1
|
Guan T, Li N, Gao Y, Gao M, Hu Q, Gao Y, Xiao L, Yang Z, Liu Q. Probing the potential mechanism of permethrin exposure on Alzheimer's disease through enantiomer-specific network toxicology, multi-spectroscopic, and docking approaches. CHEMOSPHERE 2024; 369:143786. [PMID: 39586426 DOI: 10.1016/j.chemosphere.2024.143786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/18/2024] [Accepted: 11/19/2024] [Indexed: 11/27/2024]
Abstract
Latest observations indicated that exposure of organic environmental neurotoxins may increase the potential risk of Alzheimer's diseases (AD). As a suspected food-derived risk factor, permethrin, composed of cis-isomer and trans-isomer, is widely used as a broad-spectrum pyrethroid insecticide in agricultural crops for the arthropod pests controlling. Thus, evaluating the impact of permethrin exposure is of great importance to human health. In this study, we performed the toxicological network approach to decipher AD-related mechanisms of cis-permethrin and trans-permethrin. Based on the toxicological network construction and central network topological analysis, human serum albumin (HSA) was selected as the core targets in AD-related developing. From the analysis of the steady state and time-resolved fluorescence quenching of HSA in presence of permethrin mixture, it has been inferred that the nature of the quenching mainly originates from the dynamic modes. Experimentally, the thermodynamic parameters revealed hydrophobic interactions and van der Waals forces played a major role during quenching process. Tryptophan synchronous fluorescence spectra were blue shifted whereas the position of tyrosine synchronous spectra was red shifted during the complex formation. Three-dimensional fluorescence together with FT-IR experiment confirmed that permethrin caused the secondary structure changes in HSA. To better understand the binding patterns between HSA and cis/trans -permethrin, theoretical calculation and molecular docking were implemented. According to the electrostatic potential map, the electrophilic attack region corresponds for electron rich oxygen atoms, while the nucleophilic attack regions were mainly located at over the benzene rings and methyl on cyclopropane ring of permethrins. Docking results shown that cis-permethrin and trans-permethrin located in hydrophobic pocket nearby Domain IIA with the different binding affinity (-7.6 and -9.2 kcal/mol), which consistent with the competitive displacement experiment. All these findings generated in the present study facilitated the elucidation of the molecular mechanism details between permethrin mixture and HSA, which provided fresh insights into the links between environmental exposure and AD-related adverse health outcomes.
Collapse
Affiliation(s)
- Tianzhu Guan
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ning Li
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Ya Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Mingyuan Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Qin Hu
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Yajun Gao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Lixia Xiao
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China
| | - Zhenquan Yang
- School of Food Science and Engineering, Yangzhou University, Yangzhou 225127, China.
| | - Qiaoquan Liu
- Key Laboratory of Crop Genomics and Molecular Breeding of Jiangsu Province, State Key Laboratory of Hybrid Rice, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
2
|
Li Y, Ma A, Wang Y, Guo Q, Wang C, Fu H, Liu B, Ma Q. Enhancer-driven gene regulatory networks inference from single-cell RNA-seq and ATAC-seq data. Brief Bioinform 2024; 25:bbae369. [PMID: 39082647 PMCID: PMC11289686 DOI: 10.1093/bib/bbae369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/19/2024] [Accepted: 07/15/2024] [Indexed: 08/03/2024] Open
Abstract
Deciphering the intricate relationships between transcription factors (TFs), enhancers, and genes through the inference of enhancer-driven gene regulatory networks (eGRNs) is crucial in understanding gene regulatory programs in a complex biological system. This study introduces STREAM, a novel method that leverages a Steiner forest problem model, a hybrid biclustering pipeline, and submodular optimization to infer eGRNs from jointly profiled single-cell transcriptome and chromatin accessibility data. Compared to existing methods, STREAM demonstrates enhanced performance in terms of TF recovery, TF-enhancer linkage prediction, and enhancer-gene relation discovery. Application of STREAM to an Alzheimer's disease dataset and a diffuse small lymphocytic lymphoma dataset reveals its ability to identify TF-enhancer-gene relations associated with pseudotime, as well as key TF-enhancer-gene relations and TF cooperation underlying tumor cells.
