1
|
Rahmani S, Nadri S, Eskandari M, Mostafavi H. Encapsulation of trabecular meshwork mesenchymal stem cell using microfluidic system for differentiation into neuron-like cells. Int J Artif Organs 2025:3913988251333280. [PMID: 40296219 DOI: 10.1177/03913988251333280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
OBJECTIVE Neurodegenerative diseases are a class of nervous system disorders characterized by progressive neuronal degeneration and loss of function. Among emerging therapeutic approaches, microfluidic-enabled stem cell encapsulation and transplantation has gained recognition as a promising strategy for mitigating neuronal damage. In this work, human mesenchymal stem cells (MSCs), isolated from trabecular meshwork (TM) tissue, were successfully encapsulated and differentiated into neural-like cells via a microfluidic platform to demonstrate their potential for neural repair applications. MATERIALS AND METHODS The isolated mesenchymal stem cells were cultured on a microfluidic system (fabricated by soft lithography methods) and treated with medium containing DMEM supplemented with RA, IBMX, and forskolin for 7 days. Quantitative PCR (qPCR) were used to analyze differentiated TM-MSC and their expression of neural-like specific markers such as Nestin and b-tubulin 3. RESULTS qPCR analysis revealed the presence of genes characteristic of neural cells (Nestin and β-tubulin 3) in cells differentiated both within a microfluidic system and on traditional tissue culture plates (TCPS). qPCR result showed that cells on 1.5% alginate showed higher expression of β-tubulin 3 compared to those on 1% alginate, 2% alginate, and TCPS (p < 0.0001). In contrast, Nestin expression showed no statistically significant differences across all pairwise comparisons (p > 0.05 for all groups). CONCLUSION The findings indicate that mesenchymal stem cells derived from the trabecular meshwork (TM-MSCs) may serve as promising candidates for cell-based therapeutic strategies. Furthermore, the microfluidic platform implemented in this study exhibits potential utility as a delivery vehicle for TM-MSCs in therapeutic interventions targeting neurological disorders.
Collapse
Affiliation(s)
- Sina Rahmani
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Samad Nadri
- Zanjan Pharmaceutical Nanotechnology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
- Zanjan Metabolic Diseases Research Center, Health and Metabolic Diseases Research Institute, Zanjan University of Medical Sciences, Zanjan, Iran
- Department of Medical Nanotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehdi Eskandari
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Hossein Mostafavi
- Department of Physiology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
2
|
Yang Y, Hu L, Chen Y, Gu W, Lin G, Xie Y, Nie S. Identification of Parkinson's disease using MRI and genetic data from the PPMI cohort: an improved machine learning fusion approach. Front Aging Neurosci 2025; 17:1510192. [PMID: 39968123 PMCID: PMC11832485 DOI: 10.3389/fnagi.2025.1510192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 01/20/2025] [Indexed: 02/20/2025] Open
Abstract
Objective This study aim to leverage advanced machine learning techniques to develop and validate novel MRI imaging features and single nucleotide polymorphism (SNP) gene data fusion methodologies to enhance the early identification and diagnosis of Parkinson's disease (PD). Methods We leveraged a comprehensive dataset from the Parkinson's Progression Markers Initiative (PPMI), which includes high-resolution neuroimaging data, genetic single-nucleotide polymorphism (SNP) profiles, and detailed clinical information from individuals with early-stage PD and healthy controls. Two multi-modal fusion strategies were used: feature-level fusion, where we employed a hybrid feature selection algorithm combining Fisher discriminant analysis, an ensemble Lasso (EnLasso) method, and partial least squares (PLS) regression to identify and integrate the most informative features from neuroimaging and genetic data; and decision-level fusion, where we developed an adaptive ensemble stacking (AE_Stacking) model to synergistically integrate the predictions from multiple base classifiers trained on individual modalities. Results The AE_Stacking model achieving the highest average balanced accuracy of 95.36% and an area under the receiver operating characteristic curve (AUC) of 0.974, significantly outperforming feature-level fusion and single-modal models (p < 0.05). Furthermore, by analyzing the features selected across multiple iterations of our models, we identified stable brain region features [lh 6r (FD) and rh 46 (GI)] and key genetic markers (rs356181 and rs2736990 SNPs within the SNCA gene region; rs213202 SNP within the VPS52 gene region), highlighting their potential as reliable early diagnostic indicators for the disease. Conclusion The AE_Stacking model, trained on MRI and genetic data, demonstrates potential in distinguishing individuals with PD. Our findings enhance understanding of the disease and advance us toward the goal of precision medicine for neurodegenerative disorder.
Collapse
Affiliation(s)
- Yifeng Yang
- Department of Medical Imaging, Huadong Hospital, Fudan University, Shanghai, China
| | - Liangyun Hu
- Center for Functional Neurosurgery, RuiJin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Chen
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Weidong Gu
- Department of Anesthesiology, Huadong Hospital, Fudan University, Shanghai, China
| | - Guangwu Lin
- Department of Medical Imaging, Huadong Hospital, Fudan University, Shanghai, China
| | - YuanZhong Xie
- Medical Imaging Center, Taian Central Hospital, Shandong, China
| | - Shengdong Nie
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Rubino E, Italia M, Giorgio E, Boschi S, Dimartino P, Pippucci T, Roveta F, Cambria CM, Elia G, Marcinnò A, Gallone S, Rogaeva E, Antonucci F, Brusco A, Gardoni F, Rainero I. Exome sequencing reveals a rare damaging variant in GRIN2C in familial late-onset Alzheimer's disease. Alzheimers Res Ther 2025; 17:21. [PMID: 39810256 PMCID: PMC11730494 DOI: 10.1186/s13195-024-01661-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND Alzheimer's disease (AD) is a progressive neurodegenerative disorder with both genetic and environmental factors contributing to its pathogenesis. While early-onset AD has well-established genetic determinants, the genetic basis for late-onset AD remains less clear. This study investigates a large Italian family with late-onset autosomal dominant AD, identifying a novel rare missense variant in GRIN2C gene associated with the disease, and evaluates the functional impact of this variant. METHODS Affected and unaffected members from a Northern Italian family were included. Genomic DNA from family members was extracted and initially screened for pathogenic mutations in APP, PSEN1, and PSEN2, and screened for 77 genes associated with neurodegenerative conditions using NeuroX array assay. Exome sequencing was performed on three affected individuals and two healthy relatives. Bioinformatics analyses were conducted. Functional analysis was performed using primary neuronal cultures, and the impact of the variant was assessed through immunocytochemistry and electrophysiology. RESULTS Pathogenic variants were not identified in APP, PSEN1, or PSEN2, nor in the 77 genes in NeuroX array assay. Exome Sequencing revealed the c.3215C > T p.(A1072V) variant in GRIN2C gene (NM 000835.6), encoding for the glutamate ionotropic receptor N-methyl-D-aspartate receptor (NMDA) type subunit 2C (GluN2C). This variant segregated in 6 available AD patients in the family and was absent in 9 healthy relatives. Primary rat hippocampal neurons overexpressing GluN2CA1072V showed an increase in NMDAR-induced currents, suggesting altered glutamatergic transmission. Surface expression assays demonstrated an elevated surface/total ratio of the mutant GluN2C, correlating with the increased NMDAR current. Additionally, immunocytochemistry revealed in neurons expressing the mutant variant a reduced colocalization between the GluN2C subunit and 14-3-3 proteins, which are known to facilitate membrane trafficking of NMDARs. DISCUSSION We identified a rare missense variant in GRIN2C associated with late-onset autosomal dominant Alzheimer's disease. These findings highlight the role of GluN2C-containing NMDARs in glutamatergic signaling and their potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Elisa Rubino
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy.
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy.
| | - Maria Italia
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Elisa Giorgio
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
- Neurogenetics Research Center, IRCCS Mondino Foundation, Pavia, 27100, Italy
| | - Silvia Boschi
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Paola Dimartino
- Department of Molecular Medicine, University of Pavia, Via Forlanini 6, Pavia, 27100, Italy
| | - Tommaso Pippucci
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria, Via Albertoni 15, Bologna, 40138, Italy
| | - Fausto Roveta
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Clara Maria Cambria
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
| | - Gabriella Elia
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Andrea Marcinnò
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
| | - Salvatore Gallone
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, King's College Circle 1, Toronto, ON, M5S1A8, Canada
| | - Flavia Antonucci
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), University of Milan, Via Festa del Perdono 7, Milan, 20122, Italy
- Institute of Neuroscience, IN-CNR, Via Raoul Follereau 3, Vedano al Lambro, 20854, Italy
| | - Alfredo Brusco
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Medical Genetics Unit, Città della Salute e della Scienza di Torino, University Hospital, Via Santena 19, Turin, 10126, Italy
- Molecular Biotechnology Center Guido Tarone, University of Turin, Piazza Nizza 44B, Turin, 10126, Italy
| | - Fabrizio Gardoni
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Balzaretti 9, Milan, 20133, Italy
| | - Innocenzo Rainero
- Department of Neuroscience "Rita Levi Montalcini", University of Turin, Via Cherasco 15, Turin, 10126, Italy
- Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, AOU Città della Salute e della Scienza di Torino, University Hospital, Via Cherasco 15, Turin, 10126, Italy
| |
Collapse
|
4
|
Villa M, Wu J, Hansen S, Pahnke J. Emerging Role of ABC Transporters in Glia Cells in Health and Diseases of the Central Nervous System. Cells 2024; 13:740. [PMID: 38727275 PMCID: PMC11083179 DOI: 10.3390/cells13090740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/15/2024] [Accepted: 04/20/2024] [Indexed: 05/13/2024] Open
Abstract
ATP-binding cassette (ABC) transporters play a crucial role for the efflux of a wide range of substrates across different cellular membranes. In the central nervous system (CNS), ABC transporters have recently gathered significant attention due to their pivotal involvement in brain physiology and neurodegenerative disorders, such as Alzheimer's disease (AD). Glial cells are fundamental for normal CNS function and engage with several ABC transporters in different ways. Here, we specifically highlight ABC transporters involved in the maintenance of brain homeostasis and their implications in its metabolic regulation. We also show new aspects related to ABC transporter function found in less recognized diseases, such as Huntington's disease (HD) and experimental autoimmune encephalomyelitis (EAE), as a model for multiple sclerosis (MS). Understanding both their impact on the physiological regulation of the CNS and their roles in brain diseases holds promise for uncovering new therapeutic options. Further investigations and preclinical studies are warranted to elucidate the complex interplay between glial ABC transporters and physiological brain functions, potentially leading to effective therapeutic interventions also for rare CNS disorders.
