1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Gong Y, Wu M, Huang Y, He X, Yuan J, Dang B. Research developments in the neurovascular unit and the blood‑brain barrier (Review). Biomed Rep 2025; 22:88. [PMID: 40166412 PMCID: PMC11956146 DOI: 10.3892/br.2025.1966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
The neurovascular unit (NVU) is composed of neurons, glial cells, brain microvascular endothelial cells (BMECs), pericytes, and the extracellular matrix. The NVU controls the permeability of the blood-brain barrier (BBB) and protects the brain from harmful blood-borne and endogenous and exogenous substances. Among these, neurons transmit signals, astrocytes provide nutrients, microglia regulate inflammation, and BMECs and pericytes strengthen barrier tightness and coverage. These cells, due to their physical structure, anatomical location, or physiological function, maintain the microenvironment required for normal brain function. In this review, the BBB structure and mechanisms are examined to obtain a better understanding of the factors that influence BBB permeability. The findings may aid in safeguarding the BBB and provide potential therapeutic targets for drugs affecting the central nervous system.
Collapse
Affiliation(s)
- Yating Gong
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Muyao Wu
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Yaqian Huang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Xiaoyi He
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Jiaqi Yuan
- Department of Neurosurgery, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| | - Baoqi Dang
- Department of Rehabilitation, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Suzhou, Jiangsu 215600, P.R. China
| |
Collapse
|
3
|
Zhang Y, Zhang Z, Tu C, Chen X, He R. Advanced Glycation End Products in Disease Development and Potential Interventions. Antioxidants (Basel) 2025; 14:492. [PMID: 40298887 PMCID: PMC12024296 DOI: 10.3390/antiox14040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/09/2025] [Accepted: 04/16/2025] [Indexed: 04/30/2025] Open
Abstract
Advanced glycation end products (AGEs) are a group of compounds formed through non-enzymatic reactions between reducing sugars and proteins, lipids, or nucleic acids. AGEs can be generated in the body or introduced through dietary sources and smoking. Recent clinical and animal studies have highlighted the significant role of AGEs in various health conditions. These compounds accumulate in nearly all mammalian tissues and are associated with a range of diseases, including diabetes and its complications, cardiovascular disease, and neurodegeneration. This review summarizes the major diseases linked to AGE accumulation, presenting both clinical and experimental evidence. The pathologies induced by AGEs share common mechanisms across different organs, primarily involving oxidative stress, chronic inflammation, and direct protein cross-linking. Interventions targeting AGE-related diseases focus on inhibiting AGE formation using synthetic or natural antioxidants, as well as reducing dietary AGE intake through lifestyle modifications. AGEs are recognized as significant risk factors that impact health and accelerate aging, particularly in individuals with hyperglycemia. Monitoring AGE level and implementing nutritional interventions can help maintain overall health and reduce the risk of AGE-related complications.
Collapse
Affiliation(s)
- Yihan Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Zhen Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu District, Guangzhou 510006, China; (Y.Z.); (Z.Z.)
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Chuyue Tu
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Xu Chen
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| | - Ruikun He
- BYHEALTH Institute of Nutrition & Health, No. 916, Huangpu Avenue East, Huangpu District, Guangzhou 510799, China; (C.T.); (X.C.)
| |
Collapse
|
4
|
Cazalla E, Cuadrado A, García-Yagüe ÁJ. Role of the transcription factor NRF2 in maintaining the integrity of the Blood-Brain Barrier. Fluids Barriers CNS 2024; 21:93. [PMID: 39574123 PMCID: PMC11580557 DOI: 10.1186/s12987-024-00599-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/15/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The Blood-Brain Barrier (BBB) is a complex and dynamic interface that regulates the exchange of molecules and cells between the blood and the central nervous system. It undergoes structural and functional throughout oxidative stress and inflammation, which may compromise its integrity and contribute to the pathogenesis of neurodegenerative diseases. MAIN BODY Maintaining BBB integrity is of utmost importance in preventing a wide range of neurological disorders. NRF2 is the main transcription factor that regulates cellular redox balance and inflammation-related gene expression. It has also demonstrated a potential role in regulating tight junction integrity and contributing to the inhibition of ECM remodeling, by reducing the expression of several metalloprotease family members involved in maintaining BBB function. Overall, we review current insights on the role of NRF2 in addressing protection against the effects of BBB dysfunction, discuss its involvement in BBB maintenance in different neuropathological diseases, as well as, some of its potential activators that have been used in vitro and in vivo animal models for preventing barrier dysfunction. CONCLUSIONS Thus, emerging evidence suggests that upregulation of NRF2 and its target genes could suppress oxidative stress, and neuroinflammation, restore BBB integrity, and increase its protection.
Collapse
Affiliation(s)
- Eduardo Cazalla
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - Ángel Juan García-Yagüe
- Department of Biochemistry, School of Medicine, Autonomous University of Madrid (UAM), Madrid, Spain.
- Instituto de Investigaciones Biomédicas "Sols-Morreale" (CSIC-UAM), C/ Arturo Duperier, 4, Madrid, 28029, Spain.
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Madrid, Spain.
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain.
| |
Collapse
|
5
|
Jiang H, Zhang C, Lin M, Yin Y, Deng S, Liu W, Zhuo B, Tian G, Du Y, Meng Z. Deciphering the mechanistic impact of acupuncture on the neurovascular unit in acute ischemic stroke: Insights from basic research in a narrative review. Ageing Res Rev 2024; 101:102536. [PMID: 39384155 DOI: 10.1016/j.arr.2024.102536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/27/2024] [Accepted: 10/01/2024] [Indexed: 10/11/2024]
Abstract
Ischemic stroke(IS), a severe acute cerebrovascular disease, not only imposes a heavy economic burden on society but also presents numerous challenges in treatment. During the acute phase, while thrombolysis and thrombectomy serve as primary treatments, these approaches are restricted by a narrow therapeutic window. During rehabilitation, commonly used neuroprotective agents struggle with their low drug delivery efficiency and inadequate preclinical testing, and the long-term pharmacological and toxicity effects of nanomedicines remain undefined. Meanwhile, acupuncture as a therapeutic approach is widely acknowledged for its effectiveness in treating IS and has been recommended by the World Health Organization (WHO) as an alternative and complementary therapy, even though its exact mechanisms remain unclear. This review aims to summarize the known mechanisms of acupuncture and electroacupuncture (EA) in the treatment of IS. Research shows that acupuncture treatment mainly protects the neurovascular unit through five mechanisms: 1) reducing neuronal apoptosis and promoting neuronal repair and proliferation; 2) maintaining the integrity of the blood-brain barrier (BBB); 3) inhibiting the overactivation and polarization imbalance of microglia; 4) regulating the movement of vascular smooth muscle (VSM) cells; 5) promoting the proliferation of oligodendrocyte precursors. Through an in-depth analysis, this review reveals the multi-level, multi-dimensional impact of acupuncture treatment on the neurovascular unit (NVU) following IS, providing stronger evidence and a theoretical basis for its clinical application.
Collapse
Affiliation(s)
- Hailun Jiang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Chao Zhang
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Mengxuan Lin
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yu Yin
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shizhe Deng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Wei Liu
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Bifang Zhuo
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Guang Tian
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yuzheng Du
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| | - Zhihong Meng
- Department of Acupuncture, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China; Department of Acupuncture, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China.
| |
Collapse
|
6
|
Vitorakis N, Piperi C. Pivotal role of AGE-RAGE axis in brain aging with current interventions. Ageing Res Rev 2024; 100:102429. [PMID: 39032613 DOI: 10.1016/j.arr.2024.102429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/15/2024] [Indexed: 07/23/2024]
Abstract
Brain aging is characterized by several structural, biochemical and molecular changes which can vary among different individuals and can be influenced by genetic, environmental and lifestyle factors. Accumulation of protein aggregates, altered neurotransmitter composition, low-grade chronic inflammation and prolonged oxidative stress have been shown to contribute to brain tissue damage. Among key metabolic byproducts, advanced glycation end products (AGEs), formed endogenously through non-enzymatic reactions or acquired directly from the diet or other exogenous sources, have been detected to accumulate in brain tissue, exerting detrimental effects on cellular structure and function, contributing to neurodegeneration and cognitive decline. Upon binding to signal transduction receptor RAGE, AGEs can initiate pro-inflammatory pathways, exacerbate oxidative stress and neuroinflammation, thus impairing neuronal function and cognition. AGE-RAGE signaling induces programmed cell death, disrupts the blood-brain barrier and promotes protein aggregation, further compromising brain health. In this review, we investigate the intricate relationship between the AGE-RAGE pathway and brain aging in order to detect affected molecules and potential targets for intervention. Reduction of AGE deposition in brain tissue either through novel pharmacological therapeutics, dietary modifications, and lifestyle changes, shows a great promise in mitigating cognitive decline associated with brain aging.
Collapse
Affiliation(s)
- Nikolaos Vitorakis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, Athens 11527, Greece.
| |
Collapse
|
7
|
Che J, Sun Y, Deng Y, Zhang J. Blood-brain barrier disruption: a culprit of cognitive decline? Fluids Barriers CNS 2024; 21:63. [PMID: 39113115 PMCID: PMC11305076 DOI: 10.1186/s12987-024-00563-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Cognitive decline covers a broad spectrum of disorders, not only resulting from brain diseases but also from systemic diseases, which seriously influence the quality of life and life expectancy of patients. As a highly selective anatomical and functional interface between the brain and systemic circulation, the blood-brain barrier (BBB) plays a pivotal role in maintaining brain homeostasis and normal function. The pathogenesis underlying cognitive decline may vary, nevertheless, accumulating evidences support the role of BBB disruption as the most prevalent contributing factor. This may mainly be attributed to inflammation, metabolic dysfunction, cell senescence, oxidative/nitrosative stress and excitotoxicity. However, direct evidence showing that BBB disruption causes cognitive decline is scarce, and interestingly, manipulation of the BBB opening alone may exert beneficial or detrimental neurological effects. A broad overview of the present literature shows a close relationship between BBB disruption and cognitive decline, the risk factors of BBB disruption, as well as the cellular and molecular mechanisms underlying BBB disruption. Additionally, we discussed the possible causes leading to cognitive decline by BBB disruption and potential therapeutic strategies to prevent BBB disruption or enhance BBB repair. This review aims to foster more investigations on early diagnosis, effective therapeutics, and rapid restoration against BBB disruption, which would yield better cognitive outcomes in patients with dysregulated BBB function, although their causative relationship has not yet been completely established.
Collapse
Affiliation(s)
- Ji Che
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yinying Sun
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Yixu Deng
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, No.270 Dong'An Road, Xuhui District, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| |
Collapse
|
8
|
Shen K, Shi Y, Wang X, Leung SWS. Cellular Components of the Blood-Brain Barrier and Their Involvement in Aging-Associated Cognitive Impairment. Aging Dis 2024; 16:1513-1534. [PMID: 39122454 PMCID: PMC12096933 DOI: 10.14336/ad.202.0424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/01/2024] [Indexed: 08/12/2024] Open
Abstract
Human life expectancy has been significantly extended, which poses major challenges to our healthcare and social systems. Aging-associated cognitive impairment is attributed to endothelial dysfunction in the cardiovascular system and neurological dysfunction in the central nervous system. The central nervous system is considered an immune-privileged tissue due to the exquisite protection provided by the blood-brain barrier. The present review provides an overview of the structure and function of blood-brain barrier, extending the cell components of blood-brain barrier from endothelial cells and pericytes to astrocytes, perivascular macrophages and oligodendrocyte progenitor cells. In particular, the pathological changes in the blood-brain barrier in aging, with special focus on the underlying mechanisms and molecular changes, are presented. Furthermore, the potential preventive/therapeutic strategies against aging-associated blood-brain barrier disruption are discussed.
Collapse
Affiliation(s)
- Kaiyuan Shen
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Yi Shi
- Institute of Clinical Science, Zhongshan Hospital, Fudan University, Shanghai, China.
