1
|
Gezginer I, Chen Z, Yoshihara HAI, Deán-Ben XL, Zerbi V, Razansky D. Concurrent optoacoustic tomography and magnetic resonance imaging of resting-state functional connectivity in the mouse brain. Nat Commun 2024; 15:10791. [PMID: 39737925 PMCID: PMC11685406 DOI: 10.1038/s41467-024-54947-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
Resting-state functional connectivity (rsFC) has been essential to elucidate the intricacy of brain organization, further revealing clinical biomarkers of neurological disorders. Although functional magnetic resonance imaging (fMRI) remains a cornerstone in the field of rsFC recordings, its interpretation is often hindered by the convoluted physiological origin of the blood-oxygen-level-dependent (BOLD) contrast affected by multiple factors. Here, we capitalize on the unique concurrent multiparametric hemodynamic recordings of a hybrid magnetic resonance optoacoustic tomography platform to comprehensively characterize rsFC in female mice. The unique blood oxygenation readings and high spatio-temporal resolution at depths provided by functional optoacoustic (fOA) imaging offer an effective means for elucidating the connection between BOLD and hemoglobin responses. Seed-based and independent component analyses reveal spatially overlapping bilateral correlations between the fMRI-BOLD readings and the multiple hemodynamic components measured with fOA but also subtle discrepancies, particularly in anti-correlations. Notably, total hemoglobin and oxygenated hemoglobin components are found to exhibit stronger correlation with BOLD than deoxygenated hemoglobin, challenging conventional assumptions on the BOLD signal origin.
Collapse
Affiliation(s)
- Irmak Gezginer
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Zhenyue Chen
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
- Institute of Precision Optical Engineering, School of Physics Science and Engineering, Tongji University, Shanghai, China
| | - Hikari A I Yoshihara
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Xosé Luís Deán-Ben
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland
| | - Valerio Zerbi
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniel Razansky
- Institute for Biomedical Engineering and Institute of Pharmacology and Toxicology, Faculty of Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
2
|
Wing D, Roelands B, Wetherell JL, Nichols JF, Meeusen R, Godino JG, Shimony JS, Snyder AZ, Nishino T, Nicol GE, Nagels G, Eyler LT, Lenze EJ. Cardiorespiratory Fitness and Sleep, but not Physical Activity, are Associated with Functional Connectivity in Older Adults. SPORTS MEDICINE - OPEN 2024; 10:113. [PMID: 39425826 PMCID: PMC11490599 DOI: 10.1186/s40798-024-00778-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/29/2024] [Indexed: 10/21/2024]
Abstract
BACKGROUND Aging results in changes in resting state functional connectivity within key networks associated with cognition. Cardiovascular function, physical activity, sleep, and body composition may influence these age-related changes in the brain. Better understanding these associations may help clarify mechanisms related to brain aging and guide interventional strategies to reduce these changes. METHODS In a large (n = 398) sample of healthy community dwelling older adults that were part of a larger interventional trial, we conducted cross sectional analyses of baseline data to examine the relationships between several modifiable behaviors and resting state functional connectivity within networks associated with cognition and emotional regulation. Additionally, maximal aerobic capacity, physical activity, quality of sleep, and body composition were assessed. Associations were explored both through correlation and best vs. worst group comparisons. RESULTS Greater cardiovascular fitness, but not larger quantity of daily physical activity, was associated with greater functional connectivity within the Default Mode (p = 0.008 r = 0.142) and Salience Networks (p = 0.005, r = 0.152). Better sleep (greater efficiency and fewer nighttime awakenings) was also associated with greater functional connectivity within multiple networks including the Default Mode, Executive Control, and Salience Networks. When the population was split into quartiles, the highest body fat group displayed higher functional connectivity in the Dorsal Attentional Network compared to the lowest body fat percentage (p = 0.011; 95% CI - 0.0172 to - 0.0023). CONCLUSION These findings confirm and expand on previous work indicating that, in older adults, higher levels of cardiovascular fitness and better sleep quality, but not greater quantity of physical activity, total sleep time, or lower body fat percentage are associated with increased functional connectivity within key resting state networks.
Collapse
Affiliation(s)
- David Wing
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA.
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA.
| | - Bart Roelands
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
| | - Julie Loebach Wetherell
- Mental Health Service, VA San Diego Healthcare System, San Diego, USA
- Department of Psychiatry, University of California, San Diego, USA
| | - Jeanne F Nichols
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Romain Meeusen
- Human Physiology & Sports Physiotherapy Research Group, Faculty of Physical Education and Physiotherapy, Vrije Universiteit Brussel, Brussels, Belgium
- Vrije Universiteit Brussel, Brussels, Belgium
- Department of Sports, Recreation, Exercise and Sciences, Community and Health Sciences, University of the Western Cape, Cape Town, South Africa
| | - Job G Godino
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California, San Diego, USA
- Exercise and Physical Activity Resource Center (EPARC), University of California, San Diego, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abraham Z Snyder
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tomoyuki Nishino
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Ginger E Nicol
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Guy Nagels
- Department of Neurology, Brussels, Belgium/Center for Neurosciences (C4N), UZ Brussel, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, USA
- Education, and Clinical Center, Desert-Pacific Mental Illness Research, San Diego Veterans Administration Healthcare System, San Diego, USA
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
3
|
Lee DH, Woo BS, Park YH, Lee JH. General Treatments Promoting Independent Living in Parkinson's Patients and Physical Therapy Approaches for Improving Gait-A Comprehensive Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:711. [PMID: 38792894 PMCID: PMC11123276 DOI: 10.3390/medicina60050711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
This study delves into the multifaceted approaches to treating Parkinson's disease (PD), a neurodegenerative disorder primarily affecting motor function but also manifesting in a variety of symptoms that vary greatly among individuals. The complexity of PD symptoms necessitates a comprehensive treatment strategy that integrates surgical interventions, pharmacotherapy, and physical therapy to tailor to the unique needs of each patient. Surgical options, such as deep brain stimulation (DBS), have been pivotal for patients not responding adequately to medication, offering significant symptom relief. Pharmacotherapy remains a cornerstone of PD management, utilizing drugs like levodopa, dopamine agonists, and others to manage symptoms and, in some cases, slow down disease progression. However, these treatments often lead to complications over time, such as motor fluctuations and dyskinesias, highlighting the need for precise dosage adjustments and sometimes combination therapies to optimize patient outcomes. Physical therapy plays a critical role in addressing the motor symptoms of PD, including bradykinesia, muscle rigidity, tremors, postural instability, and akinesia. PT techniques are tailored to improve mobility, balance, strength, and overall quality of life. Strategies such as gait and balance training, strengthening exercises, stretching, and functional training are employed to mitigate symptoms and enhance functional independence. Specialized approaches like proprioceptive neuromuscular facilitation (PNF), the Bobath concept, and the use of assistive devices are also integral to the rehabilitation process, aimed at improving patients' ability to perform daily activities and reducing the risk of falls. Innovations in technology have introduced robotic-assisted gait training (RAGT) and other assistive devices, offering new possibilities for patient care. These tools provide targeted support and feedback, allowing for more intensive and personalized rehabilitation sessions. Despite these advancements, high costs and accessibility issues remain challenges that need addressing. The inclusion of exercise and activity beyond structured PT sessions is encouraged, with evidence suggesting that regular physical activity can have neuroprotective effects, potentially slowing disease progression. Activities such as treadmill walking, cycling, and aquatic exercises not only improve physical symptoms but also contribute to emotional well-being and social interactions. In conclusion, treating PD requires a holistic approach that combines medical, surgical, and therapeutic strategies. While there is no cure, the goal is to maximize patients' functional abilities and quality of life through personalized treatment plans. This integrated approach, along with ongoing research and development of new therapies, offers hope for improving the management of PD and the lives of those affected by this challenging disease.