Collapse
Affiliation(s)
- Maria Villa
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jingyun Wu
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Stefanie Hansen
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
| | - Jens Pahnke
- Translational Neurodegeneration Research and Neuropathology Lab, Department of Clinical Medicine (KlinMed), Medical Faculty, University of Oslo (UiO) and Section of Neuropathology Research, Department of Pathology (PAT), Clinics for Laboratory Medicine (KLM), Oslo University Hospital (OUS), Sognsvannsveien 20, NO-0372 Oslo, Norway
- Institute of Nutritional Medicine (INUM)/Lübeck Institute of Dermatology (LIED), University of Lübeck (UzL) and University Medical Center Schleswig-Holstein (UKSH), Ratzeburger Allee 160, D-23538 Lübeck, Germany
- Department of Pharmacology, Faculty of Medicine, University of Latvia (LU), Jelgavas iela 3, LV-1004 Rīga, Latvia
- School of Neurobiology, Biochemistry and Biophysics, The Georg S. Wise Faculty of Life Sciences, Tel Aviv University (TAU), Tel Aviv IL-6997801, Israel
| |
Collapse
|
5
|
Pitz V, Makarious MB, Bandres-Ciga S, Iwaki H, Singleton AB, Nalls M, Heilbron K, Blauwendraat C. Analysis of rare Parkinson's disease variants in millions of people. NPJ Parkinsons Dis 2024; 10:11. [PMID: 38191580 PMCID: PMC10774311 DOI: 10.1038/s41531-023-00608-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/24/2023] [Indexed: 01/10/2024] Open
Abstract
Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. We assessed a total of 27,590 PD cases, 6701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. The meta-analysis resulted in five significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. Another eight variants are strong candidate variants for their association with PD. Here, we provide the largest rare variant meta-analysis to date, providing information on confirmed and newly identified variants for their association with PD using several large databases. Additionally we also show the complexities of studying rare variants in large-scale cohorts.
Collapse
Affiliation(s)
- Vanessa Pitz
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- UCL Movement Disorders Centre, University College London, London, UK
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Hirotaka Iwaki
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Mike Nalls
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | | | - Cornelis Blauwendraat
- Integrative Neurogenomics Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
6
|
Salemi M, Lanza G, Salluzzo MG, Schillaci FA, Di Blasi FD, Cordella A, Caniglia S, Lanuzza B, Morreale M, Marano P, Tripodi M, Ferri R. A Next-Generation Sequencing Study in a Cohort of Sicilian Patients with Parkinson's Disease. Biomedicines 2023; 11:3118. [PMID: 38137339 PMCID: PMC10740523 DOI: 10.3390/biomedicines11123118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/24/2023] Open
Abstract
Parkinson's disease (PD) is a multisystem and multifactorial disorder and, therefore, the application of modern genetic techniques may assist in unraveling its complex pathophysiology. We conducted a clinical-demographic evaluation of 126 patients with PD, all of whom were Caucasian and of Sicilian ancestry. DNA was extracted from the peripheral blood for each patient, followed by sequencing using a Next-Generation Sequencing system. This system was based on a custom gene panel comprising 162 genes. The sample underwent further filtering, taking into account the allele frequencies of genetic variants, their presence in the Human Gene Mutation Database, and their association in the literature with PD or other movement/neurodegenerative disorders. The largest number of variants was identified in the leucine-rich repeat kinase 2 (LRRK2) gene. However, variants in other genes, such as acid beta-glucosidase (GBA), DNA polymerase gamma catalytic subunit (POLG), and parkin RBR E3 ubiquitin protein ligase (PRKN), were also discovered. Interestingly, some of these variants had not been previously associated with PD. Enhancing our understanding of the genetic basis of PD and identifying new variants possibly linked to the disease will contribute to improved diagnostic accuracy, therapeutic developments, and prognostic insights for affected individuals.
Collapse
Affiliation(s)
- Michele Salemi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Giuseppe Lanza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
- Department of Surgery and Medical-Surgical Specialties, University of Catania, 95123 Catania, CT, Italy
| | - Maria Grazia Salluzzo
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesca A. Schillaci
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Francesco Domenico Di Blasi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Angela Cordella
- Genomix4Life Srl, 84081 Baronissi, SA, Italy;
- Genome Research Center for Health—CRGS, 84081 Baronissi, SA, Italy
| | - Salvatore Caniglia
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Bartolo Lanuzza
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Manuela Morreale
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Pietro Marano
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Mariangela Tripodi
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| | - Raffaele Ferri
- Oasi Research Institute—IRCCS, 94018 Troina, EN, Italy; (M.S.); (M.G.S.); (F.A.S.); (F.D.D.B.); (S.C.); (B.L.); (M.M.); (P.M.); (M.T.); (R.F.)
| |
Collapse
|
7
|
Li M, Shi Y, Zhao J, Wang Q, Li M, Zhao X. Identification of potential susceptibility genes in patients with primary Sjögren's syndrome-associated pulmonary arterial hypertension through whole exome sequencing. Arthritis Res Ther 2023; 25:175. [PMID: 37730603 PMCID: PMC10510152 DOI: 10.1186/s13075-023-03171-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/13/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUND Pulmonary arterial hypertension (PAH) is a rare complication of primary Sjögren's syndrome (pSS). Several genes have proven to be associated with pSS and PAH. However, there is no study specifically addressing the genetic susceptibility in pSS combined with PAH. METHODS Thirty-four unrelated patients with pSS-PAH were recruited from April 2019 to July 2021 at Peking Union Medical College Hospital. Demographic and clinical data were recorded in detail, and peripheral blood samples were collected for whole-exome sequencing (WES). Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to predict the functional effect of mutant genes. Genetic variants identified by WES were confirmed by polymerase chain reaction (PCR)-Sanger sequencing. RESULTS We totally identified 141 pathogenic variant loci of 129 genes in these 34 pSS-PAH patients, using WES analysis. Patients with a family history of rheumatic diseases are more likely to carry FLG mutations or carry gene variations related to the biosynthesis of the amino acids pathway (p < 0.05). According to Sanger sequencing confirmation and pathogenicity validation, we totally identified five candidate pathogenic variants including FLG c.12064A > T, BCR c.3275_3278dupCCGG, GIGYF2 c.3463C > A, ITK c.1741C > T, and SLC26A4 c.919-2A > G. CONCLUSION Our findings provide preliminary data of exome sequencing to identify susceptibility loci for pSS-PAH and enriched our understanding of the genetic etiology for pSS-PAH. The candidate pathogenic genes may be the potential genetic markers for early warning of this disease.
Collapse
Affiliation(s)
- Mucong Li
- Department of Medical Genetics, Institute of Basic Medical Sciences & Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Chinese SLE Treatment and Research Group (CSTAR), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yue Shi
- Department of Medical Genetics, Institute of Basic Medical Sciences & Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Chinese SLE Treatment and Research Group (CSTAR), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jiuliang Zhao
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Chinese SLE Treatment and Research Group (CSTAR), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Qian Wang
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Chinese SLE Treatment and Research Group (CSTAR), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Mengtao Li
- Department of Rheumatology, Peking Union Medical College Hospital (PUMCH), Peking Union Medical College and Chinese Academy of Medical Sciences, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Chinese Rheumatism Data Center (CRDC), Chinese SLE Treatment and Research Group (CSTAR), State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China.
| | - Xiuli Zhao
- Department of Medical Genetics, Institute of Basic Medical Sciences & Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, China.
| |
Collapse
|
8
|
Zhaoxia W, Chenyu W, ZhuangZhuang Y, Liangliang F, Xue L, Tieyu T. Whole-exome sequencing detected a novel APP variant in a Han-Chinese family with Alzheimer's disease. Mol Biol Rep 2023; 50:5267-5271. [PMID: 37145212 DOI: 10.1007/s11033-023-08400-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/23/2023] [Indexed: 05/06/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is an incurable and debilitating neurodegenerative disease that results in the progressive degeneration and death of nerve cells. Mutations in the APP gene, which encodes an amyloid precursor protein, is the strongest genetic risk factor for sporadic AD. METHODS AND RESULTS We studied the APP gene (NM_000484.3: c.2045A > T; p.E682V) variants carried by members of a family suffering from AD using whole-exome sequencing and Sanger sequencing. CONCLUSION In this study, we identified a new variant of the APP gene (NM_000484.3: c.2045A > T; p.E682V) in members of a family with AD. This provides potential targets for subsequent studies and information that can be used in genetic counselling.
Collapse
Affiliation(s)
- Wang Zhaoxia
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China
| | - Wang Chenyu
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Yuan ZhuangZhuang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Fan Liangliang
- Department of Cell Biology, The School of Life Sciences, Central South University, Changsha, 410013, China
| | - Lin Xue
- Department of Neurology, Yangzhou Oriental Hospital, Yangzhou, 225001, Jiangsu, China.
| | - Tang Tieyu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| |
Collapse
|
9
|
Pitz V, Makarious M, Bandrés-Ciga S, Iwaki H, Singleton A, Nalls M, Heilbron K, Blauwendraat C. Analysis of rare Parkinson's disease variants in millions of people. RESEARCH SQUARE 2023:rs.3.rs-2743857. [PMID: 37090536 PMCID: PMC10120789 DOI: 10.21203/rs.3.rs-2743857/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Objective Although many rare variants have been reportedly associated with Parkinson's disease (PD), many have not been replicated or have failed to replicate. Here, we conduct a large-scale replication of rare PD variants. Methods We assessed a total of 27,590 PD cases, 6,701 PD proxies, and 3,106,080 controls from three data sets: 23andMe, Inc., UK Biobank, and AMP-PD. Based on well-known PD genes, 834 variants of interest were selected from the ClinVar annotated 23andMe dataset. We performed a meta-analysis using summary statistics of all three studies. Results The meta-analysis resulted in 11 significant variants after Bonferroni correction, including variants in GBA1 and LRRK2. At least 9 previously reported pathogenic or risk variants for PD did not pass Bonferroni correction in this analysis. Conclusions Here, we provide the largest rare variant meta-analysis to date, providing thorough information of variants confirmed, newly identified, or rebutted for their association with PD.