- Key Laboratory of Organ Transplantation, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Susan WS Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
9
|
Endo H, Ogasawara M, Tega Y, Kubo Y, Hosoya KI, Akanuma SI. Upregulation of P-Glycoprotein and Breast Cancer Resistance Protein Activity in Newly Developed in Vitro Rat Blood-Brain Barrier Spheroids Using Advanced Glycation End-Products. Biol Pharm Bull 2024; 47:1893-1903. [PMID: 39551527 DOI: 10.1248/bpb.b24-00481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
The blood-brain barrier (BBB) is a dynamic interface controlling the compound translocation between the blood and the brain, thereby maintaining neural homeostasis. There is cumulative evidence that BBB impairment during diabetes mellitus (DM) takes part in the progression of cognitive dementia. As tight junction proteins and ATP-binding cassette (ABC) transporters regulate substance exchange between the circulating blood and brain, the expression and function of these molecules under DM should be fully clarified. To understand the alteration of ABC transporter function in the BBB under DM, in vitro multicellular rat BBB spheroids consisting of conditionally immortalized rat brain capillary endothelial cells, astrocytes, and pericytes were newly developed. Immunostaining and permeability analysis of paracellular transport markers suggested the construction of tight junctions on the surface of the BBB spheroids. Transport analyses using fluorescence substrates of P-glycoprotein (P-gp), the breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 4 (MRP4) indicate the functional expression of these transporters in the spheroids. After treatment with advanced glycation end-products (AGEs), involved in various signals during DM, the mRNA expression of tight junction molecules and ABC transporters in the BBB spheroids was upregulated. Furthermore, the functional changes in P-gp and BCRP in the BBB spheroids exposed to AGEs were canceled by the inhibitors of the receptor for AGEs (RAGE). These results suggest that AGE-RAGE interaction upregulates P-gp and BCRP function in the BBB.
Collapse
Affiliation(s)
- Hiroki Endo
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Miki Ogasawara
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yuma Tega
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Yoshiyuki Kubo
- Laboratory of Drug Disposition & Pharmacokinetics, Faculty of Pharma-Sciences, Teikyo University
| | - Ken-Ichi Hosoya
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| | - Shin-Ichi Akanuma
- Department of Pharmaceutics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama
| |
Collapse
|
10
|
Mikkelsen K, Trapali M, Apostolopoulos V. Role of Vitamin B in Healthy Ageing and Disease. Subcell Biochem 2024; 107:245-268. [PMID: 39693028 DOI: 10.1007/978-3-031-66768-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
B vitamin complex consist of vitamins B1, B2, B5, B6, B9, B12 and is pivotal for overall health, influencing vital functions such as, energy metabolism, DNA maintenance, and healthy immune system. Inadequate B vitamin levels are associated with various health issues, including neurocognitive problems, immune imbalances, and inflammation. In ageing individuals, deficiencies in B vitamins increase the risk of cardiovascular ailments, stroke, cognitive disorders, neurodegeneration, mental health issues, and methylation-related disorders. These result primarily due to changes in glycation, mitochondria, and oxidative stress. Thus, ensuring optimal vitamin B levels in the ageing population may be beneficial in preventing such age-related diseases. In this chapter we discuss the extensive role of B vitamins in the ageing process.
Collapse
Affiliation(s)
- Kathleen Mikkelsen
- Institute for Health and Sport, Victoria University, Werribee, VIC, Australia
| | - Maria Trapali
- Laboratory of Chemistry and Biochemistry and Cosmetic Science, Department of Biomedical Medicine, University of West Attica, Egaleo, Attiki, Greece
| | | |
Collapse
|
11
|
Gong X, Wang N, Zhu H, Tang N, Wu K, Meng Q. Anti-NMDAR antibodies, the blood-brain barrier, and anti-NMDAR encephalitis. Front Neurol 2023; 14:1283511. [PMID: 38145121 PMCID: PMC10748502 DOI: 10.3389/fneur.2023.1283511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/03/2023] [Indexed: 12/26/2023] Open
Abstract
Anti-N-methyl-D-aspartate receptor (anti-NMDAR) encephalitis is an antibody-related autoimmune encephalitis. It is characterized by the existence of antibodies against NMDAR, mainly against the GluN1 subunit, in cerebrospinal fluid (CSF). Recent research suggests that anti-NMDAR antibodies may reduce NMDAR levels in this disorder, compromising synaptic activity in the hippocampus. Although anti-NMDAR antibodies are used as diagnostic indicators, the origin of antibodies in the central nervous system (CNS) is unclear. The blood-brain barrier (BBB), which separates the brain from the peripheral circulatory system, is crucial for antibodies and immune cells to enter or exit the CNS. The findings of cytokines in this disorder support the involvement of the BBB. Here, we aim to review the function of NMDARs and the relationship between anti-NMDAR antibodies and anti-NMDAR encephalitis. We summarize the present knowledge of the composition of the BBB, especially by emphasizing the role of BBB components. Finally, we further provide a discussion on the impact of BBB dysfunction in anti-NMDAR encephalitis.
Collapse
Affiliation(s)
- Xiarong Gong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Niya Wang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Hongyan Zhu
- Department of Clinical Laboratory, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Ning Tang
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Kunhua Wu
- Department of MR, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| | - Qiang Meng
- Department of Neurology, The First People's Hospital of Yunnan Province, Kunming, Yunnan, China
| |
Collapse
|
12
|
Khaing ZZ, Chandrasekaran A, Katta A, Reed MJ. The Brain and Spinal Microvasculature in Normal Aging. J Gerontol A Biol Sci Med Sci 2023; 78:1309-1319. [PMID: 37093786 PMCID: PMC10395569 DOI: 10.1093/gerona/glad107] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Indexed: 04/25/2023] Open
Abstract
Changes in the brain and spinal cord microvasculature during normal aging contribute to the "sensitive" nature of aged central nervous system tissue to ischemic insults. In this review, we will examine alterations in the central nervous system microvasculature during normal aging, which we define as aging without a dominant pathology such as neurodegenerative processes, vascular injury or disease, or trauma. We will also discuss newer technologies to improve the study of central nervous system microvascular structure and function. Microvasculature within the brain and spinal cord will be discussed separately as anatomy and physiology differ between these compartments. Lastly, we will identify critical areas for future studies as well as key unanswered questions.
Collapse
Affiliation(s)
- Zin Z Khaing
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | | | - Anjali Katta
- Department of Neurological Surgery, University of Washington, Seattle, Washington, USA
| | - May J Reed
- Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Wątroba M, Grabowska AD, Szukiewicz D. Effects of Diabetes Mellitus-Related Dysglycemia on the Functions of Blood-Brain Barrier and the Risk of Dementia. Int J Mol Sci 2023; 24:10069. [PMID: 37373216 DOI: 10.3390/ijms241210069] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Diabetes mellitus is one of the most common metabolic diseases worldwide, and its long-term complications include neuropathy, referring both to the peripheral and to the central nervous system. Detrimental effects of dysglycemia, especially hyperglycemia, on the structure and function of the blood-brain barrier (BBB), seem to be a significant backgrounds of diabetic neuropathy pertaining to the central nervous system (CNS). Effects of hyperglycemia, including excessive glucose influx to insulin-independent cells, may induce oxidative stress and secondary innate immunity dependent inflammatory response, which can damage cells within the CNS, thus promoting neurodegeneration and dementia. Advanced glycation end products (AGE) may exert similar, pro-inflammatory effects through activating receptors for advanced glycation end products (RAGE), as well as some pattern-recognition receptors (PRR). Moreover, long-term hyperglycemia can promote brain insulin resistance, which may in turn promote Aβ aggregate accumulation and tau hyperphosphorylation. This review is focused on a detailed analysis of the effects mentioned above towards the CNS, with special regard to mechanisms taking part in the pathogenesis of central long-term complications of diabetes mellitus initiated by the loss of BBB integrity.
Collapse
Affiliation(s)
- Mateusz Wątroba
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Anna D Grabowska
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubinskiego 5, 02-004 Warsaw, Poland
| |
Collapse
|
14
|
Monickaraj F, Acosta G, Cabrera AP, Das A. Transcriptomic Profiling Reveals Chemokine CXCL1 as a Mediator for Neutrophil Recruitment Associated With Blood-Retinal Barrier Alteration in Diabetic Retinopathy. Diabetes 2023; 72:781-794. [PMID: 36930735 PMCID: PMC10202768 DOI: 10.2337/db22-0619] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 02/12/2023] [Indexed: 03/19/2023]
Abstract
Inflammation plays an important role in the pathogenesis of diabetic retinopathy (DR). To precisely define the inflammatory mediators, we examined the transcriptomic profile of human retinal endothelial cells exposed to advanced glycation end products, which revealed the neutrophil chemoattractant chemokine CXCL1 as one of the top genes upregulated. The effect of neutrophils in the alteration of the blood-retinal barrier (BRB) was further assessed in wild-type C57BL/6J mice intravitreally injected with recombinant CXCL1 as well as in streptozotocin-induced diabetic mice. Both intravitreally CXCL1-injected and diabetic animals showed significantly increased retinal vascular permeability, with significant increase in infiltration of neutrophils and monocytes in retinas and increased expression of chemokines and their receptors, proteases, and adhesion molecules. Treatment with Ly6G antibody for neutrophil depletion in both diabetic mice as well as CXCL1-injected animals showed significantly decreased retinal vascular permeability accompanied by decreased infiltration of neutrophils and monocytes and decreased expression of cytokines and proteases. CXCL1 level was significantly increased in the serum samples of patients with DR compared with samples of those without diabetes. These data reveal a novel mechanism by which the chemokine CXCL1, through neutrophil recruitment, alters the BRB in DR and, thus, serves as a potential novel therapeutic target. ARTICLE HIGHLIGHTS Intravitreal CXCL1 injection and diabetes result in increased retinal vascular permeability with neutrophil and monocyte recruitment. Ly6G antibody treatment for neutrophil depletion in both animal models showed decreased retinal permeability and decreased cytokine expression. CXCL1 is produced by retinal endothelial cells, pericytes, and astrocytes. CXCL1 level is significantly increased in serum samples of patients with diabetic retinopathy. CXCL1, through neutrophil recruitment, alters the blood-retinal barrier in diabetic retinopathy and, thus, may be used as a therapeutic target.
Collapse
Affiliation(s)
- Finny Monickaraj
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| | - Gabriella Acosta
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Andrea P. Cabrera
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
| | - Arup Das
- Ophthalmology and Visual Sciences, University of New Mexico, Albuquerque, NM
- New Mexico VA Health Care System, Albuquerque, NM
| |
Collapse
|
15
|
Bhattacharya R, Alam MR, Kamal MA, Seo KJ, Singh LR. AGE-RAGE axis culminates into multiple pathogenic processes: a central road to neurodegeneration. Front Mol Neurosci 2023; 16:1155175. [PMID: 37266370 PMCID: PMC10230046 DOI: 10.3389/fnmol.2023.1155175] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Advanced glycation end-products (AGEs; e.g., glyoxal, methylglyoxal or carboxymethyl-lysine) are heterogenous group of toxic compounds synthesized in the body through both exogenous and endogenous pathways. AGEs are known to covalently modify proteins bringing about loss of functional alteration in the proteins. AGEs also interact with their receptor, receptor for AGE (RAGE) and such interactions influence different biological processes including oxidative stress and apoptosis. Previously, AGE-RAGE axis has long been considered to be the maligning factor for various human diseases including, diabetes, obesity, cardiovascular, aging, etc. Recent developments have revealed the involvement of AGE-RAGE axis in different pathological consequences associated with the onset of neurodegeneration including, disruption of blood brain barrier, neuroinflammation, remodeling of extracellular matrix, dysregulation of polyol pathway and antioxidant enzymes, etc. In the present article, we attempted to describe a new avenue that AGE-RAGE axis culminates to different pathological consequences in brain and therefore, is a central instigating component to several neurodegenerative diseases (NGDs). We also invoke that specific inhibitors of TIR domains of TLR or RAGE receptors are crucial molecules for the therapeutic intervention of NGDs. Clinical perspectives have also been appropriately discussed.
