1
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock B, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Netherlands Brain Bank, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's disease. eLife 2025; 13:RP96519. [PMID: 40085681 PMCID: PMC11908784 DOI: 10.7554/elife.96519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025] Open
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however, few studies have investigated its role in neurodegenerative processes such as Alzheimer's disease (AD). Here, we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in humans, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Samantha Y Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Barbara Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Nicholas D Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Christine A Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine, Weill Cornell New YorkNew YorkUnited States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New YorkNew YorkUnited States
| | - W Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony BrookNew YorkUnited States
| | - Frédéric Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNew YorkUnited States
| |
Collapse
|
2
|
Larose A, Miller CCJ, Mórotz GM. The lemur tail kinase family in neuronal function and disfunction in neurodegenerative diseases. Cell Mol Life Sci 2024; 81:447. [PMID: 39520508 PMCID: PMC11550312 DOI: 10.1007/s00018-024-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 09/12/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024]
Abstract
The complex neuronal architecture and the long distance of synapses from the cell body require precisely orchestrated axonal and dendritic transport processes to support key neuronal functions including synaptic signalling, learning and memory formation. Protein phosphorylation is a major regulator of both intracellular transport and synaptic functions. Some kinases and phosphatases such as cyclin dependent kinase-5 (cdk5)/p35, glycogen synthase kinase-3β (GSK3β) and protein phosphatase-1 (PP1) are strongly involved in these processes. A primary pathological hallmark of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and amyotrophic lateral sclerosis/frontotemporal dementia, is synaptic degeneration together with disrupted intracellular transport. One attractive possibility is that alterations to key kinases and phosphatases may underlie both synaptic and axonal transport damages. The brain enriched lemur tail kinases (LMTKs, formerly known as lemur tyrosine kinases) are involved in intracellular transport and synaptic functions, and are also centrally placed in cdk5/p35, GSK3β and PP1 signalling pathways. Loss of LMTKs is documented in major neurodegenerative diseases and thus can contribute to pathological defects in these disorders. However, whilst function of their signalling partners became clearer in modulating both synaptic signalling and axonal transport progress has only recently been made around LMTKs. In this review, we describe this progress with a special focus on intracellular transport, synaptic functions and neurodegenerative diseases.
Collapse
Affiliation(s)
- Angelique Larose
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, 125 Coldharbour Lane Camberwell, London, SE5 9RX, UK.
| | - Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary.
- Center for Pharmacology and Drug Research & Development, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
3
|
Hamoud AR, Alganem K, Hanna S, Morran M, Henkel N, Imami AS, Ryan W, Sahay S, Pulvender P, Kunch A, Arvay TO, Meller J, Shukla R, O'Donovan SM, McCullumsmith R. Illuminating the dark kinome: utilizing multiplex peptide activity arrays to functionally annotate understudied kinases. Cell Commun Signal 2024; 22:501. [PMID: 39415254 PMCID: PMC11484317 DOI: 10.1186/s12964-024-01868-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 10/02/2024] [Indexed: 10/18/2024] Open
Abstract
Protein kinases are critical components of a myriad biological processes and strongly associated with various diseases. While kinase research has been a point of focus in biomedical research for several decades, a large portion of the kinome is still considered understudied or "dark," because prior research is targeted towards a subset of kinases with well-established roles in cellular processes. We present an empirical and in-silico hybrid workflow to extend the functional knowledge of understudied kinases. Utilizing multiplex peptide activity arrays and robust in-silico analyses, we extended the functional knowledge of five dark tyrosine kinases (AATK, EPHA6, INSRR, LTK, TNK1) and explored their roles in schizophrenia, Alzheimer's dementia (AD), and major depressive disorder (MDD). Using this hybrid approach, we identified 195 novel kinase-substrate interactions with variable degrees of affinity and linked extended functional networks for these kinases to biological processes that are impaired in psychiatric and neurological disorders. Biochemical assays and mass spectrometry were used to confirm a putative substrate of EPHA6, an understudied dark tyrosine kinase. We examined the EPHA6 network and knowledgebase in schizophrenia using reporter peptides identified and validated from the multi-plex array with high affinity for phosphorylation by EPHA6. Identification and confirmation of putative substrates for understudied kinases provides a wealth of actionable information for the development of new drug treatments as well as exploration of the pathophysiology of disease states using signaling network approaches.
Collapse
Affiliation(s)
- Abdul-Rizaq Hamoud
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Khaled Alganem
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Sean Hanna
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Michael Morran
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Nicholas Henkel
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Ali S Imami
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - William Ryan
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Smita Sahay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Priyanka Pulvender
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Austin Kunch
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Taylen O Arvay
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA
| | - Jarek Meller
- Department of Biomedical Informatics, University of Cincinnati, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Pharmacology and System Biology, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
- Department of Electrical Engineering and Computer Science, College of Engineering and Applied Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Rammohan Shukla
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY, USA
| | - Sinead M O'Donovan
- Department of Biological Sciences, University of Limerick, Castletroy, Limerick, Ireland
| | - Robert McCullumsmith
- Department of Neurosciences and Psychiatry, University of Toledo College of Medicine, Toledo, OH, USA.
- Neurosciences Institute, ProMedica, Toledo, OH, USA.
| |
Collapse
|
4
|
Hirakawa H, Terao T. The genetic association between bipolar disorder and dementia: a qualitative review. Front Psychiatry 2024; 15:1414776. [PMID: 39228919 PMCID: PMC11368786 DOI: 10.3389/fpsyt.2024.1414776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 08/05/2024] [Indexed: 09/05/2024] Open
Abstract
Bipolar disorder is a chronic disorder characterized by fluctuations in mood state and energy and recurrent episodes of mania/hypomania and depression. Bipolar disorder may be regarded as a neuro-progressive disorder in which repeated mood episodes may lead to cognitive decline and dementia development. In the current review, we employed genome-wide association studies to comprehensively investigate the genetic variants associated with bipolar disorder and dementia. Thirty-nine published manuscripts were identified: 20 on bipolar disorder and 19 on dementia. The results showed that the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A were overlapping between patients with bipolar disorder and dementia. In conclusion, the genes CACNA1C, GABBR2, SCN2A, CTSH, MSRA, and SH3PXD2A may be associated with the neuro-progression of bipolar disorder to dementia. Further genetic studies are needed to comprehensively clarify the role of genes in cognitive decline and the development of dementia in patients with bipolar disorder.
Collapse
Affiliation(s)
- Hirofumi Hirakawa
- Department of Neuropsychiatry, Oita University Faculty of Medicine, Yufu, Oita, Japan
| | | |
Collapse
|
5
|
Vicario R, Fragkogianni S, Weber L, Lazarov T, Hu Y, Hayashi SY, Craddock BP, Socci ND, Alberdi A, Baako A, Ay O, Ogishi M, Lopez-Rodrigo E, Kappagantula R, Viale A, Iacobuzio-Donahue CA, Zhou T, Ransohoff RM, Chesworth R, Netherlands Brain Bank, Abdel-Wahab O, Boisson B, Elemento O, Casanova JL, Miller WT, Geissmann F. A microglia clonal inflammatory disorder in Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577216. [PMID: 38328106 PMCID: PMC10849735 DOI: 10.1101/2024.01.25.577216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Somatic genetic heterogeneity resulting from post-zygotic DNA mutations is widespread in human tissues and can cause diseases, however few studies have investigated its role in neurodegenerative processes such as Alzheimer's Disease (AD). Here we report the selective enrichment of microglia clones carrying pathogenic variants, that are not present in neuronal, glia/stromal cells, or blood, from patients with AD in comparison to age-matched controls. Notably, microglia-specific AD-associated variants preferentially target the MAPK pathway, including recurrent CBL ring-domain mutations. These variants activate ERK and drive a microglia transcriptional program characterized by a strong neuro-inflammatory response, both in vitro and in patients. Although the natural history of AD-associated microglial clones is difficult to establish in human, microglial expression of a MAPK pathway activating variant was previously shown to cause neurodegeneration in mice, suggesting that AD-associated neuroinflammatory microglial clones may contribute to the neurodegenerative process in patients.
Collapse
Affiliation(s)
- Rocio Vicario
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Stamatina Fragkogianni
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Leslie Weber
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tomi Lazarov
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yang Hu
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Samantha Y. Hayashi
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Barbara P. Craddock
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Nicholas D. Socci
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Araitz Alberdi
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ann Baako
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Oyku Ay
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Estibaliz Lopez-Rodrigo
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Rajya Kappagantula
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Agnes Viale
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Christine A. Iacobuzio-Donahue
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Ting Zhou
- SKI Stem Cell Research Core, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | | - Omar Abdel-Wahab
- Human Oncology & Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Institute for Computational Biomedicine,Weill Cornell New York, NY 10021, USA
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, 10065 NY, USA
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University School of Medicine, Stony Brook, NY, 11794-8661
| | - Frederic Geissmann
- Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
6
|
Manzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, et alManzoni C, Kia DA, Ferrari R, Leonenko G, Costa B, Saba V, Jabbari E, Tan MM, Albani D, Alvarez V, Alvarez I, Andreassen OA, Angiolillo A, Arighi A, Baker M, Benussi L, Bessi V, Binetti G, Blackburn DJ, Boada M, Boeve BF, Borrego-Ecija S, Borroni B, Bråthen G, Brooks WS, Bruni AC, Caroppo P, Bandres-Ciga S, Clarimon J, Colao R, Cruchaga C, Danek A, de Boer SC, de Rojas I, di Costanzo A, Dickson DW, Diehl-Schmid J, Dobson-Stone C, Dols-Icardo O, Donizetti A, Dopper E, Durante E, Ferrari C, Forloni G, Frangipane F, Fratiglioni L, Kramberger MG, Galimberti D, Gallucci M, García-González P, Ghidoni R, Giaccone G, Graff C, Graff-Radford NR, Grafman J, Halliday GM, Hernandez DG, Hjermind LE, Hodges JR, Holloway G, Huey ED, Illán-Gala I, Josephs KA, Knopman DS, Kristiansen M, Kwok JB, Leber I, Leonard HL, Libri I, Lleo A, Mackenzie IR, Madhan GK, Maletta R, Marquié M, Maver A, Menendez-Gonzalez M, Milan G, Miller BL, Morris CM, Morris HR, Nacmias B, Newton J, Nielsen JE, Nilsson C, Novelli V, Padovani A, Pal S, Pasquier F, Pastor P, Perneczky R, Peterlin B, Petersen RC, Piguet O, Pijnenburg YA, Puca AA, Rademakers R, Rainero I, Reus LM, Richardson AM, Riemenschneider M, Rogaeva E, Rogelj B, Rollinson S, Rosen H, Rossi G, Rowe JB, Rubino E, Ruiz A, Salvi E, Sanchez-Valle R, Sando SB, Santillo AF, Saxon JA, Schlachetzki JC, Scholz SW, Seelaar H, Seeley WW, Serpente M, Sorbi S, Sordon S, St George-Hyslop P, Thompson JC, Van Broeckhoven C, Van Deerlin VM, Van der Lee SJ, Van Swieten J, Tagliavini F, van der Zee J, Veronesi A, Vitale E, Waldo ML, Yokoyama JS, Nalls MA, Momeni P, Singleton AB, Hardy J, Escott-Price V. Genome-wide analyses reveal a potential role for the MAPT, MOBP, and APOE loci in sporadic frontotemporal dementia. Am J Hum Genet 2024; 111:1316-1329. [PMID: 38889728 PMCID: PMC11267522 DOI: 10.1016/j.ajhg.2024.05.017] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024] Open
Abstract
Frontotemporal dementia (FTD) is the second most common cause of early-onset dementia after Alzheimer disease (AD). Efforts in the field mainly focus on familial forms of disease (fFTDs), while studies of the genetic etiology of sporadic FTD (sFTD) have been less common. In the current work, we analyzed 4,685 sFTD cases and 15,308 controls looking for common genetic determinants for sFTD. We found a cluster of variants at the MAPT (rs199443; p = 2.5 × 10-12, OR = 1.27) and APOE (rs6857; p = 1.31 × 10-12, OR = 1.27) loci and a candidate locus on chromosome 3 (rs1009966; p = 2.41 × 10-8, OR = 1.16) in the intergenic region between RPSA and MOBP, contributing to increased risk for sFTD through effects on expression and/or splicing in brain cortex of functionally relevant in-cis genes at the MAPT and RPSA-MOBP loci. The association with the MAPT (H1c clade) and RPSA-MOBP loci may suggest common genetic pleiotropy across FTD and progressive supranuclear palsy (PSP) (MAPT and RPSA-MOBP loci) and across FTD, AD, Parkinson disease (PD), and cortico-basal degeneration (CBD) (MAPT locus). Our data also suggest population specificity of the risk signals, with MAPT and APOE loci associations mainly driven by Central/Nordic and Mediterranean Europeans, respectively. This study lays the foundations for future work aimed at further characterizing population-specific features of potential FTD-discriminant APOE haplotype(s) and the functional involvement and contribution of the MAPT H1c haplotype and RPSA-MOBP loci to pathogenesis of sporadic forms of FTD in brain cortex.
