1
|
Wang Y, Yang Y, Qiu Z, Chen Y, Zhang X, Qiu Q, Yang Y, Xie Q, Zhang X, Zhang X. Assessment of Age-Related Microstructure Changes in Thigh Skeletal Muscle Based on Neurite Orientation Dispersion and Density Imaging. J Magn Reson Imaging 2025; 61:2601-2614. [PMID: 39644126 DOI: 10.1002/jmri.29675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Neurite orientation dispersion and density imaging (NODDI) could offer information about the morphological properties of tissue. Diffusion microstructure imaging has been widely used, but the applicability of NODDI in skeletal muscle imaging remains to be explored. PURPOSE To evaluate microstructure parameters variations in skeletal muscle as indicators of age-related changes. STUDY TYPE Prospective, cross-sectional. POPULATION A total of 108 asymptomatic volunteers, divided into three age groups: 20-39 years (N = 34), 40-59 years (N = 40), and over 60 years (N = 34). FIELD STRENGTH/SEQUENCE 3-T, three-dimensional (3D) gradient echo sequence. ASSESSMENT T1-weighted imaging, T2-weighted imaging with spectral adiabatic inversion recovery, and NODDI were used to image the thigh skeletal muscles. Four thigh skeletal muscle groups were analyzed, including bilateral thigh quadriceps femoris and hamstrings. The microstructure parameters included orientation dispersion index (ODI), intra-myofibrillar water volume fraction (V-intra), free-water fraction (V-csf), fractional anisotropy (FA), and mean diffusivity (MD). These parameters were quantified using NODDI images and compared among different age, body mass index (BMI), and skeletal muscle index (SMI) subgroups. STATISTICAL TESTS Segmentation measurement reliability was assessed using a two-way mixed intraclass correlation coefficient (ICC). Shapiro-Wilk tests were used to assess data distribution. Kruskal-Wallis and Mann-Whitney U tests were used to compare ODI, V-intra, V-csf, FA, and MD values among different age, BMI, and SMI subgroups. The Spearman correlation coefficient was utilized to assess the strength of the correlation between the age and microstructure parameters, as well as between age and SMI. Additionally, Bonferroni post hoc tests were conducted on microstructure parameters that exhibited significant differences across various age groups. A P-value <0.05 was considered statistically significant. RESULTS Significant differences in ODI, V-csf, FA, and MD values were observed among age, BMI, and SMI subgroups. DATA CONCLUSION NODDI may be used to reveal information about microstructure integrity and local physiological changes of thigh skeletal muscle fibers in relation to age. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Yiqiong Yang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Ziru Qiu
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Yanjun Chen
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xinru Zhang
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Qianyi Qiu
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Yi Yang
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Qinglin Xie
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| | - Xinyuan Zhang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing and Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital Southern Medical University, Guangzhou, China
| |
Collapse
|
2
|
Greenman D, Bennett IJ. Aging of gray matter microstructure: A brain-wide characterization of age group differences using NODDI. Neurobiol Aging 2025; 149:34-43. [PMID: 39986261 DOI: 10.1016/j.neurobiolaging.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 01/30/2025] [Accepted: 02/14/2025] [Indexed: 02/24/2025]
Abstract
This study aimed to provide a complete characterization of age group differences in cortical lobar, hippocampal, and subcortical gray matter microstructure using a multi-compartment diffusion-weighted MRI (DWI) approach with parameters optimized for gray matter (Neurite Orientation Dispersion and Density Imaging, NODDI). 76 younger (undergraduate students) and 64 older (surrounding communities) adults underwent diffusion-, T1-, and susceptibility-weighted MRI. Results revealed eight unique patterns across the 12 regions of interest in the relative direction and magnitude of age effects across NODDI metrics, which were grouped into three prominent patterns: cortical gray matter had predominantly higher free diffusion in older than younger adults, the hippocampus and amygdala had predominantly higher dispersion of diffusion and intracellular diffusion in older than younger adults, and the putamen and globus pallidus had lower dispersion of diffusion in older than younger adults. Results remained largely unchanged after controlling for normalized regional volume, suggesting that higher free diffusion in older than younger adults in cortical gray matter was not driven by macrostructural atrophy. Results also remained largely unchanged after controlling for iron content (QSM, R2*), even in iron-rich subcortical regions. Taken together, these patterns of age effects across NODDI metrics provide evidence of region-specific neurobiological substrates of aging of gray matter microstructure.
