of variance in task accuracy. Striatal neurobiochemical (GABA+) and parameters of the resting state BGN represent important modulators of response control.
Collapse
Affiliation(s)
- Lauren Haag
- Department of Neurology, BG-Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Clara Quetscher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, Indiana.,Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, Indiana
| | | | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
31
|
Gajewski PD, Falkenstein M. Long-term habitual physical activity is associated with lower distractibility in a Stroop interference task in aging: Behavioral and ERP evidence. Brain Cogn 2015; 98:87-101. [DOI: 10.1016/j.bandc.2015.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/11/2015] [Accepted: 06/12/2015] [Indexed: 12/15/2022]
|
32
|
Steenbergen L, Sellaro R, Stock AK, Beste C, Colzato LS. γ-Aminobutyric acid (GABA) administration improves action selection processes: a randomised controlled trial. Sci Rep 2015; 5:12770. [PMID: 26227783 PMCID: PMC4521208 DOI: 10.1038/srep12770] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/09/2015] [Indexed: 01/12/2023] Open
Abstract
In order to accomplish a task goal, real-life environments require us to develop different action control strategies in order to rapidly react to fast-moving visual and auditory stimuli. When engaging in complex scenarios, it is essential to prioritise and cascade different actions. Recent studies have pointed to an important role of the gamma-aminobutyric acid (GABA)-ergic system in the neuromodulation of action cascading. In this study we assessed the specific causal role of the GABA-ergic system in modulating the efficiency of action cascading by administering 800 mg of synthetic GABA or 800 mg oral of microcrystalline cellulose (placebo). In a double-blind, randomised, between-group design, 30 healthy adults performed a stop-change paradigm. Results showed that the administration of GABA, compared to placebo, increased action selection when an interruption (stop) and a change towards an alternative response were required simultaneously, and when such a change had to occur after the completion of the stop process. These findings, involving the systemic administration of synthetic GABA, provide the first evidence for a possible causal role of the GABA-ergic system in modulating performance in action cascading.
Collapse
Affiliation(s)
- Laura Steenbergen
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Roberta Sellaro
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Lorenza S. Colzato
- Institute for Psychological Research, Leiden Institute for Brain and Cognition, Leiden University, Leiden, The Netherlands
| |
Collapse
|
33
|
Dharmadhikari S, Ma R, Yeh CL, Stock AK, Snyder S, Zauber SE, Dydak U, Beste C. Striatal and thalamic GABA level concentrations play differential roles for the modulation of response selection processes by proprioceptive information. Neuroimage 2015; 120:36-42. [PMID: 26142275 DOI: 10.1016/j.neuroimage.2015.06.066] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 06/18/2015] [Accepted: 06/24/2015] [Indexed: 12/24/2022] Open
Abstract
The selection of appropriate responses is a complex endeavor requiring the integration of many different sources of information in fronto-striatal-thalamic circuits. An often neglected but relevant piece of information is provided by proprioceptive inputs about the current position of our limbs. This study examines the importance of striatal and thalamic GABA levels in these processes using GABA-edited magnetic resonance spectroscopy (GABA-MRS) and a Simon task featuring proprioception-induced interference in healthy subjects. As a possible model of deficits in the processing of proprioceptive information, we also included Parkinson's disease (PD) patients in this study. The results show that proprioceptive information about unusual postures complicates response selection processes in controls, but not in PD patients. The well-known deficits of PD patients in processing proprioceptive information can turn into a benefit when altered proprioceptive information would normally complicate response selection processes. Striatal and thalamic GABA levels play dissociable roles in the modulation of response selection processes by proprioceptive information: Striatal GABA levels seem to be important for the general speed of responding, most likely because striatal GABA promotes response selection. In contrast, the modulation of response conflict by proprioceptive information is closely related to thalamic GABA concentrations with higher concentration being related to a smaller response conflict effect. The most likely explanation for this finding is that the thalamus is involved in the integration of sensorimotor, attentional, and cognitive information for the purpose of response formation. Yet, this effect in the thalamus vanishes when controls and PD patients were analyzed separately.