Collapse
Affiliation(s)
| | - Demis A Kia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Raffaele Ferrari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Ganna Leonenko
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Beatrice Costa
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Valentina Saba
- Medical and Genomic Statistics Unit, Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Edwin Jabbari
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Manuela Mx Tan
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Diego Albani
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Victoria Alvarez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| | - Ignacio Alvarez
- Memory Disorders Unit, Department of Neurology, Hospital Universitari Mutua de Terrassa, Terrassa, Barcelona, Spain; Fundació Docència i Recerca MútuaTerrassa, Terrassa, Barcelona, Spain
| | - Ole A Andreassen
- NORMENT Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Antonella Angiolillo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Matt Baker
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Valentina Bessi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giuliano Binetti
- MAC-Memory Clinic and Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | | | - Merce Boada
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Sergi Borrego-Ecija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - William S Brooks
- Neuroscience Research Australia, and Randwick Clinical Campus, UNSW Medicine and Health, University of New South Wales, Sydney, Australia
| | - Amalia C Bruni
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Paola Caroppo
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Sara Bandres-Ciga
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jordi Clarimon
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rosanna Colao
- Regional Neurogenetic Centre, ASPCZ, Lamezia Terme, Italy
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA; NeuroGenomics and Informatics Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Adrian Danek
- Neurologische Klinik, LMU Klinikum, Munich, Germany
| | - Sterre Cm de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Itziar de Rojas
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Alfonso di Costanzo
- Centre for Research and Training in Medicine of Aging, Department of Medicine and Health Science "V. Tiberio," University of Molise, Campobasso, Italy
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Klinikum rechts der Isar, Technical University of Munich, School of Medicine, Munich, Germany; kbo-Inn-Salzach-Klinikum, Wasserburg, Germany
| | - Carol Dobson-Stone
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Oriol Dols-Icardo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Aldo Donizetti
- Department of Biology, University of Naples Federico II, Naples, Italy
| | - Elise Dopper
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Elisabetta Durante
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Camilla Ferrari
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Gianluigi Forloni
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | | | - Laura Fratiglioni
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska Universtiy Hospital, Stockholm, Sweden
| | - Milica G Kramberger
- Department of Neurology, University Medical Center, Medical faculty, Ljubljana University of Ljubljana, Ljubljana, Slovenia; Karolinska Institutet, Department of Neurobiology, Care Sciences and Society (NVS), Division of Clinical Geriatrics, Huddinge, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy; Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Maurizio Gallucci
- Cognitive Impairment Center, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Pablo García-González
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giorgio Giaccone
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Caroline Graff
- Karolinska Institutet, Department NVS, KI-Alzheimer Disease Research Center, Stockholm, Sweden; Unit for hereditary dementia, Karolinska Universtiy Hospital-Solna, Stockholm, Sweden
| | | | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Dena G Hernandez
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Lena E Hjermind
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - John R Hodges
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia
| | - Guy Holloway
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Edward D Huey
- Bio Med Psychiatry & Human Behavior, Brown University, Providence, RI, USA
| | - Ignacio Illán-Gala
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic Rochester, Rochester, MN, USA
| | - Mark Kristiansen
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | - John B Kwok
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
| | - Isabelle Leber
- Sorbonne Université, INSERM U1127, CNRS 7225, Institut du Cerveau - ICM, Paris, France; AP-HP Sorbonne Université, Pitié-Salpêtrière Hospital, Department of Neurology, Institute of Memory and Alzheimer's Disease, Paris, France
| | - Hampton L Leonard
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA; DZNE Tübingen, Tübingen, Germany
| | - Ilenia Libri
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alberto Lleo
- Memory Unit, Neurology Department and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ian R Mackenzie
- Department of Pathology, University of British Columbia, Vancouver, Canada; Department of Pathology, Vancouver Coastal Health, Vancouver, Canada
| | - Gaganjit K Madhan
- UCL Genomics, London, UK; UCL Great Ormond Street Institute of Child Health, London, UK; Zayed Centre for Research into Rare Disease in Children, London, UK
| | | | - Marta Marquié
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Ales Maver
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | - Manuel Menendez-Gonzalez
- Hospital Universitario Central de Asturias, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain; Universidad de Oviedo, Medicine Department, Oviedo, Spain
| | | | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Christopher M Morris
- Newcastle Brain Tissue Resource, Newcastle University, Edwardson Building, Nuns Moor Road, Newcastle upon Tyne, UK
| | - Huw R Morris
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Judith Newton
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Jørgen E Nielsen
- Neurogenetics Clinic & Research Lab, Danish Dementia Research Centre, Copenhagen University Hospital, Copenhagen, Denmark
| | - Christer Nilsson
- Department of Clinical Sciences, Neurology, Lund University, Lund/Malmö, Sweden
| | | | - Alessandro Padovani
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Suvankar Pal
- Anne Rowling Regenerative Neurology Clinic, University of Edinburgh, Edinburgh, UK
| | - Florence Pasquier
- University of Lille, Lille, France; CHU Lille, Lille, France; Inserm, Labex DISTALZ, LiCEND, Lille, France
| | - Pau Pastor
- Unit of Neurodegenerative Diseases, Department of Neurology, University Hospital Germans Trias i Pujol, Badalona, Barcelona, Spain; The Germans Trias i Pujol Research Institute (IGTP) Badalona, Barcelona, Spain
| | - Robert Perneczky
- Department of Psychiatry and Psychotherapy, LMU Hospital, Ludwig-Maximilians-Universität Munich, Munich, Germany; German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, UK; Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK
| | - Borut Peterlin
- Clinical institute of Genomic Medicine, University Medical Center Ljubljana, Ljubljana, Slovenija
| | | | - Olivier Piguet
- Brain and Mind Centre, University of Sydney, Sydney, NSW, Australia; School of Psychology, University of Sydney, Sydney, NSW, Australia
| | - Yolande Al Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Annibale A Puca
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Fisciano, Italy; Cardiovascular Research Unit, IRCCS MultiMedica, Milan, Italy
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic Jacksonville, Jacksonville, FL, USA; VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Innocenzo Rainero
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Lianne M Reus
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA; Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands
| | - Anna Mt Richardson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | | | - Ekaterina Rogaeva
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Boris Rogelj
- Department of Biotechnology, Jožef Stefan Institute, Ljubljana, Slovenia; Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Sara Rollinson
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Howard Rosen
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Giacomina Rossi
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - James B Rowe
- University of Cambridge Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, Cambridge, UK
| | - Elisa Rubino
- Department of Neuroscience, "Rita Levi Montalcini," University of Torino, Torino, Italy; Center for Alzheimer's Disease and Related Dementias, Department of Neuroscience and Mental Health, A.O.UCittà della Salute e della Scienza di Torino, Torino, Italy
| | - Agustin Ruiz
- Research Center and Memory Clinic. Ace Alzheimer Center Barcelona - Universitat Internacional de Catalunya, Barcelona, Spain; CIBERNED, Network Center for Biomedical Research in Neurodegenerative Diseases, National Institute of Health Carlos III, Madrid, Spain
| | - Erika Salvi
- Unit of Neuroalgologia (III), Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy; Data science center, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Service of Neurology. Hospital Clínic de Barcelona, Fundació Clínic Barcelona-IDIBAPS, Barcelona, Spain
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alexander F Santillo
- Department of Clinical Sciences, Clinical Memory Research Unit, Faculty of Medicine, Lund University, Lund/Malmö, Sweden
| | - Jennifer A Saxon
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK
| | - Johannes Cm Schlachetzki
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sonja W Scholz
- Neurodegenerative Diseases Research Unit, National Institute of Neurological Disorders and Stroke, Bethesda, MD, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD, USA
| | - Harro Seelaar
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - William W Seeley
- Department of Neurology, University of California, San Francisco, San Francisco, CA, USA
| | - Maria Serpente
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Sandro Sorbi
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy; IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Sabrina Sordon
- Department of Psychiatry, Saarland University, Homburg, Germany
| | - Peter St George-Hyslop
- Tanz Centre for Research in Neurodegenerative Diseases and Department of Medicine, University of Toronto, Toronto, ON, Canada; Department of Neurology, Columbia University, New York, NY, USA
| | - Jennifer C Thompson
- Manchester Centre for Clinical Neurosciences, Northern Care Alliance NHS Trust, Manchester Academic Health Sciences Unit, University of Manchester, Manchester, UK; Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, Manchester, UK
| | - Christine Van Broeckhoven
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Vivianna M Van Deerlin
- Perelman School of Medicine at the University of Pennsylvania, Department of Pathology and Laboratory Medicine, Center for Neurodegenerative Disease Research, Philadelphia, PA, USA
| | - Sven J Van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Amsterdam Neuroscience, Neurodegeneration, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, Amsterdam, the Netherlands; Section Genomics of Neurodegenerative Diseases and Aging, Department of Clinical Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, the Netherlands
| | - John Van Swieten
- Department of Neurology & Alzheimer Center, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Fabrizio Tagliavini
- Unit of Neurology (V) and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Julie van der Zee
- Neurodegenerative Brain Diseases, VIB Center for Molecular Neurology, VIB, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Arianna Veronesi
- Immunohematology and Transfusional Medicine Service, Local Health Authority n.2 Marca Trevigiana, Treviso, Italy
| | - Emilia Vitale
- Institute of Biochemistry and Cell Biology, National Research Council (CNR), Naples, Italy; School of Integrative Science and Technology Department of Biology Kean University, Union, NJ, USA
| | - Maria Landqvist Waldo
- Clinical Sciences Helsingborg, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Jennifer S Yokoyama
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, USA; Trinity College Dublin, Dublin, Ireland
| | - Mike A Nalls
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Data Tecnica International LLC, Washington, DC, USA
| | | | - Andrew B Singleton
- Center for Alzheimer's and Related Dementias, National Institute on Aging and National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA; Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- UK Dementia Research Institute at UCL and Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, London, UK; NIHR University College London Hospitals Biomedical Research Centre, London, UK; Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Valentina Escott-Price
- Division of Psychological Medicine and Clinical Neurosciences, UK Dementia Research Institute, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
7
|
Mórotz GM, Bradbury NA, Caluseriu O, Hisanaga SI, Miller CCJ, Swiatecka-Urban A, Lenz HJ, Moss SJ, Giamas G. A revised nomenclature for the lemur family of protein kinases. Commun Biol 2024; 7:57. [PMID: 38191649 PMCID: PMC10774328 DOI: 10.1038/s42003-023-05671-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/04/2023] [Indexed: 01/10/2024] Open
Abstract
The lemur family of protein kinases has gained much interest in recent years as they are involved in a variety of cellular processes including regulation of axonal transport and endosomal trafficking, modulation of synaptic functions, memory and learning, and they are centrally placed in several intracellular signalling pathways. Numerous studies have also implicated role of the lemur kinases in the development and progression of a wide range of cancers, cystic fibrosis, and neurodegenerative diseases. However, parallel discoveries and inaccurate prediction of their kinase activity have resulted in a confusing and misleading nomenclature of these proteins. Herein, a group of international scientists with expertise in lemur family of protein kinases set forth a novel nomenclature to rectify this problem and ultimately help the scientific community by providing consistent information about these molecules.