Collapse
Affiliation(s)
- Yang Li
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Anjun Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| | - Yizhong Wang
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qi Guo
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Cankun Wang
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Hongjun Fu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
| | - Bingqiang Liu
- School of Mathematics, Shandong University, Jinan, Shandong 250100, China
| | - Qin Ma
- Department of Biomedical Informatics, College of Medicine, The Ohio State University, Columbus, OH 43210, United States
- Pelotonia Institute for Immuno-Oncology, The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, United States
| |
Collapse
|
3
|
Overman MJ, Pendleton N, O'Neill TW, Bartfai G, Casanueva FF, Forti G, Rastrelli G, Giwercman A, Han TS, Huhtaniemi IT, Slowikowska-Hilczer J, Lean ME, Punab M, Lee DM, Antonio L, Gielen E, Rutter MK, Vanderschueren D, Wu FC, Tournoy J. Reproductive hormone levels, androgen receptor CAG repeat length and their longitudinal relationships with decline in cognitive subdomains in men: The European Male Ageing Study. Physiol Behav 2022; 252:113825. [PMID: 35487276 DOI: 10.1016/j.physbeh.2022.113825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/08/2022] [Accepted: 04/24/2022] [Indexed: 11/17/2022]
Abstract
OBJECTIVE It has been proposed that endogenous sex hormone levels may present a modifiable risk factor for cognitive decline. However, the evidence for effects of sex steroids on cognitive ageing is conflicting. We therefore investigated associations between endogenous hormone levels, androgen receptor CAG repeat length, and cognitive domains including visuoconstructional abilities, visual memory, and processing speed in a large-scale longitudinal study of middle-aged and older men. METHODS Men aged 40-79 years from the European Male Ageing Study (EMAS) underwent cognitive assessments and measurements of hormone levels at baseline and follow-up (mean = 4.4 years, SD ± 0.3 years). Hormone levels measured included total and calculated free testosterone and estradiol, dihydrotestosterone, luteinizing hormone, follicle-stimulating hormone, dehydroepiandrosterone sulphate and sex hormone-binding globulin. Cognitive function was assessed using the Rey-Osterrieth Complex Figure Copy and Recall, the Camden Topographical Recognition Memory and the Digit Symbol Substitution Test. Multivariate linear regressions were used to examine associations between baseline and change hormone levels, androgen receptor CAG repeat length, and cognitive decline. RESULTS Statistical analyses included 1,827 and 1,423 participants for models investigating relationships of cognition with hormone levels and CAG repeat length, respectively. In age-adjusted models, we found a significant association of higher baseline free testosterone (β=-0.001, p=0.005) and dihydrotestosterone levels (β=-0.065, p=0.003) with greater decline on Rey-Osterrieth Complex Figure Recall over time. However, these effects were no longer significant following adjustment for centre, health, and lifestyle factors. No relationships were observed between any other baseline hormone levels, change in hormone levels, or androgen receptor CAG repeat length with cognitive decline in the measured domains. CONCLUSIONS In this large-scale prospective study there was no evidence for an association between endogenous sex hormone levels or CAG repeat length and cognitive ageing in men. These data suggest that sex steroid levels do not affect visuospatial function, visual memory, or processing speed in middle-aged and older men.