Collapse
Affiliation(s)
- Reshmee Bhattacharya
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Mohammad Rizwan Alam
- Department of Hospital Pathology, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, Saudi Arabia
| | - Kyung Jin Seo
- Department of Hospital Pathology, College of Medicine, Uijeongbu St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | | |
Collapse
|
16
|
Knopp RC, Erickson MA, Rhea EM, Reed MJ, Banks WA. Cellular senescence and the blood-brain barrier: Implications for aging and age-related diseases. Exp Biol Med (Maywood) 2023; 248:399-411. [PMID: 37012666 PMCID: PMC10281623 DOI: 10.1177/15353702231157917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
The blood-brain barrier (BBB) is a critical physiochemical interface that regulates communication between the brain and blood. It is comprised of brain endothelial cells which regulate the BBB's barrier and interface properties and is surrounded by supportive brain cell types including pericytes and astrocytes. Recent reports have suggested that the BBB undergoes dysfunction during normative aging and in disease. In this review, we consider the effect of cellular senescence, one of the nine hallmarks of aging, on the BBB. We first characterize known normative age-related changes at the BBB, and then evaluate changes in neurodegenerative diseases, with an emphasis on if/how cellular senescence is influencing these changes. We then discuss what insight has been gained from in vitro and in vivo studies of cellular senescence at the BBB. Finally, we evaluate mechanisms by which cellular senescence in peripheral pathologies can indirectly or directly affect BBB function.
Collapse
Affiliation(s)
- Rachel C Knopp
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Michelle A Erickson
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - Elizabeth M Rhea
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - May J Reed
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| | - William A Banks
- Veterans Affairs Puget Sound Health Care
System, Geriatrics Research Education and Clinical Center (GRECC), Seattle, WA 98108,
USA
- Department of Medicine, Division of
Gerontology and Geriatric Medicine, University of Washington School of Medicine, Seattle, WA
98195, USA
| |
Collapse
|
17
|
Experimental Models of In Vitro Blood-Brain Barrier for CNS Drug Delivery: An Evolutionary Perspective. Int J Mol Sci 2023; 24:ijms24032710. [PMID: 36769032 PMCID: PMC9916529 DOI: 10.3390/ijms24032710] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/24/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Central nervous system (CNS) disorders represent one of the leading causes of global health burden. Nonetheless, new therapies approved against these disorders are among the lowest compared to their counterparts. The absence of reliable and efficient in vitro blood-brain barrier (BBB) models resembling in vivo barrier properties stands out as a significant roadblock in developing successful therapy for CNS disorders. Therefore, advancement in the creation of robust and sensitive in vitro BBB models for drug screening might allow us to expedite neurological drug development. This review discusses the major in vitro BBB models developed as of now for exploring the barrier properties of the cerebral vasculature. Our main focus is describing existing in vitro models, including the 2D transwell models covering both single-layer and co-culture models, 3D organoid models, and microfluidic models with their construction, permeability measurement, applications, and limitations. Although microfluidic models are better at recapitulating the in vivo properties of BBB than other models, significant gaps still exist for their use in predicting the performance of neurotherapeutics. However, this comprehensive account of in vitro BBB models can be useful for researchers to create improved models in the future.
Collapse
|
18
|
Cheng M, Yang Z, Qiao L, Yang Y, Deng Y, Zhang C, Mi T. AGEs induce endothelial cells senescence and endothelial barrier dysfunction via miR-1-3p/MLCK signaling pathways. Gene 2022; 851:147030. [DOI: 10.1016/j.gene.2022.147030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/10/2022] [Accepted: 10/31/2022] [Indexed: 11/08/2022]
|
19
|
Geranmayeh MH, Rahbarghazi R, Saeedi N, Farhoudi M. Metformin-dependent variation of microglia phenotype dictates pericytes maturation under oxygen-glucose deprivation. Tissue Barriers 2022; 10:2018928. [PMID: 34983297 PMCID: PMC9620990 DOI: 10.1080/21688370.2021.2018928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Blood-brain barrier resident cells are in the frontline of vascular diseases. To maintain brain tissue homeostasis, a series of cells are integrated regularly to form the neurovascular unit. It is thought that microglia can switch between M1/M2 phenotypes after the initiation of different pathologies. The existence of transition between maturity and stemness features in pericytes could maintain blood-brain barrier functionality against different pathologies. In the current study, the effect of metformin on the balance of the M1/M2 microglial phenotype under oxygen-glucose deprivation conditions and the impact of microglial phenotype changes on pericyte maturation have been explored. Both microglia and pericytes were isolated from the rat brain. Data showed that microglia treatment with metformin under glucose- and oxygen-free conditions suppressed microglia shifting into the M2 phenotype (CD206+ cells) compared to the control (p < .01) and metformin-treated groups (p < .05). Incubation of pericytes with microglia-conditioned media pretreated with metformin under glucose- and oxygen-free conditions or normal conditions increased pericyte maturity. These changes coincided with the reduction of the Sox2/NG2 ratio compared to the control pericytes (p < .05). Data revealed the close microglial-pericytic interplay under the ischemic and hypoxic conditions and the importance of microglial phenotype acquisition on pericyte maturation.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran,CONTACT Mohammad Hossein Geranmayeh ; Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Daneshgah St., Tabriz5166614756, Iran
| | - Reza Rahbarghazi
- Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Stem Cells Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nazli Saeedi
- Research Center for Pharmaceutical Nanotechnology (RCPN), Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
20
|
Ding H, You Q, Li D, Liu Y. 5-Demethylnobiletin: Insights into its pharmacological activity, mechanisms, pharmacokinetics and toxicity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 104:154285. [PMID: 35809375 DOI: 10.1016/j.phymed.2022.154285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/05/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND 5-Demethylnobiletin (5DN) is a polymethoxyflavone (PMF) primarily found in citrus fruits. It has various health-promoting properties and hence has attracted significant attention from scholars worldwide. PURPOSE This review is the first to systematically summarize the recent research progress of 5DN, including its pharmacological activity, mechanism of action, pharmacokinetics, and toxicological effects. In addition, the pharmacological mechanism of action of 5DN has been discussed from a molecular biological perspective, and data from in vivo and in vitro animal studies have been compiled to provide a more thorough understanding of 5DN as a potential lead drug. METHODS Data were extracted from SciFinder, PubMed, ScienceDirect and China National Knowledge Infrastructure (CNKI) from database inception to January 2022. RESULTS 5DN has broad pharmacological activities. It exerts anti-inflammatory effects, promotes apoptosis and autophagy, and induces melanogenesis mainly by regulating the JAK2/STAT3, caspase-dependent apoptosis, ROS-AKT/mTOR, MAPK and PKA-CREB signaling pathways. 5DN can be used for treating diseases such as cancer, inflammation-related diseases, rheumatoid arthritis, and neurodegenerative diseases. To date, there have been only a few toxicological studies on 5DN, and both in vitro and in vivo on 5DN have not revealed significant toxic side effects. Pharmacokinetic studies have revealed that the metabolites of 5DN are mainly 5,3'-didemethylnobiletin (M1); 5,4'-didemethylnobiletin (M2) and 5,3',4'-tridemethylnobiletin (M3), in either, glucuronide-conjugated or monomeric form. The pharmacokinetic products of 5DN, especially M1, possess better activity than 5DN for the treatment of cancer. CONCLUSION The anticancer effects of 5DN and its metabolites warrant further investigation as potential drug candidates, especially through in vivo studies. In addition, the therapeutic effects of 5DN in neurodegenerative diseases should be examined in more experimental models, and the absorption and metabolism of 5DN should be further investigated in vivo.
Collapse
Affiliation(s)
- Haiyan Ding
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiang You
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Department of Pharmacy, The Second Affiliated Hospital of Hainan Medical University, Haikou, Hainan 570100, China
| | - Dan Li
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Youping Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
21
|
Role of pericytes in blood-brain barrier preservation during ischemia through tunneling nanotubes. Cell Death Dis 2022; 13:582. [PMID: 35790716 PMCID: PMC9256725 DOI: 10.1038/s41419-022-05025-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/07/2022] [Accepted: 06/14/2022] [Indexed: 02/07/2023]
Abstract
Crosstalk mechanisms between pericytes, endothelial cells, and astrocytes preserve integrity and function of the blood-brain-barrier (BBB) under physiological conditions. Long intercellular channels allowing the transfer of small molecules and organelles between distant cells called tunneling nanotubes (TNT) represent a potential substrate for energy and matter exchanges between the tripartite cellular compartments of the BBB. However, the role of TNT across BBB cells under physiological conditions and in the course of BBB dysfunction is unknown. In this work, we analyzed the TNT's role in the functional dialog between human brain endothelial cells, and brain pericytes co-cultured with human astrocytes under normal conditions or after exposure to ischemia/reperfusion, a condition in which BBB breakdown occurs, and pericytes participate in the BBB repair. Using live time-lapse fluorescence microscopy and laser-scanning confocal microscopy, we found that astrocytes form long TNT with pericytes and endothelial cells and receive functional mitochondria from both cell types through this mechanism. The mitochondrial transfer also occurred in multicellular assembloids of human BBB that reproduce the three-dimensional architecture of the BBB. Under conditions of ischemia/reperfusion, TNT formation is upregulated, and astrocytes exposed to oxygen-glucose deprivation were rescued from apoptosis by healthy pericytes through TNT-mediated transfer of functional mitochondria, an effect that was virtually abolished in the presence of TNT-destroying drugs. The results establish a functional role of TNT in the crosstalk between BBB cells and demonstrate that TNT-mediated mitochondrial transfer from pericytes rescues astrocytes from ischemia/reperfusion-induced apoptosis. Our data confirm that the pericytes might play a pivotal role in preserving the structural and functional integrity of BBB under physiological conditions and participate in BBB repair in brain diseases.
Collapse
|
22
|
Li X, Cai Y, Zhang Z, Zhou J. Glial and Vascular Cell Regulation of the Blood-Brain Barrier in Diabetes. Diabetes Metab J 2022; 46:222-238. [PMID: 35299293 PMCID: PMC8987684 DOI: 10.4093/dmj.2021.0146] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 01/20/2022] [Indexed: 12/18/2022] Open
Abstract
As a structural barrier, the blood-brain barrier (BBB) is located at the interface between the brain parenchyma and blood, and modulates communication between the brain and blood microenvironment to maintain homeostasis. The BBB is composed of endothelial cells, basement membrane, pericytes, and astrocytic end feet. BBB impairment is a distinguishing and pathogenic factor in diabetic encephalopathy. Diabetes causes leakage of the BBB through downregulation of tight junction proteins, resulting in impaired functioning of endothelial cells, pericytes, astrocytes, microglia, nerve/glial antigen 2-glia, and oligodendrocytes. However, the temporal regulation, mechanisms of molecular and signaling pathways, and consequences of BBB impairment in diabetes are not well understood. Consequently, the efficacy of therapies diabetes targeting BBB leakage still lags behind the requirements. This review summarizes the recent research on the effects of diabetes on BBB composition and the potential roles of glial and vascular cells as therapeutic targets for BBB disruption in diabetic encephalopathy.