Collapse
|
10
|
Alvarez Jerez P, Alcantud JL, de Los Reyes-Ramírez L, Moore A, Ruz C, Vives Montero F, Rodriguez-Losada N, Saini P, Gan-Or Z, Alvarado CX, Makarious MB, Billingsley KJ, Blauwendraat C, Noyce AJ, Singleton AB, Duran R, Bandres-Ciga S. Exploring the genetic and genomic connection underlying neurodegeneration with brain iron accumulation and the risk for Parkinson's disease. NPJ Parkinsons Dis 2023; 9:54. [PMID: 37024536 PMCID: PMC10079978 DOI: 10.1038/s41531-023-00496-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/16/2023] [Indexed: 04/08/2023] Open
Abstract
Neurodegeneration with brain iron accumulation (NBIA) represents a group of neurodegenerative disorders characterized by abnormal iron accumulation in the brain. In Parkinson's Disease (PD), iron accumulation is a cardinal feature of degenerating regions in the brain and seems to be a key player in mechanisms that precipitate cell death. The aim of this study was to explore the genetic and genomic connection between NBIA and PD. We screened for known and rare pathogenic mutations in autosomal dominant and recessive genes linked to NBIA in a total of 4481 PD cases and 10,253 controls from the Accelerating Medicines Partnership Parkinsons' Disease Program and the UKBiobank. We examined whether a genetic burden of NBIA variants contributes to PD risk through single-gene, gene-set, and single-variant association analyses. In addition, we assessed publicly available expression quantitative trait loci (eQTL) data through Summary-based Mendelian Randomization and conducted transcriptomic analyses in blood of 1886 PD cases and 1285 controls. Out of 29 previously reported NBIA screened coding variants, four were associated with PD risk at a nominal p value < 0.05. No enrichment of heterozygous variants in NBIA-related genes risk was identified in PD cases versus controls. Burden analyses did not reveal a cumulative effect of rare NBIA genetic variation on PD risk. Transcriptomic analyses suggested that DCAF17 is differentially expressed in blood from PD cases and controls. Due to low mutation occurrence in the datasets and lack of replication, our analyses suggest that NBIA and PD may be separate molecular entities.
Collapse
Affiliation(s)
- Pilar Alvarez Jerez
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jose Luis Alcantud
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Lucia de Los Reyes-Ramírez
- Laboratory of Neuropharmacology. Dept. Medicine and Life Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Anni Moore
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Clara Ruz
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Francisco Vives Montero
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Noela Rodriguez-Losada
- Department Human Physiology, Faculty of Medicine, Biomedicine Research Institute of Malaga (IBIMA C07), University of Malaga, Malaga, Spain
| | - Prabhjyot Saini
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
| | - Ziv Gan-Or
- Montreal Neurological Institute, McGill University, Montréal, QC, Canada
- Department of Human Genetics, McGill University, Montréal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montréal, QC, Canada
| | - Chelsea X Alvarado
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
- Data Tecnica International, Washington, DC, USA
| | - Mary B Makarious
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Kimberley J Billingsley
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Cornelis Blauwendraat
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alastair J Noyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Preventive Neurology Unit, Centre for Prevention, Detection and Diagnosis, Wolfson Institute of Population Health, Queen Mary University of London, London, UK
| | - Andrew B Singleton
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Raquel Duran
- Institute of Neurosciences "Federico Olóriz", Centro de Investigación Biomédica, Universidad de Granada, Granada, Spain
| | - Sara Bandres-Ciga
- Molecular Genetics Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA.
- Center for Alzheimer's and Related Dementias (CARD), National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
11
|
Kablan A, Silan F, Ozdemir O. Re-evaluation of Genetic Variants in Parkinson's Disease Using Targeted Panel and Next-Generation Sequencing. Twin Res Hum Genet 2023; 26:164-170. [PMID: 37139776 DOI: 10.1017/thg.2023.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Parkinson's disease (PD) is a complex disorder with a significant genetic component. Genetic variations associated with PD play a crucial role in the disease's inheritance and prognosis. Currently, 31 genes have been linked to PD in the OMIM database, and the number of genes and genetic variations identified is steadily increasing. To establish a robust correlation between phenotype and genotype, it is essential to compare research findings with existing literature. In this study, we aimed to identify genetic variants associated with PD using a targeted gene panel with next-generation sequencing (NGS) technology. Our objective was also to explore the idea of re-analyzing genetic variants of unknown significance (VUS). We screened 18 genes known to be related to PD using NGS in 43 patients who visited our outpatient clinic between 2018-2019. After 12-24 months, we re-evaluated the detected variants. We found 14 different heterozygous variants classified as pathogenic, likely pathogenic, or VUS in 14 individuals from nonconsanguineous families. We re-evaluated 15 variants and found changes in their interpretation. Targeted gene panel analysis with NGS can help identify genetic variants associated with PD with confidence. Re-analyzing certain variants at specific time intervals can be especially beneficial in selected situations. Our study aims to expand the clinical and genetic understanding of PD and emphasizes the importance of re-analysis.
Collapse
Affiliation(s)
- Ahmet Kablan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
- Department of Medical Genetics, Sanliurfa Training and Research Hospital, Sanliurfa, Turkey
| | - Fatma Silan
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Ozturk Ozdemir
- Department of Medical Genetics, Faculty of Medicine, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
12
|
Milić J. Aging and Neuropsychiatric Disease: A General Overview of Prevalence and Trends. Physiology (Bethesda) 2022. [DOI: 10.5772/intechopen.103102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The increasing trend of life-expectancy is becoming a significant demographic, societal and economic challenge. Currently, global number of people above sixty years of age is 900 million, while United Nations expect this number to rise to over 1.4 billion in 2030 and over 2.5 billion by 2050. Concordant to this trend, numerous physiological changes are associated with aging and brain-related ones are associated with neuropsychiatric diseases. The main goal of this chapter is to identify the most important neuropsychiatric diseases to assess in older patients to help to promote health and prevent diseases and complications associated with chronic illness, as these changes are progressive and require important psychological and setting-related social adjustments. Findings identify several health-aspects highly present in elderly: stroke, white matter lesions, dementia rise with age, changes in levels of neurotransmitters and hormones, depression as well as the bereavement following loss of the loved one, and the most common neurodegenerative disease—Alzheimer’s disease and Parkinson’s. In conclusion, studying the aging process should include all developmental, circumstantial, and individual aspects of aging. This offers opportunities to improve the health of elderly by using a wide range of skills and knowledge. Thus, further studies are necessary to elucidate what can be done do to improve the aging process and health of elderly in the future.
Collapse
|
13
|
Bally JF, Zhang M, Dwosh E, Sato C, Rutka J, Lang AE, Rogaeva E. Genomic study of a large family with complex neurological phenotype including hearing loss, imbalance and action tremor. Neurobiol Aging 2021; 113:137-142. [DOI: 10.1016/j.neurobiolaging.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/15/2021] [Accepted: 12/17/2021] [Indexed: 11/30/2022]
|
14
|
Gentile G, Perrone B, Morello G, Simone IL, Andò S, Cavallaro S, Conforti FL. Individual Oligogenic Background in p.D91A- SOD1 Amyotrophic Lateral Sclerosis Patients. Genes (Basel) 2021; 12:genes12121843. [PMID: 34946792 PMCID: PMC8701978 DOI: 10.3390/genes12121843] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/10/2021] [Accepted: 11/20/2021] [Indexed: 01/02/2023] Open
Abstract
The p.D91A is one of the most common ALS-causing SOD1 mutations and is known to be either recessive or dominant. The homozygous phenotype is characterized by prolonged survival and slow progression of disease, whereas the affected heterozygous phenotypes can vary. To date, no genetic protective factors located close to SOD1 have been associated with the mild progressive homozygous phenotype. Using Next Generation Sequencing (NGS), we characterized a small cohort of sporadic and familial p.D91A-SOD1 heterozygous (n = 2) or homozygous (n = 5) ALS patients, to reveal any additional contributing variant in 39 ALS-related genes. We detected unique sets of non-synonymous variants, four of which were of uncertain significance and several in untranslated regions of ALS-related genes. Our results supported an individual oligogenic background underlying both sporadic and familial p.D91A cases irrespective of their p.D91A mutant alleles. We suggest that a comprehensive genomic view of p.D91A-SOD1 ALS patients may be useful in identifying emerging variants and improving disease diagnosis as well as guiding precision medicine.
Collapse
Affiliation(s)
- Giulia Gentile
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Benedetta Perrone
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
| | - Giovanna Morello
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Isabella Laura Simone
- Neurology Unit, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari “Aldo Moro”, 70121 Bari, Italy;
| | - Sebastiano Andò
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
- Centro Sanitario, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, Department of Biomedical Sciences, National Research Council (CNR), 95126 Catania, Italy; (G.G.); (G.M.); (S.C.)
| | - Francesca Luisa Conforti
- Medical Genetics Laboratory, Department of Pharmacy and Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy; (B.P.); (S.A.)
- Correspondence:
| |
Collapse
|
15
|
Visanji NP, Ghani M, Yu E, Kakhki EG, Sato C, Moreno D, Naranian T, Poon YY, Abdollahi M, Naghibzadeh M, Rajalingam R, Lozano AM, Kalia SK, Hodaie M, Cohn M, Statucka M, Boutet A, Elias GJB, Germann J, Munhoz R, Lang AE, Gan-Or Z, Rogaeva E, Fasano A. Axial Impairment Following Deep Brain Stimulation in Parkinson's Disease: A Surgicogenomic Approach. JOURNAL OF PARKINSONS DISEASE 2021; 12:117-128. [PMID: 34602499 PMCID: PMC8842751 DOI: 10.3233/jpd-212730] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Background: Postoperative outcome following deep brain stimulation (DBS) of the subthalamic nucleus is variable, particularly with respect to axial motor improvement. We hypothesized a genetic underpinning to the response to surgical intervention, termed “surgicogenomics”. Objective: We aimed to identify genetic variants associated with clinical heterogeneity in DBS outcome of Parkinson’s disease (PD) patients that could then be applied clinically to target selection leading to improved surgical outcome. Methods: Retrospective clinical data was extracted from 150 patient’s charts. Each individual was genotyped using the genome-wide NeuroX array tailored to study neurologic diseases. Genetic data were clustered based on surgical outcome assessed by comparing pre- and post-operative scores of levodopa equivalent daily dose and axial impairment at one and five years post-surgery. Allele frequencies were compared between patients with excellent vs. moderate/poor outcomes grouped using a priori defined cut-offs. We analyzed common variants, burden of rare coding variants, and PD polygenic risk score. Results: NeuroX identified 2,917 polymorphic markers at 113 genes mapped to known PD loci. The gene-burden analyses of 202 rare nonsynonymous variants suggested a nominal association of axial impairment with 14 genes (most consistent with CRHR1, IP6K2, and PRSS3). The strongest association with surgical outcome was detected between a reduction in levodopa equivalent daily dose and common variations tagging two linkage disequilibrium blocks with SH3GL2. Conclusion: Once validated in independent populations, our findings may be implemented to improve patient selection for DBS in PD.