Collapse
Affiliation(s)
- Dae-Hwan Lee
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Bong-Sik Woo
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Yong-Hwa Park
- IM Rehabilitation Hospital, 2140, Cheongnam-ro, Seowon-gu, Cheongju-si 28702, Chungcheongbuk-do, Republic of Korea; (D.-H.L.); (B.-S.W.); (Y.-H.P.)
| | - Jung-Ho Lee
- Department of Physical Therapy, University of Kyungdong, 815, Gyeonhwon-ro, Munmak-eup, Wonju-si 26495, Gangwon-do, Republic of Korea
| |
Collapse
|
4
|
Wal P, Wal A, Vig H, Mahmood D, Khan MMU. Potential Applications of Mitochondrial Therapy with a Focus on Parkinson's Disease and Mitochondrial Transplantation. Adv Pharm Bull 2024; 14:147-160. [PMID: 38585467 PMCID: PMC10997929 DOI: 10.34172/apb.2024.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/28/2023] [Accepted: 10/08/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Both aging and neurodegenerative illnesses are thought to be influenced by mitochondrial malfunction and free radical formation. Deformities of the energy metabolism, mitochondrial genome polymorphisms, nuclear DNA genetic abnormalities associated with mitochondria, modifications of mitochondrial fusion or fission, variations in shape and size, variations in transit, modified mobility of mitochondria, transcription defects, and the emergence of misfolded proteins associated with mitochondria are all linked to Parkinson's disease. Methods This review is a condensed compilation of data from research that has been published between the years of 2014 and 2022, using search engines like Google Scholar, PubMed, and Scopus. Results Mitochondrial transplantation is a one-of-a-kind treatment for mitochondrial diseases and deficits in mitochondrial biogenesis. The replacement of malfunctioning mitochondria with transplanted viable mitochondria using innovative methodologies has shown promising outcomes as a cure for Parkinson's, involving tissue sparing coupled with enhanced energy generation and lower oxidative damage. Numerous mitochondria-targeted therapies, including mitochondrial gene therapy, redox therapy, and others, have been investigated for their effectiveness and potency. Conclusion The development of innovative therapeutics for mitochondria-directed treatments in Parkinson's disease may be aided by optimizing mitochondrial dynamics. Many neurological diseases have been studied in animal and cellular models, and it has been found that mitochondrial maintenance can slow the death of neuronal cells. It has been hypothesized that drug therapies for neurodegenerative diseases that focus on mitochondrial dysfunction will help to delay the onset of neuronal dysfunction.
Collapse
Affiliation(s)
- Pranay Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Ankita Wal
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Himangi Vig
- Pharmacy Department, PSIT- Pranveer Singh Institute of Technology, (PHARMACY) Kanpur-Agra-Delhi National Highway (NH-2), Bhauti-Kanpur-209305
| | - Danish Mahmood
- Department of Pharmacology and Toxicology, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| | - Mohd Masih Uzzaman Khan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Unaizah 51911, Saudi Arabia
| |
Collapse
|
5
|
McElroy CL, Wang B, Zhang H, Jin K. Cerebellum and Aging: Update and Challenges. Aging Dis 2024; 15:2345-2360. [PMID: 38502583 PMCID: PMC11567260 DOI: 10.14336/ad.2024.0220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 02/20/2024] [Indexed: 03/21/2024] Open
Abstract
The cerebellum plays a vital role in the aging process. With the aging of the cerebellum, there is a decline in balance and motor function, particularly fine motor skills, and an increased risk of falling. However, in recent years, numerous studies have revealed that the cerebellum has several roles besides balance and fine motor skills, such as cognitive function and memory. It also plays a role in many neurodegenerative diseases. Interestingly, the cerebellum ages more rapidly than other brain regions, including the hippocampus. With increasing studies reporting that the cerebellum has a more prominent and interconnected role in the brain, it is essential to understand why aging affects it more, leading to solutions to help curb the accelerated decline. Here, we summarize the cerebellum's function and look at how it ages at the cellular, molecular, and functional levels. Additionally, we explore the the effects of alcoholism on the aging cerebellum as well as the role of the cerebellum in diseases such as Alzheimer's, Parkinson's, and Multiple Sclerosis.
Collapse
Affiliation(s)
| | | | | | - Kunlin Jin
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| |
Collapse
|
6
|
Wang Z, Donahue EK, Guo Y, Renteln M, Petzinger GM, Jakowec MW, Holschneider DP. Exercise alters cortico-basal ganglia network metabolic connectivity: a mesoscopic level analysis informed by anatomic parcellation defined in the mouse brain connectome. Brain Struct Funct 2023; 228:1865-1884. [PMID: 37306809 PMCID: PMC10516800 DOI: 10.1007/s00429-023-02659-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 05/29/2023] [Indexed: 06/13/2023]
Abstract
The basal ganglia are important modulators of the cognitive and motor benefits of exercise. However, the neural networks underlying these benefits remain poorly understood. Our study systematically analyzed exercise-associated changes in metabolic connectivity in the cortico-basal ganglia-thalamic network during the performance of a new motor task, with regions-of-interest defined based on mesoscopic domains recently defined in the mouse brain structural connectome. Mice were trained on a motorized treadmill for six weeks or remained sedentary (control), thereafter undergoing [14C]-2-deoxyglucose metabolic brain mapping during wheel walking. Regional cerebral glucose uptake (rCGU) was analyzed in 3-dimensional brains reconstructed from autoradiographic brain sections using statistical parametric mapping. Metabolic connectivity was assessed by calculating inter-regional correlation of rCGU cross-sectionally across subjects within a group. Compared to controls, exercised animals showed broad decreases in rCGU in motor areas, but increases in limbic areas, as well as the visual and association cortices. In addition, exercised animals showed (i) increased positive metabolic connectivity within and between the motor cortex and caudoputamen (CP), (ii) newly emerged negative connectivity of the substantia nigra pars reticulata with the globus pallidus externus, and CP, and (iii) reduced connectivity of the prefrontal cortex (PFC). Increased metabolic connectivity in the motor circuit in the absence of increases in rCGU strongly suggests greater network efficiency, which is also supported by the reduced involvement of PFC-mediated cognitive control during the performance of a new motor task. Our study delineates exercise-associated changes in functional circuitry at the subregional level and provides a framework for understanding the effects of exercise on functions of the cortico-basal ganglia-thalamic network.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Erin K. Donahue
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
| | - Michael Renteln
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Giselle M. Petzinger
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Michael W. Jakowec
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
| | - Daniel P. Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, 1975 Zonal Avenue, KAM 400, MC9037, Los Angeles, California 90089-9037 USA
- Graduate Program in Neurosciences, University of Southern California, Los Angeles, California USA
- Present Address: Department of Neurology, University of Southern California, Los Angeles, California USA
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California USA
| |
Collapse
|
7
|
Lammers-Lietz F, Zacharias N, Mörgeli R, Spies CD, Winterer G. Functional Connectivity of the Supplementary and Presupplementary Motor Areas in Postoperative Transition Between Stages of Frailty. J Gerontol A Biol Sci Med Sci 2022; 77:2464-2473. [PMID: 35040961 DOI: 10.1093/gerona/glac012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Frailty is a multietiological geriatric syndrome of run-down physical reserves with high vulnerability to stressors. Transitions between physical robustness and frailty often occur in the context of medical interventions. Studies suggest that neurological disorders contribute to faster progression of frailty. In a previous cross-sectional study we found altered functional connectivity of supplementary motor area (SMA) in (pre)frail compared to robust patients. We analyzed functional connectivity of the SMA and presupplementary motor area (pre-SMA) in patients with postoperative transitions between physical robustness and stages of frailty. METHODS We investigated 120 cognitively healthy patients (49.2% robust, 47.5% prefrail, 3.3% frail, 37.5% female, median age 71 [65-87] years) undergoing elective surgery from the BioCog project, a multicentric prospective cohort study on postoperative delirium and cognitive dysfunction. Assessments took place 14 days before and 3 months after surgery, comprising assessments of a modified frailty phenotype according to Fried and resting-state functional magnetic resonance imaging at 3 T. The associations between functional connectivity of the SMA and pre-SMA networks, preoperative frailty stages, and postoperative transitions were examined using mixed linear effects models. RESULTS Nineteen patients showed physical improvement after surgery, 24 patients progressed to (pre)frailty and in 77 patients no transition was observed. At follow-up, 57 (47.5%) patients were robust, 52 (43.3%) prefrail, and 11 (9.2%) frail. Lower functional connectivity in the pre-SMA network was associated with more unfavorable postoperative transition types. An exploratory analysis suggested that the association was restricted to patients who were prefrail at baseline. There was no association of transition type with SMA functional connectivity in the primary analysis. In an exploratory analysis, transition from prefrailty to robustness was associated with higher functional connectivity and progression in robust patients was associated with higher SMA network segregation. CONCLUSIONS Our findings implicate that dysfunctions of cortical networks involved in higher cognitive control of motion are associated with postoperative transitions between frailty stages. The pre-SMA may be a target for neurofeedback or brain stimulation in approaches to prevent frailty. Clinical Trials Registration Number: NCT02265263.