Collapse
Affiliation(s)
- Xiaolong Li
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Yan Cai
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Zuo Zhang
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Jiyin Zhou
- National Drug Clinical Trial Institution, Second Affiliated Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
23
|
Ahmad R, Chowdhury K, Kumar S, Irfan M, Reddy GS, Akter F, Jahan D, Haque M. Diabetes Mellitus: A Path to Amnesia, Personality, and Behavior Change. BIOLOGY 2022; 11:biology11030382. [PMID: 35336756 PMCID: PMC8945557 DOI: 10.3390/biology11030382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Diabetes Mellitus (DM) is a metabolic disorder resulting from a disturbance of insulin secretion, action, or both. Hyperglycemia and overproduction of superoxide induce the development and progression of chronic complications of DM. The impact of DM and its complication on the central nervous system (CNS) such as dementia and Alzheimer’s Disease (AD) still remain obscure. In dementia, there is a gradual decline in cognitive function. The incidence of dementia increases with age, and patient become socially, physically, and mentally more vulnerable and dependent. The symptoms often emerge decades after the onset of pathophysiology, thus impairing early therapeutic intervention. Most diabetic subjects who develop dementia are above the age of 65, but diabetes may also cause an increased risk of developing dementia before 65 years. Vascular dementia is the second most common form of dementia after AD. Type 2 DM (T2DM) increases the incidence of vascular dementia (since its covers the vascular system) and AD. The functional and structural integrity of the CNS is altered in T2DM due to increased synthesis of Aβ. Additionally, hyperphosphorylation of Tau protein also results from dysregulation of various signaling cascades in T2DM, thereby causing neuronal damage and AD. There is the prospect for development of a therapy that may help prevent or halt the progress of dementia resulting from T2DM. Abstract Type 2 diabetes mellitus is increasingly being associated with cognition dysfunction. Dementia, including vascular dementia and Alzheimer’s Disease, is being recognized as comorbidities of this metabolic disorder. The progressive hallmarks of this cognitive dysfunction include mild impairment of cognition and cognitive decline. Dementia and mild impairment of cognition appear primarily in older patients. Studies on risk factors, neuropathology, and brain imaging have provided important suggestions for mechanisms that lie behind the development of dementia. It is a significant challenge to understand the disease processes related to diabetes that affect the brain and lead to dementia development. The connection between diabetes mellitus and dysfunction of cognition has been observed in many human and animal studies that have noted that mechanisms related to diabetes mellitus are possibly responsible for aggravating cognitive dysfunction. This article attempts to narrate the possible association between Type 2 diabetes and dementia, reviewing studies that have noted this association in vascular dementia and Alzheimer’s Disease and helping to explain the potential mechanisms behind the disease process. A Google search for “Diabetes Mellitus and Dementia” was carried out. Search was also done for “Diabetes Mellitus”, “Vascular Dementia”, and “Alzheimer’s Disease”. The literature search was done using Google Scholar, Pubmed, Embase, ScienceDirect, and MEDLINE. Keeping in mind the increasing rate of Diabetes Mellitus, it is important to establish the Type 2 diabetes’ effect on the brain and diseases of neurodegeneration. This narrative review aims to build awareness regarding the different types of dementia and their relationship with diabetes.
Collapse
Affiliation(s)
- Rahnuma Ahmad
- Department of Physiology, Medical College for Women and Hospital, Dhaka 1230, Bangladesh;
| | - Kona Chowdhury
- Department of Pediatrics, Gonoshasthaya Samaj Vittik Medical College and Hospital, Dhaka 1344, Bangladesh;
| | - Santosh Kumar
- Department of Periodontology and Implantology, Karnavati School of Dentistry, Karnavati University, 907/A, Uvarsad Gandhinagar, Gujarat 382422, India;
| | - Mohammed Irfan
- Department of Forensics, Federal University of Pelotas, Pelotas 96020-010, RS, Brazil;
| | - Govindool Sharaschandra Reddy
- Department of Periodontics and Endodontics, School of Dental Medicine, University at Buffalo, Buffalo, NY 14214, USA;
| | - Farhana Akter
- Department of Endocrinology, Chittagong Medical College, Chattogram 4203, Bangladesh;
| | - Dilshad Jahan
- Department of Hematology, Asgar Ali Hospital, 111/1/A Distillery Road, Gandaria Beside Dhupkhola, Dhaka 1204, Bangladesh;
| | - Mainul Haque
- Unit of Pharmacology, Faculty of Medicine and Defence Health, Universiti Pertahanan Nasional Malaysia (National Defence University of Malaysia), Kem Perdana Sungai Besi, Kuala Lumpur 57000, Malaysia
- Correspondence: or
| |
Collapse
|
24
|
In Vitro Methodologies to Study the Role of Advanced Glycation End Products (AGEs) in Neurodegeneration. Nutrients 2022; 14:nu14020363. [PMID: 35057544 PMCID: PMC8777776 DOI: 10.3390/nu14020363] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/11/2022] [Accepted: 01/12/2022] [Indexed: 02/07/2023] Open
Abstract
Advanced glycation end products (AGEs) can be present in food or be endogenously produced in biological systems. Their formation has been associated with chronic neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and amyotrophic lateral sclerosis. The implication of AGEs in neurodegeneration is related to their ability to bind to AGE-specific receptors and the ability of their precursors to induce the so-called “dicarbonyl stress”, resulting in cross-linking and protein damage. However, the mode of action underlying their role in neurodegeneration remains unclear. While some research has been carried out in observational clinical studies, further in vitro studies may help elucidate these underlying modes of action. This review presents and discusses in vitro methodologies used in research on the potential role of AGEs in neuroinflammation and neurodegeneration. The overview reveals the main concepts linking AGEs to neurodegeneration, the current findings, and the available and advisable in vitro models to study their role. Moreover, the major questions regarding the role of AGEs in neurodegenerative diseases and the challenges and discrepancies in the research field are discussed.
Collapse
|
25
|
1α,25-Dihydroxyvitamin D3 promotes angiogenesis by alleviating AGEs-induced autophagy. Arch Biochem Biophys 2021; 712:109041. [PMID: 34560065 DOI: 10.1016/j.abb.2021.109041] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023]
Abstract
Diabetes mellitus (DM) induces abnormal angiogenesis and results in multiple chronic vascular complications. Previous studies showed that advanced glycation end products (AGEs) up-regulated in diabetic patients and induced a series of cellular effects such as oxidative stress, inflammation, and autophagy. 1α,25-Dihydroxyvitamin D3 (1,25D), a hormonal form of vitamin D, proved to be beneficial for vascular diseases. However, the underlying mechanism of 1,25D in angiogenesis in DM remains unclear. Using CCK8 assay and transwell assay, we found that 1,25D could partly ameliorate impaired proliferation and migration ability of endothelial cells (ECs) induced by AGEs (200 μg/mL). Furthermore, tube formation assay, Western blot, and real-time qPCR assay were conducted to demonstrate that AGEs impaired angiogenetic ability, and that angiogenesis-related gene expression (i.e., VEGFA, VEGFB, VEGFR1, VEGFR2, TGFβ1, MMP2, MMP9) in ECs and 1,25D could promote angiogenesis and angiogenetic markers expression. By using DCFH-DA, ELISA, and Western blot assay, we also found that AGEs-induced oxidative stress impaired angiogenic ability of ECs, and 1,25D alleviated angiogenesis dysfunction by inhibiting oxidative stress. Of note, AGEs-induced excessive autophagy was found to impair angiogenesis. We elucidated that the detrimental autophagy is modulated by 1,25D and AGEs via PI3K/Akt pathway. Observed together, our findings illustrated that AGEs-induced oxidative stress and autophagy resulted in angiogenic disorder and 1,25D improved angiogenesis by restraining excessive autophagy and oxidative stress, providing a novel insight for the treatment of vascular complications in DM.
Collapse
|
26
|
Meng J, Zhu Y, Ma H, Wang X, Zhao Q. The role of traditional Chinese medicine in the treatment of cognitive dysfunction in type 2 diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2021; 280:114464. [PMID: 34329715 DOI: 10.1016/j.jep.2021.114464] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 07/04/2021] [Accepted: 07/24/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Diabetic cognitive dysfunction (DCD) is mainly one of the complications of type 2 diabetes mellitus (T2DM) with complex and obscure pathogenesis. Extensive evidence has demonstrated the effectiveness and safety of traditional Chinese medicine (TCM) for DCD management. AIM OF THE STUDY This review attempted to systematically summarize the possible pathogenesis of DCD and the current Chinese medicine on the treatment of DCD. MATERIALS AND METHODS We acquired information of TCM on DCD treatment from PubMed, Web of Science, Science Direct and CNKI databases. We then dissected the potential mechanisms of currently reported TCMs and their active ingredients for the treatment of DCD by discussing the deficiencies and giving further recommendations. RESULTS Most TCMs and their active ingredients could improve DCD through alleviating insulin resistance, microvascular dysfunction, abnormal gut microbiota composition, inflammation, and the damages of the blood-brain barrier, cerebrovascular and neurons under hyperglycemia conditions. CONCLUSIONS TCM is effective in the treatment of DCD with few adverse reactions. A large number of in vivo and in vitro, and clinical trials are still needed to further reveal the potential quality markers of TCM on DCD treatment.
Collapse
Affiliation(s)
- Jinni Meng
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Yafei Zhu
- College of Basic Medicine, Ningxia Medical University, Ningxia, China
| | - Huixia Ma
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China
| | - Xiaobo Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Qipeng Zhao
- Department of Pharmacology, School of Pharmacy, Ningxia Medical University, Ningxia, China; Key Laboratory of Hui Ethnic Medicine Modernization, Ministry of Education, Ningxia Medical University, Ningxia, China.
| |
Collapse
|
27
|
Takeshita Y, Fujikawa S, Serizawa K, Fujisawa M, Matsuo K, Nemoto J, Shimizu F, Sano Y, Tomizawa-Shinohara H, Miyake S, Ransohoff RM, Kanda T. New BBB Model Reveals That IL-6 Blockade Suppressed the BBB Disorder, Preventing Onset of NMOSD. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/6/e1076. [PMID: 34667128 PMCID: PMC8529420 DOI: 10.1212/nxi.0000000000001076] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/24/2021] [Indexed: 01/04/2023]
Abstract
Background and Objectives To evaluate the pathophysiology of neuromyelitis optica spectrum disorder (NMOSD) and the therapeutic mechanism and levels of interleukin-6 (IL-6) blockade (satralizumab), especially with respect to blood-brain barrier (BBB) disruption with the new in vitro and ex vivo human BBB models and in vivo model. Methods We constructed new static in vitro and flow-based ex vivo models for evaluating continued barrier function, leukocyte transmigration, and intracerebral transferability of neuromyelitis optica-immunoglobulin G (NMO-IgG) and satralizumab across the BBB using the newly established triple coculture system that are specialized to closely mimic endothelial cell contact of pericytes and endfeet of astrocytes. In the in vivo study, we assessed the effects of an anti–IL-6 receptor antibody for mice (MR16-1) on in vivo BBB disruption in mice with experimental autoimmune encephalomyelitis in which IL-6 concentration in the spinal cord dramatically increases. Results In vitro and ex vivo experiments demonstrated that NMO-IgG increased intracerebral transferability of satralizumab and NMO-IgG and that satralizumab suppressed the NMO-IgG–induced transmigration of T cells and barrier dysfunction. In the in vivo study, the blockade of IL-6 signaling suppressed the migration of T cells into the spinal cord and prevented the increased BBB permeability. Discussion These results suggest that (1) our triple-cultured in vitro and in ex vivo BBB models are ideal for evaluating barrier function, leukocyte transmigration, and intracerebral transferability; (2) NMO-IgG increased the intracerebral transferability of NMO-IgG via decreasing barrier function and induced secretion of IL-6 from astrocytes causing more dysfunction of the barrier and disrupting controlled cellular infiltration; and (3) satralizumab, which can pass through the BBB in the presence of NMO-IgG, suppresses the BBB dysfunction and the infiltration of inflammatory cells, leading to prevention of onset of NMOSD.