Collapse
Affiliation(s)
- Margot J Overman
- Gerontology and Geriatrics, KU Leuven, Leuven, Belgium; Department of Psychiatry, University of Oxford, UK
| | - Neil Pendleton
- Clinical & Cognitive Neurosciences, Institute of Brain, Behaviour and Mental Health, The University of Manchester, UK
| | - Terence W O'Neill
- Centre for Epidemiology Versus Arthritis, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK; NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Sciences Centre, Manchester, UK
| | - Gyorgy Bartfai
- Department of Obstetrics, Gynaecology and Andrology, Albert Szent-György Medical University, Szeged, Hungary
| | - Felipe F Casanueva
- Department of Medicine, Santiago de Compostela University Spain; CIBEROBN Instituto de Salud Carlos III. Santiago de Compostela, Spain
| | - Gianni Forti
- Endocrinology Unit, University of Florence, Florence, Italy
| | - Giulia Rastrelli
- Sexual Medicine and Andrology Unit, Department of Experimental, Clinical, and Biomedical Sciences, University of Florence, Florence, Italy
| | - Aleksander Giwercman
- Reproductive Medicine Centre, Skåne University Hospital, University of Lund, Lund, Sweden
| | - Thang S Han
- Institute of Cardiovascular Research, Royal Holloway University of London, Egham, Surrey, UK
| | - Ilpo T Huhtaniemi
- Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Campus, London UK
| | | | - Michael Ej Lean
- Department of Human Nutrition, University of Glasgow, Glasgow, UK
| | - Margus Punab
- Andrology Unit, Tartu University Hospital, Tartu, Estonia
| | - David M Lee
- Faculty of Health, Psychology and Social Care, Manchester Metropolitan University, Manchester, UK
| | - Leen Antonio
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Evelien Gielen
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium
| | - Martin K Rutter
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK; Diabetes, Endocrinology and Metabolism Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Dirk Vanderschueren
- Department of Andrology and Endocrinology, KU Leuven, Leuven, Belgium; Department of Chronic Diseases, Metabolism and Ageing, KU Leuven, Leuven, Belgium
| | - Frederick Cw Wu
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Medical and Human Sciences, Institute of Human Development, University of Manchester, Manchester, UK
| | - Jos Tournoy
- Geriatric Medicine, University Hospitals Leuven, Leuven, Belgium; Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Iyer H, Wahul AB, P K A, Sawant BS, Kumar A. A BRD's (BiRD's) eye view of BET and BRPF bromodomains in neurological diseases. Rev Neurosci 2021; 32:403-426. [PMID: 33661583 DOI: 10.1515/revneuro-2020-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 10/11/2020] [Indexed: 01/18/2023]
Abstract
Neurological disorders (NLDs) are among the top leading causes for disability worldwide. Dramatic changes in the epigenetic topography of the brain and nervous system have been found in many NLDs. Histone lysine acetylation has prevailed as one of the well characterised epigenetic modifications in these diseases. Two instrumental components of the acetylation machinery are the evolutionarily conserved Bromodomain and PHD finger containing (BRPF) and Bromo and Extra terminal domain (BET) family of proteins, also referred to as acetylation 'readers'. Several reasons, including their distinct mechanisms of modulation of gene expression and their property of being highly tractable small molecule targets, have increased their translational relevance. Thus, compounds which demonstrated promising results in targeting these proteins have advanced to clinical trials. They have been established as key role players in pathologies of cancer, cardiac diseases, renal diseases and rheumatic diseases. In addition, studies implicating the role of these bromodomains in NLDs are gaining pace. In this review, we highlight the findings of these studies, and reason for the plausible roles of all BET and BRPF members in NLDs. A comprehensive understanding of their multifaceted functions would be radical in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Harish Iyer
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Abhipradnya B Wahul
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Annapoorna P K
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| | - Bharvi S Sawant
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
| | - Arvind Kumar
- Epigenetics and Neuropsychiatric Disorders' Laboratory, CSIR - Centre for Cellular and Molecular Biology (CCMB), Hyderabad500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad201002, India