Collapse
Affiliation(s)
- Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ruoyun Ma
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chien-Lin Yeh
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Sandy Snyder
- School of Health Sciences, Purdue University, West Lafayette, IN, USA
| | - S Elizabeth Zauber
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, USA; Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| |
Collapse
|
34
|
The aging brain shows less flexible reallocation of cognitive resources during dual-task walking: A mobile brain/body imaging (MoBI) study. Neuroimage 2015; 117:230-42. [PMID: 25988225 DOI: 10.1016/j.neuroimage.2015.05.028] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/11/2015] [Accepted: 05/11/2015] [Indexed: 11/23/2022] Open
Abstract
Aging is associated with reduced abilities to selectively allocate attention across multiple domains. This may be particularly problematic during everyday multitasking situations when cognitively demanding tasks are performed while walking. Due to previous limitations in neuroimaging technology, much remains unknown about the cortical mechanisms underlying resource allocation during locomotion. Here, we utilized an EEG-based mobile brain/body imaging (MoBI) technique that integrates high-density event-related potential (ERP) recordings with simultaneously acquired foot-force sensor data to monitor gait patterns and brain activity concurrently. To assess effects of motor load on cognition we evaluated young (N=17; mean age=27.2) and older adults (N=16; mean age=63.9) and compared behavioral and ERP measures associated with performing a Go/No-Go response inhibition task as participants sat stationary or walked on a treadmill. Stride time and variability were also measured during task performance and compared to stride parameters obtained without task performance, thereby assessing effects of cognitive load on gait. Results showed that older, but not young adults' accuracy dropped significantly when performing the inhibitory task while walking. Young adults revealed ERP modulations at relatively early (N2 amplitude reduction) and later (earlier P3 latency) stages within the processing stream as motor load increased while walking. In contrast, older adults' ERP modulations were limited to later processing stages (increased P3 amplitude) of the inhibitory network. The relative delay and attenuation of ERP modulations accompanied by behavioral costs in older participants might indicate an age-associated loss in flexible resource allocation across multiple tasks. Better understanding of the neural underpinnings of these age-related changes may lead to improved strategies to reduce fall risk and enhance mobility in aging.
Collapse
|
35
|
Beste C, Kneiphof J, Woitalla D. Effects of fatigue on cognitive control in neurosarcoidosis. Eur Neuropsychopharmacol 2015; 25:522-30. [PMID: 25700944 DOI: 10.1016/j.euroneuro.2015.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 10/15/2014] [Accepted: 01/12/2015] [Indexed: 11/26/2022]
Abstract
Fatigue is a usual reaction to prolonged performance but also a major symptom in various neuroimmunological diseases. In neurosarcoidosis fatigue is a core symptom, but little is known about the relevance of fatigue on cognitive functions in this disease. Previous results in healthy subjects suggest that fatigue strongly affects cognitive control processes. However, fatigue is not a uni-dimensional construct but consists of different facets. It is unknown which of these facets are most important for mechanisms of cognitive control. In the current study we investigate conflict monitoring and response selection processes in neurosarcoidosis patients as a 'model disease' of fatigue and healthy controls in relation to the impact of 'cognitive' and 'motor fatigue' on these processes using event-related potentials (ERPs). We focus on ERPs reflecting attentional selection (P1, N1) and conflict monitoring/response selection processes (N2). ERPs reflecting attentional selection processes were unchanged. The N2 on incompatible trials was reduced in neurosarcoidosis suggesting that response selection and conflict monitoring functions are dysfunctional. Of note, fatigue strongly modulates responses selection processes in conflicting situations (N2) in controls and neurosarcoidosis, but the effect of fatigue on these processes was stronger in neurosarcoidosis. Neuroimmunological parameters like TNF-α and soluble interleukin-2 receptor serum concentrations do not seem to modulate the pattern of results. Concerning fatigue it seems to be the 'cognitive' dimension and not the 'motor' dimension that is of relevance for the modulation of response selection in conflicting situations.