Collapse
Affiliation(s)
- Gábor M Mórotz
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1089, Budapest, Hungary.
| | - Neil A Bradbury
- Department of Physiology and Biophysics, Chicago Medical School, North Chicago, IL, 60064, USA
| | - Oana Caluseriu
- Department of Medical Genetics, University of Alberta Hospital, Edmonton, AB, T6G 2H7, Canada
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Minami-Osawa, Hachioji, Tokyo, 92-0397, Japan
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 9RX, UK
| | - Agnieszka Swiatecka-Urban
- Department of Pediatrics, University of Virginia School of Medicine, Charlottesville, VA, 22903, USA
| | - Heinz-Josef Lenz
- Department of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, 90033, USA
| | - Stephen J Moss
- Department of Neuroscience, Tufts University School of Medicine, Boston, MA, 02111, USA
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, WC1 6BT, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK.
| |
Collapse
|
8
|
Vuic B, Milos T, Tudor L, Nikolac Perkovic M, Konjevod M, Nedic Erjavec G, Farkas V, Uzun S, Mimica N, Svob Strac D. Pharmacogenomics of Dementia: Personalizing the Treatment of Cognitive and Neuropsychiatric Symptoms. Genes (Basel) 2023; 14:2048. [PMID: 38002991 PMCID: PMC10671071 DOI: 10.3390/genes14112048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Dementia is a syndrome of global and progressive deterioration of cognitive skills, especially memory, learning, abstract thinking, and orientation, usually affecting the elderly. The most common forms are Alzheimer's disease, vascular dementia, and other (frontotemporal, Lewy body disease) dementias. The etiology of these multifactorial disorders involves complex interactions of various environmental and (epi)genetic factors and requires multiple forms of pharmacological intervention, including anti-dementia drugs for cognitive impairment, antidepressants, antipsychotics, anxiolytics and sedatives for behavioral and psychological symptoms of dementia, and other drugs for comorbid disorders. The pharmacotherapy of dementia patients has been characterized by a significant interindividual variability in drug response and the development of adverse drug effects. The therapeutic response to currently available drugs is partially effective in only some individuals, with side effects, drug interactions, intolerance, and non-compliance occurring in the majority of dementia patients. Therefore, understanding the genetic basis of a patient's response to pharmacotherapy might help clinicians select the most effective treatment for dementia while minimizing the likelihood of adverse reactions and drug interactions. Recent advances in pharmacogenomics may contribute to the individualization and optimization of dementia pharmacotherapy by increasing its efficacy and safety via a prediction of clinical outcomes. Thus, it can significantly improve the quality of life in dementia patients.
Collapse
Affiliation(s)
- Barbara Vuic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Tina Milos
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Lucija Tudor
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Matea Nikolac Perkovic
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Marcela Konjevod
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Gordana Nedic Erjavec
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Vladimir Farkas
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| | - Suzana Uzun
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Ninoslav Mimica
- Department for Biological Psychiatry and Psychogeriatry, University Hospital Vrapce, 10000 Zagreb, Croatia; (S.U.); (N.M.)
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Dubravka Svob Strac
- Laboratory for Molecular Neuropsychiatry, Division of Molecular Medicine, Rudjer Boskovic Institute, 10000 Zagreb, Croatia; (B.V.); (T.M.); (L.T.); (M.N.P.); (M.K.); (G.N.E.); (V.F.)
| |
Collapse
|
9
|
Lindberg FA, Roman E, Fredriksson R. Behavioral profiling of SLC38A10 knockout mice using the multivariate concentric square field TM test. Front Behav Neurosci 2022; 16:987037. [PMID: 36620864 PMCID: PMC9815452 DOI: 10.3389/fnbeh.2022.987037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction SLC38A10 is a gene that encodes the SLC38A10 protein, also known as SNAT10. The SLC38 family is evolutionary old, and SLC38A10 is one of the oldest members of the family. It is ubiquitously expressed, and its substrates are glutamine, glutamate, alanine, aspartate, and serine. However, little is known about its biological importance. Methods In the current study, an SLC38A10 knockout mouse was run in the multivariate concentric square field TM (MCSF) test. The MCSF test gives the mouse a choice of areas to explore; sheltered areas, elevated and illuminated areas, or open spaces, and a behavioral profile is obtained. The multivariate data obtained were analyzed (i) for each parameter, (ii) parameters grouped into functional categories, and (iii) with a principal component analysis. Results In the trend analysis, knockout mice had a decreased exploratory behavior compared to controls but did not show a distinct grouping in the principal component analysis. Discussion There was not a pronounced difference in the behavioral profile in SLC38A10 knockout mice compared to their wild-type controls, although subtle alterations in zones associated with exploratory behavior and risk assessment in female and male knockout mice, respectively, could be observed. These results imply that a loss of function of the SLC38A10 protein in mice does not drastically alter behavior in the MSCF test.
Collapse
Affiliation(s)
- Frida A. Lindberg
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden,*Correspondence: Frida A. Lindberg,
| | - Erika Roman
- Neuropharmacology and Addiction, Uppsala University, Uppsala, Sweden,Division of Anatomy and Physiology, Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Robert Fredriksson
- Department of Pharmaceutical Biosciences, Molecular Neuropharmacology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
11
|
Rossi G, Salvi E, Mehmeti E, Ricci M, Villa C, Prioni S, Moda F, Di Fede G, Tiraboschi P, Redaelli V, Coppola C, Koch G, Canu E, Filippi M, Agosta F, Giaccone G, Caroppo P. Semantic and right temporal variant of FTD: Next generation sequencing genetic analysis on a single-center cohort. Front Aging Neurosci 2022; 14:1085406. [PMID: 36570531 PMCID: PMC9773257 DOI: 10.3389/fnagi.2022.1085406] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Semantic and right temporal variant of frontotemporal dementia (svFTD and rtvFTD) are rare clinical phenotypes in which, in most cases, the underlying pathology is TDP-43 proteinopathy. They are usually sporadic disorders, but recent evidences suggest a higher frequency of genetic mutations for the right temporal versus the semantic variant. However, the genetic basis of these forms is not clear. In this study we performed a genetic screening of a single-center cohort of svFTD and rtvFTD patients, aiming at identifying the associated genetic variants. A panel of 73 dementia candidate genes has been analyzed by NGS target sequencing including both causal and risk/modifier genes in 23 patients (15 svFTD and 8 rtvFTD) and 73 healthy age-matched controls. We first performed a single variant analysis considering rare variants and then a gene-based aggregation analysis to evaluate the cumulative effects of multiple rare variants in a single gene. We found 12 variants in nearly 40% of patients (9/23), described as pathogenic or classified as VUS/likely pathogenic. The overall rate was higher in svFTD than in rtvFTD. Three mutations were located in MAPT gene and single mutations in the following genes: SQSTM1, VCP, PSEN1, TBK1, OPTN, CHCHD10, PRKN, DCTN1. Our study revealed the presence of variants in genes involved in pathways relevant for the pathology, especially autophagy and inflammation. We suggest that molecular analysis should be performed in all svFTD and rtvFTD patients, to better understand the genotype-phenotype correlation and the pathogenetic mechanisms that could drive the clinical phenotypes in FTD.
Collapse
Affiliation(s)
- Giacomina Rossi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy,*Correspondence: Giacomina Rossi,
| | - Erika Salvi
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elkadia Mehmeti
- Neuroalgology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Martina Ricci
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cristina Villa
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Sara Prioni
- Clinical Neuropsychology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Fabio Moda
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuseppe Di Fede
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Pietro Tiraboschi
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Veronica Redaelli
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Coppola
- Department of Advanced Medical and Surgical Sciences, University of Campania “L. Vanvitelli”, Naples, Italy
| | - Giacomo Koch
- Non Invasive Brain Stimulation Unit/Department of Behavioral and Clinical Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy,Unit of Neurorehabilitation, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy,Vita-Salute San Raffaele University, Milan, Italy
| | - Giorgio Giaccone
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Caroppo
- Neurology V and Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
12
|
Sawyer RP, Stone HK, Salim H, Lu X, Weirauch MT, Kottyan L. Frontotemporal degeneration genetic risk loci and transcription regulation as a possible mechanistic link to disease risk. Medicine (Baltimore) 2022; 101:e31078. [PMID: 36253972 PMCID: PMC9575772 DOI: 10.1097/md.0000000000031078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 09/12/2022] [Indexed: 11/26/2022] Open
Abstract
The etiology of Frontotemporal Degeneration (FTD) is not well understood. Genetic studies have established common genetic variants (GVs) that are associated with increased FTD risk. We review previous genome wide association studies (GWAS) of FTD and nominate specific transcriptional regulators as potential key players in the etiology of this disease. A list of GVs associated with FTD was compiled from published GWAS. The regulatory element locus intersection (RELI) tool was used to calculate the enrichment of the overlap between disease risk GVs and the genomic coordinates of data from a collection of >10,000 chromatin immunoprecipitation (ChIP-seq) experiments. After linkage disequilibrium expansion of the previously reported tag associated GVs, we identified 914 GV at 47 independent risk loci. Using the RELI algorithm, we identified several transcriptional regulators with enriched binding at FTD risk loci (0.05 < corrected P value <1.18 × 10-27), including Tripartite motif-containing 28 (TRIM28) and Chromodomain-Helicase DNA-binding 1 (CHD1) which have previously observed roles in FTD. FTD is a complex disease, and immune dysregulation has been previously implicated as a potential underlying cause. This assessment of established FTD risk loci and analysis of possible function implicates transcriptional dysregulation, and specifically particular transcriptional regulators with known roles in the immune response as important in the genetic etiology of FTD.
Collapse
Affiliation(s)
- Russell P. Sawyer
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Hillarey K. Stone
- Division of Nephrology and Hypertension, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Hanan Salim
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Xiaoming Lu
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Matthew T. Weirauch
- Center for Autoimmune Genomics and Etiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Biomedical Informatics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Leah Kottyan
- Division of Allergy and Immunology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
13
|
Miedema SSM, Mol MO, Koopmans FTW, Hondius DC, van Nierop P, Menden K, de Veij Mestdagh CF, van Rooij J, Ganz AB, Paliukhovich I, Melhem S, Li KW, Holstege H, Rizzu P, van Kesteren RE, van Swieten JC, Heutink P, Smit AB. Distinct cell type-specific protein signatures in GRN and MAPT genetic subtypes of frontotemporal dementia. Acta Neuropathol Commun 2022; 10:100. [PMID: 35799292 PMCID: PMC9261008 DOI: 10.1186/s40478-022-01387-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/22/2022] [Indexed: 11/16/2022] Open
Abstract
Frontotemporal dementia is characterized by progressive atrophy of frontal and/or temporal cortices at an early age of onset. The disorder shows considerable clinical, pathological, and genetic heterogeneity. Here we investigated the proteomic signatures of frontal and temporal cortex from brains with frontotemporal dementia due to GRN and MAPT mutations to identify the key cell types and molecular pathways in their pathophysiology. We compared patients with mutations in the GRN gene (n = 9) or with mutations in the MAPT gene (n = 13) with non-demented controls (n = 11). Using quantitative proteomic analysis on laser-dissected tissues we identified brain region-specific protein signatures for both genetic subtypes. Using published single cell RNA expression data resources we deduced the involvement of major brain cell types in driving these different protein signatures. Subsequent gene ontology analysis identified distinct genetic subtype- and cell type-specific biological processes. For the GRN subtype, we observed a distinct role for immune processes related to endothelial cells and for mitochondrial dysregulation in neurons. For the MAPT subtype, we observed distinct involvement of dysregulated RNA processing, oligodendrocyte dysfunction, and axonal impairments. Comparison with an in-house protein signature of Alzheimer’s disease brains indicated that the observed alterations in RNA processing and oligodendrocyte function are distinct for the frontotemporal dementia MAPT subtype. Taken together, our results indicate the involvement of different brain cell types and biological mechanisms in genetic subtypes of frontotemporal dementia. Furthermore, we demonstrate that comparison of proteomic profiles of different disease entities can separate general neurodegenerative processes from disease-specific pathways, which may aid the development of disease subtype-specific treatment strategies.
Collapse
Affiliation(s)
- Suzanne S M Miedema
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.
| | - Merel O Mol
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Frank T W Koopmans
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - David C Hondius
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Pim van Nierop
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Kevin Menden
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Christina F de Veij Mestdagh
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.,Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, the Netherlands.,Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Jeroen van Rooij
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Internal Medicine, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea B Ganz
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands.,Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Iryna Paliukhovich
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Shamiram Melhem
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Ka Wan Li
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Henne Holstege
- Alzheimer Center, Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, Amsterdam Neuroscience, VU University Medical Center, Amsterdam, The Netherlands
| | - Patrizia Rizzu
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter Heutink
- German Center for Neurodegenerative Diseases (DZNE)-Tübingen, Tübingen, Germany
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, W&N Building, C314. De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Lindberg FA, Nordenankar K, Fredriksson R. SLC38A10 Knockout Mice Display a Decreased Body Weight and an Increased Risk-Taking Behavior in the Open Field Test. Front Behav Neurosci 2022; 16:840987. [PMID: 35677577 PMCID: PMC9169716 DOI: 10.3389/fnbeh.2022.840987] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
The solute carrier 38 family (SLC38) is a family of 11 members. The most common substrate among these are alanine and glutamine, and members are present in a wide range of tissues with important functions for several biological processes, such as liver and brain function. Some of these transporters are better characterized than others and, in this paper, a behavioral characterization of SLC38A10−/− mice was carried out. A battery of tests for general activity, emotionality, motor function, and spatial memory was used. Among these tests, the elevated plus maze, Y-maze, marble burying and challenging beam walk have not been tested on the SLC38A10−/− mice previously, while the open field and the rotarod tests have been performed by the International Mouse Phenotyping Consortium (IMPC). Unlike the results from IMPC, the results from this study showed that SLC38A10−/− mice spend less time in the wall zone in the open field test than WT mice, implying that SLC38A10-deficient mice have an increased explorative behavior, which suggests an important function of SLC38A10 in brain. The present study also confirmed IMPC's data regarding rotarod performance and weight, showing that SLC38A10−/− mice do not have an affected motor coordination impairment and have a lower body weight than both SLC38A10+/− and SLC38A10+/+ mice. These results imply that a complete deficiency of the SLC38A10 protein might affect body weight homeostasis, but the underlying mechanisms needs to be studied further.