| |
Collapse
|
5
|
Strickland SL, Reddy JS, Allen M, N'songo A, Burgess JD, Corda MM, Ballard T, Wang X, Carrasquillo MM, Biernacka JM, Jenkins GD, Mukherjee S, Boehme K, Crane P, Kauwe JS, Ertekin‐Taner N. MAPT haplotype-stratified GWAS reveals differential association for AD risk variants. Alzheimers Dement 2020; 16:983-1002. [PMID: 32400971 PMCID: PMC7983911 DOI: 10.1002/alz.12099] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022]
Abstract
INTRODUCTION MAPT H1 haplotype is implicated as a risk factor for neurodegenerative diseases including Alzheimer's disease (AD). METHODS Using Alzheimer's Disease Genetics Consortium (ADGC) genome-wide association study (GWAS) data (n = 18,841), we conducted a MAPT H1/H2 haplotype-stratified association to discover MAPT haplotype-specific AD risk loci. RESULTS We identified 11 loci-5 in H2-non-carriers and 6 in H2-carriers-although none of the MAPT haplotype-specific associations achieved genome-wide significance. The most significant H2 non-carrier-specific association was with a NECTIN2 intronic (P = 1.33E-07) variant, and that for H2 carriers was near NKX6-1 (P = 1.99E-06). The GABRG2 locus had the strongest epistasis with MAPT H1/H2 variant rs8070723 (P = 3.91E-06). Eight of the 12 genes at these loci had transcriptome-wide significant differential expression in AD versus control temporal cortex (q < 0.05). Six genes were members of the brain transcriptional co-expression network implicated in "synaptic transmission" (P = 9.85E-59), which is also enriched for neuronal genes (P = 1.0E-164), including MAPT. DISCUSSION This stratified GWAS identified loci that may confer AD risk in a MAPT haplotype-specific manner. This approach may preferentially enrich for neuronal genes implicated in synaptic transmission.
Collapse
Affiliation(s)
| | - Joseph S. Reddy
- Department of Health Sciences ResearchMayo ClinicJacksonvilleFloridaUSA
| | - Mariet Allen
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | - Travis Ballard
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
| | - Xue Wang
- Department of Health Sciences ResearchMayo ClinicJacksonvilleFloridaUSA
| | | | | | | | | | | | - Paul Crane
- University of WashingtonSeattleWashingtonUSA
| | | | - Nilüfer Ertekin‐Taner
- Department of NeuroscienceMayo ClinicJacksonvilleFloridaUSA
- Department of NeurologyMayo ClinicJacksonvilleFloridaUSA
| | | |
Collapse
|
6
|
Balit T, Abdel-Wahhab MA, Radenahmad N. Young Coconut Juice Reduces Some Histopathological Changes Associated with Alzheimer's Disease through the Modulation of Estrogen Receptors in Orchidectomized Rat Brains. J Aging Res 2019; 2019:7416419. [PMID: 31885921 PMCID: PMC6914913 DOI: 10.1155/2019/7416419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 08/06/2019] [Accepted: 09/16/2019] [Indexed: 11/23/2022] Open
Abstract
Propose. This study aimed to evaluate the protective role of young coconut juice (YCJ) against the pathological changes in Alzheimer's disease (AD) in orchidectomized (orx) rats. Methods and Results. Animals were divided into 7 groups including: baseline normal control group, sham control, orx rat group, orx rat group injected with 2.5 μg/kg b.w. estradiol benzoate (EB) 3 days a week for 10 weeks, and the orx rat groups treated orally with 10, 20, and 40 ml/kg b.w. of YCJ for 10 weeks. At the end of treatment period, animals were sacrificed and the brain of each rat was removed, fixed in 10% neutral formalin, and stained by specific antibodies against NF200, parvalbumin (PV), β-amyloid (Aβ), and estrogen receptors (ERα and ERβ). The results showed that the number of NF200- and PV-reactive neurons in the hippocampus and cerebral cortex was significantly reduced in orx rats. However, it restored to normal in orx rats injected with EB or those administrated with YCJ in a dose-related manner. Neurons containing β-amyloid (Aβ), a hallmark of Alzheimer's disease (AD), were found to be increased in the orx rats; however; they were reduced by EB injection or YCJ administration. These results suggested the binding of the YCJ active ingredient(s) with estrogen receptors (ERs) in the brain as indicated by the detection of ERα and ERβ in neurons since a significant correlation was detected between NF200-/PV-reactive neurons vs ERα-/ERβ-reactive neurons.Conclusion. It could be concluded that YCJ is effective as EB in reducing AD pathology, probably by being selective estrogen receptor modulators.