Collapse
Affiliation(s)
- Florian Lammers-Lietz
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Norman Zacharias
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| | - Rudolf Mörgeli
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia D Spies
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Georg Winterer
- Department of Anesthesiology and Operative Intensive Care Medicine (CCM, CVK), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Pharmaimage Biomarker Solutions GmbH, Berlin, Germany
| |
Collapse
|
8
|
Zhuo W, Lundquist AJ, Donahue EK, Guo Y, Phillips D, Petzinger GM, Jakowec MW, Holschneider DP. A mind in motion: Exercise improves cognitive flexibility, impulsivity and alters dopamine receptor gene expression in a Parkinsonian rat model. CURRENT RESEARCH IN NEUROBIOLOGY 2022; 3:100039. [DOI: 10.1016/j.crneur.2022.100039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 02/06/2022] [Accepted: 04/24/2022] [Indexed: 11/26/2022] Open
|
9
|
Longitudinal [18]UCB-H/[18F]FDG imaging depicts complex patterns of structural and functional neuroplasticity following bilateral vestibular loss in the rat. Sci Rep 2022; 12:6049. [PMID: 35411002 PMCID: PMC9001652 DOI: 10.1038/s41598-022-09936-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/23/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal lesions trigger mechanisms of structural and functional neuroplasticity, which can support recovery. However, the temporal and spatial appearance of structure–function changes and their interrelation remain unclear. The current study aimed to directly compare serial whole-brain in vivo measurements of functional plasticity (by [18F]FDG-PET) and structural synaptic plasticity (by [18F]UCB-H-PET) before and after bilateral labyrinthectomy in rats and investigate the effect of locomotor training. Complex structure–function changes were found after bilateral labyrinthectomy: in brainstem-cerebellar circuits, regional cerebral glucose metabolism (rCGM) decreased early, followed by reduced synaptic density. In the thalamus, increased [18F]UCB-H binding preceded a higher rCGM uptake. In frontal-basal ganglia loops, an increase in synaptic density was paralleled by a decrease in rCGM. In the group with locomotor training, thalamic rCGM and [18F]UCB-H binding increased following bilateral labyrinthectomy compared to the no training group. Rats with training had considerably fewer body rotations. In conclusion, combined [18F]FDG/[18F]UCB-H dual tracer imaging reveals that adaptive neuroplasticity after bilateral vestibular loss is not a uniform process but is composed of complex spatial and temporal patterns of structure–function coupling in networks for vestibular, multisensory, and motor control, which can be modulated by early physical training.
Collapse
|
10
|
Hengenius JB, Bohnen NI, Rosso A, Huppert TJ, Rosano C. Cortico-striatal functional connectivity and cerebral small vessel disease: Contribution to mild Parkinsonian signs. J Neuroimaging 2022; 32:352-362. [PMID: 34957653 PMCID: PMC9119198 DOI: 10.1111/jon.12949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Mild Parkinsonian signs (MPS) are common in older adults. We hypothesized that MPS are associated with lower functional connectivity (FC) in dopamine-dependent cortico-striatal networks, and these associations vary with white matter hyperintensity (WMH), a risk factor for MPS. METHODS We examined resting-state functional MRI in 266 participants (mean age 83; 57% female; 41% African American) with data on MPS (Unified Parkinson's Disease Rating Scale), demographics, cognition, muscle-skeletal, and cardiometabolic health. FC between cortex and striatum was examined separately for sensorimotor, executive, and limbic functional subregions. Logistic regression tested the association of FC in each network with MPS, adjusted for covariates. Interactions of FC by WMH were tested; and analyses were repeated stratified by WMH above/below the median. RESULTS Compared to those without MPS, those with MPS had lower cortico-striatal FC in the left executive network (adjusted odds ratio [95% confidence interval], p-value: 0.188 [0.043, 0.824], .027). The interaction with WMH was p = .064; left executive FC was inversely associated with MPS for high WMH (0.077 [0.010, 0.599], .014) but not low WMH participants (1.245 [0.128, 12.132], .850). CONCLUSIONS MPS appear related to lower executive network FC, robust to adjustment for other risk factors, and stronger for those with higher burden of WMH. Future longitudinal studies should examine the interplay between cerebral small vessel disease and connectivity influencing MPS.
Collapse
Affiliation(s)
- James B. Hengenius
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea Rosso
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Theodore J. Huppert
- Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Caterina Rosano
- Department of Epidemiology, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
11
|
Jarrahi B, McEwen SC, Holschneider DP, Schiehser DM, Petkus AJ, Gomez ME, Van Horn JD, Filoteo V, Jakowec MW, Petzinger GM. The Effects of Cardiorespiratory and Motor Skill Fitness on Intrinsic Functional Connectivity of Neural Networks in Individuals with Parkinson's Disease. Brain Plast 2021; 7:77-95. [PMID: 34868875 PMCID: PMC8609487 DOI: 10.3233/bpl-200115] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2021] [Indexed: 11/26/2022] Open
Abstract
Background: Studies in aging older adults have shown the positive association between cognition and exercise related fitness, particularly cardiorespiratory fitness. These reports have also demonstrated the association of high cardiorespiratory fitness, as well as other types of fitness, on the reversal of age-related decline in neural network connectivity, highlighting the potential role of fitness on age- and disease-related brain changes. While the clinical benefits of exercise are well-documented in Parkinson’s disease (PD), the extent to which cardiorespiratory fitness (assessed by estimated VO2max testing) or motor skill fitness (assessed by the Physical Performance Test (PPT)) affects neural network connectivity in PD remains to be investigated. The purpose of this study was to explore the hypothesis that higher fitness level is associated with an increase in the intrinsic network connectivity of cognitive networks commonly affected in PD. Methods: In this cross-sectional resting state fMRI, we used a multivariate statistical approach based on high-dimensional independent component analysis (ICA) to investigate the association between two independent fitness metrics (estimated VO2max and PPT) and resting state network connectivity. Results: We found that increased estimated VO2max was associated with increased within network connectivity in cognitive networks known to be impaired in PD, including those sub-serving memory and executive function. There was a similar trend for high levels of PPT to be associated with increased within network connectivity in distinct resting state networks. The between functional network connectivity analysis revealed that cardiorespiratory fitness was associated with increased functional connectivity between somatosensory motor network and several cognitive networks sub-serving memory, attention, and executive function. Conclusion: This study provides important empirical data supporting the potential association between two forms of fitness and multiple resting state networks impacting PD cognition. Linking fitness to circuit specific modulation of resting state network connectivity will help establish a neural basis for the positive effects of fitness and specific exercise modalities and provide a foundation to identify underlying mechanisms to promote repair.
Collapse
Affiliation(s)
- Behnaz Jarrahi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Sarah C McEwen
- Pacific Brain Health Center, Pacific Neuroscience Institute, Santa Monica, CA, USA.,Department of Translational Neurosciences and Neurotherapeutics, Providence Saint John's Cancer Institute, Santa Monica, CA, USA
| | - Daniel P Holschneider
- Department of Neurology, University of Southern California, Los Angeles, CA, USA.,Department of Psychiatry and the Behavioral Sciences, University of Southern California, San Pablo St., Los Angeles, CA, USA
| | - Dawn M Schiehser
- Research & Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Andrew J Petkus
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Megan E Gomez
- Department of Psychology, Tibor Rubin Veterans Administration Medical Center, Long Beach, CA, USA
| | - Jack D Van Horn
- Department of Psychology and School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Vincent Filoteo
- Research & Psychology Services, VA San Diego Healthcare System (VASDHS), San Diego, CA, USA.,Department of Psychiatry, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| | - Giselle M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
12
|
Petkus AJ, Jarrahi B, Holschneider DP, Gomez ME, Filoteo JV, Schiehser DM, Fisher BE, Van Horn JD, Jakowec MW, McEwen SC, Petzinger G. Thalamic volume mediates associations between cardiorespiratory fitness (VO 2max) and cognition in Parkinson's disease. Parkinsonism Relat Disord 2021; 86:19-26. [PMID: 33819900 DOI: 10.1016/j.parkreldis.2021.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 01/14/2023]
Abstract
INTRODUCTION Cognitive deficits occur in Parkinson's disease (PD). Cardiorespiratory fitness (CRF) is associated with better cognitive performance in aging especially in executive function (EF) and memory. The association between CRF and cognitive performance is understudied in people with PD. Brain structures underlying associations also remains unknown. This cross-sectional study examined the associations between CRF and cognitive performance in PD. We also examined associations between CRF and brain structures impacted in PD. Mediation analysis were conducted to examine whether brain structures impacted in PD mediate putative associations between CRF and cognitive performance. METHODS Individuals with PD (N = 33) underwent magnetic resonance imaging (MRI), CRF evaluation (estimated VO2max), and neuropsychological assessment. Composite cognitive scores of episodic memory, EF, attention, language, and visuospatial functioning were generated. Structural equation models were constructed to examine whether MRI volume estimates (thalamus and pallidum) mediated associations between CRF and cognitive performance (adjusting for age, education, PD disease duration, sex, MDS-UPDRS motor score, and total intracranial volume). RESULTS Higher CRF was associated with better episodic memory (Standardized β = 0.391; p = 0.008), EF (Standardized β = 0.324; p = 0.025), and visuospatial performance (Standardized β = 0.570; p = 0.005). Higher CRF was associated with larger thalamic (Standardized β = 0.722; p = 0.004) and pallidum (Standardized β = 0.635; p = 0.004) volumes. Thalamic volume mediated the association between higher CRF and better EF (Indirect effect = 0.309) and episodic memory (Indirect effect = 0.209) performance (p < 0.05). The pallidum did not significantly mediate associations between CRF and cognitive outcomes. CONCLUSION The thalamus plays an important role in the association between CRF and both EF and episodic memory in PD.