Collapse
Affiliation(s)
- Yukio Takeshita
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Susumu Fujikawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Kenichi Serizawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Miwako Fujisawa
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Kinya Matsuo
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Joe Nemoto
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Fumitaka Shimizu
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Yasuteru Sano
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Haruna Tomizawa-Shinohara
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Shota Miyake
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Richard M Ransohoff
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA
| | - Takashi Kanda
- From the Department of Neurology and Clinical Neuroscience (Y.T., S.F., M.F., K.M., J.N., F.S., Y.S., T.K.), Yamaguchi University Graduate School of Medicine; Kenichi Serizawa (K.S., H.T.-S., S.M.), Haruna Tomizawa-Shinohara and Shota Miyake, Product Research Department, Chugai Pharmaceutical Co., Ltd, Kanagawa, Japan; and Richard M Ransohoff (R.M.R.), Third Rock Ventures, Boston, MA.
| |
Collapse
|
28
|
Kim MH, Chung C, Oh MH, Jun JH, Ko Y, Lee JH. Extracellular Vesicles From a Three-Dimensional Culture of Perivascular Cells Accelerate Skin Wound Healing in a Rat. Aesthetic Plast Surg 2021; 45:2437-2446. [PMID: 33821312 DOI: 10.1007/s00266-021-02254-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/16/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND Soluble proteins and extracellular vesicles (EVs) are crucial wound repair mediators in cell-based therapy. Previous studies reported that EVs of perivascular cells stimulated migration and proliferation of cell types involved in the dermatological wound healing process. However, these studies only show effects of EVs from perivascular cells (PVCs) for in vitro models. METHODS EVs were collected from 3D-cultured PVC (PVC-3D-EV) and compared with EVs from 2D-culture PVC (PVC-2D-EV) to investigate effects on wound contraction, angiogenesis, activation of myofibroblast, and collagen deposition. RESULTS PVC-3D-EV was significantly improved in terms of wound contraction compared with PVC-2D-EV and the control. Activation of myofibroblast and collagen deposition in a rat skin wound model was significantly stimulated by PVC-3D-EV. In addition, angiogenesis and vascular endothelial growth factor expression were also highly stimulated by PVC-3D-EV. These results suggest that PVC-3D-EV was regulated in granulation tissue formation, angiogenesis, and wound contraction in healing of a rat skin wound. These results indicate a pivotal role of PVC-3D-EV in wound healing through multiple mechanisms. CONCLUSIONS 3D-culture using a polystyrene scaffold is demonstrated to be a better system for providing better physiological conditions than the 2D-culture system, and EVs from 3D-cultured PVC could be a promising option for healing skin wound. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
Affiliation(s)
- Min Ho Kim
- ExoCoBio Exosome Institute (EEI), ExoCoBio Inc, Seoul, Republic of Korea
| | - Changho Chung
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, 68, Hangeulbiseok-ro, Nowon-gu, Seoul, Republic of Korea
| | - Mun Ho Oh
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea
| | - Jin Hyun Jun
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea
- Department of Senior Healthcare, BK21 plus Program, Graduated School, Eulji University, Seongnam, Republic of Korea
- Department of Biomedical Laboratory Science, Eulji University, Seongnam, Republic of Korea
| | - Yong Ko
- Division of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Jong Hun Lee
- Department of Plastic and Reconstructive Surgery, Nowon Eulji Medical Center, School of Medicine, Eulji University, 68, Hangeulbiseok-ro, Nowon-gu, Seoul, Republic of Korea.
- Eulji Medi-Bio Research Institute, Eulji University, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Bernard-Valnet R, Perriot S, Canales M, Pizzarotti B, Caranzano L, Castro-Jiménez M, Epiney JB, Vijiala S, Salvioni-Chiabotti P, Anichini A, Salerno A, Jaton K, Vaucher J, Perreau M, Greub G, Pantaleo G, Du Pasquier RA. Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2021; 8:8/5/e1029. [PMID: 34135107 PMCID: PMC8210172 DOI: 10.1212/nxi.0000000000001029] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/04/2021] [Indexed: 12/29/2022]
Abstract
Objective Coronavirus disease (COVID-19) has been associated with a large variety of neurologic disorders. However, the mechanisms underlying these neurologic complications remain elusive. In this study, we aimed at determining whether neurologic symptoms were caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) direct infection or by either systemic or local proinflammatory mediators. Methods In this cross-sectional study, we checked for SARS-CoV-2 RNA by quantitative reverse transcription PCR, SARS-CoV-2–specific antibodies, and 49 cytokines/chemokines/growth factors (by Luminex) in the CSF +/− sera of a cohort of 22 COVID-19 patients with neurologic presentation and 55 neurologic control patients (inflammatory neurologic disorder [IND], noninflammatory neurologic disorder, and MS). Results We detected anti–SARS-CoV-2 immunoglobulin G in patients with severe COVID-19 with signs of intrathecal synthesis for some of them. Of the 4 categories of tested patients, the CSF of IND exhibited the highest level of cytokines, chemokines, and growth factors. By contrast, patients with COVID-19 did not present overall upregulation of inflammatory mediators in the CSF. However, patients with severe COVID-19 (intensive care unit patients) exhibited higher concentrations of CCL2, CXCL8, and vascular endothelium growth factor A (VEGF-A) in the CSF than patients with a milder form of COVID-19. In addition, we could show that intrathecal CXCL8 synthesis was linked to an elevated albumin ratio and correlated with the increase of peripheral inflammation (serum hepatocyte growth factor [HGF] and CXCL10). Conclusions Our results do not indicate active replication of SARS-CoV-2 in the CSF or signs of massive inflammation in the CSF compartment but highlight a specific impairment of the neurovascular unit linked to intrathecal production of CXCL8.
Collapse
Affiliation(s)
- Raphael Bernard-Valnet
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland.
| | - Sylvain Perriot
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Mathieu Canales
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Beatrice Pizzarotti
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Leonardo Caranzano
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Mayté Castro-Jiménez
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Jean-Benoit Epiney
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Sergiu Vijiala
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Paolo Salvioni-Chiabotti
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Angelica Anichini
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Alexander Salerno
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Katia Jaton
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Julien Vaucher
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Matthieu Perreau
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Gilbert Greub
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Giuseppe Pantaleo
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| | - Renaud A Du Pasquier
- From the Service of Neurology and Laboratory of Neuroimmunology (R.B.-V., S.P., M.C., B.P., L.C., M.C.-J., J.-B.E., S.V., P.S.-C., A.A., A.S., R.A.D.P.), Department of Clinical Neurosciences, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; Institute of Microbiology (K.J., G.G.), University of Lausanne and University Hospital of Lausanne; Service of Internal Medicine (J.V.), Department of Medicine, Lausanne University Hospital (Centre Hospitalier Universitaire Vaudois) and University of Lausanne; and Service of Immunology and Allergy (M.P., G.P.), Department of Medicine, Lausanne University Hospital and University of Lausanne, Switzerland
| |
Collapse
|
30
|
Chambers A, Bury JJ, Minett T, Richardson CD, Brayne C, Ince PG, Shaw PJ, Garwood CJ, Heath PR, Simpson JE, Matthews FE, Wharton SB. Advanced Glycation End Product Formation in Human Cerebral Cortex Increases With Alzheimer-Type Neuropathologic Changes but Is Not Independently Associated With Dementia in a Population-Derived Aging Brain Cohort. J Neuropathol Exp Neurol 2021; 79:950-958. [PMID: 32766675 DOI: 10.1093/jnen/nlaa064] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/12/2020] [Accepted: 06/09/2020] [Indexed: 12/11/2022] Open
Abstract
Diabetes mellitus is a risk factor for dementia, and nonenzymatic glycosylation of macromolecules results in formation of advanced glycation end-products (AGEs). We determined the variation in AGE formation in brains from the Cognitive Function and Ageing Study population-representative neuropathology cohort. AGEs were measured on temporal neocortex by enzyme-linked immunosorbent assay (ELISA) and cell-type specific expression on neurons, astrocytes and endothelium was detected by immunohistochemistry and assessed semiquantitatively. Fifteen percent of the cohort had self-reported diabetes, which was not significantly associated with dementia status at death or neuropathology measures. AGEs were expressed on neurons, astrocytes and endothelium and overall expression showed a positively skewed distribution in the population. AGE measures were not significantly associated with dementia. AGE measured by ELISA increased with Consortium to Establish a Registry for Alzheimer's Disease (CERAD) neurofibrillary tangle score (p = 0.03) and Thal Aβ phase (p = 0.04), while AGE expression on neurons (and astrocytes), detected immunohistochemically, increased with increasing Braak tangle stage (p < 0.001), CERAD tangle score (p = 0.002), and neuritic plaques (p = 0.01). Measures of AGE did not show significant associations with cerebral amyloid angiopathy, microinfarcts or neuroinflammation. In conclusion, AGE expression increases with Alzheimer's neuropathology, particular later stages but is not independently associated with dementia. AGE formation is likely to be important for impaired brain cell function in aging and Alzheimer's.
Collapse
Affiliation(s)
- Annabelle Chambers
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Joanna J Bury
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Thais Minett
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Connor D Richardson
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Carol Brayne
- Institute of Public Health, University of Cambridge, Cambridge, UK
| | - Paul G Ince
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Claire J Garwood
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Paul R Heath
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Julie E Simpson
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| | - Fiona E Matthews
- Population Health Sciences Institute, University of Newcastle, Newcastle, UK
| | - Stephen B Wharton
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK
| |
Collapse
|
31
|
Liu Y, Zhang H, Wang S, Guo Y, Fang X, Zheng B, Gao W, Yu H, Chen Z, Roman RJ, Fan F. Reduced pericyte and tight junction coverage in old diabetic rats are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction. Am J Physiol Heart Circ Physiol 2021; 320:H549-H562. [PMID: 33306445 PMCID: PMC8082790 DOI: 10.1152/ajpheart.00726.2020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/22/2020] [Accepted: 11/13/2020] [Indexed: 12/16/2022]
Abstract
Diabetes mellitus (DM) is one of the primary pathological factors that contributes to aging-related cognitive impairments, but the underlying mechanisms remain unclear. We recently reported that old DM rats exhibited impaired myogenic responses of the cerebral arteries and arterioles, poor cerebral blood flow autoregulation, enhanced blood-brain barrier (BBB) leakage, and cognitive impairments. These changes were associated with diminished vascular smooth muscle cell contractile capability linked to elevated reactive oxygen species (ROS) and reduced ATP production. In the present study, using a nonobese T2DN DM rat, we isolated parenchymal arterioles (PAs), cultured cerebral microvascular pericytes, and examined whether cerebrovascular pericyte in DM is damaged and whether pericyte dysfunction may play a role in the regulation of cerebral hemodynamics and BBB integrity. We found that ROS and mitochondrial superoxide production were elevated in PAs isolated from old DM rats and in high glucose (HG)-treated α-smooth muscle actin-positive pericytes. HG-treated pericytes displayed decreased contractile capability in association with diminished mitochondrial respiration and ATP production. Additionally, the expression of advanced glycation end products, transforming growth factor-β, vascular endothelial growth factor, and fibronectin were enhanced, but claudin 5 and integrin β1 was reduced in the brain of old DM rats and HG-treated pericytes. Further, endothelial tight junction and pericyte coverage on microvessels were reduced in the cortex of old DM rats. These results demonstrate our previous findings that the impaired cerebral hemodynamics and BBB leakage and cognitive impairments in the same old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.NEW & NOTEWORTHY This study demonstrates that the loss of contractile capability in pericytes in diabetes is associated with enhanced ROS and reduced ATP production. Enhanced advanced glycation end products (AGEs) in diabetes accompany with reduced pericyte and endothelial tight junction coverage in the cortical capillaries of old diabetic rats. These results suggest our previous findings that the impaired cerebral hemodynamics, BBB leakage, and cognitive impairments in old DM model are associated with hyperglycemia-induced cerebrovascular pericyte dysfunction.