Collapse
Affiliation(s)
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, USA.
| |
Collapse
|
3
|
Lu Q, Lu S, Wang X, Huang Y, Liu J, Liang Z. Structural and functional changes of Post-Stroke Depression: A multimodal magnetic resonance imaging study. Neuroimage Clin 2025; 45:103743. [PMID: 39893709 PMCID: PMC11840514 DOI: 10.1016/j.nicl.2025.103743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/28/2024] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
This study investigated changes in gray matter volume (GMV), white matter microstructure, and spontaneous brain activity in post-stroke depression (PSD) using multiple MRI techniques, including neurite orientation dispersion and density imaging (NODDI). Changes in GMV, neurite density index (NDI), orientation dispersion index (ODI), fraction of isotropic water (ISO), diffusion tensor imaging (DTI) parameters, and the amplitude of frequency fluctuations (ALFF) were assessed between PSD (n = 20), post-stroke without depression (n = 20), and normal control (n = 20) groups. Receiver operating characteristic (ROC) curve analysis was performed to test the classification performance of the variant parameters of each MRI modality, each single MRI modality and multiple MRI modality. Compared to patients with post-stroke without depression (non-PSD), those with PSD showed increased ODI and ISO in the widespread white matter, as well as increased ALFF in the left pallidum. No significant differences in the GMV or DTI parameters were observed between the two groups. Furthermore, the ODI of the right superior longitudinal fasciculus and NODDI showed the best classification performance for PSD at their respective comparison level (the areas under the ROC curves (AUC) = 0.917(0.000), 0.933(0.000)). The model of NODDI-derived parameters combined with non-diffusion MRI modality parameters (i.e., GMV and ALFF) showed better diagnostic performance than that of DTI-derived parameters. These findings suggest that PSD is associated with structural and functional abnormalities that may contribute to depressive symptoms. Additionally, NODDI showed its advantages in the description of structural alterations in emotion-related white matter pathways and classification performance in PSD.
Collapse
Affiliation(s)
- Qiuhong Lu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China; Department of Mental Health, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Shunzu Lu
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Xue Wang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Yanlan Huang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Jie Liu
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China
| | - Zhijian Liang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, PR China.
| |
Collapse
|
4
|
Lee H, Lee H, Ma Y, Eskandarian L, Gaudet K, Tian Q, Krijnen EA, Russo AW, Salat DH, Klawiter EC, Huang SY. Age-related alterations in human cortical microstructure across the lifespan: Insights from high-gradient diffusion MRI. Aging Cell 2024; 23:e14267. [PMID: 39118344 PMCID: PMC11561659 DOI: 10.1111/acel.14267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 08/10/2024] Open
Abstract
The human brain undergoes age-related microstructural alterations across the lifespan. Soma and Neurite Density Imaging (SANDI), a novel biophysical model of diffusion MRI, provides estimates of cell body (soma) radius and density, and neurite density in gray matter. The goal of this cross-sectional study was to assess the sensitivity of high-gradient diffusion MRI toward age-related alterations in cortical microstructure across the adult lifespan using SANDI. Seventy-two cognitively unimpaired healthy subjects (ages 19-85 years; 40 females) were scanned on the 3T Connectome MRI scanner with a maximum gradient strength of 300mT/m using a multi-shell diffusion MRI protocol incorporating 8 b-values and diffusion time of 19 ms. Intra-soma signal fraction obtained from SANDI model-fitting to the data was strongly correlated with age in all major cortical lobes (r = -0.69 to -0.60, FDR-p < 0.001). Intra-soma signal fraction (r = 0.48-0.63, FDR-p < 0.001) and soma radius (r = 0.28-0.40, FDR-p < 0.04) were significantly correlated with cortical volume in the prefrontal cortex, frontal, parietal, and temporal