Collapse
|
15
|
Jordan KL, Koss DJ, Outeiro TF, Giorgini F. Therapeutic Targeting of Rab GTPases: Relevance for Alzheimer's Disease. Biomedicines 2022; 10:1141. [PMID: 35625878 PMCID: PMC9138223 DOI: 10.3390/biomedicines10051141] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
Rab GTPases (Rabs) are small proteins that play crucial roles in vesicle transport and membrane trafficking. Owing to their widespread functions in several steps of vesicle trafficking, Rabs have been implicated in the pathogenesis of several disorders, including cancer, diabetes, and multiple neurodegenerative diseases. As treatments for neurodegenerative conditions are currently rather limited, the identification and validation of novel therapeutic targets, such as Rabs, is of great importance. This review summarises proof-of-concept studies, demonstrating that modulation of Rab GTPases in the context of Alzheimer's disease (AD) can ameliorate disease-related phenotypes, and provides an overview of the current state of the art for the pharmacological targeting of Rabs. Finally, we also discuss the barriers and challenges of therapeutically targeting these small proteins in humans, especially in the context of AD.
Collapse
Affiliation(s)
- Kate L. Jordan
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| | - David J. Koss
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
| | - Tiago F. Outeiro
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK; (D.J.K.); (T.F.O.)
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37075 Göttingen, Germany
- Max Planck Institute for Natural Sciences, 37075 Göttingen, Germany
- Scientific Employee with a Honorary Contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 37075 Göttingen, Germany
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester LE1 7RH, UK;
| |
Collapse
|
16
|
Zhao B, Li T, Smith SM, Xiong D, Wang X, Yang Y, Luo T, Zhu Z, Shan Y, Matoba N, Sun Q, Yang Y, Hauberg ME, Bendl J, Fullard JF, Roussos P, Lin W, Li Y, Stein JL, Zhu H. Common variants contribute to intrinsic human brain functional networks. Nat Genet 2022; 54:508-517. [PMID: 35393594 PMCID: PMC11987081 DOI: 10.1038/s41588-022-01039-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/28/2022] [Indexed: 01/01/2023]
Abstract
The human brain forms functional networks of correlated activity, which have been linked with both cognitive and clinical outcomes. However, the genetic variants affecting brain function are largely unknown. Here, we used resting-state functional magnetic resonance images from 47,276 individuals to discover and validate common genetic variants influencing intrinsic brain activity. We identified 45 new genetic regions associated with brain functional signatures (P < 2.8 × 10-11), including associations to the central executive, default mode, and salience networks involved in the triple-network model of psychopathology. A number of brain activity-associated loci colocalized with brain disorders (e.g., the APOE ε4 locus with Alzheimer's disease). Variation in brain function was genetically correlated with brain disorders, such as major depressive disorder and schizophrenia. Together, our study provides a step forward in understanding the genetic architecture of brain functional networks and their genetic links to brain-related complex traits and disorders.
Collapse
Affiliation(s)
- Bingxin Zhao
- Department of Statistics, Purdue University, West Lafayette, IN, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Stephen M Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Di Xiong
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Xifeng Wang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Yang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tianyou Luo
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ziliang Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yue Shan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Matoba
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Quan Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuchen Yang
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mads E Hauberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Centre for Integrative Sequencing (iSEQ), Aarhus University, Aarhus, Denmark
| | - Jaroslav Bendl
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Fullard
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Panagiotis Roussos
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- iPSYCH, The Lundbeck Foundation Initiative for Integrative Psychiatric Research, Aarhus, Denmark
- Department of Genetics and Genomic Science and Institute for Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Mental Illness Research, Education, and Clinical Center (VISN 2 South), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Weili Lin
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Yun Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jason L Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Hongtu Zhu
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
17
|
Gao X, Liu H, Yu H, Zhang Z, Bi X, Zhao Y, An T, Wen J. Combination of Developmental Behaviors and Transcriptome Reveals Differential Response Mechanisms of Phytophthora sojae to Aspartic Acid and Glucose in Seed Exudates. PHYTOPATHOLOGY 2022; 112:620-629. [PMID: 34445895 DOI: 10.1094/phyto-08-21-0332-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Isoflavones in soybean seed and root exudates are host-specific signal molecules for Phytophthora sojae to recognize host soybean. G protein and calcium signaling pathway are involved in the chemotaxis of zoospores in the recognition of isoflavones. To investigate the role of host nonspecific signaling molecules (sugars and amino acids) in seed and root exudates in zoospore chemotaxis and mycelial growth, the transcriptome of P. sojae responding to aspartic acid (Asp) and glucose (Glc) was analyzed by the RNA-seq method. We found that the relative in situ concentrations of amino acids and sugars significantly promoted zoospore chemotaxis, as do isoflavones. Transcriptomics showed that both similarity and difference existed in response mechanisms of P. sojae to Asp and Glc. Asp and Glc activated mitogen-activated protein kinase signaling pathway and phosphatidylinositol signaling system but not G-protein signaling pathway, which have been reported to be responsible for zoospore chemotaxis. In addition, ubiquitin-mediated proteolysis and ATP binding cassette transporters were also activated by Asp and Glc. Meanwhile, glutathione signaling pathway uniquely participated in the response of P. sojae to Asp but not involved in the response process to Glc, which is waiting for further study. Our results provide new insights into the molecular mechanism of zoospore response to Asp and Glc.
Collapse
Affiliation(s)
- Xinying Gao
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixu Liu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Han Yu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhuoqun Zhang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiangqi Bi
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yifan Zhao
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tai An
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingzhi Wen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
18
|
Sawyer RP, Hill EJ, Yokoyama J, Medvedovic M, Ren Y, Zhang X, Choubey D, Shatz RS, Miller B, Woo D. Differences in peripheral immune system gene expression in frontotemporal degeneration. Medicine (Baltimore) 2022; 101:e28645. [PMID: 35060553 PMCID: PMC8772666 DOI: 10.1097/md.0000000000028645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/28/2021] [Accepted: 01/03/2022] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT The peripheral immune system has a key pathophysiologic role in Frontotemporal degeneration (FTD). We sought a comprehensive transcriptome-wide evaluation of gene expression alterations unique to the peripheral immune system in FTD compared to healthy controls and amyotrophic lateral sclerosis.Nineteen subjects with FTD with 19 matched healthy controls and 9 subjects with amyotrophic lateral sclerosis underwent isolation of peripheral blood mononuclear cells (PBMCs) which then underwent bulk ribonucleic acid sequencing.There was increased expression in genes associated with CD19+ B-cells, CD4+ T-cells, and CD8+ T-cells in FTD participants compared to healthy controls. In contrast, there was decreased expression in CD33+ myeloid cells, CD14+ monocytes, BDCA4+ dendritic cells, and CD56+ natural killer cells in FTD and healthy controls. Additionally, there was decreased expression is seen in associated with 2 molecular processes: autophagy with phagosomes and lysosomes, and protein processing/export. Significantly downregulated in PBMCs of FTD subjects were genes involved in antigen processing and presentation as well as lysosomal lumen formation compared to healthy control PBMCs.Our findings that the immune signature based on gene expression in PBMCs of FTD participants favors adaptive immune cells compared to innate immune cells. And decreased expression in genes associated with phagosomes and lysosomes in PBMCs of FTD participants compared to healthy controls.
Collapse
Affiliation(s)
- Russell P. Sawyer
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH
| | - Emily J. Hill
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH
| | - Jennifer Yokoyama
- Department of Neurology, University of California, San Francisco, CA
| | - Mario Medvedovic
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Yan Ren
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Xiang Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Divaker Choubey
- Department of Environmental Health, University of Cincinnati, Cincinnati, OH
| | - Rhonna S. Shatz
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH
| | - Bruce Miller
- Department of Neurology, University of California, San Francisco, CA
| | - Daniel Woo
- University of Cincinnati College of Medicine, Department of Neurology and Rehabilitation Medicine, Cincinnati, OH
| |
Collapse
|
19
|
de Boer SCM, Riedl L, van der Lee SJ, Otto M, Anderl-Straub S, Landin-Romero R, Sorrentino F, Fieldhouse JLP, Reus LM, Vacaflor B, Halliday G, Galimberti D, Diehl-Schmid J, Ducharme S, Piguet O, Pijnenburg YAL. Differences in Sex Distribution Between Genetic and Sporadic Frontotemporal Dementia. J Alzheimers Dis 2021; 84:1153-1161. [PMID: 34633319 PMCID: PMC8673542 DOI: 10.3233/jad-210688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Reported sex distributions differ between frontotemporal dementia (FTD) cohorts. Possible explanations are the evolving clinical criteria of FTD and its subtypes and the discovery of FTD causal genetic mutations that has resulted in varying demographics. Objective: Our aim was to determine the sex distribution of sporadic and genetic FTD cases and its subtypes in an international cohort. Methods: We included 910 patients with behavioral variant frontotemporal dementia (bvFTD; n = 654), non-fluent variant primary progressive aphasia (nfvPPA; n = 99), semantic variant primary progressive aphasia (svPPA; n = 117), and right temporal variant frontotemporal dementia (rtvFTD; n = 40). We compared sex distribution between genetic and sporadic FTD using χ2-tests. Results: The genetic FTD group consisted of 51.2% males, which did not differ from sporadic FTD (57.8% male, p = 0.08). In the sporadic bvFTD subgroup, males were predominant in contrast to genetic bvFTD (61.6% versus 52.9% males, p = 0.04). In the other clinical FTD subgroups, genetic cases were underrepresented and within the sporadic cases the sex distribution was somewhat equal. Conclusion: The higher male prevalence in sporadic bvFTD may provide important clues for its differential pathogenesis and warrants further research.
Collapse
Affiliation(s)
- Sterre C M de Boer
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lina Riedl
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Markus Otto
- Department of Neurology, University Clinic, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | - Ramon Landin-Romero
- School of Psychology, and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Federica Sorrentino
- Neurodegenerative Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Jay L P Fieldhouse
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Lianne M Reus
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| | - Blanca Vacaflor
- Department of Psychiatry, McGill University Health Center, Montreal, Quebec, QC, Canada
| | - Glenda Halliday
- School of Medical Sciences, and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Daniela Galimberti
- Neurodegenerative Disease Unit, Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Biomedical, Surgical and Dental Sciences, Dino Ferrari Center, University of Milan, Milan, Italy
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, QC, Canada.,Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, QC, Canada
| | - Olivier Piguet
- School of Psychology, and Brain & Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Komaki K, Takano T, Sato Y, Asada A, Ikeda S, Yamada K, Wei R, Huo A, Fukuchi A, Saito T, Ando K, Murayama S, Araki W, Kametani F, Hasegawa M, Iwatsubo T, Tomomura M, Fukuda M, Hisanaga SI. Lemur tail kinase 1 (LMTK1) regulates the endosomal localization of β-secretase BACE1. J Biochem 2021; 170:729-738. [PMID: 34523681 DOI: 10.1093/jb/mvab094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/21/2021] [Indexed: 12/15/2022] Open
Abstract
Lemur tail kinase 1 (LMTK1), previously called apoptosis-associated tyrosine kinase (AATYK), is an endosomal Ser/Thr kinase. We recently reported that LMTK1 regulates axon outgrowth, dendrite arborization and spine formation via Rab11-mediated vesicle transport. Rab11, a small GTPase regulating recycling endosome trafficking, is shown to be associated with late-onset Alzheimer's disease (LOAD). In fact, genome-wide association studies identified many proteins regulating vesicle transport as risk factors for LOAD. Furthermore, LMTK1 has been reported to be a risk factor for frontotemporal dementia. Then, we hypothesized that LMTK1 contributes to AD development through vesicle transport and examined the effect of LMTK1 on the cellular localization of AD-related proteins, amyloid precursor protein (APP) and β-site APP cleaving enzyme 1 (BACE1). The β-cleavage of APP by BACE1 is the initial and rate-limiting step in Aβ generation. We found that LMTK1 accumulated BACE1, but not APP, to the perinuclear endosomal compartment, whereas the kinase-negative (kn) mutant of LMTK1A did not. The β-C-terminal fragment was prone to increase under overexpression of LMTK1A kn. Moreover, the expression level of LMTK1A was reduced in AD brains. These results suggest the possibility that LMTK1 is involved in AD development through the regulation of the proper endosomal localization of BACE1.