Collapse
Affiliation(s)
- Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| | - Janina Kneiphof
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany; Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Germany
| | - Dirk Woitalla
- Department of Neurology, St. Josef Hospital, Ruhr-University Bochum, Germany
| |
Collapse
|
36
|
Hoffmann S, Beste C. A perspective on neural and cognitive mechanisms of error commission. Front Behav Neurosci 2015; 9:50. [PMID: 25784865 PMCID: PMC4347623 DOI: 10.3389/fnbeh.2015.00050] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 02/11/2015] [Indexed: 12/20/2022] Open
Abstract
Behavioral adaptation and cognitive control are crucial for goal-reaching behaviors. Every creature is ubiquitously faced with choices between behavioral alternatives. Common sense suggests that errors are an important source of information in the regulation of such processes. Several theories exist regarding cognitive control and the processing of undesired outcomes. However, most of these models focus on the consequences of an error, and less attention has been paid to the mechanisms that underlie the commissioning of an error. In this article, we present an integrative review of neuro-cognitive models that detail the determinants of the occurrence of response errors. The factors that may determine the likelihood of committing errors are likely related to the stability of task-representations in prefrontal networks, attentional selection mechanisms and mechanisms of action selection in basal ganglia circuits. An important conclusion is that the likelihood of committing an error is not stable over time but rather changes depending on the interplay of different functional neuro-anatomical and neuro-biological systems. We describe factors that might determine the time-course of cognitive control and the need to adapt behavior following response errors. Finally, we outline the mechanisms that may proof useful for predicting the outcomes of cognitive control and the emergence of response errors in future research.
Collapse
Affiliation(s)
- Sven Hoffmann
- Performance Psychology, Institute of Psychology, German Sport University Cologne Cologne, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, University Hospital Carl Gustav Carus Dresden, Germany
| |
Collapse
|
37
|
Daffner KR, Alperin BR, Mott KK, Tusch ES, Holcomb PJ. Age-related differences in early novelty processing: using PCA to parse the overlapping anterior P2 and N2 components. Biol Psychol 2015; 105:83-94. [PMID: 25596483 PMCID: PMC4374636 DOI: 10.1016/j.biopsycho.2015.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 10/31/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
Previous work demonstrated age-associated increases in the anterior P2 and age-related decreases in the anterior N2 in response to novel stimuli. Principal component analysis (PCA) was used to determine if the inverse relationship between these components was due to their temporal and spatial overlap. PCA revealed an early anterior P2, sensitive to task relevance, and a late anterior P2, responsive to novelty, both exhibiting age-related amplitude increases. A PCA factor representing the anterior N2, sensitive to novelty, exhibited age-related amplitude decreases. The late P2 and N2 to novels inversely correlated. Larger late P2 amplitude to novels was associated with better behavioral performance. Age-related differences in the anterior P2 and N2 to novel stimuli likely represent age-associated changes in independent cognitive operations. Enhanced anterior P2 activity (indexing augmentation in motivational salience) may be a compensatory mechanism for diminished anterior N2 activity (indexing reduced ability of older adults to process ambiguous representations).
Collapse
Affiliation(s)
- Kirk R Daffner
- Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA.
| | - Brittany R Alperin
- Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Katherine K Mott
- Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Erich S Tusch
- Center for Brain/Mind Medicine, Division of Cognitive and Behavioral Neurology, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, 221 Longwood Avenue, Boston, MA 02115, USA
| | - Phillip J Holcomb
- Department of Psychology, Tufts University, 490 Boston Avenue, Medford, MA 02155, USA
| |
Collapse
|
38
|
Farkas A, Bluschke A, Roessner V, Beste C. Neurofeedback and its possible relevance for the treatment of Tourette syndrome. Neurosci Biobehav Rev 2015; 51:87-99. [PMID: 25616186 DOI: 10.1016/j.neubiorev.2015.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 12/22/2014] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Neurofeedback is an increasingly recognized therapeutic option in various neuropsychiatric disorders to treat dysfunctions in cognitive control as well as disorder-specific symptoms. In this review we propose that neurofeedback may also reflect a valuable therapeutic option to treat executive control functions in Gilles-de-la-Tourette syndrome (GTS). Deficits in executive control functions when ADHD symptoms appear in GTS likely reflect pathophysiological processes in cortico-thalamic-striatal circuits and may also underlie the motor symptoms in GTS. Such executive control deficits evident in comorbid GTS/ADHD depend on neurophysiological processes well-known to be modifiable by neurofeedback. However, so far efforts to use neurofeedback to treat cognitive dysfunctions are scarce. We outline why neurofeedback should be considered a promising treatment option, what forms of neurofeedback may prove to be most effective and how neurofeedback may be implemented in existing intervention strategies to treat comorbid GTS/ADHD and associated dysfunctions in cognitive control. As cognitive control deficits in GTS mostly appear in comorbid GTS/ADHD, neurofeedback may be most useful in this frequent combination of disorders.