Collapse
Affiliation(s)
- Andrew J Petkus
- Department of Neurology, University of Southern California, 1520 San Pablo St., HCC-2, Suite 3000, Los Angeles, CA, 90033, USA.
| | - Behnaz Jarrahi
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, 94305, USA
| | - Daniel P Holschneider
- Department of Neurology, University of Southern California, 1520 San Pablo St., HCC-2, Suite 3000, Los Angeles, CA, 90033, USA; Department of Psychiatry and the Behavioral Sciences, University of Southern California, 1333 San Pablo St., Los Angeles, CA, 90033, USA
| | - Megan E Gomez
- Department of Psychology, Tibor Rubin Veterans Administration Medical Center, Long Beach, CA, 90822, USA
| | - J Vincent Filoteo
- Psychology and Research Services, Veterans Administration San Diego Health Care System, San Diego, CA, 92161, USA; Departments of Psychiatry and Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Dawn M Schiehser
- Psychology and Research Services, Veterans Administration San Diego Health Care System, San Diego, CA, 92161, USA; Departments of Psychiatry and Neurosciences, University of California San Diego, 9500 Gilman Dr., La Jolla, CA, 92093, USA
| | - Beth E Fisher
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033, USA
| | - John D Van Horn
- Department of Psychology and School of Data Science, University of Virginia, Charlottesville, VA, 22904, USA
| | - Michael W Jakowec
- Department of Neurology, University of Southern California, 1520 San Pablo St., HCC-2, Suite 3000, Los Angeles, CA, 90033, USA
| | - Sarah C McEwen
- Department of Translational Neurosciences and Neurotherapeutics, Saint John's Cancer Institute, Santa Monica, CA, 90404, USA
| | - Giselle Petzinger
- Department of Neurology, University of Southern California, 1520 San Pablo St., HCC-2, Suite 3000, Los Angeles, CA, 90033, USA
| |
Collapse
|
13
|
Pelosin E, Cerulli C, Ogliastro C, Lagravinese G, Mori L, Bonassi G, Mirelman A, Hausdorff JM, Abbruzzese G, Marchese R, Avanzino L. A Multimodal Training Modulates Short Afferent Inhibition and Improves Complex Walking in a Cohort of Faller Older Adults With an Increased Prevalence of Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 75:722-728. [PMID: 30874799 DOI: 10.1093/gerona/glz072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Falls are frequent in Parkinson's disease and aging. Impairments in the cholinergic-mediated attentional supervision of gait may contribute to increased fall risk, especially when obstacles challenge gait. Interventions combining motor-cognitive approaches have been shown to improve motor performance, cognitive skills, and falls number. Here, we hypothesized that an intervention simulating an attention-demanding walking condition could affect not only complex gait performance and fall risk but also short-latency afferent inhibition (SAI), as a marker of cholinergic activity. METHODS Thirty-nine participants at falls risk (24 Parkinson's disease participants and 15 older adults) were recruited in a randomized controlled trial. Participants were assigned to treadmill training or treadmill training with non-immersive virtual reality intervention and trained three times a week for 6 weeks. SAI, a transcranial magnetic stimulation paradigm, was used to assess cholinergic activity. Gait kinematics was measured during usual walking and while negotiating physical obstacles. Transcranial magnetic stimulation and gait assessments were performed pre, post, and 6 months post-intervention. RESULTS Treadmill training combined with non-immersive virtual reality induced an increase in inhibition of the SAI protocol on cortical excitability, improved obstacle negotiation performance, and induced a reduction of the number of falls compared with treadmill training. Furthermore, the more SAI increased after training, the more the obstacle negotiation performance improved and fall rate decreased. CONCLUSIONS We provide evidence that an innovative rehabilitation approach targeting cognitive components of complex motor actions can induce changes in cortical cholinergic activity, as indexed by SAI, thereby enabling functional gait improvements.
Collapse
Affiliation(s)
- Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Cecilia Cerulli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Carla Ogliastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel.,Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | | | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCSS, Genova, Italy.,Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| |
Collapse
|
14
|
Garrigos D, Martínez-Morga M, Toval A, Kutsenko Y, Barreda A, Do Couto BR, Navarro-Mateu F, Ferran JL. A Handful of Details to Ensure the Experimental Reproducibility on the FORCED Running Wheel in Rodents: A Systematic Review. Front Endocrinol (Lausanne) 2021; 12:638261. [PMID: 34040580 PMCID: PMC8141847 DOI: 10.3389/fendo.2021.638261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 04/16/2021] [Indexed: 12/21/2022] Open
Abstract
A well-documented method and experimental design are essential to ensure the reproducibility and reliability in animal research. Experimental studies using exercise programs in animal models have experienced an exponential increase in the last decades. Complete reporting of forced wheel and treadmill exercise protocols would help to ensure the reproducibility of training programs. However, forced exercise programs are characterized by a poorly detailed methodology. Also, current guidelines do not cover the minimum data that must be included in published works to reproduce training programs. For this reason, we have carried out a systematic review to determine the reproducibility of training programs and experimental designs of published research in rodents using a forced wheel system. Having determined that most of the studies were not detailed enough to be reproducible, we have suggested guidelines for animal research using FORCED exercise wheels, which could also be applicable to any form of forced exercise.
Collapse
Affiliation(s)
- Daniel Garrigos
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Marta Martínez-Morga
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Angel Toval
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Yevheniy Kutsenko
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Alberto Barreda
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
| | - Bruno Ribeiro Do Couto
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Faculty of Psychology, University of Murcia, Murcia, Spain
| | - Fernando Navarro-Mateu
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- Unidad de Docencia, Investigación y Formación en Salud Mental (UDIF-SM), Servicio Murciano de Salud, Murcia, Spain
- CIBER de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
- Departamento de Psicología Básica y Metodología, Universidad de Murcia, Murcia, Spain
| | - José Luis Ferran
- Department of Human Anatomy and Psychobiology, Faculty of Medicine, University of Murcia, Murcia, Spain
- Institute of Biomedical Research of Murcia—IMIB, Virgen de la Arrixaca University Hospital, University of Murcia, Murcia, Spain
- *Correspondence: José Luis Ferran,
| |
Collapse
|
15
|
Aerobic Exercise and Healthy Nutrition as Neuroprotective Agents for Brain Health in Patients with Parkinson's Disease: A Critical Review of the Literature. Antioxidants (Basel) 2020; 9:antiox9050380. [PMID: 32380715 PMCID: PMC7278852 DOI: 10.3390/antiox9050380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 12/13/2022] Open
Abstract
Parkinson’s disease (PD) is characterized by motor and nonmotor features that have an influence on patients’ quality of life at different levels. To date, some evidences have arisen on the effectiveness of physical trainings and nutrients intake in ameliorating functional and cognitive outcomes in PD patients. Physical activity is effective in improving both motor and nonmotor features and recent epidemiological investigations have revealed the pivotal role that dietary patterns may play in reducing the risk of PD highlighting the pathogenesis of the neurodegeneration. Specifically, aerobic exercise shows beneficial effects in improving motor functions and executive control in PD patients, as well as proper nutrition may help in improving neuroprotective agents counteracting neurodegeneration and allows patients to better interact with the medication. Our narrative review critically focused on aerobic exercise and nutrition in PD in order to point out the best prescriptions for brain health of affected patients. Implications for a therapeutic plan and rehabilitation for these patients are also discussed.