Collapse
Affiliation(s)
- Keisuke Komaki
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Tetsuya Takano
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Yutaka Sato
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Akiko Asada
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shikito Ikeda
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kaoru Yamada
- Department of Neuropathology, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Aoi Fukuchi
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Taro Saito
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kanae Ando
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Shigeo Murayama
- Tokyo Metropolitan Institute of Gerontology, Itabashi, Tokyo 173-0015, Japan
| | - Wataru Araki
- Department of Demyelinating Disease and Aging, National Institute of Neuroscience, NCNP, Kodaira, Tokyo 187-8502, Japan
| | - Fuyuki Kametani
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Masato Hasegawa
- Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| | - Takeshi Iwatsubo
- Department of Neuropathology, Graduate School of Medicine, the University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Chiba 279-9950, Japan
| | - Mitsunori Fukuda
- Department of Integrative Life Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-osawa, Hachioji, Tokyo 192-0397, Japan.,Tokyo Metropolitan Institute of Medical Science, Setagaya, Tokyo 156-8506, Japan
| |
Collapse
|
21
|
Kramarz B, Huntley RP, Rodríguez-López M, Roncaglia P, Saverimuttu SCC, Parkinson H, Bandopadhyay R, Martin MJ, Orchard S, Hooper NM, Brough D, Lovering RC. Gene Ontology Curation of Neuroinflammation Biology Improves the Interpretation of Alzheimer's Disease Gene Expression Data. J Alzheimers Dis 2021; 75:1417-1435. [PMID: 32417785 PMCID: PMC7369085 DOI: 10.3233/jad-200207] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Gene Ontology (GO) is a major bioinformatic resource used for analysis of large biomedical datasets, for example from genome-wide association studies, applied universally across biological fields, including Alzheimer's disease (AD) research. OBJECTIVE We aim to demonstrate the applicability of GO for interpretation of AD datasets to improve the understanding of the underlying molecular disease mechanisms, including the involvement of inflammatory pathways and dysregulated microRNAs (miRs). METHODS We have undertaken a systematic full article GO annotation approach focused on microglial proteins implicated in AD and the miRs regulating their expression. PANTHER was used for enrichment analysis of previously published AD data. Cytoscape was used for visualizing and analyzing miR-target interactions captured from published experimental evidence. RESULTS We contributed 3,084 new annotations for 494 entities, i.e., on average six new annotations per entity. This included a total of 1,352 annotations for 40 prioritized microglial proteins implicated in AD and 66 miRs regulating their expression, yielding an average of twelve annotations per prioritized entity. The updated GO resource was then used to re-analyze previously published data. The re-analysis showed novel processes associated with AD-related genes, not identified in the original study, such as 'gliogenesis', 'regulation of neuron projection development', or 'response to cytokine', demonstrating enhanced applicability of GO for neuroscience research. CONCLUSIONS This study highlights ongoing development of the neurobiological aspects of GO and demonstrates the value of biocuration activities in the area, thus helping to delineate the molecular bases of AD to aid the development of diagnostic tools and treatments.
Collapse
Affiliation(s)
- Barbara Kramarz
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Rachael P Huntley
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Milagros Rodríguez-López
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Paola Roncaglia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Shirin C C Saverimuttu
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Rina Bandopadhyay
- UCL Institute of Neurology and Reta Lila Weston Institute of Neurological Studies, University College London, London, UK
| | - Maria-Jesus Martin
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK
| | - Ruth C Lovering
- Functional Gene Annotation, Preclinical and Fundamental Science, UCL Institute of Cardiovascular Science, University College London, London, UK
| |
Collapse
|
22
|
The Role of White Matter Dysfunction and Leukoencephalopathy/Leukodystrophy Genes in the Aetiology of Frontotemporal Dementias: Implications for Novel Approaches to Therapeutics. Int J Mol Sci 2021; 22:ijms22052541. [PMID: 33802612 PMCID: PMC7961524 DOI: 10.3390/ijms22052541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 02/22/2021] [Accepted: 03/01/2021] [Indexed: 01/01/2023] Open
Abstract
Frontotemporal dementia (FTD) is a common cause of presenile dementia and is characterized by behavioural and/or language changes and progressive cognitive deficits. Genetics is an important component in the aetiology of FTD, with positive family history of dementia reported for 40% of cases. This review synthesizes current knowledge of the known major FTD genes, including C9orf72 (chromosome 9 open reading frame 72), MAPT (microtubule-associated protein tau) and GRN (granulin), and their impact on neuronal and glial pathology. Further, evidence for white matter dysfunction in the aetiology of FTD and the clinical, neuroimaging and genetic overlap between FTD and leukodystrophy/leukoencephalopathy are discussed. The review highlights the role of common variants and mutations in genes such as CSF1R (colony-stimulating factor 1 receptor), CYP27A1 (cytochrome P450 family 27 subfamily A member 1), TREM2 (triggering receptor expressed on myeloid cells 2) and TMEM106B (transmembrane protein 106B) that play an integral role in microglia and oligodendrocyte function. Finally, pharmacological and non-pharmacological approaches for enhancing remyelination are discussed in terms of future treatments of FTD.
Collapse
|
23
|
Yamaguchi M, Omori K, Asada S, Yoshida H. Epigenetic Regulation of ALS and CMT: A Lesson from Drosophila Models. Int J Mol Sci 2021; 22:ijms22020491. [PMID: 33419039 PMCID: PMC7825332 DOI: 10.3390/ijms22020491] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/01/2021] [Accepted: 01/03/2021] [Indexed: 12/11/2022] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common neurodegenerative disorder and is sometimes associated with frontotemporal dementia. Charcot–Marie–Tooth disease (CMT) is one of the most commonly inherited peripheral neuropathies causing the slow progression of sensory and distal muscle defects. Of note, the severity and progression of CMT symptoms markedly vary. The phenotypic heterogeneity of ALS and CMT suggests the existence of modifiers that determine disease characteristics. Epigenetic regulation of biological functions via gene expression without alterations in the DNA sequence may be an important factor. The methylation of DNA, noncoding RNA, and post-translational modification of histones are the major epigenetic mechanisms. Currently, Drosophila is emerging as a useful ALS and CMT model. In this review, we summarize recent studies linking ALS and CMT to epigenetic regulation with a strong emphasis on approaches using Drosophila models.
Collapse
Affiliation(s)
- Masamitsu Yamaguchi
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Kansai Gakken Laboratory, Kankyo Eisei Yakuhin Co. Ltd., Seika-cho, Kyoto 619-0237, Japan
- Correspondence: (M.Y.); (H.Y.)
| | - Kentaro Omori
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Satoshi Asada
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
| | - Hideki Yoshida
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan; (K.O.); (S.A.)
- Correspondence: (M.Y.); (H.Y.)
| |
Collapse
|
24
|
Xu W, Han SD, Zhang C, Li JQ, Wang YJ, Tan CC, Li HQ, Dong Q, Mei C, Tan L, Yu JT. The FAM171A2 gene is a key regulator of progranulin expression and modifies the risk of multiple neurodegenerative diseases. SCIENCE ADVANCES 2020; 6:eabb3063. [PMID: 33087363 PMCID: PMC7577723 DOI: 10.1126/sciadv.abb3063] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 09/08/2020] [Indexed: 05/14/2023]
Abstract
Progranulin (PGRN) is a secreted pleiotropic glycoprotein associated with the development of common neurodegenerative diseases. Understanding the pathophysiological role of PGRN may help uncover biological underpinnings. We performed a genome-wide association study to determine the genetic regulators of cerebrospinal fluid (CSF) PGRN levels. Common variants in region of FAM171A2 were associated with lower CSF PGRN levels (rs708384, P = 3.95 × 10-12). This was replicated in another independent cohort. The rs708384 was associated with increased risk of Alzheimer's disease, Parkinson's disease, and frontotemporal dementia and could modify the expression of the FAM171A2 gene. FAM171A2 was considerably expressed in the vascular endothelium and microglia, which are rich in PGRN. The in vitro study further confirmed that the rs708384 mutation up-regulated the expression of FAM171A2, which caused a decrease in the PGRN level. Collectively, genetic, molecular, and bioinformatic findings suggested that FAM171A2 is a key player in regulating PGRN production.
Collapse
Affiliation(s)
- Wei Xu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Si-Da Han
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Can Zhang
- Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Diseases (MIND), Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jie-Qiong Li
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Chen-Chen Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Hong-Qi Li
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cui Mei
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
25
|
Murley AG, Jones PS, Coyle Gilchrist I, Bowns L, Wiggins J, Tsvetanov KA, Rowe JB. Metabolomic changes associated with frontotemporal lobar degeneration syndromes. J Neurol 2020; 267:2228-2238. [PMID: 32277260 PMCID: PMC7359154 DOI: 10.1007/s00415-020-09824-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Widespread metabolic changes are seen in neurodegenerative disease and could be used as biomarkers for diagnosis and disease monitoring. They may also reveal disease mechanisms that could be a target for therapy. In this study we looked for blood-based biomarkers in syndromes associated with frontotemporal lobar degeneration. METHODS Plasma metabolomic profiles were measured from 134 patients with a syndrome associated with frontotemporal lobar degeneration (behavioural variant frontotemporal dementia n = 30, non fluent variant primary progressive aphasia n = 26, progressive supranuclear palsy n = 45, corticobasal syndrome n = 33) and 32 healthy controls. RESULTS Forty-nine of 842 metabolites were significantly altered in frontotemporal lobar degeneration syndromes (after false-discovery rate correction for multiple comparisons). These were distributed across a wide range of metabolic pathways including amino acids, energy and carbohydrate, cofactor and vitamin, lipid and nucleotide pathways. The metabolomic profile supported classification between frontotemporal lobar degeneration syndromes and controls with high accuracy (88.1-96.6%) while classification accuracy was lower between the frontotemporal lobar degeneration syndromes (72.1-83.3%). One metabolic profile, comprising a range of different pathways, was consistently identified as a feature of each disease versus controls: the degree to which a patient expressed this metabolomic profile was associated with their subsequent survival (hazard ratio 0.74 [0.59-0.93], p = 0.0018). CONCLUSIONS The metabolic changes in FTLD are promising diagnostic and prognostic biomarkers. Further work is required to replicate these findings, examine longitudinal change, and test their utility in differentiating between FTLD syndromes that are pathologically distinct but phenotypically similar.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Lucy Bowns
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Julie Wiggins
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| |
Collapse
|
26
|
Hisanaga SI, Wei R, Huo A, Tomomura M. LMTK1, a Novel Modulator of Endosomal Trafficking in Neurons. Front Mol Neurosci 2020; 13:112. [PMID: 32714146 PMCID: PMC7344150 DOI: 10.3389/fnmol.2020.00112] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022] Open
Abstract
Neurons extend long processes known as axons and dendrites, through which they communicate with each other. The neuronal circuits formed by the axons and dendrites are the structural basis of higher brain functions. The formation and maintenance of these processes are essential for physiological brain activities. Membrane components, both lipids, and proteins, that are required for process formation are supplied by vesicle transport. Intracellular membrane trafficking is regulated by a family of Rab small GTPases. A group of Rabs regulating endosomal trafficking has been studied mainly in nonpolarized culture cell lines, and little is known about their regulation in polarized neurons with long processes. As shown in our recent study, lemur tail (former tyrosine) kinase 1 (LMTK1), an as yet uncharacterized Ser/Thr kinase associated with Rab11-positive recycling endosomes, modulates the formation of axons, dendrites, and spines in cultured primary neurons. LMTK1 knockdown or knockout (KO) or the expression of a kinase-negative mutant stimulates the transport of endosomal vesicles in neurons, leading to the overgrowth of axons, dendrites, and spines. More recently, we found that LMTK1 regulates TBC1D9B Rab11 GAP and proposed the Cdk5/p35-LMTK1-TBC1D9B-Rab11 pathway as a signaling cascade that regulates endosomal trafficking. Here, we summarize the biochemical, cell biological, and physiological properties of LMTK1.