Collapse
Affiliation(s)
- Naomi P Visanji
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Eric Yu
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Erfan Ghani Kakhki
- DisorDATA Analytics, Ottawa, ON, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Danielle Moreno
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Taline Naranian
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Yu-Yan Poon
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Abdollahi
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Maryam Naghibzadeh
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada
| | - Rajasumi Rajalingam
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andres M Lozano
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Suneil K Kalia
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| | - Mojgan Hodaie
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada
| | - Melanie Cohn
- Krembil Brain Institute, Toronto, Ontario, Canada
| | | | - Alexandre Boutet
- Joint Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| | - Gavin J B Elias
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Jürgen Germann
- Department of Neurosurgery, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | - Renato Munhoz
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Ziv Gan-Or
- The Neuro (Montreal Neurological Institute-Hospital), McGill University, Montreal, Quebec, Canada.,The Department of Human Genetics, McGill University, Montreal, Quebec, Canada.,The Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada
| | - Alfonso Fasano
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, UHN, Toronto, Ontario, Canada.,Krembil Brain Institute, Toronto, Ontario, Canada.,Division of Neurology, University of Toronto, Toronto, Ontario, Canada.,CenteR for Advancing Neurotechnological Innovation to Application (CRANIA), Toronto, ON, Canada
| |
Collapse
|
16
|
Mönkäre S, Kuuluvainen L, Kun-Rodrigues C, Carmona S, Schleutker J, Bras J, Pöyhönen M, Guerreiro R, Myllykangas L. Whole-exome sequencing of Finnish patients with vascular cognitive impairment. Eur J Hum Genet 2021; 29:663-671. [PMID: 33268848 PMCID: PMC8115269 DOI: 10.1038/s41431-020-00775-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 09/03/2020] [Accepted: 10/23/2020] [Indexed: 11/08/2022] Open
Abstract
Cerebral small vessel disease (CSVD) is the most important cause of vascular cognitive impairment (VCI). Most CSVD cases are sporadic but familial monogenic forms of the disorder have also been described. Despite the variants identified, many CSVD cases remain unexplained genetically. We used whole-exome sequencing in an attempt to identify novel gene variants underlying CSVD. A cohort of 35 Finnish patients with suspected CSVD was analyzed. Patients were screened negative for the most common variants affecting function in NOTCH3 in Finland (p.Arg133Cys and p.Arg182Cys). Whole-exome sequencing was performed to search for a genetic cause of CSVD. Our study resulted in the detection of possibly pathogenic variants or variants of unknown significance in genes known to associate with CSVD in six patients, accounting for 17% of cases. Those genes included NOTCH3, HTRA1, COL4A1, and COL4A2. We also identified variants with predicted pathogenic effect in genes associated with other neurological or stroke-related conditions in seven patients, accounting for 20% of cases. This study supports pathogenic roles of variants in COL4A1, COL4A2, and HTRA1 in CSVD and VCI. Our results also suggest that vascular pathogenic mechanisms are linked to neurodegenerative conditions and provide novel insights into the molecular basis of VCI.
Collapse
Affiliation(s)
- Saana Mönkäre
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
| | - Liina Kuuluvainen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Celia Kun-Rodrigues
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Susana Carmona
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
| | - Johanna Schleutker
- Turku University Hospital, Laboratory Division, Genomics, Department of Medical Genetics, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jose Bras
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Minna Pöyhönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Clinical Genetics, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland
| | - Rita Guerreiro
- Center for Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI, USA
- Division of Psychiatry and Behavioral Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, USA
| | - Liisa Myllykangas
- Department of Pathology, University of Helsinki, Helsinki, Finland.
- HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland.
| |
Collapse
|
17
|
Li R, Wang X, He P. The most prevalent rare coding variants of TREM2 conferring risk of Alzheimer's disease: A systematic review and meta-analysis. Exp Ther Med 2021; 21:347. [PMID: 33732320 PMCID: PMC7903442 DOI: 10.3892/etm.2021.9778] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/29/2020] [Indexed: 12/25/2022] Open
Abstract
Rare variants in the coding sequence of triggering receptor expressed on myeloid cells 2 (TREM2) have been identified in Alzheimer's disease (AD). They have been reported to be causative or confer risk of AD in several populations. However, the results are not conclusive. Therefore, a meta-analysis was performed to investigate the association between rare variants of TREM2 and the susceptibility to AD. Case-control studies meeting the inclusion criteria were identified by searching the PubMed, Embase and Web of Science databases. The association between four commonly analyzed variants of TREM2, p.Arg47His (R47H), p.Arg62His (R62H), p.Asp87Asn (D87N) and p.His157Tyr (H157Y), and the risk of AD were evaluated by meta-analyses with the fixed-effects model. Finally, a total of 26 datasets comprising 28,007 cases and 45,121 controls were included. There was no or low between-study heterogeneity in all comparisons. A significantly increased risk of AD was observed in carriers of R47H compared with non-carriers [odds ratio (OR)=3.88, 95% CI: 3.17-4.76, P<0.001], R62H (OR=1.37, 95% CI: 1.11-1.70, P=0.004) and H157Y (OR=4.22, 95% CI: 1.93-9.21, P<0.001). However, R62H only conferred a mild risk compared to R47H and H157Y (OR=1.37 vs. 3.88 and 4.22, respectively). D87N was not associated with AD susceptibility. Sensitivity analysis indicated that the association identified for R62H was not significant (P=0.192) when excluding a large-sample study. Subgroup analysis according to ethnicity revealed significant associations (R47H and H157Y) in Caucasians but not in Asians. In conclusion, rare coding variants of TREM2 were associated with an elevated risk of AD, particularly in Caucasians.
Collapse
Affiliation(s)
- Rong Li
- Department of Health Management, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| | - Xia Wang
- Drug Clinical Trial Center, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| | - Pengfei He
- Department of Health Management, Yuncheng Central Hospital, Shanxi Medical University, Yuncheng, Shanxi 044000, P.R. China
| |
Collapse
|
18
|
Keith JL, Swinkin E, Gao A, Alminawi S, Zhang M, McGoldrick P, McKeever P, Robertson J, Rogaeva E, Zinman L. Neuropathologic description of CHCHD10 mutated amyotrophic lateral sclerosis. NEUROLOGY-GENETICS 2020; 6:e394. [PMID: 32042922 PMCID: PMC6975173 DOI: 10.1212/nxg.0000000000000394] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 11/22/2019] [Indexed: 11/15/2022]
Abstract
Objective To present the postmortem neuropathologic report of a patient with a CHCHD10 mutation exhibiting an amyotrophic lateral sclerosis (ALS) clinical phenotype. Methods A 54-year-old man without significant medical history or family history presented with arm weakness, slowly progressed over 19 years to meet the El Escorial criteria for clinically probable ALS with bulbar and respiratory involvement, and was found to have a CHCHD10 p.R15L mutation. Postmortem neuropathologic examination took place including immunohistochemical staining with CHCHD10, and double immunofluorescence combining CHCHD10 with TDP43 and neurofilament was performed and the results were compared with normal controls and sporadic ALS cases. Results Postmortem examination of the CHCHD10 mutation carrier showed severe loss of hypoglossal and anterior horn motor neurons, mild corticospinal tract degeneration, and a relative lack of TDP43 immunopathology. CHCHD10 immunohistochemistry for the 3 controls and the 5 sporadic ALS cases showed strong neuronal cytoplasmic and axonal labeling, with the CHCHD10 mutation carrier also having numerous CHCHD10 aggregates within their anterior horns. These aggregates may be related to the CHCHD10 aggregates recently described to cause mitochondrial degeneration and disease in a tissue-selective toxic gain-of-function fashion in a CHCHD10 knock-in mouse model. The CHCHD10 aggregates did not colocalize with TDP43 and were predominantly extracellular on double immunofluorescence labeling with neurofilament. Conclusions The neuropathology of CHCHD10 mutated ALS includes predominantly lower motor neuron degeneration, absent TDP43 immunopathology, and aggregates of predominantly extracellular CHCHD10, which do not contain TDP43.
Collapse
Affiliation(s)
- Julia L Keith
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Emily Swinkin
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Andrew Gao
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Samira Alminawi
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Ming Zhang
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Philip McGoldrick
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Paul McKeever
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Janice Robertson
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Ekaterina Rogaeva
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| | - Lorne Zinman
- Laboratory Medicine and Molecular Diagnostics (J.L.K., A.G., S.A.), Division of Anatomical Pathology, Sunnybrook Health Sciences Centre, University of Toronto; Department of Medicine (E.S., L.Z.), Division of Neurology, Sunnybrook Health Sciences Centre, University of Toronto, Ontario, Canada; School of Medicine and Institute for Advanced Study (M.Z.), Tongji University, Shanghai, China; and Tanz Centre for Research in Neurodegenerative Diseases (M.Z., P. McGoldrick, P. McKeever, J.R., E.R.), University of Toronto, Ontario, Canada
| |
Collapse
|
19
|
Yu ACS, Yim AKY, Chan AYY, Yuen LYP, Au WC, Cheng THT, Lin X, Li JW, Chan LWL, Mok VCT, Chan TF, Chan HYE. A Targeted Gene Panel That Covers Coding, Non-coding and Short Tandem Repeat Regions Improves the Diagnosis of Patients With Neurodegenerative Diseases. Front Neurosci 2019; 13:1324. [PMID: 31920494 PMCID: PMC6917647 DOI: 10.3389/fnins.2019.01324] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 11/26/2019] [Indexed: 12/20/2022] Open
Abstract
Genetic testing for neurodegenerative diseases (NDs) is highly challenging because of genetic heterogeneity and overlapping manifestations. Targeted-gene panels (TGPs), coupled with next-generation sequencing (NGS), can facilitate the profiling of a large repertoire of ND-related genes. Due to the technical limitations inherent in NGS and TGPs, short tandem repeat (STR) variations are often ignored. However, STR expansions are known to cause such NDs as Huntington’s disease and spinocerebellar ataxias type 3 (SCA3). Here, we studied the clinical utility of a custom-made TGP that targets 199 NDs and 311 ND-associated genes on 118 undiagnosed patients. At least one known or likely pathogenic variation was found in 54 patients; 27 patients demonstrated clinical profiles that matched the variants; and 16 patients whose original diagnosis were refined. A high concordance of variant calling were observed when comparing the results from TGP and whole-exome sequencing of four patients. Our in-house STR detection algorithm has reached a specificity of 0.88 and a sensitivity of 0.82 in our SCA3 cohort. This study also uncovered a trove of novel and recurrent variants that may enrich the repertoire of ND-related genetic markers. We propose that a combined comprehensive TGPs-bioinformatics pipeline can improve the clinical diagnosis of NDs.