Collapse
Affiliation(s)
- Yedan Liu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Huawei Zhang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Ya Guo
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Baoying Zheng
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Hongwei Yu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Zongbo Chen
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, Shandong, China
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
32
|
Blood-Nerve Barrier (BNB) Pathology in Diabetic Peripheral Neuropathy and In Vitro Human BNB Model. Int J Mol Sci 2020; 22:ijms22010062. [PMID: 33374622 PMCID: PMC7793499 DOI: 10.3390/ijms22010062] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/15/2022] Open
Abstract
In diabetic peripheral neuropathy (DPN), metabolic disorder by hyperglycemia progresses in peripheral nerves. In addition to the direct damage to peripheral neural axons, the homeostatic mechanism of peripheral nerves is disrupted by dysfunction of the blood–nerve barrier (BNB) and Schwann cells. The disruption of the BNB, which is a crucial factor in DPN development and exacerbation, causes axonal degeneration via various pathways. Although many reports revealed that hyperglycemia and other important factors, such as dyslipidemia-induced dysfunction of Schwann cells, contributed to DPN, the molecular mechanisms underlying BNB disruption have not been sufficiently elucidated, mainly because of the lack of in vitro studies owing to difficulties in establishing human cell lines from vascular endothelial cells and pericytes that form the BNB. We have developed, for the first time, temperature-sensitive immortalized cell lines of vascular endothelial cells and pericytes originating from the BNB of human sciatic nerves, and we have elucidated the disruption to the BNB mainly in response to advanced glycation end products in DPN. Recently, we succeeded in developing an in vitro BNB model to reflect the anatomical characteristics of the BNB using cell sheet engineering, and we established immortalized cell lines originating from the human BNB. In this article, we review the pathologic evidence of the pathology of DPN in terms of BNB disruption, and we introduce the current in vitro BNB models.
Collapse
|
33
|
Weber V, Olzscha H, Längrich T, Hartmann C, Jung M, Hofmann B, Horstkorte R, Bork K. Glycation Increases the Risk of Microbial Traversal through an Endothelial Model of the Human Blood-Brain Barrier after Use of Anesthetics. J Clin Med 2020; 9:jcm9113672. [PMID: 33207595 PMCID: PMC7698006 DOI: 10.3390/jcm9113672] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/10/2020] [Accepted: 11/11/2020] [Indexed: 11/16/2022] Open
Abstract
The function of the human blood–brain barrier (BBB), consisting mainly of the basement membrane and microvascular endothelial cells, is to protect the brain and regulate its metabolism. Dysfunction of the BBB can lead to increased permeability, which can be linked with several pathologies, including meningitis, sepsis, and postoperative delirium. Advanced glycation end products (AGE) are non-enzymatic, posttranslational modifications of proteins, which can affect their function. Increased AGE levels are strongly associated with ageing and degenerative diseases including diabetes. Several studies demonstrated that the formation of AGE interfere with the function of the BBB and may change its permeability for soluble compounds. However, it is still unclear whether AGE can facilitate microbial traversal through the BBB and how small compounds including anesthetics modulate this process. Therefore, we developed a cellular model, which allows for the convenient testing of different factors and compounds with a direct correlation to bacterial traversal through the BBB. Our results demonstrate that both glycation and anesthetics interfere with the function of the BBB and promote microbial traversal. Importantly, we also show that the essential nutrient and antioxidant ascorbic acid, commonly known as vitamin C, can reduce the microbial traversal through the BBB and partly reverse the effects of AGE.
Collapse
Affiliation(s)
- Veronika Weber
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Heidi Olzscha
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
- Correspondence: ; Tel.: +49-345-557-3847
| | - Timo Längrich
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Carla Hartmann
- Klinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg, Julius-Kühn-Str. 7, 06112 Halle (Saale), Germany; (C.H.); (M.J.)
| | - Matthias Jung
- Klinik und Poliklinik für Psychiatrie, Psychotherapie und Psychosomatik, Martin-Luther-Universität Halle-Wittenberg, Julius-Kühn-Str. 7, 06112 Halle (Saale), Germany; (C.H.); (M.J.)
| | - Britt Hofmann
- Klinik und Poliklinik für Herzchirurgie, Universitätsklinikum Halle (Saale), Ernst-Grube-Str. 20, 06120 Halle (Saale), Germany;
| | - Rüdiger Horstkorte
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| | - Kaya Bork
- Institut für Physiologische Chemie, Martin-Luther-Universität Halle-Wittenberg, Hollystr. 1, 06114 Halle (Saale), Germany; (V.W.); (T.L.); (R.H.); (K.B.)
| |
Collapse
|
34
|
Dobi A, Rosanaly S, Devin A, Baret P, Meilhac O, Harry GJ, d'Hellencourt CL, Rondeau P. Advanced glycation end-products disrupt brain microvascular endothelial cell barrier: The role of mitochondria and oxidative stress. Microvasc Res 2020; 133:104098. [PMID: 33075405 DOI: 10.1016/j.mvr.2020.104098] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/06/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022]
Abstract
During diabetes mellitus, advanced glycation end-products (AGEs) are major contributors to the development of alterations in cerebral capillaries, leading to the disruption of the blood-brain barrier (BBB). Consequently, this is often associated with an amplified oxidative stress response in microvascular endothelial cells. As a model to mimic brain microvasculature, the bEnd.3 endothelial cell line was used to investigate cell barrier function. Cells were exposed to native bovine serum albumin (BSA) or modified BSA (BSA-AGEs). In the presence or absence of the antioxidant compound, N-acetyl-cysteine, cell permeability was assessed by FITC-dextran exclusion, intracellular free radical formation was monitored with H2DCF-DA probe, and mitochondrial respiratory and redox parameters were analyzed. We report that, in the absence of alterations in cell viability, BSA-AGEs contribute to an increase in endothelial cell barrier permeability and a marked and prolonged oxidative stress response. Decreased mitochondrial oxygen consumption was associated with these alterations and may contribute to reactive oxygen species production. These results suggest the need for further research to explore therapeutic interventions to restore mitochondrial functionality in microvascular endothelial cells to improve brain homeostasis in pathological complications associated with glycation.
Collapse
Affiliation(s)
- Anthony Dobi
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Sarah Rosanaly
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Anne Devin
- CNRS, Institut de Biochimie et Génétique Cellulaires, UMR 5095, Université de Bordeaux, F-33000 Bordeaux, France
| | - Pascal Baret
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France
| | - Olivier Meilhac
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; CHU de La Réunion, Centre d'Investigation Clinique, 97400 Saint-Denis, France
| | - G Jean Harry
- Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA
| | - Christian Lefebvre d'Hellencourt
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France; Neurotoxicology Group, National Toxicology Program Laboratory, National Institute of Environmental Health Sciences, 27709 Research Triangle Park, NC, USA.
| | - Philippe Rondeau
- Inserm, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), plateforme CYROI, 97490 Sainte-Clotilde, France; Université de La Réunion, UMR 1188, 97490 Sainte-Clotilde, France.
| |
Collapse
|
35
|
Detrimental effect on the gut microbiota of 1,2-dicarbonyl compounds after in vitro gastro-intestinal and fermentative digestion. Food Chem 2020; 341:128237. [PMID: 33091666 DOI: 10.1016/j.foodchem.2020.128237] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 09/25/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]
Abstract
This study investigated the stability of dicarbonyl compounds (DCs), 3-deoxyglucosone (3-DG), glyoxal (GO) and methylglyoxal (MGO) during simulated gastrointestinal digestion processes and the impact these compounds have on the gut microbiota. DCs pass almost unaltered through the in-vitro gastrointestinal digestion phases (concentration loss: 11% for 3-DG, 24% for GO and MGO) and have an effect on the fermentative digestion process, reducing the total gut bacterial population up to 6 Log10 units. Previous studies have shown no antimicrobial activity for 3-DG, however, for the first time it has been shown that when incubated with faecal bacteria 3-DG strongly depressed this microbial community. The influence of dicarbonyl compounds on the anaerobic fermentation processes was confirmed by the reduced production of short-chain fatty acids. Considering the modern Western diet, characterised by high consumption of ultra-processed foods rich in dicarbonyl compounds, this could lead to a reduction of bacteria important for the microbiome.
Collapse
|
36
|
Kandasamy M, Anusuyadevi M, Aigner KM, Unger MS, Kniewallner KM, de Sousa DMB, Altendorfer B, Mrowetz H, Bogdahn U, Aigner L. TGF-β Signaling: A Therapeutic Target to Reinstate Regenerative Plasticity in Vascular Dementia? Aging Dis 2020; 11:828-850. [PMID: 32765949 PMCID: PMC7390515 DOI: 10.14336/ad.2020.0222] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/22/2020] [Indexed: 12/11/2022] Open
Abstract
Vascular dementia (VaD) is the second leading form of memory loss after Alzheimer's disease (AD). Currently, there is no cure available. The etiology, pathophysiology and clinical manifestations of VaD are extremely heterogeneous, but the impaired cerebral blood flow (CBF) represents a common denominator of VaD. The latter might be the result of atherosclerosis, amyloid angiopathy, microbleeding and micro-strokes, together causing blood-brain barrier (BBB) dysfunction and vessel leakage, collectively originating from the consequence of hypertension, one of the main risk factors for VaD. At the histopathological level, VaD displays abnormal vascular remodeling, endothelial cell death, string vessel formation, pericyte responses, fibrosis, astrogliosis, sclerosis, microglia activation, neuroinflammation, demyelination, white matter lesions, deprivation of synapses and neuronal loss. The transforming growth factor (TGF) β has been identified as one of the key molecular factors involved in the aforementioned various pathological aspects. Thus, targeting TGF-β signaling in the brain might be a promising therapeutic strategy to mitigate vascular pathology and improve cognitive functions in patients with VaD. This review revisits the recent understanding of the role of TGF-β in VaD and associated pathological hallmarks. It further explores the potential to modulate certain aspects of VaD pathology by targeting TGF-β signaling.
Collapse
Affiliation(s)
- Mahesh Kandasamy
- Laboratory of Stem Cells and Neuroregeneration, Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
- Faculty Recharge Programme, University Grants Commission (UGC-FRP), New Delhi, India.
| | - Muthuswamy Anusuyadevi
- Molecular Gerontology Group, Department of Biochemistry, School of Life Sciences, Bharathidhasan University, Tiruchirappalli, Tamil Nadu, India.
| | - Kiera M Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Michael S Unger
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Kathrin M Kniewallner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Diana M Bessa de Sousa
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Barbara Altendorfer
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Heike Mrowetz
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
| | - Ulrich Bogdahn
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Velvio GmbH, Regensburg, Germany.
| | - Ludwig Aigner
- Institute of Molecular Regenerative Medicine, Salzburg, Paracelsus Medical University.
- Spinal Cord Injury and Tissue Regeneration Center, Salzburg, Paracelsus Medical University, Salzburg, Austria.
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
37
|
Bernstein DL, Gajghate S, Reichenbach NL, Winfield M, Persidsky Y, Heldt NA, Rom S. let-7g counteracts endothelial dysfunction and ameliorating neurological functions in mouse ischemia/reperfusion stroke model. Brain Behav Immun 2020; 87:543-555. [PMID: 32017988 PMCID: PMC7316629 DOI: 10.1016/j.bbi.2020.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 01/22/2020] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Stroke is a debilitating disease, accounting for almost 20% of all hospital visits, and 8% of all fatalities in the United States in 2017. Following an ischemic attack, inflammatory processes originating from endothelial cells within the brain microvasculature can induce many toxic effects into the impacted area, from both sides of the blood brain barrier (BBB). In addition to increased BBB permeability, impacted brain microvascular endothelial cells can recruit macrophages and other immune cells from the periphery and can also trigger the activation of microglia and astrocytes within the brain. We have identified a key microRNA, let-7g, which levels were drastically diminished as consequence of transient middle cerebral artery occlusion (tMCAO) in vivo and oxygen-glucose deprivation (OGD) in vitro ischemia/reperfusion conditions, respectively. We have observed that let-7g* liposome-based delivery is capable of attenuating inflammation after stroke, reducing BBB permeability, limiting brain infiltration by CD3+CD4+ T-cells and Ly6G+ neutrophils, lessening microglia activation and neuronal death. These effects consequently improved clinical outcomes, shown by mitigating post-stroke gait asymmetry and extremity motor function. Due to the role of the endothelium in propagating the effects of stroke and other inflammation, treatments which can reduce endothelial inflammation and limit ischemic damage and improving recovery after a stroke are required. Our findings demonstrate a critical link between the CNS inflammation and the immune system reaction and lay important groundwork for future stroke pharmacotherapies.