Collapse
|
16
|
Intensive treadmill exercise increases expression of hypoxia-inducible factor 1α and its downstream transcript targets: a potential role in neuroplasticity. Neuroreport 2019; 30:619-627. [PMID: 31045849 DOI: 10.1097/wnr.0000000000001239] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Exercise and other forms of physical activity lead to the activation of specific motor and cognitive circuits within the mammalian brain. These activated neuronal circuits are subjected to increased metabolic demand and must respond to transient but significant reduction in available oxygen. The transcription factor hypoxia-inducible factor 1α (HIF-1α) is a regulatory mediator of a wide spectrum of genes involved in metabolism, synaptogenesis, and blood flow. The purpose of this study was to begin to explore the potential relationship between exercise in the form of running on a motorized treadmill and the activation of genes involved in exercise-dependent neuroplasticity to begin to elucidate the underlying molecular mechanisms involved. Mice were subjected to treadmill exercise and striatal tissues analyzed with a commercial microarray designed to identify transcripts whose expression is altered by exposure to hypoxia, a condition occurring in cells under a high metabolic demand. Several candidate genes were identified, and a subset involved in metabolism and angiogenesis were selected to elucidate their temporal and regional patterns of expression with exercise. Transcript analysis included Hif1a (hypoxia-inducible factor 1α), Ldha (lactate dehydrogenase A), Slc2a1 (glucose transporter 1), Slc16a1 (monocarboxylate transporter 1), Slc16a7 (monocarboxylate transporter 2), and Vegf (vascular endothelial growth factor). Overall these results indicate that several genes involved in the elevated metabolic response with exercise are consistent with increased expression of HIF-1α suggesting a regulatory role for HIF-1α in exercise-enhanced neuroplasticity. Furthermore, these increases in gene expression appear regionally specific; occurring with brain regions we have previously shown to be sites for increased cerebral blood flow with activity. Such findings are beginning to lay down a working hypothesis that specific forms of exercise lead to circuit specific neuronal activation and can identify a potentially novel therapeutic approach to target dysfunctional behaviors subserved by such circuitry.
Collapse
|
17
|
Cucarián JD, Berrío JP, Rodrigues C, Zancan M, Wink MR, de Oliveira A. Physical exercise and human adipose-derived mesenchymal stem cells ameliorate motor disturbances in a male rat model of Parkinson's disease. J Neurosci Res 2019; 97:1095-1109. [PMID: 31119788 DOI: 10.1002/jnr.24442] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 04/23/2019] [Accepted: 04/24/2019] [Indexed: 01/20/2023]
Abstract
Parkinson's disease (PD) is a disabling and highly costly neurodegenerative condition with worldwide prevalence. Despite advances in treatments that slow progression and minimize locomotor impairments, its clinical management is still a challenge. Previous preclinical studies, using mesenchymal stem cell (MSC) transplantation and isolated physical exercise (EX), reported beneficial results for treatment of PD. Therefore, this experimental randomized study aimed to elucidate the therapeutic potential of combined therapy using adipose-derived human MSCs (ADSCs) grafted into the striatum in conjunction with aerobic treadmill training, specifically in terms of locomotor performance in a unilateral PD rat model induced by 6-hydroxydopamine (6-OHDA). Forty-one male Wistar rats were categorized into five groups in accordance with the type of treatment to which they were subjected (Sham, 6-OHDA - injury, 6-OHDA + exercise, 6-OHDA + cells, and 6-OHDA + combined). Subsequently, dopaminergic depletion was assessed by the methylphenidate challenge and the specified therapeutic intervention was conducted in each group. The foot fault task was performed at the end of the experiment to serve as an assessment of motor skills. The results showed that despite disturbances in motor balance and coordination, locomotor dysfunction was ameliorated in all treatment categories in comparison to the injury group (sign test, p < 0.001, effect size: 0.71). The exercise alone and combined groups were the categories that exhibited the best recovery in terms of movement performance (p < 0.001). Overall, this study confirms that exercise is a powerful option to improve motor function and a promising adjuvant intervention for stem cell transplantation in the treatment of PD motor symptoms. OPEN PRACTICES: This article has been awarded Open Data. All materials and data are publicly accessible at https://figshare.com/s/18a543c101a17a1d5560. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Jaison D Cucarián
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Jenny P Berrío
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Cristiano Rodrigues
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Mariana Zancan
- Graduate Course in Neuroscience, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Márcia R Wink
- Cell Biology Research Laboratory, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| | - Alcyr de Oliveira
- Graduate Course in Rehabilitation Sciences, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil.,Graduate Course in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Brazil
| |
Collapse
|
18
|
Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neurosci Ther 2019; 25:816-824. [PMID: 30889315 PMCID: PMC6566063 DOI: 10.1111/cns.13116] [Citation(s) in RCA: 201] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 02/13/2019] [Accepted: 02/13/2019] [Indexed: 12/15/2022] Open
Abstract
Mitochondria not only supply the energy for cell function, but also take part in cell signaling. This review describes the dysfunctions of mitochondria in aging and neurodegenerative diseases, and the signaling pathways leading to mitochondrial biogenesis (including PGC‐1 family proteins, SIRT1, AMPK) and mitophagy (parkin‐Pink1 pathway). Understanding the regulation of these mitochondrial pathways may be beneficial in finding pharmacological approaches or lifestyle changes (caloric restrict or exercise) to modulate mitochondrial biogenesis and/or to activate mitophagy for the removal of damaged mitochondria, thus reducing the onset and/or severity of neurodegenerative diseases.
Collapse
Affiliation(s)
- Yan Wang
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Erin Xu
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Phillip R Musich
- Department of Biomedical Sciences, Quillen College of Medicine, East Tennessee State University, Johnson City, Tennessee
| | - Fang Lin
- Department of Pharmacology, Laboratory of Aging and Nervous Diseases, School of Pharmaceutical Science, Soochow University, Suzhou, China
| |
Collapse
|
19
|
Berrío Sánchez J, Cucarian Hurtado J, Barcos Nunes R, de Oliveira AA. Mesenchymal stem cell transplantation and aerobic exercise for Parkinson's disease: therapeutic assets beyond the motor domain. Rev Neurosci 2019; 30:165-178. [PMID: 29959887 DOI: 10.1515/revneuro-2018-0011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/19/2018] [Indexed: 11/15/2022]
Abstract
Parkinson's disease (PD) is a very common neurodegenerative condition in which both motor and nonmotor deficits evolve throughout the course of the disease. Normally characterized as a movement disorder, PD has been broadly studied from a motor perspective. However, mild to moderate cognitive deficits began to appear in the early phases of the disease, even before motor disturbances actually manifest, and continue to progress relentlessly. These nonmotor manifestations are also a source of detriment to the patients' already strained functionality and quality of life, and pose a therapeutic challenge seeing that replacing therapies have had conflicting results. Considering that the currently approved therapies can hardly be considered curative, efforts to find therapeutic approaches with an actual disease-modifying quality and capable of addressing not only motor but also cognitive dysfunctions are clearly needed. Among possible alternatives with such attribute, mesenchymal stem cell transplantation and exercise are worth highlighting given their common neuroprotective, neuroplastic, and immunomodulatory properties. In this paper, we will summarize the existent literature on the topic, focusing on the mechanisms of action through which these two approaches might beget therapeutic benefits for PD beyond the commonly assessed motor dysfunctions, alluding, at the same time, toward a potential synergic association of both therapies as an optimized approach for PD.
Collapse
Affiliation(s)
- Jenny Berrío Sánchez
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Jaison Cucarian Hurtado
- Graduate Program in Rehabilitation Science, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| | - Ramiro Barcos Nunes
- Research Department, Instituto Federal de Educação, Ciência e Tecnologia. SUL-RIO-GRANDENSE, Rua Men de Sá, 800, Bom Sucesso, Gravataí, CEP 94.135-300, Brazil
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Department of Psychology, Federal University of Health Sciences of Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Porto Alegre, Rio Grande do Sul, CEP 90050-170, Brazil
| |
Collapse
|
20
|
Liang S, Jiang X, Zhang Q, Duan S, Zhang T, Huang Q, Sun X, Liu H, Dong J, Liu W, Tao J, Zhao S, Nie B, Chen L, Shan B. Abnormal Metabolic Connectivity in Rats at the Acute Stage of Ischemic Stroke. Neurosci Bull 2018; 34:715-724. [PMID: 30083891 PMCID: PMC6129253 DOI: 10.1007/s12264-018-0266-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/18/2018] [Indexed: 01/29/2023] Open
Abstract
Stroke at the acute stage is a major cause of disability in adults, and is associated with dysfunction of brain networks. However, the mechanisms underlying changes in brain connectivity in stroke are far from fully elucidated. In the present study, we investigated brain metabolism and metabolic connectivity in a rat ischemic stroke model of middle cerebral artery occlusion (MCAO) at the acute stage using 18F-fluorodeoxyglucose positron emission tomography. Voxel-wise analysis showed decreased metabolism mainly in the ipsilesional hemisphere, and increased metabolism mainly in the contralesional cerebellum. We used further metabolic connectivity analysis to explore the brain metabolic network in MCAO. Compared to sham controls, rats with MCAO showed most significantly reduced nodal and local efficiency in the ipsilesional striatum. In addition, the MCAO group showed decreased metabolic central connection of the ipsilesional striatum with the ipsilesional cerebellum, ipsilesional hippocampus, and bilateral hypothalamus. Taken together, the present study demonstrated abnormal metabolic connectivity in rats at the acute stage of ischemic stroke, which might provide insight into clinical research.