Collapse
Affiliation(s)
- Aniko Farkas
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Annet Bluschke
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Veit Roessner
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Germany.
| |
Collapse
|
39
|
Psychophysiological mechanisms underlying response selection in multidimensional space. Sci Rep 2015; 5:7759. [PMID: 25582443 PMCID: PMC4291563 DOI: 10.1038/srep07759] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/11/2014] [Indexed: 11/08/2022] Open
Abstract
In the outside world, response selection often requires the processing of information from different spatial dimensions. Yet, most neuroscientific approaches to the topic only employ variations in one dimension, namely the horizontal left-right axis. Hence, virtually nothing is known about the neuronal mechanisms underlying response selection in more than one dimension. We investigated this aspect with the help of a two-dimensional flanker task using EEG and source localization techniques. The data shows that response selection processes are differentially modulated across different dimensions. However, this modulation is restricted to conditions imposing increased demands on response selection. In such situations, a distributed fronto-parietal network mediates intensified conflict monitoring processes as well as response inhibition processes. In case response selection is carried out in the horizontal dimension, those brain areas are more active than during response selection in the vertical dimension. Attentional selection processes were not affected. The study's findings are of relevance to our understanding to everyday functioning where response selection is usually carried out in two or three dimensions and not a single dimension as usually investigated in cognitive neuroscience.
Collapse
|
40
|
Chmielewski WX, Beste C. Action control processes in autism spectrum disorder – Insights from a neurobiological and neuroanatomical perspective. Prog Neurobiol 2015; 124:49-83. [DOI: 10.1016/j.pneurobio.2014.11.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 11/03/2014] [Accepted: 11/06/2014] [Indexed: 12/22/2022]
|
41
|
Moustafa AA. Motor and cognitive changes in normal aging. Front Aging Neurosci 2014; 6:331. [PMID: 25505412 PMCID: PMC4243687 DOI: 10.3389/fnagi.2014.00331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 11/11/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ahmed A Moustafa
- Department of Veterans Affairs, New Jersey Health Care System, School of Social Sciences and Psychology, Marcs Institute for Brain and Behaviour, University of Western Sydney Sydney, NSW, Australia
| |
Collapse
|
42
|
Chmielewski WX, Mückschel M, Roessner V, Beste C. Expectancy effects during response selection modulate attentional selection and inhibitory control networks. Behav Brain Res 2014; 274:53-61. [DOI: 10.1016/j.bbr.2014.08.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 07/29/2014] [Accepted: 08/03/2014] [Indexed: 10/24/2022]
|
43
|
Quetscher C, Yildiz A, Dharmadhikari S, Glaubitz B, Schmidt-Wilcke T, Dydak U, Beste C. Striatal GABA-MRS predicts response inhibition performance and its cortical electrophysiological correlates. Brain Struct Funct 2014; 220:3555-64. [PMID: 25156575 DOI: 10.1007/s00429-014-0873-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2014] [Accepted: 08/07/2014] [Indexed: 12/22/2022]
Abstract
Response inhibition processes are important for performance monitoring and are mediated via a network constituted by different cortical areas and basal ganglia nuclei. At the basal ganglia level, striatal GABAergic medium spiny neurons are known to be important for response selection, but the importance of the striatal GABAergic system for response inhibition processes remains elusive. Using a novel combination of behavior al, EEG and magnetic resonance spectroscopy (MRS) data, we examine the relevance of the striatal GABAergic system for response inhibition processes. The study shows that striatal GABA levels modulate the efficacy of response inhibition processes. Higher striatal GABA levels were related to better response inhibition performance. We show that striatal GABA modulate specific subprocesses of response inhibition related to pre-motor inhibitory processes through the modulation of neuronal synchronization processes. To our knowledge, this is the first study providing direct evidence for the relevance of the striatal GABAergic system for response inhibition functions and their cortical electrophysiological correlates in humans.