Collapse
Affiliation(s)
- David L Bernstein
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Sachin Gajghate
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nancy L Reichenbach
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Malika Winfield
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yuri Persidsky
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Nathan A Heldt
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Slava Rom
- Department of Pathology and Laboratory Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA.
| |
Collapse
|
38
|
Noureddine FY, Altara R, Fan F, Yabluchanskiy A, Booz GW, Zouein FA. Impact of the Renin-Angiotensin System on the Endothelium in Vascular Dementia: Unresolved Issues and Future Perspectives. Int J Mol Sci 2020; 21:E4268. [PMID: 32560034 PMCID: PMC7349348 DOI: 10.3390/ijms21124268] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 12/11/2022] Open
Abstract
The effects of the renin-angiotensin system (RAS) surpass the renal and cardiovascular systems to encompass other body tissues and organs, including the brain. Angiotensin II (Ang II), the most potent mediator of RAS in the brain, contributes to vascular dementia via different mechanisms, including neuronal homeostasis disruption, vascular remodeling, and endothelial dysfunction caused by increased inflammation and oxidative stress. Other RAS components of emerging significance at the level of the blood-brain barrier include angiotensin-converting enzyme 2 (ACE2), Ang(1-7), and the AT2, Mas, and AT4 receptors. The various angiotensin hormones perform complex actions on brain endothelial cells and pericytes through specific receptors that have either detrimental or beneficial actions. Increasing evidence indicates that the ACE2/Ang(1-7)/Mas axis constitutes a protective arm of RAS on the blood-brain barrier. This review provides an update of studies assessing the different effects of angiotensins on cerebral endothelial cells. The involved signaling pathways are presented and help highlight the potential pharmacological targets for the management of cognitive and behavioral dysfunctions associated with vascular dementia.
Collapse
Affiliation(s)
- Fatima Y. Noureddine
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| | - Raffaele Altara
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, and KG Jebsen Center for Cardiac Research, 0424 Oslo, Norway;
| | - Fan Fan
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Andriy Yabluchanskiy
- Center for Geroscience and Healthy Brain Aging, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104, USA;
| | - George W. Booz
- Department of Pharmacology and Toxicology, School of Medicine, The University of Mississippi Medical Center, Jackson, MS 39216, USA; (F.F.); (G.W.B.)
| | - Fouad A. Zouein
- Department of Pharmacology and Toxicology, Faculty of Medicine, American University of Beirut, Beirut 1107 2020, Lebanon;
| |
Collapse
|
39
|
Banks WA. The Blood-Brain Barrier Interface in Diabetes Mellitus: Dysfunctions, Mechanisms and Approaches to Treatment. Curr Pharm Des 2020; 26:1438-1447. [DOI: 10.2174/1381612826666200325110014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/27/2020] [Indexed: 12/24/2022]
Abstract
Diabetes mellitus (DM) is one of the most common diseases in the world. Among its effects are an increase in the risk of cognitive impairment, including Alzheimer’s disease, and blood-brain barrier (BBB) dysfunction. DM is characterized by high blood glucose levels that are caused by either lack of insulin (Type I) or resistance to the actions of insulin (Type II). The phenotypes of these two types are dramatically different, with Type I animals being thin, with low levels of leptin as well as insulin, whereas Type II animals are often obese with high levels of both leptin and insulin. The best characterized change in BBB dysfunction is that of disruption. The brain regions that are disrupted, however, vary between Type I vs Type II DM, suggesting that factors other than hyperglycemia, perhaps hormonal factors such as leptin and insulin, play a regionally diverse role in BBB vulnerability or protection. Some BBB transporters are also altered in DM, including P-glycoprotein, lowdensity lipoprotein receptor-related protein 1, and the insulin transporter as other functions of the BBB, such as brain endothelial cell (BEC) expression of matrix metalloproteinases (MMPs) and immune cell trafficking. Pericyte loss secondary to the increased oxidative stress of processing excess glucose through the Krebs cycle is one mechanism that has shown to result in BBB disruption. Vascular endothelial growth factor (VEGF) induced by advanced glycation endproducts can increase the production of matrix metalloproteinases, which in turn affects tight junction proteins, providing another mechanism for BBB disruption as well as effects on P-glycoprotein. Through the enhanced expression of the redox-related mitochondrial transporter ABCB10, redox-sensitive transcription factor NF-E2 related factor-2 (Nrf2) inhibits BEC-monocyte adhesion. Several potential therapies, in addition to those of restoring euglycemia, can prevent some aspects of BBB dysfunction. Carbonic anhydrase inhibition decreases glucose metabolism and so reduces oxidative stress, preserving pericytes and blocking or reversing BBB disruption. Statins or N-acetylcysteine can reverse the BBB opening in some models of DM, fibroblast growth factor-21 improves BBB permeability through an Nrf2-dependent pathway, and nifedipine or VEGF improves memory in DM models. In summary, DM alters various aspects of BBB function through a number of mechanisms. A variety of treatments based on those mechanisms, as well as restoration of euglycemia, may be able to restore BBB functions., including reversal of BBB disruption.
Collapse
Affiliation(s)
- William A. Banks
- Geriatric Research Education and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, United States
| |
Collapse
|
40
|
Lushington GH, Barnes AC. Protein Glycation: An Old Villain is Shedding Secrets. Comb Chem High Throughput Screen 2019; 22:362-369. [DOI: 10.2174/1386207322666190704094356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
:
The glycation of proteins is non-physiological post-translational incorporation of
carbohydrates onto the free amines or guanidines of proteins and some lipids. Although the
existence of glycated proteins has been known for forty years, a full understanding of their
pathogenic nature has been slow in accruing. In recent years, however, glycation has gained widespread
acceptance as a contributing factor in numerous metabolic, autoimmune, and neurological
disorders, tying together several confounding aspects of disease etiology. From diabetes, arthritis,
and lupus, to multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s, and Parkinson’s
diseases, an emerging glycation/inflammation paradigm now offers significant new insight into a
physiologically important toxicological phenomenon. It exposes novel drug targets and treatment
options, and may even lay foundations for long-awaited breakthroughs.
:
This ‘current frontier’ article briefly profiles current knowledge regarding the underlying causes
of glycation, the structural biology implications of such modifications, and their pathological
consequences. Although several emerging therapeutic strategies for addressing glycation
pathologies are introduced, the primary purpose of this mini-review is to raise awareness of the
challenges and opportunities inherent in this emerging new medicinal target area.
Collapse
|
41
|
Hirunpattarasilp C, Attwell D, Freitas F. The role of pericytes in brain disorders: from the periphery to the brain. J Neurochem 2019; 150:648-665. [PMID: 31106417 DOI: 10.1111/jnc.14725] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 03/15/2019] [Accepted: 05/15/2019] [Indexed: 12/13/2022]
Abstract
It is becoming increasingly apparent that disorders of the brain microvasculature contribute to many neurological disorders. In recent years it has become clear that a major player in these events is the capillary pericyte which, in the brain, is now known to control the blood-brain barrier, regulate blood flow, influence immune cell entry and be crucial for angiogenesis. In this review we consider the under-explored possibility that peripheral diseases which affect the microvasculature, such as hypertension, kidney disease and diabetes, produce central nervous system (CNS) dysfunction by mechanisms affecting capillary pericytes within the CNS. We highlight how cellular messengers produced peripherally can act via signalling pathways within CNS pericytes to reshape blood vessels, restrict blood flow or compromise blood-brain barrier function, thus causing neuronal dysfunction. Increased understanding of how renin-angiotensin, Rho-kinase and PDGFRβ signalling affect CNS pericytes may suggest novel therapeutic approaches to reducing the CNS effects of peripheral disorders.
Collapse
Affiliation(s)
- Chanawee Hirunpattarasilp
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - David Attwell
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| | - Felipe Freitas
- Department of Neuroscience, Andrew Huxley Building, University College London, Physiology & Pharmacology, Gower Street, London, UK
| |
Collapse
|
42
|
Geranmayeh MH, Rahbarghazi R, Farhoudi M. Targeting pericytes for neurovascular regeneration. Cell Commun Signal 2019; 17:26. [PMID: 30894190 PMCID: PMC6425710 DOI: 10.1186/s12964-019-0340-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Accepted: 03/13/2019] [Indexed: 02/06/2023] Open
Abstract
Pericytes, as a key cellular part of the blood-brain barrier, play an important role in the maintenance of brain neurovascular unit. These cells participate in brain homeostasis by regulating vascular development and integrity mainly through secreting various factors. Pericytes per se show different restorative properties after blood-brain barrier injury. Upon the occurrence of brain acute and chronic diseases, pericytes provoke immune cells to regulate neuro-inflammatory conditions. Loss of pericytes in distinct neurologic disorders intensifies blood-brain barrier permeability and leads to vascular dementia. The therapeutic potential of pericytes is originated from the unique morphological shape, location, and their ability in providing vast paracrine and juxtacrine interactions. A subset of pericytes possesses multipotentiality and exhibit trans-differentiation capacity in the context of damaged tissue. This review article aimed to highlight the critical role of pericytes in restoration of the blood-brain barrier after injury by focusing on the dynamics of pericytes and cross-talk with other cell types.
Collapse
Affiliation(s)
- Mohammad Hossein Geranmayeh
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran
| | - Reza Rahbarghazi
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Department of Applied Cell Sciences, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mehdi Farhoudi
- Neurosciences Research Center (NSRC), Imam Reza Medical Center, Tabriz University of Medical Sciences, Golgasht St., Azadi Ave, Tabriz, 5166614756, Iran.
| |
Collapse
|
43
|
Dayton JR, Franke MC, Yuan Y, Cruz-Orengo L. Straightforward method for singularized and region-specific CNS microvessels isolation. J Neurosci Methods 2019; 318:17-33. [PMID: 30797797 DOI: 10.1016/j.jneumeth.2019.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/14/2019] [Accepted: 02/14/2019] [Indexed: 01/01/2023]
Abstract
BACKGROUND Current methods for murine brain microvasculature isolation requires the pooling of brain cortices while disregarding the rest of the CNS, making the analysis of single individuals non feasible. NEW METHOD Efficient isolation of brain microvessels requires the elimination of meninges, vessels of high caliber vessels and choroid plexus, commonly done by rolling the over filter paper, but can't be done on other CNS regions. We overcome this hurdle by using a double-pronged pick, as well as elution and filtration through cell strainers after centrifugation. RESULTS We were able to develop a region-specific murine CNS microvessels isolation, that allows for the comparison of the neurovascular unit from these regions both within the same individual and between multiple individuals and/or treatment groups without pooling. Additionally, we were able to adapt this method to macaque CNS tissue. COMPARISON WITH EXISTING METHOD(S) Although similar to a previously published method that requires no enzymatic dissociation and no ultracentrifugation, it does differ in its ability to isolate from a single experimental animal and from non-cortical tissues. However, it relies heavily on the researcher dissecting skills and careful elution and filtration of re-suspended samples. CONCLUSIONS CNS region-specific microvessels comparison can inform of molecular and/or cellular differences that would otherwise be obscured by excluding non-cortical tissue. Additionally, it allows for the unmasking of variations between individuals that remained hidden when pooling of multiple samples is the norm. Lastly, isolation of region-specific microvessels for non-human primate CNS allows for more translationally relevant studies of the BBB.