Collapse
Affiliation(s)
- Shin-Ichi Hisanaga
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Ran Wei
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Anni Huo
- Department of Biological Sciences, Tokyo Metropolitan University, Minami-Osawa Campus, Hachioji, Japan
| | - Mineko Tomomura
- Department of Oral Health Sciences, Meikai University School of Health Sciences, Urayasu, Japan
| |
Collapse
|
27
|
Ciani M, Benussi L, Bonvicini C, Ghidoni R. Genome Wide Association Study and Next Generation Sequencing: A Glimmer of Light Toward New Possible Horizons in Frontotemporal Dementia Research. Front Neurosci 2019; 13:506. [PMID: 31156380 PMCID: PMC6532367 DOI: 10.3389/fnins.2019.00506] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 05/02/2019] [Indexed: 12/12/2022] Open
Abstract
Frontotemporal Dementia (FTD) is a focal neurodegenerative disease, with a strong genetic background, that causes early onset dementia. The present knowledge about the risk loci and causative mutations of FTD mainly derives from genetic linkage analysis, studies of candidate genes, Genome-Wide Association Studies (GWAS) and Next-Generation Sequencing (NGS) applications. In this review, we report recent insights into the genetics of FTD, and, specifically, the results achieved thanks to GWAS and NGS approaches. Linkage studies of large FTD pedigrees have prompted the identification of causal mutations in different genes: mutations in C9orf72, MAPT, and GRN genes explain the large majority of cases with a high family history of the disease. In cases with a less clear inheritance, GWAS and NGS have contributed to further understand the genetic picture of FTD. GWAS identified several common genetic variants with a modest risk effect. Of interest, many of these variants are in genes belonging to the endo-lysosomal pathway, the immune response and neuronal survival. On the opposite, the NGS approach allowed the identification of rare variants with a strong risk effect. These variants were identified in known FTD-associated genes and again in genes involved in the endo-lysosomal pathway and in the immune response. Interestingly, both approaches demonstrated that several genes are associated to multiple neurodegenerative disorders including FTD. Thanks to these complementary approaches, the genetic picture of FTD is becoming more clear and novel key molecular processes are emerging. This will foster opportunities to move toward prevention and therapy for this incurable disease.
Collapse
Affiliation(s)
- Miriam Ciani
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Cristian Bonvicini
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
28
|
The BIN1 rs744373 SNP is associated with increased tau-PET levels and impaired memory. Nat Commun 2019; 10:1766. [PMID: 30992433 PMCID: PMC6467911 DOI: 10.1038/s41467-019-09564-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/14/2019] [Indexed: 02/01/2023] Open
Abstract
The single nucleotide polymorphism (SNP) rs744373 in the bridging integrator-1 gene (BIN1) is a risk factor for Alzheimer’s disease (AD). In the brain, BIN1 is involved in endocytosis and sustaining cytoskeleton integrity. Post-mortem and in vitro studies suggest that BIN1-associated AD risk is mediated by increased tau pathology but whether rs744373 is associated with increased tau pathology in vivo is unknown. Here we find in 89 older individuals without dementia, that BIN1 rs744373 risk-allele carriers show higher AV1451 tau-PET across brain regions corresponding to Braak stages II–VI. In contrast, the BIN1 rs744373 SNP was not associated with AV45 amyloid-PET uptake. Furthermore, the rs744373 risk-allele was associated with worse memory performance, mediated by increased global tau levels. Together, our findings suggest that the BIN1 rs744373 SNP is associated with increased tau but not beta-amyloid pathology, suggesting that alterations in BIN1 may contribute to memory deficits via increased tau pathology. The BIN1 SNP rs744373 is associated with higher CSF tau and phosphorylated tau levels. Here the authors show, using PET imaging, that this SNP is associated with tau accumulation in the brain as well as impaired memory in older individuals without dementia.
Collapse
|
29
|
Ferrari R, Manzoni C, Hardy J. Genetics and molecular mechanisms of frontotemporal lobar degeneration: an update and future avenues. Neurobiol Aging 2019; 78:98-110. [PMID: 30925302 DOI: 10.1016/j.neurobiolaging.2019.02.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Revised: 01/21/2019] [Accepted: 02/06/2019] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) is the second most common form of dementia after Alzheimer's disease. The study and the dissection of FTLD is complex due to its clinical, pathological, and genetic heterogeneity. In this review, we survey the state-of-the-art genetics of familial FTLD and recapitulate our current understanding of the genetic architecture of sporadic FTLD by summarizing results of genome-wide association studies performed in FTLD to date. We then discuss the challenges of translating these heterogeneous genetic features into the understanding of the molecular underpinnings of FTLD pathogenesis. We particularly highlight a number of susceptibility processes that appear to be conserved across familial and sporadic cases (e.g., and the cellular waste disposal pathways, and immune system signaling) and finally describe cutting-edge approaches, based on mathematical prediction tools, highlighting novel intriguing risk pathways such as DNA damage response as an emerging theme in FTLD.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, London, UK.
| | - Claudia Manzoni
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, London, UK; School of Pharmacy, University of Reading, Reading, UK
| | - John Hardy
- Department of Neurodegenerative Disease, University College London, Institute of Neurology, London, UK
| |
Collapse
|
30
|
Bennett SA, Tanaz R, Cobos SN, Torrente MP. Epigenetics in amyotrophic lateral sclerosis: a role for histone post-translational modifications in neurodegenerative disease. Transl Res 2019; 204:19-30. [PMID: 30391475 PMCID: PMC6331271 DOI: 10.1016/j.trsl.2018.10.002] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/26/2018] [Accepted: 10/09/2018] [Indexed: 02/06/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is the third most common adult onset neurodegenerative disorder worldwide. It is generally characterized by progressive paralysis starting at the limbs ultimately leading to death caused by respiratory failure. There is no cure and current treatments fail to slow the progression of the disease. As such, new treatment options are desperately needed. Epigenetic targets are an attractive possibility because they are reversible. Epigenetics refers to heritable changes in gene expression unrelated to changes in DNA sequence. Three main epigenetic mechanisms include the methylation of DNA, microRNAs and the post-translational modification of histone proteins. Histone modifications occur in many amino acid residues and include phosphorylation, acetylation, methylation as well as other chemical moieties. Recent evidence points to a possible role for epigenetic mechanisms in the etiology of ALS. Here, we review recent advances linking ALS and epigenetics, with a strong focus on histone modifications. Both local and global changes in histone modification profiles are associated with ALS drawing attention to potential targets for future diagnostic and treatment approaches.
Collapse
Affiliation(s)
- Seth A Bennett
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York
| | - Royena Tanaz
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork
| | - Samantha N Cobos
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY 10016
| | - Mariana P Torrente
- Department of Chemistry, Brooklyn College, Brooklyn, NewYork; Ph.D. Programs in Chemistry, Biochemistry, and Biology, The Graduate Center of the City University of New York, New York, New York.
| |
Collapse
|
31
|
Kramarz B, Roncaglia P, Meldal BHM, Huntley RP, Martin MJ, Orchard S, Parkinson H, Brough D, Bandopadhyay R, Hooper NM, Lovering RC. Improving the Gene Ontology Resource to Facilitate More Informative Analysis and Interpretation of Alzheimer's Disease Data. Genes (Basel) 2018; 9:E593. [PMID: 30501127 PMCID: PMC6315915 DOI: 10.3390/genes9120593] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/28/2022] Open
Abstract
The analysis and interpretation of high-throughput datasets relies on access to high-quality bioinformatics resources, as well as processing pipelines and analysis tools. Gene Ontology (GO, geneontology.org) is a major resource for gene enrichment analysis. The aim of this project, funded by the Alzheimer's Research United Kingdom (ARUK) foundation and led by the University College London (UCL) biocuration team, was to enhance the GO resource by developing new neurological GO terms, and use GO terms to annotate gene products associated with dementia. Specifically, proteins and protein complexes relevant to processes involving amyloid-beta and tau have been annotated and the resulting annotations are denoted in GO databases as 'ARUK-UCL'. Biological knowledge presented in the scientific literature was captured through the association of GO terms with dementia-relevant protein records; GO itself was revised, and new GO terms were added. This literature biocuration increased the number of Alzheimer's-relevant gene products that were being associated with neurological GO terms, such as 'amyloid-beta clearance' or 'learning or memory', as well as neuronal structures and their compartments. Of the total 2055 annotations that we contributed for the prioritised gene products, 526 have associated proteins and complexes with neurological GO terms. To ensure that these descriptive annotations could be provided for Alzheimer's-relevant gene products, over 70 new GO terms were created. Here, we describe how the improvements in ontology development and biocuration resulting from this initiative can benefit the scientific community and enhance the interpretation of dementia data.
Collapse
Affiliation(s)
- Barbara Kramarz
- UCL Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK.
| | - Paola Roncaglia
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Birgit H M Meldal
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Rachael P Huntley
- UCL Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK.
| | - Maria J Martin
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Sandra Orchard
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Helen Parkinson
- European Bioinformatics Institute (EMBL-EBI), European Molecular Biology Laboratory, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - Rina Bandopadhyay
- UCL Queen Square Institute of Neurology and Reta Lila Weston Institute of Neurological Studies, 1 Wakefield Street, London WC1N 1PJ, UK.
| | - Nigel M Hooper
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, AV Hill Building, Oxford Road, Manchester M13 9PT, UK.
| | - Ruth C Lovering
- UCL Institute of Cardiovascular Science, University College London, Rayne Building, 5 University Street, London WC1E 6JF, UK.
| |
Collapse
|
32
|
Liu Y, Xin ZZ, Song J, Zhu XY, Liu QN, Zhang DZ, Tang BP, Zhou CL, Dai LS. Transcriptome Analysis Reveals Potential Antioxidant Defense Mechanisms in Antheraea pernyi in Response to Zinc Stress. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:8132-8141. [PMID: 29975524 DOI: 10.1021/acs.jafc.8b01645] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The growth and development of the Chinese oak silkworm, Antheraea pernyi, are strongly influenced by environmental conditions, including heavy metal pollution. An excess of heavy metals causes cellular damage through the production of free radical reactive oxygen species. In this study, transcriptome analysis was performed to investigate global gene expression when A. pernyi was exposed to zinc infection. With RNA sequencing (RNA-Seq), a total of 25 795 510 and 38 158 855 clean reads were obtained from zinc-treated and control fat body libraries, respectively. We identified 2399 differential expression genes (DEGs) (1845 upregulated and 544 downregulated genes) in the zinc-treated library. In addition, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed that these DEGs were related to the peroxisome pathway that was associated with antioxidant defense. Our results suggest that fat bodies of A. pernyi constitute a strong antioxidant defense against heavy metal contamination.
Collapse
Affiliation(s)
- Yu Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering , Nanjing University of Technology , Nanjing 210009 , People's Republic of China
| | - Zhao-Zhe Xin
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering , Nanjing University of Technology , Nanjing 210009 , People's Republic of China
| | - Jiao Song
- College of Life Science , Anhui Agricultural University , Hefei 230036 , People's Republic of China
| | - Xiao-Yu Zhu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Qiu-Ning Liu
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Dai-Zhen Zhang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Bo-Ping Tang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Chun-Lin Zhou
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Synthetic Innovation Center for Coastal Bio-agriculture, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, School of Ocean and Biological Engineering , Yancheng Teachers University , Yancheng 224051 , People's Republic of China
| | - Li-Shang Dai
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , People's Republic of China
| |
Collapse
|
33
|
Vrabec K, Boštjančič E, Koritnik B, Leonardis L, Dolenc Grošelj L, Zidar J, Rogelj B, Glavač D, Ravnik-Glavač M. Differential Expression of Several miRNAs and the Host Genes AATK and DNM2 in Leukocytes of Sporadic ALS Patients. Front Mol Neurosci 2018; 11:106. [PMID: 29670510 PMCID: PMC5893848 DOI: 10.3389/fnmol.2018.00106] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/19/2018] [Indexed: 12/12/2022] Open
Abstract
Genetic studies have managed to explain many cases of familial amyotrophic lateral sclerosis (ALS) through mutations in several genes. However, the cause of a majority of sporadic cases remains unknown. Recently, epigenetics, especially miRNA studies, show some promising aspects. We aimed to evaluate the differential expression of 10 miRNAs, including miR-9, miR-338, miR-638, miR-663a, miR-124a, miR-143, miR-451a, miR-132, miR-206, and let-7b, for which some connection to ALS was shown previously in ALS culture cells, animal models or patients, and in three miRNA host genes, including C1orf61 (miR-9), AATK (miR-338), and DNM2 (miR-638), in leukocyte samples of 84 patients with sporadic ALS. We observed significant aberrant dysregulation across our patient cohort for miR-124a, miR-206, miR-9, let-7b, and miR-638. Since we did not use neurological controls we cannot rule out that the revealed differences in expression of investigated miRNAs are specific for ALS. Nevertheless, the group of these five miRNAs is worth of additional research in leukocytes of larger cohorts from different populations in order to verify their potential association to ALS disease. We also detected a significant up-regulation of the AAKT gene and down-regulation of the DNM2 gene, and thus, for the first time, we connected these with sporadic ALS cases. These findings open up new research toward miRNAs as diagnostic biomarkers and epigenetic processes involved in ALS. The detected significant deregulation of AAKT and DNM2 in sporadic ALS also represents an interesting finding. The DNM2 gene was previously found to be mutated in Charcot-Marie-Tooth neuropathy-type CMT2M and centronuclear myopathy (CNM). In addition, as recent studies connected AATK and frontotemporal dementia (FTD) and DNM2 and hereditary spastic paraplegia (HSP), these two genes together with our results genetically connect, at least in part, five diseases, including FTD, HSP, Charcot-Marie-Tooth (type CMT2M), CNM, and ALS, thus opening future research toward a better understanding of the cell biology involved in these partly overlapping pathologies.