Collapse
Affiliation(s)
- Allen Chi-Shing Yu
- Codex Genetics Limited, Shatin, Hong Kong.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Aldrin Kay-Yuen Yim
- Codex Genetics Limited, Shatin, Hong Kong.,Computational and System Biology Program, Washington University School of Medicine, Saint Louis, MO, United States
| | - Anne Yin-Yan Chan
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, China
| | - Liz Y P Yuen
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, China
| | - Wing Chi Au
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, China
| | - Timothy H T Cheng
- Department of Chemical Pathology, The Chinese University of Hong Kong, Shatin, China
| | - Xiao Lin
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, China
| | | | - Larry W L Chan
- Alice Ho Miu Ling Nethersole Hospital, Tai Po, Hong Kong
| | - Vincent C T Mok
- Division of Neurology, Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Shatin, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, China
| | - Ting-Fung Chan
- Codex Genetics Limited, Shatin, Hong Kong.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, China
| | - Ho Yin Edwin Chan
- Codex Genetics Limited, Shatin, Hong Kong.,School of Life Sciences, The Chinese University of Hong Kong, Shatin, China.,Gerald Choa Neuroscience Centre, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
20
|
Zhang M, Dilliott AA, Khallaf R, Robinson JF, Hegele RA, Comishen M, Sato C, Tosto G, Reitz C, Mayeux R, George-Hyslop PS, Freedman M, Rogaeva E. Genetic and epigenetic study of an Alzheimer's disease family with monozygotic triplets. Brain 2019; 142:3375-3381. [PMID: 31580390 PMCID: PMC6821163 DOI: 10.1093/brain/awz289] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/26/2019] [Accepted: 07/29/2019] [Indexed: 12/14/2022] Open
Abstract
Age at onset of Alzheimer's disease is highly variable, and its modifiers (genetic or environmental) could act through epigenetic changes, such as DNA methylation at CpG sites. DNA methylation is also linked to ageing-the strongest Alzheimer's disease risk factor. DNA methylation age can be calculated using age-related CpGs and might reflect biological ageing. We conducted a clinical, genetic and epigenetic investigation of a unique Ashkenazi Jewish family with monozygotic triplets, two of whom developed Alzheimer's disease at ages 73 and 76, while the third at age 85 has no cognitive complaints or deficits in daily activities. One of their offspring developed Alzheimer's disease at age 50. Targeted sequencing of 80 genes associated with neurodegeneration revealed that the triplets and the affected offspring are heterozygous carriers of the risk APOE ε4 allele, as well as rare substitutions in APP (p.S198P), NOTCH3 (p.H1235L) and SORL1 (p.W1563C). In addition, we catalogued 52 possibly damaging rare variants detected by NeuroX array in affected individuals. Analysis of family members on a genome-wide DNA methylation chip revealed that the DNA methylation age of the triplets was 6-10 years younger than chronological age, while it was 9 years older in the offspring with early-onset Alzheimer's disease, suggesting accelerated ageing.
Collapse
Affiliation(s)
- Ming Zhang
- First Rehabilitation Hospital, School of Medicine, Tongji University, Shanghai, China
- Collaborative Innovation Center for Brain Science, Tongji University, Shanghai, China
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
| | - Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Roaa Khallaf
- Department of Medicine, Division of Neurology, Baycrest Health Sciences, and University of Toronto, Toronto, ON, Canada
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael Comishen
- Department of Medicine, Division of Neurology, Baycrest Health Sciences, and University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
| | - Giuseppe Tosto
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, USA
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
- The Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY, USA
- Department of Neurology, College of Physicians and Surgeons, Columbia University and the New York Presbyterian Hospital, 710 West 168th Street, New York, NY, USA
- Department of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY, USA
- Department of Psychiatry, College of Physicians and Surgeons, Columbia University. 1051 Riverside Drive, New York, NY, USA
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
| | - Morris Freedman
- Department of Medicine, Division of Neurology, Baycrest Health Sciences, Mt. Sinai Hospital, and University of Toronto, Toronto, ON, Canada
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, 60 Leonard Ave, Toronto, ON, Canada
| |
Collapse
|
21
|
Picillo M, Lizarraga KJ, Friesen EL, Chau H, Zhang M, Sato C, Rooke G, Munhoz RP, Rogaeva E, Fraser PE, Kalia SK, Kalia LV. Parkinsonism due to A53E α-synuclein gene mutation: Clinical, genetic, epigenetic, and biochemical features. Mov Disord 2018; 33:1950-1955. [DOI: 10.1002/mds.27506] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/21/2018] [Accepted: 09/03/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Marina Picillo
- Center for Neurodegenerative Diseases (CEMAND), Department of Medicine and Surgery; University of Salerno; Salerno Italy
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Division of Neurology, Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Karlo J. Lizarraga
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Division of Neurology, Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Erik L. Friesen
- Krembil Research Institute, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
| | - Hien Chau
- Krembil Research Institute, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
| | - Grace Rooke
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
| | - Renato P. Munhoz
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Division of Neurology, Department of Medicine; University of Toronto; Toronto Ontario Canada
| | - Ekaterina Rogaeva
- Division of Neurology, Department of Medicine; University of Toronto; Toronto Ontario Canada
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
| | - Paul E. Fraser
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
- Department of Medical Biophysics; University of Toronto; Toronto Ontario Canada
| | - Suneil K. Kalia
- Krembil Research Institute, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Division of Neurosurgery, Department of Surgery; University of Toronto; Toronto Ontario Canada
| | - Lorraine V. Kalia
- Edmond J. Safra Program in Parkinson's Disease and Morton and Gloria Shulman Movement Disorders Clinic, Division of Neurology, Department of Medicine, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Division of Neurology, Department of Medicine; University of Toronto; Toronto Ontario Canada
- Krembil Research Institute, Toronto Western Hospital; University Health Network; Toronto Ontario Canada
- Tanz Centre for Research in Neurodegenerative Diseases; University of Toronto; Toronto Ontario Canada
| |
Collapse
|
22
|
Lamp M, Origone P, Geroldi A, Verdiani S, Gotta F, Caponnetto C, Devigili G, Verriello L, Scialò C, Cabona C, Canosa A, Vanni I, Bellone E, Eleopra R, Mandich P. Twenty years of molecular analyses in amyotrophic lateral sclerosis: genetic landscape of Italian patients. Neurobiol Aging 2018. [DOI: 10.1016/j.neurobiolaging.2018.01.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
23
|
Rao S, Ghani M, Guo Z, Deming Y, Wang K, Sims R, Mao C, Yao Y, Cruchaga C, Stephan DA, Rogaeva E. An APOE-independent cis-eSNP on chromosome 19q13.32 influences tau levels and late-onset Alzheimer's disease risk. Neurobiol Aging 2018; 66:178.e1-178.e8. [PMID: 29395286 PMCID: PMC7050280 DOI: 10.1016/j.neurobiolaging.2017.12.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 11/18/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
Although multiple susceptibility loci for late-onset Alzheimer's disease (LOAD) have been identified, a large portion of the genetic risk for this disease remains unexplained. LOAD risk may be associated with single-nucleotide polymorphisms responsible for changes in gene expression (eSNPs). To detect eSNPs associated with LOAD, we integrated data from LOAD genome-wide association studies and expression quantitative trait loci using Sherlock (a Bayesian statistical method). We identified a cis-regulatory eSNP (rs2927438) located on chromosome 19q13.32, for which subsequent analyses confirmed the association with both LOAD risk and the expression level of several nearby genes. Importantly, rs2927438 may represent an APOE-independent LOAD eSNP according to the weak linkage disequilibrium of rs2927438 with the 2 polymorphisms (rs7412 and rs429358) defining the APOE-ε2, -ε3, and -ε4 alleles. Furthermore, rs2927438 does not influence chromatin interaction events at the APOE locus or cis-regulation of APOE expression. Further exploratory analysis revealed that rs2927438 is significantly associated with tau levels in the cerebrospinal fluid. Our findings suggest that rs2927438 may confer APOE-independent risk for LOAD.
Collapse
Affiliation(s)
- Shuquan Rao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China.
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Zhiyun Guo
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yuetiva Deming
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Kesheng Wang
- Department of Biostatistics and Epidemiology, College of Public Health, East Tennessee State University, Johnson City, TN, USA
| | - Rebecca Sims
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, School of Medicine, Cardiff University, Cardiff, UK
| | - Canquan Mao
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Yao Yao
- Department of Fundamental Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Dietrich A Stephan
- Department of Human Genetics, Graduate School of Public Health, Pittsburgh, PA, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Schneider R, Weichert A, Rogaeva E, Robertson J, Keith J, Zinman L. Clinical Reasoning: A 42-year-old man with unilateral leg weakness. Neurology 2018; 90:e1085-e1090. [PMID: 29555890 DOI: 10.1212/wnl.0000000000005179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Affiliation(s)
- Raphael Schneider
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada.
| | - Anna Weichert
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Ekaterina Rogaeva
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Janice Robertson
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Julia Keith
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| | - Lorne Zinman
- From the Department of Medicine, Division of Neurology (R.S., L.Z.), and Department of Anatomical Pathology (J.K.), Sunnybrook Health Sciences Centre, and Tanz Centre for Research in Neurodegenerative Disease (R.S., A.W., E.R., J.R.), University of Toronto, Canada
| |
Collapse
|
25
|
Genetic Complexity of Early-Onset Alzheimer’s Disease. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
26
|
Blauwendraat C, Faghri F, Pihlstrom L, Geiger JT, Elbaz A, Lesage S, Corvol JC, May P, Nicolas A, Abramzon Y, Murphy NA, Gibbs JR, Ryten M, Ferrari R, Bras J, Guerreiro R, Williams J, Sims R, Lubbe S, Hernandez DG, Mok KY, Robak L, Campbell RH, Rogaeva E, Traynor BJ, Chia R, Chung SJ, Hardy JA, Brice A, Wood NW, Houlden H, Shulman JM, Morris HR, Gasser T, Krüger R, Heutink P, Sharma M, Simón-Sánchez J, Nalls MA, Singleton AB, Scholz SW. NeuroChip, an updated version of the NeuroX genotyping platform to rapidly screen for variants associated with neurological diseases. Neurobiol Aging 2017; 57:247.e9-247.e13. [PMID: 28602509 DOI: 10.1016/j.neurobiolaging.2017.05.009] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Revised: 05/08/2017] [Accepted: 05/08/2017] [Indexed: 12/21/2022]
Abstract
Genetics has proven to be a powerful approach in neurodegenerative diseases research, resulting in the identification of numerous causal and risk variants. Previously, we introduced the NeuroX Illumina genotyping array, a fast and efficient genotyping platform designed for the investigation of genetic variation in neurodegenerative diseases. Here, we present its updated version, named NeuroChip. The NeuroChip is a low-cost, custom-designed array containing a tagging variant backbone of about 306,670 variants complemented with a manually curated custom content comprised of 179,467 variants implicated in diverse neurological diseases, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, amyotrophic lateral sclerosis, frontotemporal dementia, progressive supranuclear palsy, corticobasal degeneration, and multiple system atrophy. The tagging backbone was chosen because of the low cost and good genome-wide resolution; the custom content can be combined with other backbones, like population or drug development arrays. Using the NeuroChip, we can accurately identify rare variants and impute over 5.3 million common SNPs from the latest release of the Haplotype Reference Consortium. In summary, we describe the design and usage of the NeuroChip array and show its capability for detecting rare pathogenic variants in numerous neurodegenerative diseases. The NeuroChip has a more comprehensive and improved content, which makes it a reliable, high-throughput, cost-effective screening tool for genetic research and molecular diagnostics in neurodegenerative diseases.