Collapse
Affiliation(s)
- Jacquelyn Rose Dayton
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Marissa Cindy Franke
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Yinyu Yuan
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| | - Lillian Cruz-Orengo
- University of California, Davis. Anatomy, Physiology & Cell Biology, 1089 Veterinary Medicine Drive, Davis, CA, 95616, United States.
| |
Collapse
|
44
|
Li F, Geng X, Yip J, Ding Y. Therapeutic Target and Cell-signal Communication of Chlorpromazine and Promethazine in Attenuating Blood-Brain Barrier Disruption after Ischemic Stroke. Cell Transplant 2019; 28:145-156. [PMID: 30569751 PMCID: PMC6362522 DOI: 10.1177/0963689718819443] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 11/18/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Ischemic stroke destroys blood-brain barrier (BBB) integrity. There are currently no effective treatments available in the clinical setting. Post-ischemia treatment with phenothiazine drugs [combined chlorpromazine and promethazine (C+P)] has been shown to be neuroprotective in stroke. The present study determined the effect of C+P in BBB integrity. Sprague-Dawley rats were divided into the following groups ( n=8 each): (1) stroke, (2) stroke treated by C+P with temperature control, and (3) stroke treated by C+P without temperature control. Infarct volume and neurological deficits were measured to assess the neuroprotective effect of C+P. BBB permeability was determined by brain edema and Evans blue leakage. Expression of BBB integral molecules, including proteins of aquaporin-4 and -9 (AQP-4, AQP-9), matrix metalloproteinase-2 and -9 (MMP-2, MMP-9), zonula occludens-1 (ZO-1), claudin-1/5, occludin, and laminin were determined by Western blot. Stroke caused brain infarction and neurological deficits, as well as BBB damage, which were all attenuated by C+P through drug-induced hypothermia. When the reduced temperature was controlled to physiological levels, C+P still conferred neuroprotection, suggesting a therapeutic effect independent of hypothermia. Furthermore, C+P significantly attenuated the increase in AQP-4, AQP-9, MMP-2, and MMP-9 levels after stroke, and reversed the decrease in tight junction protein (ZO-1, claudin-1/5, occludin) and basal laminar protein (laminin) levels. This study clearly indicates a beneficial effect of C+P on BBB integrity after stroke, which may be independent of drug-induced hypothermia. These findings further prove the clinical target and cell-signal communication of C+P treatment, which may direct us closer toward the development of an efficacious neuroprotective therapy.
Collapse
Affiliation(s)
- Fengwu Li
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaokun Geng
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Neurology, Luhe Hospital, Capital Medical University, Beijing, China
| | - James Yip
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Yuchuan Ding
- China-America Institute of Neuroscience, Luhe Hospital, Capital Medical University, Beijing, China
- Department of Neurosurgery, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
45
|
Snelson M, Coughlan MT. Dietary Advanced Glycation End Products: Digestion, Metabolism and Modulation of Gut Microbial Ecology. Nutrients 2019; 11:nu11020215. [PMID: 30678161 PMCID: PMC6413015 DOI: 10.3390/nu11020215] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/15/2019] [Indexed: 12/19/2022] Open
Abstract
The formation of advanced glycation end products (AGEs) in foods is accelerated with heat treatment, particularly within foods that are cooked at high temperatures for long periods of time using dry heat. The modern processed diet is replete with AGEs, and excessive AGE consumption is thought to be associated with a number of negative health effects. Many dietary AGEs have high molecular weight and are not absorbed in the intestine, and instead pass through to the colon, where they are available for metabolism by the colonic bacteria. Recent studies have been conducted to explore the effects of AGEs on the composition of the gut microbiota as well as the production of beneficial microbial metabolites, in particular, short-chain fatty acids. However, there is conflicting evidence regarding the impact of dietary AGEs on gut microbiota reshaping, which may be due, in part, to the formation of alternate compounds during the thermal treatment of foods. This review summarises the current evidence regarding dietary sources of AGEs, their gastrointestinal absorption and role in gut microbiota reshaping, provides a brief overview of the health implications of dietary AGEs and highlights knowledge gaps and avenues for future study.
Collapse
Affiliation(s)
- Matthew Snelson
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, 3004 Melbourne, Australia.
| | - Melinda T Coughlan
- Department of Diabetes, Central Clinical School, Monash University, Alfred Medical Research and Education Precinct, 3004 Melbourne, Australia.
| |
Collapse
|
46
|
Azarpazhooh MR, Hachinski V. Vascular cognitive impairment: A preventable component of dementia. HANDBOOK OF CLINICAL NEUROLOGY 2019; 167:377-391. [PMID: 31753144 DOI: 10.1016/b978-0-12-804766-8.00020-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For many decades during the 20th century, the common belief was that the slow strangulation of the brains' blood supply from hardening of the brain arteries led to chronic brain ischemia and neuronal death. Not surprisingly, to counter this, vasodilators rapidly became one of the most commonly used and profitable medications worldwide; however, no clinical benefits were ever proven. In the 1970s and early 1980s cerebral blood flow studies strongly disproved the idea of brain failure due to chronic ischemia. It was also shown that infarcts and not chronic ischemia caused dementia, leading to the concept of multiinfarct dementia. In addition to infarcts, it was then realized that other vascular lesions can also cause cognitive decline. Gradually, as "atherosclerotic dementia" lost ground, Alzheimer's disease (AD) that once had been considered a presenile dementia and rare, became almost synonymous with dementia. Subsequent memory-based definitions and evaluations of dementia led to a bias in favor of diagnosing AD, overshadowing vascular contributions. The widespread use of brain imaging in the 1980s and 1990s contributed to the resurgence of evidence of cerebrovascular diseases. Moreover, it was shown that most cognitive impairment of the elderly results from mixed pathologies, emphasizing the need for a change in the traditional categorical diagnosis of dementia, e.g., AD vs vascular dementia. The alternative diagnostic method was named the vascular cognitive impairment approach, meaning identifying any impairment caused by or associated with vascular factors. The importance of this approach is that vascular lesions are currently the most important treatable and preventable components of dementia, even before any symptoms manifest, i.e., at the brain at risk stage. This chapter provides a summary of the vascular cognitive impairment approach to diagnosis, treatment, and prevention of cognitive decline.
Collapse
Affiliation(s)
- Mahmoud Reza Azarpazhooh
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada; Department of Neurology, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Vladimir Hachinski
- Department of Clinical Neurological Sciences, London Health Sciences Centre, Western University, London, ON, Canada.
| |
Collapse
|
47
|
Van Dyken P, Lacoste B. Impact of Metabolic Syndrome on Neuroinflammation and the Blood-Brain Barrier. Front Neurosci 2018; 12:930. [PMID: 30618559 PMCID: PMC6297847 DOI: 10.3389/fnins.2018.00930] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/27/2018] [Indexed: 12/29/2022] Open
Abstract
Metabolic syndrome, which includes diabetes and obesity, is one of the most widespread medical conditions. It induces systemic inflammation, causing far reaching effects on the body that are still being uncovered. Neuropathologies triggered by metabolic syndrome often result from increased permeability of the blood-brain-barrier (BBB). The BBB, a system designed to restrict entry of toxins, immune cells, and pathogens to the brain, is vital for proper neuronal function. Local and systemic inflammation induced by obesity or type 2 diabetes mellitus can cause BBB breakdown, decreased removal of waste, and increased infiltration of immune cells. This leads to disruption of glial and neuronal cells, causing hormonal dysregulation, increased immune sensitivity, or cognitive impairment depending on the affected brain region. Inflammatory effects of metabolic syndrome have been linked to neurodegenerative diseases. In this review, we discuss the effects of obesity and diabetes-induced inflammation on the BBB, the roles played by leptin and insulin resistance, as well as BBB changes occurring at the molecular level. We explore signaling pathways including VEGF, HIFs, PKC, Rho/ROCK, eNOS, and miRNAs. Finally, we discuss the broader implications of neural inflammation, including its connection to Alzheimer's disease, multiple sclerosis, and the gut microbiome.
Collapse
Affiliation(s)
- Peter Van Dyken
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Baptiste Lacoste
- Neuroscience Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
48
|
Yanar K, Simsek B, Çaylı N, Övül Bozkır H, Mengi M, Belce A, Aydin S, Çakatay U. Caloric restriction and redox homeostasis in various regions of aging male rat brain: Is caloric restriction still worth trying even after early-adulthood?: Redox homeostasis and caloric restriction in brain. J Food Biochem 2018; 43:e12740. [PMID: 31353564 DOI: 10.1111/jfbc.12740] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 01/02/2023]
Abstract
Despite recent studies have shown that caloric restriction (CR) could improve some functional loss associated with brain aging, the biochemical effects of CR on brain aging are still not well understood on a quantifiable biochemical basis, including whether CR could be protective when started around middle adulthood, when age-related neurodegenerative diseases are thought to set in. Therefore, in the light of more than ever aging societies and increasing neurodegenerative diseases, we aimed to test the biochemical effects of CR on redox homeostasis in different parts of male Sprague-Dawley rat brain by using the biomarkers we consistently validated in our previous work (TOS, PCO, AOPP, AGEs, sRAGE, P-SH, LHPs, 4-HNE, TAS, Cu, Zn-SOD). Our results indicate that oxidative stress biomarkers are lower in CR group, implying a more favorable redox status that has been previously shown to be correlated with better neural function. PRACTICAL APPLICATIONS: We report that the beneficial effects of caloric restriction (CR) on various brain tissues result in significant improvements in biochemical markers, even though CR is not started in early adulthood. Hence, our select age group provides a sound redox status-related neurochemical understanding for many recent CR studies, where a functional loss was detected at this age.
Collapse
Affiliation(s)
- Karolin Yanar
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Bahadir Simsek
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Nisanur Çaylı
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Haktan Övül Bozkır
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Murat Mengi
- Faculty of Medicine, Department of Physiology, Namik Kemal University, Tekirdag, Turkey
| | - Ahmet Belce
- Faculty of Health Sciences, Bezmialem Vakif University, Istanbul, Turkey
| | - Seval Aydin
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Ufuk Çakatay
- Cerrahpasa Faculty of Medicine, Department of Medical Biochemistry, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
49
|
Cheng J, Korte N, Nortley R, Sethi H, Tang Y, Attwell D. Targeting pericytes for therapeutic approaches to neurological disorders. Acta Neuropathol 2018; 136:507-523. [PMID: 30097696 PMCID: PMC6132947 DOI: 10.1007/s00401-018-1893-0] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/30/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Many central nervous system diseases currently lack effective treatment and are often associated with defects in microvascular function, including a failure to match the energy supplied by the blood to the energy used on neuronal computation, or a breakdown of the blood–brain barrier. Pericytes, an under-studied cell type located on capillaries, are of crucial importance in regulating diverse microvascular functions, such as angiogenesis, the blood–brain barrier, capillary blood flow and the movement of immune cells into the brain. They also form part of the “glial” scar isolating damaged parts of the CNS, and may have stem cell-like properties. Recent studies have suggested that pericytes play a crucial role in neurological diseases, and are thus a therapeutic target in disorders as diverse as stroke, traumatic brain injury, migraine, epilepsy, spinal cord injury, diabetes, Huntington’s disease, Alzheimer’s disease, diabetes, multiple sclerosis, glioma, radiation necrosis and amyotrophic lateral sclerosis. Here we report recent advances in our understanding of pericyte biology and discuss how pericytes could be targeted to develop novel therapeutic approaches to neurological disorders, by increasing blood flow, preserving blood–brain barrier function, regulating immune cell entry to the CNS, and modulating formation of blood vessels in, and the glial scar around, damaged regions.
Collapse
Affiliation(s)
- Jinping Cheng
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China
| | - Nils Korte
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Ross Nortley
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Huma Sethi
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Yamei Tang
- Department of Neurology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, 107 Yan Jiang Xi Rd, Guangzhou, 510120, People's Republic of China.
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
50
|
Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol Res 2018; 136:172-180. [DOI: 10.1016/j.phrs.2018.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/01/2018] [Accepted: 09/04/2018] [Indexed: 12/15/2022]
|