Collapse
Affiliation(s)
- Clara Quetscher
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Ali Yildiz
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr-Universität Bochum, Bochum, Germany
| | - Shalmali Dharmadhikari
- School of Health Sciences, Purdue University, West Lafayette, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
| | - Benjamin Glaubitz
- Department of Neurology, Berufsgenossenschaftliche Kliniken Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Tobias Schmidt-Wilcke
- Department of Neurology, Berufsgenossenschaftliche Kliniken Bergmannsheil, Ruhr-Universität Bochum, Bochum, Germany
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, USA
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine of the TU Dresden, Schubertstrasse 42, 01309, Dresden, Germany.
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr-Universität Bochum, Bochum, Germany.
| |
Collapse
|
44
|
Chmielewski WX, Yildiz A, Beste C. The neural architecture of age-related dual-task interferences. Front Aging Neurosci 2014; 6:193. [PMID: 25132818 PMCID: PMC4116785 DOI: 10.3389/fnagi.2014.00193] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 07/12/2014] [Indexed: 12/02/2022] Open
Abstract
In daily life elderly adults exhibit deficits when dual-tasking is involved. So far these deficits have been verified on a behavioral level in dual-tasking. Yet, the neuronal architecture of these deficits in aging still remains to be explored especially when late-middle aged individuals around 60 years of age are concerned. Neuroimaging studies in young participants concerning dual-tasking were, among others, related to activity in middle frontal (MFG) and superior frontal gyrus (SFG) and the anterior insula (AI). According to the frontal lobe hypothesis of aging, alterations in these frontal regions (i.e., SFG and MFG) might be responsible for cognitive deficits. We measured brain activity using fMRI, while examining age-dependent variations in dual-tasking by utilizing the PRP (psychological refractory period) test. Behavioral data showed an increasing PRP effect in late-middle aged adults. The results suggest the age-related deteriorated performance in dual-tasking, especially in conditions of risen complexity. These effects are related to changes in networks involving the AI, the SFG and the MFG. The results suggest that different cognitive subprocesses are affected that mediate the observed dual-tasking problems in late-middle aged individuals.
Collapse
Affiliation(s)
- Witold X Chmielewski
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden Dresden, Germany
| | - Ali Yildiz
- Department of Biopsychology, Institute of Cognitive Neuroscience, Ruhr-University Bochum Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden Dresden, Germany
| |
Collapse
|
45
|
DRD1 and DRD2 genotypes modulate processing modes of goal activation processes during action cascading. J Neurosci 2014; 34:5335-41. [PMID: 24719111 DOI: 10.1523/jneurosci.5140-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Dopamine plays an important role in action selection, but little is known about the influence of different dopamine receptor systems on the subprocesses occurring during the cascading of actions. Because action selection and cascading can be accomplished in a serial manner or a parallel manner, we investigated the potential effects of DRD1 (rs4531) and DRD2 (rs6277) receptor polymorphisms on this dimension. We gathered behavioral and neurophysiological data from healthy human subjects (n = 162) and applied mathematical constraints to quantify their action selection strategy on a serial-parallel continuum. The behavioral results show a more serial and more effective action cascading strategy in homozygous DRD1 G allele carriers, who are assumed to have a higher D1 receptor efficiency than carriers of the A allele. In the group of homozygous DRD2 T-allele carriers, who have a higher striatal density of D2 receptors than C-allele carriers, we found a less effective and more parallel action cascading strategy. These findings suggest that, within the same sample, a higher D1 efficiency seems to shift the action cascading strategy toward a more serial processing mode, whereas the D2 receptors seem to promote a shift in the opposite direction by inducing a more parallel processing mode. Furthermore, the neurophysiological analysis shows that the observed differences are not based on attentional differences or basic inhibition. Instead, processes linking stimulus processing and response execution seem to differentiate between more serial and more parallel processing groups.