lobes. The strength of the relationship between SANDI metrics and age was greater than or comparable to the relationship between cortical volume and age across the cortical regions, particularly in the occipital lobe and anterior cingulate gyrus. In contrast to the SANDI metrics, all associations between diffusion tensor imaging (DTI) and diffusion kurtosis imaging metrics and age were low to moderate. These results suggest that high-gradient diffusion MRI may be more sensitive to underlying substrates of neurodegeneration in the aging brain than DTI and traditional macroscopic measures of neurodegeneration such as cortical volume and thickness.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Hong‐Hsi Lee
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Yixin Ma
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Laleh Eskandarian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Kyla Gaudet
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Qiyuan Tian
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eva A. Krijnen
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- MS Center Amsterdam, Anatomy and Neurosciences, Amsterdam NeuroscienceAmsterdam UMC Location VUmcAmsterdamThe Netherlands
| | - Andrew W. Russo
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - David H. Salat
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Eric C. Klawiter
- Department of NeurologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Department of Radiology, Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
5
|
Hédouin R, Roy JC, Desmidt T, Robert G, Coloigner J. Microstructural brain assessment in late-life depression and apathy using diffusion MRI multi-compartments models and tractometry. Sci Rep 2024; 14:18193. [PMID: 39107406 PMCID: PMC11303796 DOI: 10.1038/s41598-024-67535-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 08/10/2024] Open
Abstract
Late-life depression (LLD) is both common and disabling and doubles the risk of dementia onset. Apathy might constitute an additional risk of cognitive decline but clear understanding of its pathophysiology is lacking. While white matter (WM) alterations have been assessed using diffusion tensor imaging (DTI), this model cannot accurately represent WM microstructure. We hypothesized that a more complex multi-compartment model would provide new biomarkers of LLD and apathy. Fifty-six individuals (LLD n = 35, 26 females, 75.2 ± 6.4 years, apathy evaluation scale scores (41.8 ± 8.7) and Healthy controls, n = 21, 16 females, 74.7 ± 5.2 years) were included. In this article, a tract-based approach was conducted to investigate novel diffusion model biomarkers of LLD and apathy by interpolating microstructural metrics directly along the fiber bundle. We performed multivariate statistical analysis, combined with principal component analysis for dimensional data reduction. We then tested the utility of our framework by demonstrating classically reported from the literature modifications in LDD while reporting new results of biological-basis of apathy in LLD. Finally, we aimed to investigate the relationship between apathy and microstructure in different fiber bundles. Our study suggests that new fiber bundles, such as the striato-premotor tracts, may be involved in LLD and apathy, which bring new light of apathy mechanisms in major depression. We also identified statistical changes in diffusion MRI metrics in 5 different tracts, previously reported in major cognitive disorders dementia, suggesting that these alterations among these tracts are both involved in motivation and cognition and might explain how apathy is a prodromal phase of degenerative disorders.
Collapse
Affiliation(s)
- Renaud Hédouin
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
| | - Jean-Charles Roy
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Thomas Desmidt
- CHU de Tours, Tours, France
- UMR 1253, iBrain, Université de Tours, INSERM, Tours, France
- CIC 1415, CHU de Tours, INSERM, Tours, France
| | - Gabriel Robert
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France
- CIC 1414, CHU de Rennes, INSERM, Rennes, France
- Adult University Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Julie Coloigner
- Univ Rennes, INRIA, CNRS, INSERM, IRISA UMR 6074, Empenn ERL U 1228, 35000, Rennes, France.