Collapse
Affiliation(s)
- Shengxiang Liang
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Xiaofeng Jiang
- School of Public Health and Family Medicine, Capital Medical University, Beijing, 100068, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shaofeng Duan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianhao Zhang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qi Huang
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xi Sun
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua Liu
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Dong
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China
| | - Weilin Liu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Jing Tao
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Shujun Zhao
- College of Physical Science and Technology, Zhengzhou University, Zhengzhou, 450001, China.
| | - Binbin Nie
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Lidian Chen
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China
| | - Baoci Shan
- Beijing Engineering Research Center of Radiographic Techniques and Equipment, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China
- School of Nuclear Science and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| |
Collapse
|
21
|
Sandroff BM, Motl RW, Reed WR, Barbey AK, Benedict RHB, DeLuca J. Integrative CNS Plasticity With Exercise in MS: The PRIMERS (PRocessing, Integration of Multisensory Exercise-Related Stimuli) Conceptual Framework. Neurorehabil Neural Repair 2018; 32:847-862. [DOI: 10.1177/1545968318798938] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
There is a proliferation of research examining the effects of exercise on mobility and cognition in the general population and those with neurological disorders as well as focal research examining possible neural mechanisms of such effects. However, there is seemingly a lack of focus on what it is about exercise, in particular, that drives adaptive central nervous system neuroplasticity. We propose a novel conceptual framework (ie, PRIMERS) that describes such adaptations as occurring via activity-dependent neuroplasticity based on the integrative processing of multisensory input and associated complex motor output that is required for the regulation of physiological systems during exercise behavior. This conceptual framework sets the stage for the systematic examination of the effects of exercise on brain connectivity, brain structure, and molecular/cellular mechanisms that explain improvements in mobility and cognition in the general population and persons with multiple sclerosis (MS). We argue that exercise can be viewed as an integrative, systems-wide stimulus for neurorehabilitation because impaired mobility and cognition are common and co-occurring in MS.
Collapse
Affiliation(s)
| | | | | | - Aron K. Barbey
- University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | | | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA
- Rutgers Medical School, Newark, NJ, USA
| |
Collapse
|
22
|
Broadwater MA, Lee SH, Yu Y, Zhu H, Crews FT, Robinson DL, Shih YYI. Adolescent alcohol exposure decreases frontostriatal resting-state functional connectivity in adulthood. Addict Biol 2018; 23:810-823. [PMID: 28691248 PMCID: PMC5760482 DOI: 10.1111/adb.12530] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 05/18/2017] [Accepted: 05/23/2017] [Indexed: 12/11/2022]
Abstract
Connectivity of the prefrontal cortex (PFC) matures through adolescence, coinciding with emergence of adult executive function and top-down inhibitory control over behavior. Alcohol exposure during this critical period of brain maturation may affect development of PFC and frontolimbic connectivity. Adult rats exposed to adolescent intermittent ethanol (AIE; 5 g/kg ethanol, 25 percent v/v in water, intragastrically, 2-day-on, 2-day-off, postnatal day 25-54) or water control underwent resting-state functional MRI to test the hypothesis that AIE induces persistent changes in frontolimbic functional connectivity under baseline and acute alcohol conditions (2 g/kg ethanol or saline, intraperitoneally administered during scanning). Data were acquired on a Bruker 9.4-T MR scanner with rats under dexmedetomidine sedation in combination with isoflurane. Frontolimbic network regions-of-interest for data analysis included PFC [prelimbic (PrL), infralimbic (IL), and orbitofrontal cortex (OFC) portions], nucleus accumbens (NAc), caudate putamen (CPu), dorsal hippocampus, ventral tegmental area, amygdala, and somatosensory forelimb used as a control region. AIE decreased baseline resting-state connectivity between PFC subregions (PrL-IL and IL-OFC) and between PFC-striatal regions (PrL-NAc, IL-CPu, IL-NAc, OFC-CPu, and OFC-NAc). Acute ethanol induced negative blood-oxygen-level-dependent changes within all regions of interest examined, along with significant increases in functional connectivity in control, but not AIE animals. Together, these data support the hypothesis that binge-like adolescent alcohol exposure causes persistent decreases in baseline frontolimbic (particularly frontostriatal) connectivity and alters sensitivity to acute ethanol-induced increases in functional connectivity in adulthood.
Collapse
Affiliation(s)
| | - Sung-Ho Lee
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Yang Yu
- Department of Statistics and Operations, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| | - Fulton T. Crews
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Pharmacology, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Donita L. Robinson
- Bowles Center for Alcohol Studies, University of North Carolina, Chapel Hill, NC, USA
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
- Departments of Biomedical Research Imaging Center and Biomedical Engineering, University of North Carolina, Chapel Hill, NC, USA
| |
Collapse
|
23
|
Bajic D, Craig MM, Mongerson CRL, Borsook D, Becerra L. Identifying Rodent Resting-State Brain Networks with Independent Component Analysis. Front Neurosci 2017; 11:685. [PMID: 29311770 PMCID: PMC5733053 DOI: 10.3389/fnins.2017.00685] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/22/2017] [Indexed: 01/08/2023] Open
Abstract
Rodent models have opened the door to a better understanding of the neurobiology of brain disorders and increased our ability to evaluate novel treatments. Resting-state functional magnetic resonance imaging (rs-fMRI) allows for in vivo exploration of large-scale brain networks with high spatial resolution. Its application in rodents affords researchers a powerful translational tool to directly assess/explore the effects of various pharmacological, lesion, and/or disease states on known neural circuits within highly controlled settings. Integration of animal and human research at the molecular-, systems-, and behavioral-levels using diverse neuroimaging techniques empowers more robust interrogations of abnormal/ pathological processes, critical for evolving our understanding of neuroscience. We present a comprehensive protocol to evaluate resting-state brain networks using Independent Component Analysis (ICA) in rodent model. Specifically, we begin with a brief review of the physiological basis for rs-fMRI technique and overview of rs-fMRI studies in rodents to date, following which we provide a robust step-by-step approach for rs-fMRI investigation including data collection, computational preprocessing, and brain network analysis. Pipelines are interwoven with underlying theory behind each step and summarized methodological considerations, such as alternative methods available and current consensus in the literature for optimal results. The presented protocol is designed in such a way that investigators without previous knowledge in the field can implement the analysis and obtain viable results that reliably detect significant differences in functional connectivity between experimental groups. Our goal is to empower researchers to implement rs-fMRI in their respective fields by incorporating technical considerations to date into a workable methodological framework.
Collapse
Affiliation(s)
- Dusica Bajic
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Michael M Craig
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - Chandler R L Mongerson
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States
| | - David Borsook
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Lino Becerra
- Department of Anesthesiology, Perioperative and Pain Medicine, Boston Children's Hospital, Boston, MA, United States.,Center for Pain and the Brain, Boston Children's Hospital, Boston, MA, United States.,Department of Anaesthesia, Harvard Medical School, Harvard University, Boston, MA, United States
| |
Collapse
|
24
|
Hou L, Chen W, Liu X, Qiao D, Zhou FM. Exercise-Induced Neuroprotection of the Nigrostriatal Dopamine System in Parkinson's Disease. Front Aging Neurosci 2017; 9:358. [PMID: 29163139 PMCID: PMC5675869 DOI: 10.3389/fnagi.2017.00358] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 10/19/2017] [Indexed: 12/11/2022] Open
Abstract
Epidemiological studies indicate that physical activity and exercise may reduce the risk of developing Parkinson's disease (PD), and clinical observations suggest that physical exercise can reduce the motor symptoms in PD patients. In experimental animals, a profound observation is that exercise of appropriate timing, duration, and intensity can reduce toxin-induced lesion of the nigrostriatal dopamine (DA) system in animal PD models, although negative results have also been reported, potentially due to inappropriate timing and intensity of the exercise regimen. Exercise may also minimize DA denervation-induced medium spiny neuron (MSN) dendritic atrophy and other abnormalities such as enlarged corticostriatal synapse and abnormal MSN excitability and spiking activity. Taken together, epidemiological studies, clinical observations, and animal research indicate that appropriately dosed physical activity and exercise may not only reduce the risk of developing PD in vulnerable populations but also benefit PD patients by potentially protecting the residual DA neurons or directly restoring the dysfunctional cortico-basal ganglia motor control circuit, and these benefits may be mediated by exercise-triggered production of endogenous neuroprotective molecules such as neurotrophic factors. Thus, exercise is a universally available, side effect-free medicine that should be prescribed to vulnerable populations as a preventive measure and to PD patients as a component of treatment. Future research needs to establish standardized exercise protocols that can reliably induce DA neuron protection, enabling the delineation of the underlying cellular and molecular mechanisms that in turn can maximize exercise-induced neuroprotection and neurorestoration in animal PD models and eventually in PD patients.