Collapse
Affiliation(s)
- Cornelis Blauwendraat
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Faraz Faghri
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lasse Pihlstrom
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Joshua T Geiger
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Alexis Elbaz
- Université Paris-Saclay, Univ. Paris-Sud, UVSQ, CESP, INSERM-U1018, Villejuif, France; Santé publique France, Saint-Maurice, France
| | - Suzanne Lesage
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Jean-Christophe Corvol
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Patrick May
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette, Luxembourg
| | - Aude Nicolas
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Yevgeniya Abramzon
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Natalie A Murphy
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - J Raphael Gibbs
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Mina Ryten
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Julie Williams
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Rebecca Sims
- Division of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Steven Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK; Ken and Ruth Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Kin Y Mok
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK; Division of Life Science, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Laurie Robak
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA
| | - Roy H Campbell
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Bryan J Traynor
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Ruth Chia
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | - John A Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Alexis Brice
- Inserm U1127, Sorbonne Universités, UPMC Univ Paris 06 UMR S1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Nicholas W Wood
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Henry Houlden
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Joshua M Shulman
- Department of Neurology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Thomas Gasser
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Rejko Krüger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-Sur-Alzette, Luxembourg; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Manu Sharma
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany; Centre for Genetic Epidemiology, Institute of Clinical Epidemiology and Applied Biometry, University of Tübingen, Tübingen, Germany
| | - Javier Simón-Sánchez
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Mike A Nalls
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International, Glen Echo, MD, USA
| | - Andrew B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA.
| |
Collapse
|
27
|
Wei Q, Zhou Q, Chen Y, Ou R, Cao B, Xu Y, Yang J, Shang HF. Analysis of SOD1 mutations in a Chinese population with amyotrophic lateral sclerosis: a case-control study and literature review. Sci Rep 2017; 7:44606. [PMID: 28291249 PMCID: PMC5349524 DOI: 10.1038/srep44606] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/09/2017] [Indexed: 02/05/2023] Open
Abstract
Although the copper/zinc superoxide dismutase-1 (SOD1) gene has been identified in both familial ALS (FALS) and sporadic ALS (SALS), it has rarely been studied in Chinese patients with ALS, and there are few studies with large samples. This study sought to assess the prevalence of SOD1 mutations in Chinese ALS patients. We screened a cohort of 499 ALS patients (487 SALS and 12 FALS) from the Department of Neurology at the West China Hospital of Sichuan University and analyzed all coding exons of SOD1 by Sanger sequencing. In addition, we reviewed the mutation frequencies of common ALS causative genes in Chinese populations. Eight missense mutations in SOD1 were found in 8 ALS individuals: two novel mutations (p.G73D and p.V120F) and six previously reported mutations. The frequencies of SOD1 mutations were 1.03% (5/487) in SALS and 25% (3/12) in FALS from Southwest China. A literature review indicated that the mutation rates of major ALS causative genes were 53.55% in FALS and 6.29% in SALS. In Chinese SALS and FALS, the highest mutation frequency was in the SOD1 gene. Our results suggest that SOD1 mutation is the most common cause of ALS in Chinese populations and that the mutation spectrum of ALS varies among different ethnic populations.
Collapse
Affiliation(s)
- QianQian Wei
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - QingQing Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YongPing Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - RuWei Ou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bei Cao
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - YaQian Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hui-Fang Shang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
28
|
Abstract
AbstractBecause individuals develop dementia as a manifestation of neurodegenerative or neurovascular disorder, there is a need to develop reliable approaches to their identification. We are undertaking an observational study (Ontario Neurodegenerative Disease Research Initiative [ONDRI]) that includes genomics, neuroimaging, and assessments of cognition as well as language, speech, gait, retinal imaging, and eye tracking. Disorders studied include Alzheimer’s disease, amyotrophic lateral sclerosis, frontotemporal dementia, Parkinson’s disease, and vascular cognitive impairment. Data from ONDRI will be collected into the Brain-CODE database to facilitate correlative analysis. ONDRI will provide a repertoire of endophenotyped individuals that will be a unique, publicly available resource.
Collapse
|
29
|
Wen KX, Miliç J, El-Khodor B, Dhana K, Nano J, Pulido T, Kraja B, Zaciragic A, Bramer WM, Troup J, Chowdhury R, Ikram MA, Dehghan A, Muka T, Franco OH. The Role of DNA Methylation and Histone Modifications in Neurodegenerative Diseases: A Systematic Review. PLoS One 2016; 11:e0167201. [PMID: 27973581 PMCID: PMC5156363 DOI: 10.1371/journal.pone.0167201] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 11/10/2016] [Indexed: 12/11/2022] Open
Abstract
IMPORTANCE Epigenetic modifications of the genome, such as DNA methylation and histone modifications, have been reported to play a role in neurodegenerative diseases (ND) such as Alzheimer's disease (AD) and Parkinson's disease (PD). OBJECTIVE To systematically review studies investigating epigenetic marks in AD or PD. METHODS Eleven bibliographic databases (Embase.com, Medline (Ovid), Web-of-Science, Scopus, PubMed, Cinahl (EBSCOhost), Cochrane Central, ProQuest, Lilacs, Scielo and Google Scholar) were searched until July 11th 2016 to identify relevant articles. We included all randomized controlled trials, cohort, case-control and cross-sectional studies in humans that examined associations between epigenetic marks and ND. Two independent reviewers, with a third reviewer available for disagreements, performed the abstract and full text selection. Data was extracted using a pre-designed data collection form. RESULTS Of 6,927 searched references, 73 unique case-control studies met our inclusion criteria. Overall, 11,453 individuals were included in this systematic review (2,640 AD and 2,368 PD outcomes). There was no consistent association between global DNA methylation pattern and any ND. Studies reported epigenetic regulation of 31 genes (including cell communication, apoptosis, and neurogenesis genes in blood and brain tissue) in relation to AD and PD. Methylation at the BDNF, SORBS3 and APP genes in AD were the most consistently reported associations. Methylation of α-synuclein gene (SNCA) was also found to be associated with PD. Seven studies reported histone protein alterations in AD and PD. CONCLUSION Many studies have investigated epigenetics and ND. Further research should include larger cohort or longitudinal studies, in order to identify clinically significant epigenetic changes. Identifying relevant epigenetic changes could lead to interventional strategies in ND.
Collapse
Affiliation(s)
- Ke-xin Wen
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jelena Miliç
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bassem El-Khodor
- Research and Development, Metagenics, Inc, United States of America
| | - Klodian Dhana
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Jana Nano
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Tammy Pulido
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Bledar Kraja
- Department of Biomedical Sciences, Faculty of Medicine, University of Medicine, Tirana, Albania
- University Clinic of Gastrohepatology, University Hospital Center Mother Teresa, Tirana, Albania
| | - Asija Zaciragic
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | | | - John Troup
- Research and Development, Metagenics, Inc, United States of America
| | - Rajiv Chowdhury
- Department of Public Health & Primary Care, Cardiovascular Epidemiology Unit, University of Cambridge, Cambridge, CB1 8RN, United Kingdom
| | - M. Arfam Ikram
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Abbas Dehghan
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Taulant Muka
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| | - Oscar H. Franco
- Department of Epidemiology, Erasmus MC, Rotterdam, the Netherlands
| |
Collapse
|
30
|
Lubbe SJ, Escott-Price V, Brice A, Gasser T, Pittman AM, Bras J, Hardy J, Heutink P, Wood NM, Singleton AB, Grosset DG, Carroll CB, Law MH, Demenais F, Iles MM, Bishop DT, Newton-Bishop J, Williams NM, Morris HR. Rare variants analysis of cutaneous malignant melanoma genes in Parkinson's disease. Neurobiol Aging 2016; 48:222.e1-222.e7. [PMID: 27640074 PMCID: PMC5096891 DOI: 10.1016/j.neurobiolaging.2016.07.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 07/15/2016] [Accepted: 07/20/2016] [Indexed: 11/22/2022]
Abstract
A shared genetic susceptibility between cutaneous malignant melanoma (CMM) and Parkinson's disease (PD) has been suggested. We investigated this by assessing the contribution of rare variants in genes involved in CMM to PD risk. We studied rare variation across 29 CMM risk genes using high-quality genotype data in 6875 PD cases and 6065 controls and sought to replicate findings using whole-exome sequencing data from a second independent cohort totaling 1255 PD cases and 473 controls. No statistically significant enrichment of rare variants across all genes, per gene, or for any individual variant was detected in either cohort. There were nonsignificant trends toward different carrier frequencies between PD cases and controls, under different inheritance models, in the following CMM risk genes: BAP1, DCC, ERBB4, KIT, MAPK2, MITF, PTEN, and TP53. The very rare TYR p.V275F variant, which is a pathogenic allele for recessive albinism, was more common in PD cases than controls in 3 independent cohorts. Tyrosinase, encoded by TYR, is the rate-limiting enzyme for the production of neuromelanin, and has a role in the production of dopamine. These results suggest a possible role for another gene in the dopamine-biosynthetic pathway in susceptibility to neurodegenerative Parkinsonism, but further studies in larger PD cohorts are needed to accurately determine the role of these genes/variants in disease pathogenesis.