Collapse
Affiliation(s)
- Tatcha Balit
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Mosaad A. Abdel-Wahhab
- Department of Food Toxicology and Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Nisaudah Radenahmad
- Department of Anatomy, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| |
Collapse
|
7
|
Carr JS, Bonham LW, Morgans AK, Ryan CJ, Yokoyama JS, Geier EG. Genetic Variation in the Androgen Receptor and Measures of Plasma Testosterone Levels Suggest Androgen Dysfunction in Alzheimer's Disease. Front Neurosci 2018; 12:529. [PMID: 30131669 PMCID: PMC6090298 DOI: 10.3389/fnins.2018.00529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 07/13/2018] [Indexed: 01/08/2023] Open
Abstract
Alzheimer’s disease (AD) prevalence varies by sex, suggesting that sex chromosomes, sex hormones and/or their signaling could potentially modulate AD risk and progression. Low testosterone levels are reported in men with AD. Further, variation in the androgen receptor (AR) gene has been associated with AD risk and cognitive impairment. We assessed measures of plasma testosterone levels as a biomarker of AD in male participants from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) cohort. Baseline testosterone levels were significantly different between clinical diagnosis groups [cognitively normal controls, mild cognitive impairment (MCI), or AD], with the lowest testosterone levels in men with AD. Lower baseline testosterone levels were associated with higher baseline clinical severity. Change in testosterone levels between baseline and 1-year follow-up varied by diagnosis; MCI had the greatest decreases in testosterone levels between baseline and 1-year follow-up. Despite differences by clinical diagnosis, there was no association between plasma testosterone and CSF biomarkers of AD pathology. We also tested single nucleotide polymorphisms (SNPs) in AR for association with AD risk in a separate cohort from ADNI and found 26 SNPs associated with risk for AD. The top associated SNP is predicted to be an expression quantitative trait locus for AR in multiple tissues, including brain, with the AD-associated risk allele predicted to confer lower AR expression. Our findings suggest a link between the androgen pathway and AD through Aβ/tau independent pathways. These effects may be most pronounced during conversion from MCI to dementia.
Collapse
Affiliation(s)
- Jessie S Carr
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Luke W Bonham
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, United States.,School of Medicine, Johns Hopkins University, Baltimore, MD, United States
| | - Alicia K Morgans
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, United States
| | - Charles J Ryan
- Helen Diller Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, United States
| | - Jennifer S Yokoyama
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | - Ethan G Geier
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, United States
| | | |
Collapse
|
8
|
Ronquillo JG, Baer MR, Lester WT. Sex-specific patterns and differences in dementia and Alzheimer's disease using informatics approaches. J Women Aging 2016; 28:403-11. [PMID: 27105335 PMCID: PMC5110121 DOI: 10.1080/08952841.2015.1018038] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The National Institutes of Health Office of Research on Women's Health recently highlighted the critical need for explicitly addressing sex differences in biomedical research, including Alzheimer's disease and dementia. The purpose of our study was to perform a sex-stratified analysis of cognitive impairment using diverse medical, clinical, and genetic factors of unprecedented scale and scope by applying informatics approaches to three large Alzheimer's databases. Analyses suggested females were 1.5 times more likely than males to have a documented diagnosis of probable Alzheimer's disease, and several other factors fell along sex-specific lines and were possibly associated with severity of cognitive impairment.
Collapse
Affiliation(s)
| | | | - William T. Lester
- Laboratory of Computer Science, Massachusetts General Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
9
|
Alvarez-Miranda EA, Sinnl M, Farhan H. Alteration of Golgi Structure by Stress: A Link to Neurodegeneration? Front Neurosci 2015; 9:435. [PMID: 26617486 PMCID: PMC4641911 DOI: 10.3389/fnins.2015.00435] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 10/29/2015] [Indexed: 12/14/2022] Open
Abstract
The Golgi apparatus is well-known for its role as a sorting station in the secretory pathway as well as for its role in regulating post-translational protein modification. Another role for the Golgi is the regulation of cellular signaling by spatially regulating kinases, phosphatases, and GTPases. All these roles make it clear that the Golgi is a central regulator of cellular homeostasis. The response to stress and the initiation of adaptive responses to cope with it are fundamental abilities of all living cells. It was shown previously that the Golgi undergoes structural rearrangements under various stress conditions such as oxidative or osmotic stress. Neurodegenerative diseases are also frequently associated with alterations of Golgi morphology and many stress factors have been described to play an etiopathological role in neurodegeneration. It is however unclear whether the stress-Golgi connection plays a role in neurodegenerative diseases. Using a combination of bioinformatics modeling and literature mining, we will investigate evidence for such a tripartite link and we ask whether stress-induced Golgi arrangements are cause or consequence in neurodegeneration.