Collapse
Affiliation(s)
- Lijuan Hou
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Wei Chen
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China.,Department of Exercise and Rehabilitation, Physical Education College, Hebei Normal University, Shijiazhuang, China
| | - Xiaoli Liu
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Decai Qiao
- Exercise Physiology Laboratory, College of Physical Education and Sports, Beijing Normal University, Beijing, China
| | - Fu-Ming Zhou
- Department of Pharmacology, University of Tennessee College of Medicine, Memphis, TN, United States
| |
Collapse
|
25
|
Maidan I, Rosenberg-Katz K, Jacob Y, Giladi N, Hausdorff JM, Mirelman A. Disparate effects of training on brain activation in Parkinson disease. Neurology 2017; 89:1804-1810. [PMID: 28954877 DOI: 10.1212/wnl.0000000000004576] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/20/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To compare the effects of 2 forms of exercise, i.e., a 6-week trial of treadmill training with virtual reality (TT + VR) that targets motor and cognitive aspects of safe ambulation and a 6-week trial of treadmill training alone (TT), on brain activation in patients with Parkinson disease (PD). METHODS As part of a randomized controlled trial, patients were randomly assigned to 6 weeks of TT (n = 17, mean age 71.5 ± 1.5 years, disease duration 11.6 ± 1.6 years; 70% men) or TT + VR (n = 17, mean age 71.2 ± 1.7 years, disease duration 7.9 ± 1.4 years; 65% men). A previously validated fMRI imagery paradigm assessed changes in neural activation pretraining and post-training. Participants imagined themselves walking in 2 virtual scenes projected in the fMRI: (1) a clear path and (2) a path with virtual obstacles. Whole brain and region of interest analyses were performed. RESULTS Brain activation patterns were similar between training arms before the interventions. After training, participants in the TT + VR arm had lower activation than the TT arm in Brodmann area 10 and the inferior frontal gyrus (cluster level familywise error-corrected [FWEcorr] p < 0.012), while the TT arm had lower activation than TT + VR in the cerebellum and middle temporal gyrus (cluster level FWEcorr p < 0.001). Changes in fall frequency and brain activation were correlated in the TT + VR arm. CONCLUSIONS Exercise modifies brain activation patterns in patients with PD in a mode-specific manner. Motor-cognitive training decreased the reliance on frontal regions, which apparently resulted in improved function, perhaps reflecting increased brain efficiency.
Collapse
Affiliation(s)
- Inbal Maidan
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL
| | - Keren Rosenberg-Katz
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL
| | - Yael Jacob
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL
| | - Nir Giladi
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL
| | - Jeffrey M Hausdorff
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL
| | - Anat Mirelman
- From the Center for the Study of Movement, Cognition, and Mobility, Neurological Institute (I.M., K.R.-K., Y.J., N.G., J.M.H., A.M.), and Laboratory of Early Markers of Neurodegeneration (A.M.), Tel Aviv Sourasky Medical Center; Sagol School of Neuroscience (N.G., J.M.H., A.M.) and Departments of Neurology & Neurosurgery (N.G., A.M.) and Physical Therapy (J.M.H.), Sackler Faculty of Medicine, Tel Aviv University, Israel; and Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery (J.M.H.), Rush University Medical Center, Chicago, IL.
| |
Collapse
|
26
|
Sheibani V, Rafie F, Shahbazi M, Naghdi N, Sheikh M. Comparison of voluntary and forced exercise effects on motor behavior in 6-hydroxydopamine-lesion rat model of Parkinson’s disease. SPORT SCIENCES FOR HEALTH 2017. [DOI: 10.1007/s11332-017-0354-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Duchesne C, Gheysen F, Bore A, Albouy G, Nadeau A, Robillard M, Bobeuf F, Lafontaine A, Lungu O, Bherer L, Doyon J. Influence of aerobic exercise training on the neural correlates of motor learning in Parkinson's disease individuals. Neuroimage Clin 2016; 12:559-569. [PMID: 27689020 PMCID: PMC5031470 DOI: 10.1016/j.nicl.2016.09.011] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 09/01/2016] [Accepted: 09/10/2016] [Indexed: 12/04/2022]
Abstract
BACKGROUND Aerobic exercise training (AET) has been shown to provide general health benefits, and to improve motor behaviours in particular, in individuals with Parkinson's disease (PD). However, the influence of AET on their motor learning capacities, as well as the change in neural substrates mediating this effect remains to be explored. OBJECTIVE In the current study, we employed functional Magnetic Resonance Imaging (fMRI) to assess the effect of a 3-month AET program on the neural correlates of implicit motor sequence learning (MSL). METHODS 20 healthy controls (HC) and 19 early PD individuals participated in a supervised, high-intensity, stationary recumbent bike training program (3 times/week for 12 weeks). Exercise prescription started at 20 min (+ 5 min/week up to 40 min) based on participant's maximal aerobic power. Before and after the AET program, participants' brain was scanned while performing an implicit version of the serial reaction time task. RESULTS Brain data revealed pre-post MSL-related increases in functional activity in the hippocampus, striatum and cerebellum in PD patients, as well as in the striatum in HC individuals. Importantly, the functional brain changes in PD individuals correlated with changes in aerobic fitness: a positive relationship was found with increased activity in the hippocampus and striatum, while a negative relationship was observed with the cerebellar activity. CONCLUSION Our results reveal, for the first time, that exercise training produces functional changes in known motor learning related brain structures that are consistent with improved behavioural performance observed in PD patients. As such, AET can be a valuable non-pharmacological intervention to promote, not only physical fitness in early PD, but also better motor learning capacity useful in day-to-day activities through increased plasticity in motor related structures.
Collapse
Affiliation(s)
- C. Duchesne
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - F. Gheysen
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Ghent University, Ghent, Belgium
| | - A. Bore
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
| | - G. Albouy
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - A. Nadeau
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| | - M.E. Robillard
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
| | - F. Bobeuf
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
| | - A.L. Lafontaine
- McGill Movement Disorder Clinic, McGill University, Montréal, Québec, Canada
| | - O. Lungu
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychiatrie, Université de Montréal, Montréal, Québec, Canada
- Centre for Research in Aging, Donald Berman Maimonides Geriatric Centre, Montréal, Québec, Canada
| | - L. Bherer
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- PERFORM Centre, Concordia University, Montréal, Québec, Canada
| | - J. Doyon
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Montréal, Québec, Canada
- Unité de Neuroimagerie Fonctionelle, Montréal, Québec, Canada
- Département de psychologie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
28
|
Jakowec MW, Wang Z, Holschneider D, Beeler J, Petzinger GM. Engaging cognitive circuits to promote motor recovery in degenerative disorders. exercise as a learning modality. J Hum Kinet 2016; 52:35-51. [PMID: 28149392 PMCID: PMC5260516 DOI: 10.1515/hukin-2015-0192] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2016] [Indexed: 12/12/2022] Open
Abstract
Exercise and physical activity are fundamental components of a lifestyle essential in maintaining a healthy brain. This is primarily due to the fact that the adult brain maintains a high degree of plasticity and activity is essential for homeostasis throughout life. Plasticity is not lost even in the context of a neurodegenerative disorder, but could be maladaptive thus promoting disease onset and progression. A major breakthrough in treating brain disorders such as Parkinson's disease is to drive neuroplasticity in a direction to improve motor and cognitive dysfunction. The purpose of this short review is to present the evidence from our laboratories that supports neuroplasticity as a potential therapeutic target in treating brain disorders. We consider that the enhancement of motor recovery in both animal models of dopamine depletion and in patients with Parkinson's disease is optimized when cognitive circuits are engaged; in other words, the brain is engaged in a learning modality. Therefore, we propose that to be effective in treating Parkinson's disease, physical therapy must employ both skill-based exercise (to drive specific circuits) and aerobic exercise (to drive the expression of molecules required to strengthen synaptic connections) components to select those neuronal circuits, such as the corticostriatal pathway, necessary to restore proper motor and cognitive behaviors. In the wide spectrum of different forms of exercise, learning as the fundamental modality likely links interventions used to treat patients with Parkinson's disease and may be necessary to drive beneficial neuroplasticity resulting in symptomatic improvement and possible disease modification.