Collapse
Affiliation(s)
- S J Lubbe
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - V Escott-Price
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - A Brice
- INSERM U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle Epinière, ICM, France
| | - T Gasser
- Department for Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, and DZNE, German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - A M Pittman
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - J Bras
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - J Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom
| | - P Heutink
- Department of Clinical Genetics, Section of Medical Genomics, VU University Medical Centre, Amsterdam, The Netherlands
| | - N M Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, United Kingdom; UCL Genetics Institute, London, United Kingdom
| | - A B Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - D G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, United Kingdom
| | - C B Carroll
- Plymouth University Peninsula Schools of Medicine and Dentistry, Plymouth, United Kingdom
| | - M H Law
- Statistical Genetics, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - F Demenais
- INSERM, UMR 946, Genetic Variation and Human Diseases Unit, Paris, France; Institut Universitaire d'Hématologie, Université Paris Diderot, Sorbonne, Paris, France
| | - M M Iles
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - D T Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - J Newton-Bishop
- Section of Epidemiology and Biostatistics, Leeds Institute of Cancer and Pathology, Leeds, United Kingdom
| | - N M Williams
- Institute of Psychological Medicine and Clinical Neurosciences, Medical Research Council Centre for Neuropsychiatric Genetics and Genomics, Department of Psychological Medicine and Neurology, Cardiff University School of Medicine, Cardiff, United Kingdom
| | - H R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, United Kingdom.
| |
Collapse
|
31
|
Barber IS, Braae A, Clement N, Patel T, Guetta-Baranes T, Brookes K, Medway C, Chappell S, Guerreiro R, Bras J, Hernandez D, Singleton A, Hardy J, Mann DM, Morgan K. Mutation analysis of sporadic early-onset Alzheimer's disease using the NeuroX array. Neurobiol Aging 2016; 49:215.e1-215.e8. [PMID: 27776828 DOI: 10.1016/j.neurobiolaging.2016.09.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 08/19/2016] [Accepted: 09/16/2016] [Indexed: 12/18/2022]
Abstract
We have screened sporadic early-onset Alzheimer's disease (sEOAD, n = 408) samples using the NeuroX array for known causative and predicted pathogenic variants in 16 genes linked to familial forms of neurodegeneration. We found 2 sEOAD individuals harboring a known causative variant in PARK2 known to cause early-onset Parkinson's disease; p.T240M (n = 1) and p.Q34fs delAG (n = 1). In addition, we identified 3 sEOAD individuals harboring a predicted pathogenic variant in MAPT (p.A469T), which has previously been associated with AD. It is currently unknown if these variants affect susceptibility to sEOAD, further studies would be needed to establish this. This work highlights the need to screen sEOAD individuals for variants that are more classically attributed to other forms of neurodegeneration.
Collapse
Affiliation(s)
- Imelda S Barber
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK.
| | - Anne Braae
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Naomi Clement
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Tulsi Patel
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Tamar Guetta-Baranes
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Keeley Brookes
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Christopher Medway
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Sally Chappell
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| | - Rita Guerreiro
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Jose Bras
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - Dena Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, UK
| | - David M Mann
- Faculty of Medical and Human Sciences, Institute of Brain, Behaviour and Mental Health, University of Manchester, Manchester, UK
| | | | - Kevin Morgan
- School of Life Sciences, Queens Medical Centre, University of Nottingham, Nottingham, UK
| |
Collapse
|
32
|
Farhan SMK, Dilliott AA, Ghani M, Sato C, Liang E, Zhang M, McIntyre AD, Cao H, Racacho L, Robinson JF, Strong MJ, Masellis M, St George-Hyslop P, Bulman DE, Rogaeva E, Hegele RA. The ONDRISeq panel: custom-designed next-generation sequencing of genes related to neurodegeneration. NPJ Genom Med 2016; 1:16032. [PMID: 29263818 PMCID: PMC5685311 DOI: 10.1038/npjgenmed.2016.32] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/01/2016] [Accepted: 08/05/2016] [Indexed: 12/13/2022] Open
Abstract
The Ontario Neurodegenerative Disease Research Initiative (ONDRI) is a multimodal, multi-year, prospective observational cohort study to characterise five diseases: (1) Alzheimer's disease (AD) or amnestic single or multidomain mild cognitive impairment (aMCI) (AD/MCI); (2) amyotrophic lateral sclerosis (ALS); (3) frontotemporal dementia (FTD); (4) Parkinson's disease (PD); and (5) vascular cognitive impairment (VCI). The ONDRI Genomics subgroup is investigating the genetic basis of neurodegeneration. We have developed a custom next-generation-sequencing-based panel, ONDRISeq that targets 80 genes known to be associated with neurodegeneration. We processed DNA collected from 216 individuals diagnosed with one of the five diseases, on ONDRISeq. All runs were executed on a MiSeq instrument and subjected to rigorous quality control assessments. We also independently validated a subset of the variant calls using NeuroX (a genome-wide array for neurodegenerative disorders), TaqMan allelic discrimination assay, or Sanger sequencing. ONDRISeq consistently generated high-quality genotyping calls and on average, 92% of targeted bases are covered by at least 30 reads. We also observed 100% concordance for the variants identified via ONDRISeq and validated by other genomic technologies. We were successful in detecting known as well as novel rare variants in 72.2% of cases although not all variants are disease-causing. Using ONDRISeq, we also found that the APOE E4 allele had a frequency of 0.167 in these samples. Our optimised workflow highlights next-generation sequencing as a robust tool in elucidating the genetic basis of neurodegenerative diseases by screening multiple candidate genes simultaneously.
Collapse
Affiliation(s)
- Sali M K Farhan
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Allison A Dilliott
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Eric Liang
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Ming Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Adam D McIntyre
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Henian Cao
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Lemuel Racacho
- Department of Microbiology and Immunology, Faculty of Medicine, Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada.,Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - John F Robinson
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | - Michael J Strong
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Clinical Neurological Sciences, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Mario Masellis
- Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, LC Campbell Cognitive Neurology Research Unit, Hurvitz Brain Science Research Program, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada.,Department of Clinical Neurosciences, Cambridge Institute for Medical Research, University of Cambridge, Cambridge, UK
| | - Dennis E Bulman
- Department of Microbiology and Immunology, Faculty of Medicine, Department of Biochemistry, University of Ottawa, Ottawa, ON, Canada.,Department of Pediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Robert A Hegele
- Robarts Research Institute, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.,Department of Biochemistry, Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
| | | |
Collapse
|
33
|
Ghani M, Sato C, Kakhki EG, Gibbs JR, Traynor B, St George-Hyslop P, Rogaeva E. Mutation analysis of the MS4A and TREM gene clusters in a case-control Alzheimer's disease data set. Neurobiol Aging 2016; 42:217.e7-217.e13. [PMID: 27084067 DOI: 10.1016/j.neurobiolaging.2016.03.009] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/10/2016] [Accepted: 03/13/2016] [Indexed: 11/28/2022]
Abstract
Genome wide association studies have identified an association between Alzheimer's disease (AD) and common polymorphisms in the MS4A and TREM loci (each containing a cluster of homologous genes) and should be thoroughly investigated for the presence of potentially functional variations. We conducted a mutation analysis by next generation sequencing of 15 genes within the MS4A and TREM gene clusters; and catalogued rare coding variants detected in a North American data set of 210 cases and 233 controls. Investigation of the 5 homologues genes in the TREM locus revealed potentially damaging rare variants in TREM2, TREML1, TREML2, and TREML4. In agreement with a previous report, we observed a significant enrichment of TREM2-damaging missense substitutions in cases (N = 9; 4.2%) compared with controls (N=2; 0.9%; p = 0.010; after Yates' correction p = 0.022). Among known AD-associated TREM2 substitutions, we detected p.R47H, p.D87N, and p.H157Y affecting both TREM2 isoforms (NM_018965 and NM_001271821). In addition, we identified 2 cases with novel TREM2 variants (p.L205P and p.G219C), which mapped only to the isoform NM_001271821 at the C-terminus. Investigation of the MS4A gene cluster revealed that potentially damaging missense substitutions and loss-of-function variants were twice as frequent in controls (N = 19; 8.2%) than cases (N = 9; 4.3%), generating a nominally significant result (p = 0.047; after Yates' correction p = 0.07). Validation of our observation in large data sets might address the question whether such variants could contribute to the protective effect of the minor alleles of Genome wide association study-significant single nucleotide polymorphisms at the MS4A locus.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Erfan Ghani Kakhki
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - J Raphael Gibbs
- Computational Biology Core, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Bryan Traynor
- Neuromuscular Diseases Research Section, Laboratory of Neurogenetics, National Institute on Aging, Bethesda, MD, USA
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada; Cambridge Institute for Medical Research, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, and Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
34
|
Ghani M, Reitz C, Cheng R, Vardarajan BN, Jun G, Sato C, Naj A, Rajbhandary R, Wang LS, Valladares O, Lin CF, Larson EB, Graff-Radford NR, Evans D, De Jager PL, Crane PK, Buxbaum JD, Murrell JR, Raj T, Ertekin-Taner N, Logue M, Baldwin CT, Green RC, Barnes LL, Cantwell LB, Fallin MD, Go RCP, Griffith PA, Obisesan TO, Manly JJ, Lunetta KL, Kamboh MI, Lopez OL, Bennett DA, Hendrie H, Hall KS, Goate AM, Byrd GS, Kukull WA, Foroud TM, Haines JL, Farrer LA, Pericak-Vance MA, Lee JH, Schellenberg GD, St George-Hyslop P, Mayeux R, Rogaeva E. Association of Long Runs of Homozygosity With Alzheimer Disease Among African American Individuals. JAMA Neurol 2016; 72:1313-23. [PMID: 26366463 DOI: 10.1001/jamaneurol.2015.1700] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
IMPORTANCE Mutations in known causal Alzheimer disease (AD) genes account for only 1% to 3% of patients and almost all are dominantly inherited. Recessive inheritance of complex phenotypes can be linked to long (>1-megabase [Mb]) runs of homozygosity (ROHs) detectable by single-nucleotide polymorphism (SNP) arrays. OBJECTIVE To evaluate the association between ROHs and AD in an African American population known to have a risk for AD up to 3 times higher than white individuals. DESIGN, SETTING, AND PARTICIPANTS Case-control study of a large African American data set previously genotyped on different genome-wide SNP arrays conducted from December 2013 to January 2015. Global and locus-based ROH measurements were analyzed using raw or imputed genotype data. We studied the raw genotypes from 2 case-control subsets grouped based on SNP array: Alzheimer's Disease Genetics Consortium data set (871 cases and 1620 control individuals) and Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set (279 cases and 1367 control individuals). We then examined the entire data set using imputed genotypes from 1917 cases and 3858 control individuals. MAIN OUTCOMES AND MEASURES The ROHs larger than 1 Mb, 2 Mb, or 3 Mb were investigated separately for global burden evaluation, consensus regions, and gene-based analyses. RESULTS The African American cohort had a low degree of inbreeding (F ~ 0.006). In the Alzheimer's Disease Genetics Consortium data set, we detected a significantly higher proportion of cases with ROHs greater than 2 Mb (P = .004) or greater than 3 Mb (P = .02), as well as a significant 114-kilobase consensus region on chr4q31.3 (empirical P value 2 = .04; ROHs >2 Mb). In the Chicago Health and Aging Project-Indianapolis Ibadan Dementia Study data set, we identified a significant 202-kilobase consensus region on Chr15q24.1 (empirical P value 2 = .02; ROHs >1 Mb) and a cluster of 13 significant genes on Chr3p21.31 (empirical P value 2 = .03; ROHs >3 Mb). A total of 43 of 49 nominally significant genes common for both data sets also mapped to Chr3p21.31. Analyses of imputed SNP data from the entire data set confirmed the association of AD with global ROH measurements (12.38 ROHs >1 Mb in cases vs 12.11 in controls; 2.986 Mb average size of ROHs >2 Mb in cases vs 2.889 Mb in controls; and 22% of cases with ROHs >3 Mb vs 19% of controls) and a gene-cluster on Chr3p21.31 (empirical P value 2 = .006-.04; ROHs >3 Mb). Also, we detected a significant association between AD and CLDN17 (empirical P value 2 = .01; ROHs >1 Mb), encoding a protein from the Claudin family, members of which were previously suggested as AD biomarkers. CONCLUSIONS AND RELEVANCE To our knowledge, we discovered the first evidence of increased burden of ROHs among patients with AD from an outbred African American population, which could reflect either the cumulative effect of multiple ROHs to AD or the contribution of specific loci harboring recessive mutations and risk haplotypes in a subset of patients. Sequencing is required to uncover AD variants in these individuals.