Collapse
Affiliation(s)
| | - Markus Sinnl
- Department of Statistics and Operations Research, University of Vienna Vienna, Austria
| | - Hesso Farhan
- Biotechnology Institute Thurgau Kreuzlingen, Switzerland ; Department of Biology, University of Konstanz Konstanz, Germany
| |
Collapse
|
10
|
Lin KA, Choudhury KR, Rathakrishnan BG, Marks DM, Petrella JR, Doraiswamy PM. Marked gender differences in progression of mild cognitive impairment over 8 years. ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS 2015; 1:103-110. [PMID: 26451386 PMCID: PMC4593067 DOI: 10.1016/j.trci.2015.07.001] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction This study examined whether, among subjects with mild cognitive impairment (MCI), women progressed at faster rates than men. Methods We examine longitudinal rates of change from baseline in 398 MCI subjects (141 females and 257 males) in the Alzheimer's Disease Neuroimaging Initiative-1, followed for up to 8 years (mean, 4.1 ± 2.5 years) using mixed-effects models incorporating all follow-ups (mean, 8 ± 4 visits). Results Women progressed at faster rates than men on the Alzheimer's disease assessment scale-cognitive subscale (ADAS-Cog; P = .001) and clinical dementia rating-sum of boxes (CDR-SB; P = .003). Quadratic fit for change over time was significant for both ADAS-Cog (P = .001) and CDR-SB (P = .004), and the additional acceleration in women was 100% for ADAS-Cog and 143% for CDR-SB. The variability of change was greater in women. The gender effect was greater in apolipoprotein E (APOE) ε4 carriers. Discussion Women with MCI have greater longitudinal rates of cognitive and functional progression than men. Studies to confirm and uncover potential mechanisms appear to be warranted. Trial Registration ADNI ClinicalTrials.gov identifier: NCT00106899.
Collapse
Affiliation(s)
- Katherine A Lin
- Department of Psychiatry, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710 ; Duke Institute for Brain Sciences, Duke University, Box 91003, Levine Science Research Center, Room B107, 450 Research Drive, Durham, North Carolina 27708
| | - Kingshuk Roy Choudhury
- Department of Radiology, Duke University Medical Center, Box 3808, 2301 Erwin Road, Durham, NC 27710
| | | | - David M Marks
- Department of Psychiatry, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710
| | - Jeffrey R Petrella
- Department of Radiology, Duke University Medical Center, Box 3808, 2301 Erwin Road, Durham, NC 27710
| | - P Murali Doraiswamy
- Department of Psychiatry, Duke University Medical Center, 2301 Erwin Road, Durham, NC 27710 ; Duke Institute for Brain Sciences, Duke University, Box 91003, Levine Science Research Center, Room B107, 450 Research Drive, Durham, North Carolina 27708
| | | |
Collapse
|
11
|
Vuckovic D, Dawson S, Scheffer DI, Rantanen T, Morgan A, Di Stazio M, Vozzi D, Nutile T, Concas MP, Biino G, Nolan L, Bahl A, Loukola A, Viljanen A, Davis A, Ciullo M, Corey DP, Pirastu M, Gasparini P, Girotto G. Genome-wide association analysis on normal hearing function identifies PCDH20 and SLC28A3 as candidates for hearing function and loss. Hum Mol Genet 2015; 24:5655-64. [PMID: 26188009 PMCID: PMC4572074 DOI: 10.1093/hmg/ddv279] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 07/10/2015] [Indexed: 12/16/2022] Open
Abstract