Collapse
Affiliation(s)
- Michael W. Jakowec
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| | - Zhou Wang
- Department of Psychiatry, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Holschneider
- Department of Psychiatry, University of Southern California, Los Angeles, California, United States of America
| | - Jeff Beeler
- Department of Psychology, Queens College, City University of New York, New York City, United States of America
| | - Giselle M. Petzinger
- Department of Neurology, University of Southern California, Los Angeles, California, United States of America
| |
Collapse
|
29
|
Jonckers E, Shah D, Hamaide J, Verhoye M, Van der Linden A. The power of using functional fMRI on small rodents to study brain pharmacology and disease. Front Pharmacol 2015; 6:231. [PMID: 26539115 PMCID: PMC4612660 DOI: 10.3389/fphar.2015.00231] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/28/2015] [Indexed: 12/23/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) is an excellent tool to study the effect of pharmacological modulations on brain function in a non-invasive and longitudinal manner. We introduce several blood oxygenation level dependent (BOLD) fMRI techniques, including resting state (rsfMRI), stimulus-evoked (st-fMRI), and pharmacological MRI (phMRI). Respectively, these techniques permit the assessment of functional connectivity during rest as well as brain activation triggered by sensory stimulation and/or a pharmacological challenge. The first part of this review describes the physiological basis of BOLD fMRI and the hemodynamic response on which the MRI contrast is based. Specific emphasis goes to possible effects of anesthesia and the animal’s physiological conditions on neural activity and the hemodynamic response. The second part of this review describes applications of the aforementioned techniques in pharmacologically induced, as well as in traumatic and transgenic disease models and illustrates how multiple fMRI methods can be applied successfully to evaluate different aspects of a specific disorder. For example, fMRI techniques can be used to pinpoint the neural substrate of a disease beyond previously defined hypothesis-driven regions-of-interest. In addition, fMRI techniques allow one to dissect how specific modifications (e.g., treatment, lesion etc.) modulate the functioning of specific brain areas (st-fMRI, phMRI) and how functional connectivity (rsfMRI) between several brain regions is affected, both in acute and extended time frames. Furthermore, fMRI techniques can be used to assess/explore the efficacy of novel treatments in depth, both in fundamental research as well as in preclinical settings. In conclusion, by describing several exemplary studies, we aim to highlight the advantages of functional MRI in exploring the acute and long-term effects of pharmacological substances and/or pathology on brain functioning along with several methodological considerations.
Collapse
Affiliation(s)
- Elisabeth Jonckers
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Disha Shah
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Julie Hamaide
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Marleen Verhoye
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| | - Annemie Van der Linden
- Bio-Imaging Lab, Department of Biomedical Sciences, University of Antwerp Antwerp, Belgium
| |
Collapse
|
30
|
Petzinger GM, Holschneider DP, Fisher BE, McEwen S, Kintz N, Halliday M, Toy W, Walsh JW, Beeler J, Jakowec MW. The Effects of Exercise on Dopamine Neurotransmission in Parkinson's Disease: Targeting Neuroplasticity to Modulate Basal Ganglia Circuitry. Brain Plast 2015; 1:29-39. [PMID: 26512345 PMCID: PMC4621077 DOI: 10.3233/bpl-150021] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Animal studies have been instrumental in providing evidence for exercise-induced neuroplasticity of corticostriatal circuits that are profoundly affected in Parkinson’s disease. Exercise has been implicated in modulating dopamine and glutamate neurotransmission, altering synaptogenesis, and increasing cerebral blood flow. In addition, recent evidence supports that the type of exercise may have regional effects on brain circuitry, with skilled exercise differentially affecting frontal-striatal related circuits to a greater degree than pure aerobic exercise. Neuroplasticity in models of dopamine depletion will be reviewed with a focus on the influence of exercise on the dorsal lateral striatum and prefrontal related circuitry underlying motor and cognitive impairment in PD. Although clearly more research is needed to address major gaps in our knowledge, we hypothesize that the potential effects of exercise on inducing neuroplasticity in a circuit specific manner may occur through synergistic mechanisms that include the coupling of an increasing neuronal metabolic demand and increased blood flow. Elucidation of these mechanisms may provide important new targets for facilitating brain repair and modifying the course of disease in PD.
Collapse
Affiliation(s)
- G M Petzinger
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - D P Holschneider
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Department of Psychiatry and the Behavioral Sciences, University of Southern California, Los Angeles, CA, 90033
| | - B E Fisher
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| | - S McEwen
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - N Kintz
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - M Halliday
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - W Toy
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033
| | - J W Walsh
- Andrus Gerontology, University of Southern California, Los Angeles, CA, 90033, and Department of Psychiatry & Biobehavioral Sciences, University of California at Los Angeles, Los Angeles, CA, 90095
| | - J Beeler
- Department of Psychology, CUNY, New York
| | - M W Jakowec
- Department of Neurology, University of Southern California, Los Angeles, CA, 90033 ; Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, 90033
| |
Collapse
|
31
|
Mallio CA, Zobel BB, Quattrocchi CC. Evaluating rehabilitation interventions in Parkinson's disease with functional MRI: a promising neuroprotective strategy. Neural Regen Res 2015; 10:702-3. [PMID: 26109938 PMCID: PMC4468755 DOI: 10.4103/1673-5374.156957] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2015] [Indexed: 11/18/2022] Open
Affiliation(s)
- Carlo Augusto Mallio
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Bruno Beomonte Zobel
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Carlo Cosimo Quattrocchi
- Departmental Faculty of Medicine and Surgery, Unit of Diagnostic Imaging, Università Campus Bio-Medico di Roma, Rome, Italy
| |
Collapse
|
32
|
Wang Z, Guo Y, Myers KG, Heintz R, Holschneider DP. Recruitment of the prefrontal cortex and cerebellum in Parkinsonian rats following skilled aerobic exercise. Neurobiol Dis 2015; 77:71-87. [PMID: 25747184 DOI: 10.1016/j.nbd.2015.02.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Revised: 01/18/2015] [Accepted: 02/21/2015] [Indexed: 11/29/2022] Open
Abstract
Exercise modality and complexity play a key role in determining neurorehabilitative outcome in Parkinson's disease (PD). Exercise training (ET) that incorporates both motor skill training and aerobic exercise has been proposed to synergistically improve cognitive and automatic components of motor control in PD patients. Here we introduced such a skilled aerobic ET paradigm in a rat model of dopaminergic deafferentation. Rats with bilateral, intra-striatal 6-hydroxydopamine lesions were exposed to forced ET for 4weeks, either on a simple running wheel (non-skilled aerobic exercise, NSAE) or on a complex wheel with irregularly spaced rungs (skilled aerobic exercise, SAE). Cerebral perfusion was mapped during horizontal treadmill walking or at rest using [(14)C]-iodoantipyrine 1week after the completion of ET. Regional cerebral blood flow (rCBF) was quantified by autoradiography and analyzed in 3-dimensionally reconstructed brains by statistical parametric mapping. SAE compared to NSAE resulted in equal or greater recovery in motor deficits, as well as greater increases in rCBF during walking in the prelimbic area of the prefrontal cortex, broad areas of the somatosensory cortex, and the cerebellum. NSAE compared to SAE animals showed greater activation in the dorsal caudate-putamen and dorsal hippocampus. Seed correlation analysis revealed enhanced functional connectivity in SAE compared to NSAE animals between the prelimbic cortex and motor areas, as well as altered functional connectivity between midline cerebellum and sensorimotor regions. Our study provides the first evidence for functional brain reorganization following skilled aerobic exercise in Parkinsonian rats, and suggests that SAE compared to NSAE results in enhancement of prefrontal cortex- and cerebellum-mediated control of motor function.
Collapse
Affiliation(s)
- Zhuo Wang
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Yumei Guo
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Kalisa G Myers
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Ryan Heintz
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA
| | - Daniel P Holschneider
- Department of Psychiatry and Behavioral Sciences, University of Southern California, Los Angeles, CA, USA; Departments of Biomedical Engineering, Neurology, Cell and Neurobiology, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|