Collapse
Affiliation(s)
- Mahdi Ghani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Christiane Reitz
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Rong Cheng
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Badri Narayan Vardarajan
- Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Gyungah Jun
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts6Department of Biostatistics, Boston University, Boston, Massachusetts7Department of Ophthalmology, Boston University, Boston, Massachusetts
| | - Christine Sato
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Adam Naj
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Ruchita Rajbhandary
- The John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida
| | - Li-San Wang
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Otto Valladares
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Chiao-Feng Lin
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Eric B Larson
- Department of Medicine, University of Washington, Seattle11Group Health Research Institute, Group Health, Seattle, Washington
| | - Neill R Graff-Radford
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida13Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Denis Evans
- Rush Institute for Healthy Aging, Department of Internal Medicine, Rush University Medical Center, Chicago, Illinois
| | - Philip L De Jager
- Program in Translational Neuropsychiatric Genomics, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts16Harvard Medical School, Boston, Massachusetts17Program in Medical and Population Genetics, The Broad Institute, Cambridge, Ma
| | - Paul K Crane
- Department of Medicine, University of Washington, Seattle
| | - Joseph D Buxbaum
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York19Department of Genetics and Genomics Sciences, Mount Sinai School of Medicine, New York, New York20Department of Neuroscience, Mount Sinai School of Medicine, New York, New York2
| | - Jill R Murrell
- Department of Medical and Molecular Genetics, Indiana University, Indianapolis
| | | | - Nilufer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida13Department of Neurology, Mayo Clinic, Jacksonville, Florida
| | - Mark Logue
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts
| | - Clinton T Baldwin
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts
| | - Robert C Green
- Harvard Medical School, Boston, Massachusetts23Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts24Partners Center for Personalized Genetic Medicine, Brigham and Women's Hospital, Boston, Massachusetts
| | - Lisa L Barnes
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois26Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Laura B Cantwell
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - M Daniele Fallin
- Department of Epidemiology, Johns Hopkins University School of Public Health, Baltimore, Maryland
| | - Rodney C P Go
- School of Public Health, University of Alabama at Birmingham
| | | | | | - Jennifer J Manly
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York4Department of Neurology, College of Physicians and Surgeons, Columbia University, New York, New York
| | - Kathryn L Lunetta
- Department of Biostatistics, Boston University, Boston, Massachusetts
| | - M Ilyas Kamboh
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania32Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Oscar L Lopez
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - David A Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, Illinois33Rush Alzheimer's Disease Center, Rush University Medical Center, Chicago, Illinois
| | - Hugh Hendrie
- Indiana University Center for Aging Research, Indianapolis35Department of Psychiatry, Indiana University School of Medicine, Indianapolis36Regenstrief Institute Inc, Indianapolis, Indiana
| | - Kathleen S Hall
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis
| | - Alison M Goate
- Hope Center Program on Protein Aggregation and Neurodegeneration, Department of Psychiatry, Washington University School of Medicine, St Louis, Missouri
| | - Goldie S Byrd
- Department of Biology, North Carolina A & T University, Greensboro
| | - Walter A Kukull
- National Alzheimer's Coordinating Center, Department of Epidemiology, University of Washington, Seattle
| | - Tatiana M Foroud
- Department of Behavioral Sciences, Rush University Medical Center, Chicago, Illinois
| | - Jonathan L Haines
- Vanderbilt Center for Human Genetics Research, Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Lindsay A Farrer
- Department of Medicine (Biomedical Genetics), Boston University, Boston, Massachusetts6Department of Biostatistics, Boston University, Boston, Massachusetts7Department of Ophthalmology, Boston University, Boston, Massachusetts41Department of Neurology, Bo
| | | | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Gerard D Schellenberg
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Richard Mayeux
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, College of Physicians and Surgeons, Columbia University, New York, New York3Gertrude H. Sergievsky Center, College of Physicians and Surgeons, Columbia University, New York, New York4
| | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
35
|
Zhang M, Xi Z, Fang S, Ghani M, Sato C, Moreno D, Liang Y, Lang AE, Rogaeva E. Mutation analysis of CHCHD2 in Canadian patients with familial Parkinson's disease. Neurobiol Aging 2016; 38:217.e7-217.e8. [DOI: 10.1016/j.neurobiolaging.2015.10.038] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 10/31/2015] [Indexed: 12/12/2022]
|
36
|
Carrasquillo MM, Barber I, Lincoln SJ, Murray ME, Camsari GB, Khan QUA, Nguyen T, Ma L, Bisceglio GD, Crook JE, Younkin SG, Dickson DW, Boeve BF, Graff-Radford NR, Morgan K, Ertekin-Taner N. Evaluating pathogenic dementia variants in posterior cortical atrophy. Neurobiol Aging 2015; 37:38-44. [PMID: 26507310 DOI: 10.1016/j.neurobiolaging.2015.09.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/26/2015] [Accepted: 09/29/2015] [Indexed: 12/18/2022]
Abstract
Posterior cortical atrophy (PCA) is an understudied visual impairment syndrome most often due to "posterior Alzheimer's disease (AD)" pathology. Case studies detected mutations in PSEN1, PSEN2, GRN, MAPT, and PRNP in subjects with clinical PCA. To detect the frequency and spectrum of mutations in known dementia genes in PCA, we screened 124 European-American subjects with clinical PCA (n = 67) or posterior AD neuropathology (n = 57) for variants in genes implicated in AD, frontotemporal dementia, and prion disease using NeuroX, a customized exome array. Frequencies in PCA of the variants annotated as pathogenic or potentially pathogenic were compared against ∼ 4300 European-American population controls from the NHLBI Exome Sequencing Project. We identified 2 rare variants not previously reported in PCA, TREM2 Arg47His, and PSEN2 Ser130Leu. No other pathogenic or potentially pathogenic variants were detected in the screened dementia genes. In this first systematic variant screen of a PCA cohort, we report 2 rare mutations in TREM2 and PSEN2, validate our previously reported APOE ε4 association, and demonstrate the utility of NeuroX.
Collapse
Affiliation(s)
| | - Imelda Barber
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - Sarah J Lincoln
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | - Thuy Nguyen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Li Ma
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Julia E Crook
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | | - Kevin Morgan
- Human Genetics Group, University of Nottingham, Nottingham, UK
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA; Department of Neurology, Mayo Clinic, Jacksonville, FL, USA.
| |
Collapse
|
37
|
Satoh K, Abe-Dohmae S, Yokoyama S, St George-Hyslop P, Fraser PE. ATP-binding cassette transporter A7 (ABCA7) loss of function alters Alzheimer amyloid processing. J Biol Chem 2015; 290:24152-65. [PMID: 26260791 DOI: 10.1074/jbc.m115.655076] [Citation(s) in RCA: 106] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Indexed: 11/06/2022] Open
Abstract
The ATP-binding cassette transporter A7 (ABCA7) has been identified as a susceptibility factor of late onset Alzheimer disease in genome-wide association studies. ABCA7 has been shown to mediate phagocytosis and affect membrane trafficking. The current study examined the impact of ABCA7 loss of function on amyloid precursor protein (APP) processing and generation of amyloid-β (Aβ). Suppression of endogenous ABCA7 in several different cell lines resulted in increased β-secretase cleavage and elevated Aβ. ABCA7 knock-out mice displayed an increased production of endogenous murine amyloid Aβ42 species. Crossing ABCA7-deficient animals to an APP transgenic model resulted in significant increases in the soluble Aβ as compared with mice expressing normal levels of ABCA7. Only modest changes in the amount of insoluble Aβ and amyloid plaque densities were observed once the amyloid pathology was well developed, whereas Aβ deposition was enhanced in younger animals. In vitro studies indicated a more rapid endocytosis of APP in ABCA7 knock-out cells that is mechanistically consistent with the increased Aβ production. These in vitro and in vivo findings indicate a direct role of ABCA7 in amyloid processing that may be associated with its primary biological function to regulate endocytic pathways. Several potential loss-of-function ABCA7 mutations and deletions linked to Alzheimer disease that in some instances have a greater impact than apoE allelic variants have recently been identified. A reduction in ABCA7 expression or loss of function would be predicted to increase amyloid production and that may be a contributing factor in the associated Alzheimer disease susceptibility.
Collapse
Affiliation(s)
- Kanayo Satoh
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada,
| | - Sumiko Abe-Dohmae
- Biochemistry, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Shinji Yokoyama
- Nutritional Health Science Research Center, Chubu University, Matsumoto-cho 1200, Kasugai 487-8501, Japan
| | - Peter St George-Hyslop
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada, Departments of Medicine (Neurology) and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada, and Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Paul E Fraser
- From the Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5T 2S8, Canada, Departments of Medicine (Neurology) and Medical Biophysics, University of Toronto, Toronto, Ontario M5G 1L7, Canada, and
| |
Collapse
|