Collapse
Affiliation(s)
- Katarina Vrabec
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Emanuela Boštjančič
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Blaž Koritnik
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Lea Leonardis
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Leja Dolenc Grošelj
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Janez Zidar
- Division of Neurology, Institute of Clinical Neurophysiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Boris Rogelj
- Department of Biotechnology, Jožef Štefan Institute, Ljubljana, Slovenia.,Biomedical Research Institute, Ljubljana, Slovenia
| | - Damjan Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia
| | - Metka Ravnik-Glavač
- Department of Molecular Genetics, Faculty of Medicine, Institute of Pathology, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Biochemistry, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
34
|
Forero DA, López-León S, González-Giraldo Y, Dries DR, Pereira-Morales AJ, Jiménez KM, Franco-Restrepo JE. APOE gene and neuropsychiatric disorders and endophenotypes: A comprehensive review. Am J Med Genet B Neuropsychiatr Genet 2018; 177:126-142. [PMID: 27943569 DOI: 10.1002/ajmg.b.32516] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022]
Abstract
The Apolipoprotein E (APOE) gene is one of the main candidates in neuropsychiatric genetics, with hundreds of studies carried out in order to explore the possible role of polymorphisms in the APOE gene in a large number of neurological diseases, psychiatric disorders, and related endophenotypes. In the current article, we provide a comprehensive review of the structural and functional aspects of the APOE gene and its relationship with brain disorders. Evidence from genome-wide association studies and meta-analyses shows that the APOE gene has been significantly associated with several neurodegenerative disorders. Cellular and animal models show growing evidence of the key role of APOE in mechanisms of brain plasticity and behavior. Future analyses of the APOE gene might find a possible role in other neurological diseases and psychiatric disorders and related endophenotypes. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Diego A Forero
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia.,PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | | | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Daniel R Dries
- Chemistry Department, Juniata College, Huntingdon, Pennsylvania
| | - Angela J Pereira-Morales
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Karen M Jiménez
- Laboratory of Neuropsychiatric Genetics, Biomedical Sciences Research Group, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| | - Juan E Franco-Restrepo
- PhD Program in Health Sciences, School of Medicine, Universidad Antonio Nariño, Bogotá, Colombia
| |
Collapse
|
35
|
Ferrari R, Grassi M, Graziano F, Palluzzi F, Archetti S, Bonomi E, Bruni AC, Maletta RG, Bernardi L, Cupidi C, Colao R, Rainero I, Rubino E, Pinessi L, Galimberti D, Scarpini E, Serpente M, Nacmias B, Piaceri I, Bagnoli S, Rossi G, Giaccone G, Tagliavini F, Benussi L, Binetti G, Ghidoni R, Singleton A, Hardy J, Momeni P, Padovani A, Borroni B. Effects of Multiple Genetic Loci on Age at Onset in Frontotemporal Dementia. J Alzheimers Dis 2018; 56:1271-1278. [PMID: 28128768 DOI: 10.3233/jad-160949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In frontotemporal dementia (FTD), age at disease onset (AAO) is unpredictable in both early and late-onset cases; AAO variability is found even in autosomal dominant FTD. The present study was aimed at identifying genetic modifiers modulating AAO in a large cohort of Italian FTD patients. We conducted an association analysis on 411 FTD patients, belonging to 7 Italian Centers, and for whom AAO was available. Population structure was evaluated by principal component analysis to infer continuous axes of genetic variation, and single linear regression models were applied. A genetic score (GS) was calculated on the basis of suggestive single nucleotide polymorphisms (SNPs) found by association analyses. GS showed genome-wide significant slope decrease by -3.86 (95% CI: -4.64 to -3.07, p < 2×10-16) per standard deviation of the GS for 6 SNPs mapping to genes involved in neuronal development and signaling, axonal myelinization, and glutamatergic/GABA neurotransmission. An increase of the GS was associated with a decrease of the AAO. Our data indicate that there is indeed a genetic component that underpins and modulates up to 14.5% of variability of AAO in Italian FTD. Future studies on genetic modifiers in FTD are warranted.
Collapse
Affiliation(s)
- Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Francesca Graziano
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Silvana Archetti
- Department of Laboratories, III Laboratory of Analysis, Brescia Hospital, Brescia, Italy
| | - Elisa Bonomi
- Department of Clinical and Experimental Science, Neurology Unit, University of Brescia, Italy
| | - Amalia C Bruni
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme, Italy
| | | | - Livia Bernardi
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme, Italy
| | - Chiara Cupidi
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme, Italy
| | - Rosanna Colao
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme, Italy
| | - Innocenzo Rainero
- Department of Neuroscience, Neurology I, University of Torino and Cittá della Salute e della Scienza di Torino, Turin, Italy
| | - Elisa Rubino
- Department of Neuroscience, Neurology I, University of Torino and Cittá della Salute e della Scienza di Torino, Turin, Italy
| | - Lorenzo Pinessi
- Department of Neuroscience, Neurology I, University of Torino and Cittá della Salute e della Scienza di Torino, Turin, Italy
| | - Daniela Galimberti
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Elio Scarpini
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Maria Serpente
- Department of Pathophysiology and Transplantation, Neurology Unit, University of Milan, Fondazione Cà Granda, IRCCS Ospedale Policlinico, Milan, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Irene Piaceri
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Silvia Bagnoli
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Florence, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Giorgio Giaccone
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Fabrizio Tagliavini
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Giuliano Binetti
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,MAC Memory Center, IRCCS Istituto Centro San Giovanni di Dio-Fatebenefratelli, Brescia, Italy
| | - Roberta Ghidoni
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Andrew Singleton
- Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - John Hardy
- Department of Molecular Neuroscience, Institute of Neurology, UCL, London, UK
| | - Parastoo Momeni
- Department of Internal Medicine, Laboratory of Neurogenetics, Texas Tech University Health Science Center, Lubbock, TX, USA
| | - Alessandro Padovani
- Department of Clinical and Experimental Science, Neurology Unit, University of Brescia, Italy
| | - Barbara Borroni
- Department of Clinical and Experimental Science, Neurology Unit, University of Brescia, Italy
| |
Collapse
|
36
|
Su WH, Shi ZH, Liu SL, Wang XD, Liu S, Ji Y. The rs75932628 and rs2234253 polymorphisms of the TREM2 gene were associated with susceptibility to frontotemporal lobar degeneration in Caucasian populations. Ann Hum Genet 2018; 82:177-185. [PMID: 29322490 DOI: 10.1111/ahg.12241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 09/30/2017] [Accepted: 11/29/2017] [Indexed: 12/29/2022]
Abstract
Polymorphisms of the triggering receptor expressed on myeloid cells 2 (TREM2) gene have been reported to be potentially associated with the risks of developing frontotemporal lobar degeneration (FTLD), with inconsistent conclusions. This study aims to comprehensively investigate the potential role of TREM2 variants in FTLD risks via a meta-analysis. We included a total of eight eligible articles. For TREM2 rs75932628, we observed a significantly increased FTLD risk in the models of T vs. C [Association Test, odds ratio (OR) = 2.43, 95% confidence interval (CI) = 1.43∼4.14, P = 0.001], CT vs. CC (OR = 2.27, 95% CI = 1.39∼3.71, P = 0.001), CT + TT vs. CC (OR = 2.27, 95% CI = 1.38∼3.71, P = 0.001), and Carrier T vs. C (OR = 2.26, 95% CI = 1.38∼3.69, P = 0.001). Similarly, we observed positive results for TREM2 rs2234253 in all of the genetic models (all OR > 1, P = 0.030). Nevertheless, we did not observe any statistical difference between the case and control groups in the pooled analyses of TREM2 rs142232675 and rs143332484 (all P > 0.05). Our findings identified the rs75932628 and rs2234253 polymorphisms of the TREM2 gene as risk factors for FTLD in Caucasian populations.
Collapse
Affiliation(s)
- Wen-Hua Su
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhi-Hong Shi
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Shu-Ling Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Xiao-Dan Wang
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Shuai Liu
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Yong Ji
- Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.,Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
37
|
Ferrari R, Manzoni C, Momeni P. Genetic Risk Factors for Sporadic Frontotemporal Dementia. NEURODEGENER DIS 2018. [DOI: 10.1007/978-3-319-72938-1_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Mishra A, Ferrari R, Heutink P, Hardy J, Pijnenburg Y, Posthuma D. Gene-based association studies report genetic links for clinical subtypes of frontotemporal dementia. Brain 2017; 140:1437-1446. [PMID: 28387812 DOI: 10.1093/brain/awx066] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 01/23/2017] [Indexed: 01/02/2023] Open
Abstract
Genome-wide association studies in frontotemporal dementia showed limited success in identifying associated loci. This is possibly due to small sample size, allelic heterogeneity, small effect sizes of single genetic variants, and the necessity to statistically correct for testing millions of genetic variants. To overcome these issues, we performed gene-based association studies on 3348 clinically identified frontotemporal dementia cases and 9390 controls (discovery, replication and joint-cohort analyses). We report association of APOE and TOMM40 with behavioural variant frontotemporal dementia, and ARHGAP35 and SERPINA1 with progressive non-fluent aphasia. Further, we found the ɛ2 and ɛ4 alleles of APOE harbouring protective and risk increasing effects, respectively, in clinical subtypes of frontotemporal dementia against neurologically normal controls. The APOE-locus association with behavioural variant frontotemporal dementia indicates its potential risk-increasing role across different neurodegenerative diseases, whereas the novel genetic associations of ARHGAP35 and SERPINA1 with progressive non-fluent aphasia point towards a potential role of the stress-signalling pathway in its pathophysiology.
Collapse
Affiliation(s)
- Aniket Mishra
- Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, 1081 HV, The Netherlands
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, UCL, Russell Square House, 9-12 Russell Square House London, WC1B 5EH, UK
| | - Peter Heutink
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, University of Tübingen, 72076, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE)-Tübingen, 72076, Tübingen, Germany
| | - John Hardy
- Department of Molecular Neuroscience, UCL, Russell Square House, 9-12 Russell Square House London, WC1B 5EH, UK
| | - Yolande Pijnenburg
- Alzheimer Center and Department of Neurology, VU University Medical Center (VUMC), Neuroscience Campus Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | - Danielle Posthuma
- Department of Complex Trait Genetics, VU University, Center for Neurogenomics and Cognitive Research, Amsterdam, 1081 HV, The Netherlands.,Department of Clinical Genetics, VU University Medical Center (VUMC), Neuroscience Campus Amsterdam, Amsterdam, 1081 HV, The Netherlands
| | | |
Collapse
|
39
|
Palluzzi F, Ferrari R, Graziano F, Novelli V, Rossi G, Galimberti D, Rainero I, Benussi L, Nacmias B, Bruni AC, Cusi D, Salvi E, Borroni B, Grassi M. A novel network analysis approach reveals DNA damage, oxidative stress and calcium/cAMP homeostasis-associated biomarkers in frontotemporal dementia. PLoS One 2017; 12:e0185797. [PMID: 29020091 PMCID: PMC5636111 DOI: 10.1371/journal.pone.0185797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Accepted: 09/19/2017] [Indexed: 01/04/2023] Open
Abstract
Frontotemporal Dementia (FTD) is the form of neurodegenerative dementia with the highest prevalence after Alzheimer’s disease, equally distributed in men and women. It includes several variants, generally characterized by behavioural instability and language impairments. Although few mendelian genes (MAPT, GRN, and C9orf72) have been associated to the FTD phenotype, in most cases there is only evidence of multiple risk loci with relatively small effect size. To date, there are no comprehensive studies describing FTD at molecular level, highlighting possible genetic interactions and signalling pathways at the origin FTD-associated neurodegeneration. In this study, we designed a broad FTD genetic interaction map of the Italian population, through a novel network-based approach modelled on the concepts of disease-relevance and interaction perturbation, combining Steiner tree search and Structural Equation Model (SEM) analysis. Our results show a strong connection between Calcium/cAMP metabolism, oxidative stress-induced Serine/Threonine kinases activation, and postsynaptic membrane potentiation, suggesting a possible combination of neuronal damage and loss of neuroprotection, leading to cell death. In our model, Calcium/cAMP homeostasis and energetic metabolism impairments are primary causes of loss of neuroprotection and neural cell damage, respectively. Secondly, the altered postsynaptic membrane potentiation, due to the activation of stress-induced Serine/Threonine kinases, leads to neurodegeneration. Our study investigates the molecular underpinnings of these processes, evidencing key genes and gene interactions that may account for a significant fraction of unexplained FTD aetiology. We emphasized the key molecular actors in these processes, proposing them as novel FTD biomarkers that could be crucial for further epidemiological and molecular studies.