| |
Collapse
|
6
|
Yu X, Przybelski SA, Reid RI, Lesnick TG, Raghavan S, Graff‐Radford J, Lowe VJ, Kantarci K, Knopman DS, Petersen RC, Jack CR, Vemuri P. NODDI in gray matter is a sensitive marker of aging and early AD changes. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2024; 16:e12627. [PMID: 39077685 PMCID: PMC11284641 DOI: 10.1002/dad2.12627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024]
Abstract
INTRODUCTION Age-related and Alzheimer's disease (AD) dementia-related neurodegeneration impact brain health. While morphometric measures from T1-weighted scans are established biomarkers, they may be less sensitive to earlier changes. Neurite orientation dispersion and density imaging (NODDI), offering biologically meaningful interpretation of tissue microstructure, may be an advanced brain health biomarker. METHODS We contrasted regional gray matter NODDI and morphometric evaluations concerning their correlation with (1) age, (2) clinical diagnosis stage, and (3) tau pathology as assessed by AV1451 positron emission tomography. RESULTS Our study hypothesizes that NODDI measures are more sensitive to aging and early AD changes than morphometric measures. One NODDI output, free water fraction (FWF), showed higher sensitivity to age-related changes, generally better effect sizes in separating mild cognitively impaired from cognitively unimpaired participants, and stronger associations with regional tau deposition than morphometric measures. DISCUSSION These findings underscore NODDI's utility in capturing early neurodegenerative changes and enhancing our understanding of aging and AD. Highlights Neurite orientation dispersion and density imaging can serve as an effective brain health biomarker for aging and early Alzheimer's disease (AD).Free water fraction has higher sensitivity to normal brain aging.Free water fraction has stronger associations with early AD and regional tau deposition.
Collapse
Affiliation(s)
- Xi Yu
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMinnesotaUSA
| | - Scott A. Przybelski
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Robert I. Reid
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Timothy G. Lesnick
- Department of Health Sciences ResearchDivision of Biomedical Statistics and InformaticsMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | | | | - Val J. Lowe
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - Kejal Kantarci
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | - David S. Knopman
- Department of NeurologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | | - Clifford R. Jack
- Department of RadiologyMayo Clinic‐RochesterRochesterMinnesotaUSA
| | | |
Collapse
|
7
|
Kim T, Rahimpour Jounghani A, Gozdas E, Hosseini SH. Cortical neurite microstructural correlates of time perception in healthy older adults. Heliyon 2024; 10:e32534. [PMID: 38975207 PMCID: PMC11225759 DOI: 10.1016/j.heliyon.2024.e32534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
The human experience is significantly impacted by timing as it structures how information is processed. Nevertheless, the neurological foundation of time perception remains largely unresolved. Understanding cortical microstructure related to timing is crucial for gaining insight into healthy aging and recognizing structural alterations that are typical of neurodegenerative diseases associated with age. Given the importance, this study aimed to determine the brain regions that are accountable for predicting time perception in older adults using microstructural measures of the brain. In this study, elderly healthy adults performed the Time-Wall Estimation task to measure time perception through average error time. We used support vector regression (SVR) analyses to predict the average error time using cortical neurite microstructures derived from orientation dispersion and density imaging based on multi-shell diffusion magnetic resonance imaging (dMRI). We found significant correlations between observed and predicted average error times for neurite arborization (ODI) and free water (FISO). Neurite arborization and free water properties in specific regions in the medial and lateral prefrontal, superior parietal, and medial and lateral temporal lobes were among the most significant predictors of timing ability in older adults. Further, our results revealed that greater branching along with lower free water in cortical structures result in shorter average error times. Future studies should assess whether these same networks are contributing to time perception in older adults with mild cognitive impairment (MCI) and whether degeneration of these networks contribute to early diagnosis or detection of dementia.