Hearing loss and individual differences in normal hearing both have a substantial genetic basis. Although many new genes contributing to deafness have been identified, very little is known about genes/variants modulating the normal range of hearing ability. To fill this gap, we performed a two-stage meta-analysis on hearing thresholds (tested at 0.25, 0.5, 1, 2, 4, 8 kHz) and on pure-tone averages (low-, medium- and high-frequency thresholds grouped) in several isolated populations from Italy and Central Asia (total N = 2636). Here, we detected two genome-wide significant loci close to PCDH20 and SLC28A3 (top hits: rs78043697, P = 4.71E−10 and rs7032430, P = 2.39E−09, respectively). For both loci, we sought replication in two independent cohorts: B58C from the UK (N = 5892) and FITSA from Finland (N = 270). Both loci were successfully replicated at a nominal level of significance (P < 0.05). In order to confirm our quantitative findings, we carried out RT-PCR and reported RNA-Seq data, which showed that both genes are expressed in mouse inner ear, especially in hair cells, further suggesting them as good candidates for modulatory genes in the auditory system. Sequencing data revealed no functional variants in the coding region of PCDH20 or SLC28A3, suggesting that variation in regulatory sequences may affect expression. Overall, these results contribute to a better understanding of the complex mechanisms underlying human hearing function.
Collapse
Affiliation(s)
- Dragana Vuckovic
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Sally Dawson
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Deborah I Scheffer
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Taina Rantanen
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Anna Morgan
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Mariateresa Di Stazio
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy
| | - Diego Vozzi
- Institute for Maternal and Child Health IRCCS 'Burlo Garofolo', Trieste 34100, Italy
| | - Teresa Nutile
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - Maria P Concas
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Ginevra Biino
- Institute of Molecular Genetics, National Research Council of Italy, Pavia 27100, Italy
| | - Lisa Nolan
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Aileen Bahl
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland and
| | - Anu Loukola
- Department of Public Health, Hjelt Institute, University of Helsinki, Helsinki FI-00014, Finland and
| | - Anne Viljanen
- Gerontology Research Center and Department of Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Adrian Davis
- UCL Ear Institute, University College London, London WC1X 8EE, UK
| | - Marina Ciullo
- Institute of Genetics and Biophysics 'A. Buzzati-Traverso', CNR, Naples 80131, Italy
| | - David P Corey
- Howard Hughes Medical Institute and Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Mario Pirastu
- Institute of Population Genetics, National Research Council of Italy, Sassari 07100, Italy
| | - Paolo Gasparini
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy, Institute for Maternal and Child Health IRCCS 'Burlo Garofolo', Trieste 34100, Italy, Experimental Genetics Division, Sidra, Doha, Qatar
| | - Giorgia Girotto
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34100, Italy,
| |
Collapse
|
12
|
Lin KA, Doraiswamy PM. When Mars Versus Venus is Not a Cliché: Gender Differences in the Neurobiology of Alzheimer's Disease. Front Neurol 2015; 5:288. [PMID: 25628598 PMCID: PMC4290582 DOI: 10.3389/fneur.2014.00288] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 12/18/2014] [Indexed: 11/13/2022] Open
Affiliation(s)
- Katherine Amy Lin
- Division of Translational Neuroscience, Department of Psychiatry, Duke University Medical Center , Durham, NC , USA ; Duke Institute for Brain Sciences , Durham, NC , USA
| | - P Murali Doraiswamy
- Division of Translational Neuroscience, Department of Psychiatry, Duke University Medical Center , Durham, NC , USA ; Duke Institute for Brain Sciences , Durham, NC , USA
| |
Collapse
|
13
|
Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 2014; 35:8-30. [PMID: 23994581 PMCID: PMC4024050 DOI: 10.1016/j.yfrne.2013.08.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.
Collapse
Affiliation(s)
- Jamaica R Rettberg
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | - Roberta Diaz Brinton
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|