Collapse
Affiliation(s)
- Fernando Palluzzi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
- * E-mail:
| | - Raffaele Ferrari
- Department of Molecular Neuroscience, Institute of Neurology, University College London (UCL), London, United Kingdom
| | - Francesca Graziano
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| | - Valeria Novelli
- Department of Genetics, Fondazione Policlinico A. Gemelli, Roma, Italy
| | - Giacomina Rossi
- Division of Neurology V and Neuropathology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milano, Italy
| | - Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Institute, University of Milan, Milano, Italy
| | - Innocenzo Rainero
- Department of Neuroscience, Neurology I, University of Torino and Città della Salute e della Scienza di Torino, Torino, Italy
| | - Luisa Benussi
- Molecular Markers Laboratory, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Benedetta Nacmias
- Department of Neuroscience, Psychology, Drug Research and Child Health, University of Florence, Firenze, Italy
| | - Amalia C. Bruni
- Neurogenetic Regional Centre ASPCZ Lamezia Terme, Lamezia Terme (CZ), Italy
| | - Daniele Cusi
- Department of Health Sciences, University of Milan at San Paolo Hospital, Milano, Italy
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Erika Salvi
- Institute of Biomedical Technologies, Italian National Research Council, Milano, Italy
| | - Barbara Borroni
- Department of Medical Sciences, Neurology Clinic, University of Brescia, Brescia, Italy
| | - Mario Grassi
- Department of Brain and Behavioural Sciences, Medical and Genomic Statistics Unit, University of Pavia, Pavia, Italy
| |
Collapse
|
40
|
Pottier C, Ravenscroft TA, Sanchez-Contreras M, Rademakers R. Genetics of FTLD: overview and what else we can expect from genetic studies. J Neurochem 2017; 138 Suppl 1:32-53. [PMID: 27009575 DOI: 10.1111/jnc.13622] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 02/26/2016] [Accepted: 03/18/2016] [Indexed: 12/11/2022]
Abstract
Frontotemporal lobar degeneration (FTLD) comprises a highly heterogeneous group of disorders clinically associated with behavioral and personality changes, language impairment, and deficits in executive functioning, and pathologically associated with degeneration of frontal and temporal lobes. Some patients present with motor symptoms including amyotrophic lateral sclerosis. Genetic research over the past two decades in FTLD families led to the identification of three common FTLD genes (microtubule-associated protein tau, progranulin, and chromosome 9 open reading frame 72) and a small number of rare FTLD genes, explaining the disease in almost all autosomal dominant FTLD families but only a minority of apparently sporadic patients or patients in whom the family history is less clear. Identification of additional FTLD (risk) genes is therefore highly anticipated, especially with the emerging use of next-generation sequencing. Common variants in the transmembrane protein 106 B were identified as a genetic risk factor of FTLD and disease modifier in patients with known mutations. This review summarizes for each FTLD gene what we know about the type and frequency of mutations, their associated clinical and pathological features, and potential disease mechanisms. We also provide an overview of emerging disease pathways encompassing multiple FTLD genes. We further discuss how FTLD specific issues, such as disease heterogeneity, the presence of an unclear family history and the possible role of an oligogenic basis of FTLD, can pose challenges for future FTLD gene identification and risk assessment of specific variants. Finally, we highlight emerging clinical, genetic, and translational research opportunities that lie ahead. Genetic research led to the identification of three common FTLD genes with rare variants (MAPT, GRN, and C9orf72) and a small number of rare genes. Efforts are now ongoing, which aimed at the identification of rare variants with high risk and/or low frequency variants with intermediate effect. Common risk variants have also been identified, such as TMEM106B. This review discusses the current knowledge on FTLD genes and the emerging disease pathways encompassing multiple FTLD genes.
Collapse
Affiliation(s)
- Cyril Pottier
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| | | | | | - Rosa Rademakers
- Mayo Clinic Jacksonville, Department of Neuroscience, Jacksonville, FL, USA
| |
Collapse
|
41
|
Tan Q, Li W, Vandin F. Disease-Concordant Twins Empower Genetic Association Studies. Ann Hum Genet 2016; 81:20-26. [PMID: 28009044 DOI: 10.1111/ahg.12181] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 11/28/2016] [Indexed: 02/02/2023]
Abstract
Genome-wide association studies with moderate sample sizes are underpowered, especially when testing SNP alleles with low allele counts, a situation that may lead to high frequency of false-positive results and lack of replication in independent studies. Related individuals, such as twin pairs concordant for a disease, should confer increased power in genetic association analysis because of their genetic relatedness. We conducted a computer simulation study to explore the power advantage of the disease-concordant twin design, which uses singletons from disease-concordant twin pairs as cases and ordinary healthy samples as controls. We examined the power gain of the twin-based design for various scenarios (i.e., cases from monozygotic and dizygotic twin pairs concordant for a disease) and compared the power with the ordinary case-control design with cases collected from the unrelated patient population. Simulation was done by assigning various allele frequencies and allelic relative risks for different mode of genetic inheritance. In general, for achieving a power estimate of 80%, the sample sizes needed for dizygotic and monozygotic twin cases were one half and one fourth of the sample size of an ordinary case-control design, with variations depending on genetic mode. Importantly, the enriched power for dizygotic twins also applies to disease-concordant sibling pairs, which largely extends the application of the concordant twin design. Overall, our simulation revealed a high value of disease-concordant twins in genetic association studies and encourages the use of genetically related individuals for highly efficiently identifying both common and rare genetic variants underlying human complex diseases without increasing laboratory cost.
Collapse
Affiliation(s)
- Qihua Tan
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark.,Unit of Human Genetics, Department of Clinical Research, University of Southern Denmark, Denmark
| | - Weilong Li
- Epidemiology, Biostatistics and Biodemography, Department of Public Health, University of Southern Denmark, Denmark
| | - Fabio Vandin
- Department of Mathematics and Computer Science, University of Southern Denmark, Denmark.,Department of Information Engineering, University of Padova, Italy
| |
Collapse
|
42
|
Sharma G, Tsutsumi K, Saito T, Asada A, Ando K, Tomomura M, Hisanaga SI. Kinase activity of endosomal kinase LMTK1A regulates its cellular localization and interactions with cytoskeletons. Genes Cells 2016; 21:1080-1094. [PMID: 27600567 DOI: 10.1111/gtc.12404] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 07/31/2016] [Indexed: 01/07/2023]
Abstract
Neurite formation, a fundamental process in neuronal maturation, requires the coordinated regulation of cytoskeletal reorganization and membrane transport. Compared to the understanding of cytoskeletal functions, less is known about the supply of membranes to growing neurites. Lemur kinase 1A (LMTK1A) is an endosomal protein kinase that is highly expressed in neurons. We recently reported that LMTK1A regulates the trafficking of Rab11-positive recycling endosomes in growing axons and dendrites. Here, we used the kinase-negative (kn) mutant to investigate the role of the kinase activity of LMTK1A in its cellular localization and interactions with the cytoskeleton in Neuro2A and PC-12 cells. Kinase activity was required for the localization of LMTK1A in the perinuclear endocytic recycling compartment. Perinuclear accumulation was microtubule dependent, and LMTK1A wild type (wt) localized mainly on microtubules, whereas kn LMTK1A was found in the actin-rich cell periphery. In the neurites of PC-12 cells, LMTK1A showed contrasting distributions depending on the kinase activity, with wt being located in the microtubule-rich shaft and the kn form in the actin-rich tip. Taken together, these results suggest that the kinase activity of LMTK1A regulates the pathway for endosomal vesicles to transfer from microtubules to actin filaments at the tip of growing neurites.
Collapse
Affiliation(s)
- Govinda Sharma
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Koji Tsutsumi
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Taro Saito
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Akiko Asada
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Kanae Ando
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan
| | - Mineko Tomomura
- Integral Education Center, Meikai University, Urayasu, Chiba, 279-9950, Japan
| | - Shin-Ichi Hisanaga
- Laboratory of Molecular Neuroscience, Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, 192-0397, Japan.
| |
Collapse
|
43
|
Yano K, Yamamoto E, Aya K, Takeuchi H, Lo PC, Hu L, Yamasaki M, Yoshida S, Kitano H, Hirano K, Matsuoka M. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 2016. [PMID: 27322545 DOI: 10.1038/ng3596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2023]
Abstract
A genome-wide association study (GWAS) can be a powerful tool for the identification of genes associated with agronomic traits in crop species, but it is often hindered by population structure and the large extent of linkage disequilibrium. In this study, we identified agronomically important genes in rice using GWAS based on whole-genome sequencing, followed by the screening of candidate genes based on the estimated effect of nucleotide polymorphisms. Using this approach, we identified four new genes associated with agronomic traits. Some genes were undetectable by standard SNP analysis, but we detected them using gene-based association analysis. This study provides fundamental insights relevant to the rapid identification of genes associated with agronomic traits using GWAS and will accelerate future efforts aimed at crop improvement.
Collapse
Affiliation(s)
- Kenji Yano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Eiji Yamamoto
- NARO Institute of Vegetable and Tea Science, Tsu, Japan
| | - Koichiro Aya
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hideyuki Takeuchi
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Pei-Ching Lo
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Li Hu
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Masanori Yamasaki
- Food Resources Education and Research Center, Graduate School of Agricultural Science, Kobe University, Kasai, Hyogo, Japan
| | - Shinya Yoshida
- Hyogo Prefectural Research Center for Agriculture, Forestry and Fisheries, Kasai, Hyogo, Japan
| | - Hidemi Kitano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Ko Hirano
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| |
Collapse
|
44
|
Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet 2016; 48:927-34. [PMID: 27322545 DOI: 10.1038/ng.3596] [Citation(s) in RCA: 402] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/26/2016] [Indexed: 02/07/2023]
Abstract
A genome-wide association study (GWAS) can be a powerful tool for the identification of genes associated with agronomic traits in crop species, but it is often hindered by population structure and the large extent of linkage disequilibrium. In this study, we identified agronomically important genes in rice using GWAS based on whole-genome sequencing, followed by the screening of candidate genes based on the estimated effect of nucleotide polymorphisms. Using this approach, we identified four new genes associated with agronomic traits. Some genes were undetectable by standard SNP analysis, but we detected them using gene-based association analysis. This study provides fundamental insights relevant to the rapid identification of genes associated with agronomic traits using GWAS and will accelerate future efforts aimed at crop improvement.
Collapse
|
45
|
Huang H, Zhao J, Xu B, Ma X, Dai Q, Li T, Xue F, Chen B. The TOMM40 gene rs2075650 polymorphism contributes to Alzheimer's disease in Caucasian, and Asian populations. Neurosci Lett 2016; 628:142-6. [PMID: 27328316 DOI: 10.1016/j.neulet.2016.05.050] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/24/2016] [Indexed: 12/21/2022]
Abstract
Largescale genome-wide association studies (GWAS) showed that the TOMM40 rs2075650 polymorphism is significantly associated with Alzheimer's disease (AD) in Caucasian ancestry and Asian population. Here, we evaluated this association with large-scale samples from selected 12 studies (N=28,515; 10,358 cases and 18,157 controls) through the PubMed, AlzGene, and Google Scholar. We identified a significant association between rs2075650 and AD with P=0.000, OR=4.178 and 95% CI 1.891-9.228. In subgroup analysis, we identified significant association between rs2075650 polymorphism and AD in both Asian and Caucasians but not mixed populations. Collectively, our analysis shows TOMM40 rs2075650 polymorphism is associated with AD susceptibility in Asian, Caucasian, and mixed populations. We believe that our analysis will be helpful for future genetic researches on AD.
Collapse
Affiliation(s)
- Hao Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Jun Zhao
- National Research Institute for Family Planning, Beijing, China.
| | - Biyun Xu
- Drum Tower Hospital, Medical School of Nanjing University, China.
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China.
| | - Qiaoyun Dai
- National Research Institute for Family Planning, Beijing, China.
| | - Taishun Li
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Fangjing Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| | - Bingwei Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Southeast University, Nanjing, China.
| |
Collapse
|