Collapse
Affiliation(s)
| | | | - Elveda Gozdas
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| | - S.M. Hadi Hosseini
- C-BRAIN Lab, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 1520 Page Mill Rd., Stanford, CA, 94304-5795, United States
| |
Collapse
|
8
|
Parker KJ, Kabir IE, Doyley MM, Faiyaz A, Uddin MN, Flores G, Schifitto G. Brain elastography in aging relates to fluid/solid trendlines. Phys Med Biol 2024; 69:115037. [PMID: 38670141 DOI: 10.1088/1361-6560/ad4446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/26/2024] [Indexed: 04/28/2024]
Abstract
The relatively new tools of brain elastography have established a general trendline for healthy, aging adult humans, whereby the brain's viscoelastic properties 'soften' over many decades. Earlier studies of the aging brain have demonstrated a wide spectrum of changes in morphology and composition towards the later decades of lifespan. This leads to a major question of causal mechanisms: of the many changes documented in structure and composition of the aging brain, which ones drive the long term trendline for viscoelastic properties of grey matter and white matter? The issue is important for illuminating which factors brain elastography is sensitive to, defining its unique role for study of the brain and clinical diagnoses of neurological disease and injury. We address these issues by examining trendlines in aging from our elastography data, also utilizing data from an earlier landmark study of brain composition, and from a biophysics model that captures the multiscale biphasic (fluid/solid) structure of the brain. Taken together, these imply that long term changes in extracellular water in the glymphatic system of the brain along with a decline in the extracellular matrix have a profound effect on the measured viscoelastic properties. Specifically, the trendlines indicate that water tends to replace solid fraction as a function of age, then grey matter stiffness decreases inversely as water fraction squared, whereas white matter stiffness declines inversely as water fraction to the 2/3 power, a behavior consistent with the cylindrical shape of the axons. These unique behaviors point to elastography of the brain as an important macroscopic measure of underlying microscopic structural change, with direct implications for clinical studies of aging, disease, and injury.
Collapse
Affiliation(s)
- Kevin J Parker
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Irteza Enan Kabir
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Marvin M Doyley
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
| | - Abrar Faiyaz
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
| | - Md Nasir Uddin
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| | - Gilmer Flores
- Department of Biomedical Engineering, University of Rochester, 204 Goergen Hall, Box 270168, Rochester, NY 14627, United States of America
| | - Giovanni Schifitto
- Department of Electrical and Computer Engineering, University of Rochester, 724 Computer Studies Building, Box 270231, Rochester, NY 14627, United States of America
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Box 648, Rochester, NY 14642, United States of America
- Department of Neurology, University of Rochester Medical Center, 601 Elmwood Ave, Box 673, Rochester, NY 14642, United States of America
| |
Collapse
|
9
|
Hosp JA, Reisert M, Dressing A, Götz V, Kellner E, Mast H, Arndt S, Waller CF, Wagner D, Rieg S, Urbach H, Weiller C, Schröter N, Rau A. Cerebral microstructural alterations in Post-COVID-condition are related to cognitive impairment, olfactory dysfunction and fatigue. Nat Commun 2024; 15:4256. [PMID: 38762609 PMCID: PMC11102465 DOI: 10.1038/s41467-024-48651-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 05/08/2024] [Indexed: 05/20/2024] Open
Abstract
After contracting COVID-19, a substantial number of individuals develop a Post-COVID-Condition, marked by neurologic symptoms such as cognitive deficits, olfactory dysfunction, and fatigue. Despite this, biomarkers and pathophysiological understandings of this condition remain limited. Employing magnetic resonance imaging, we conduct a comparative analysis of cerebral microstructure among patients with Post-COVID-Condition, healthy controls, and individuals that contracted COVID-19 without long-term symptoms. We reveal widespread alterations in cerebral microstructure, attributed to a shift in volume from neuronal compartments to free fluid, associated with the severity of the initial infection. Correlating these alterations with cognition, olfaction, and fatigue unveils distinct affected networks, which are in close anatomical-functional relationship with the respective symptoms.