Collapse
|
46
|
Latent Toxoplasma gondii infection leads to deficits in goal-directed behavior in healthy elderly. Neurobiol Aging 2014; 35:1037-44. [DOI: 10.1016/j.neurobiolaging.2013.11.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 11/21/2022]
|
47
|
Yildiz A, Wolf OT, Beste C. Stress intensifies demands on response selection during action cascading processes. Psychoneuroendocrinology 2014; 42:178-87. [PMID: 24636514 DOI: 10.1016/j.psyneuen.2014.01.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
Abstract
Stress has been shown to modulate a number of cognitive processes including action control. These functions are important in daily life and are mediated by various cognitive subprocesses. However, it is unknown if stress affects the whole processing cascade, or exerts specific effects on a restricted subset of processes involved in the chaining of actions. We examine the effects of stress on action selection processes in a stop-change paradigm and apply event-related potentials (ERPs) combined with source localization analysis to examine potentially restricted effects of stress on subprocesses mediating action cascading. The results show that attentional selection processes, as well as processes related to allocation of processing resources were not affected by stress. Stress only seems to affect response selection functions during action cascading and leads to slowing of responses when two actions are executed in succession. These changes are related to the anterior cingulate cortex (ACC). Changes in response selection were predictable on the basis of individual salivary cortisol levels. The results show that stress does not affect the whole processing cascade involved in the cascading of different actions, but seems to exert circumscribed effects on response selection processes which have previously been shown to depend on dopaminergic neural transmission.
Collapse
Affiliation(s)
- Ali Yildiz
- Institute for Cognitive Neuroscience, Biopsychology, Ruhr Universität Bochum, Germany; Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany
| | - Oliver T Wolf
- Institute for Cognitive Neuroscience, Cognitive Psychology, Ruhr Universität Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, TU Dresden, Germany.
| |
Collapse
|
48
|
Evidence for divergent effects of neurodegeneration in Huntington's disease on attentional selection and neural plasticity: implications for excitotoxicity. Brain Struct Funct 2014; 220:1437-47. [PMID: 24590622 DOI: 10.1007/s00429-014-0735-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 02/12/2014] [Indexed: 12/25/2022]
Abstract
It is generally assumed that neurodegeneration leads to declines in cognitive functions. However, there is evidence that neurodegenerative processes related to excitotoxicity can lead to paradoxical improvements in circumscribed cognitive functions, while at the same time other processes are compromised. An open question is how such paradoxical improvements reported in literature and declines usually associated with neurodegeneration relate to each other. Do paradoxical improvements only reflect a transient phenomenon, or do they intensify in the course of neurodegeneration? We examine this question using behavioral and neurophysiological (EEG) data in a human model of excitotoxic neurodegeneration (i.e., Huntington's disease, HD). The results show that attentional selection processes decline during pre-manifest disease progression. Importantly, the efficacy of protocols used to induce neural plasticity in processes underlying attentional selection processes also increases in course of ongoing neurodegeneration in pre-manifest HD. This was reflected in behavioral data and electrophysiological correlates of processes related to the allocation of attention. To conclude, our results suggest that circumscribed enhancements of specific cognitive functions are as much a result of the developmental process of neurodegeneration as the well-known detrimental effects. The results account for the divergent effects of neurodegenerative processes closely related to excitotoxicity on cognitive functions.
Collapse
|
49
|
A novel cognitive-neurophysiological state biomarker in premanifest Huntington's disease validated on longitudinal data. Sci Rep 2014; 3:1797. [PMID: 23652721 PMCID: PMC3647202 DOI: 10.1038/srep01797] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 04/19/2013] [Indexed: 01/25/2023] Open
Abstract
In several neurodegenerative diseases, like Huntington's disease (HD), treatments are still lacking. To determine whether a treatment is effective, sensitive disease progression biomarkers are especially needed for the premanifest phase, since this allows the evaluation of neuroprotective treatments preventing, or delaying disease manifestation. On the basis of a longitudinal study we present a biomarker that was derived by integrating behavioural and neurophysiological data reflecting cognitive processes of action control. The measure identified is sensitive enough to track disease progression over a period of only 6 month. Changes tracked were predictive for a number of clinically relevant parameters and the sensitivity of the measure was higher than that of currently used parameters to track prodromal disease progression. The study provides a biomarker, which could change practice of progression diagnostics in a major basal ganglia disease and which may help to evaluate potential neuroprotective treatments in future clinical trials.
Collapse
|
50
|
Absence of congruency sequence effects reveals neurocognitive inflexibility in Parkinson's disease. Neuropsychologia 2013; 51:2976-87. [DOI: 10.1016/j.neuropsychologia.2013.10.025] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 10/28/2013] [Accepted: 10/29/2013] [Indexed: 11/21/2022]
|