Collapse
Affiliation(s)
- Jonas A Hosp
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marco Reisert
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andrea Dressing
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Freiburg Brain Imaging Center, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Veronika Götz
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Elias Kellner
- Department of Diagnostic and Interventional Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hansjörg Mast
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Susan Arndt
- Department of Otorhinolaryngology - Head and Neck Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius F Waller
- Department of Internal Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Dirk Wagner
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Siegbert Rieg
- Department of Internal Medicine II, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nils Schröter
- Department of Neurology and Clinical Neuroscience, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
10
|
Sharafeddin F, Sierra J, Ghaly M, Simon TB, Ontiveros‐Ángel P, Edelbach B, Febo M, Labus J, Figueroa JD. Role of the prefrontal cortical protease TACE/ADAM17 in neurobehavioral responses to chronic stress during adolescence. Brain Behav 2024; 14:e3482. [PMID: 38715397 PMCID: PMC11077197 DOI: 10.1002/brb3.3482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 02/17/2024] [Accepted: 03/20/2024] [Indexed: 05/12/2024] Open
Abstract
INTRODUCTION Chronic adolescent stress profoundly affects prefrontal cortical networks regulating top-down behavior control. However, the neurobiological pathways contributing to stress-induced alterations in the brain and behavior remain largely unknown. Chronic stress influences brain growth factors and immune responses, which may, in turn, disrupt the maturation and function of prefrontal cortical networks. The tumor necrosis factor alpha-converting enzyme/a disintegrin and metalloproteinase 17 (TACE/ADAM17) is a sheddase with essential functions in brain maturation, behavior, and inflammatory responses. This study aimed to determine the impact of stress on the prefrontal cortex and whether TACE/ADAM17 plays a role in these responses. METHODS We used a Lewis rat model that incorporates critical elements of chronic psychosocial stress, such as uncontrollability, unpredictability, lack of social support, and re-experiencing of trauma. RESULTS Chronic stress during adolescence reduced the acoustic startle reflex and social interactions while increasing extracellular free water content and TACE/ADAM17 mRNA levels in the medial prefrontal cortex. Chronic stress altered various ethological behavioral domains in the observation home cages (decreased ingestive behaviors and increased walking, grooming, and rearing behaviors). A group of rats was injected intracerebrally either with a novel Accell™ SMARTpool TACE/ADAM17 siRNA or a corresponding siRNA vehicle (control). The RNAscope Multiplex Fluorescent v2 Assay was used to visualize mRNA expression. Automated puncta quantification and analyses demonstrated that TACE/ADAM17 siRNA administration reduced TACE/ADAM17 mRNA levels in the medial prefrontal cortex (59% reduction relative to control). We found that the rats that received prefrontal cortical TACE/ADAM17 siRNA administration exhibited altered eating patterns (e.g., increased food intake and time in the feeding zone during the light cycle). CONCLUSION This study supports that the prefrontal cortex is sensitive to adolescent chronic stress and suggests that TACE/ADAM17 may be involved in the brain responses to stress.
Collapse
Affiliation(s)
- Fransua Sharafeddin
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Julio Sierra
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Mina Ghaly
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Timothy B. Simon
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Perla Ontiveros‐Ángel
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| | - Brandon Edelbach
- Department of NeurosurgeryLoma Linda University School of Medicine Loma LindaCAUSA
| | - Marcelo Febo
- Translational Research Imaging Laboratory, Department of Psychiatry, Department of Neuroscience, College of MedicineUniversity of Florida HealthGainesvilleFloridaUSA
| | - Jennifer Labus
- Graduate Program in Bioscience, Division of Digestive Diseases, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
| | - Johnny D. Figueroa
- Center for Health Disparities and Molecular MedicineLoma Linda University School of MedicineLoma LindaCaliforniaUSA
- Department of Basic SciencesLoma Linda University School of MedicineLoma LindaCaliforniaUSA
| |
Collapse
|
11
|
Davidy T, Yore I, Cukierman-Yaffe T, Ravona-Springer R, Livny A, Lesman-Segev OH, Azuri Y, Carmichael O, Kapogiannis D, Zetterberg H, Lin H, Sano M, Beeri MS. A feasibility study of the combination of intranasal insulin with oral semaglutide for cognition in older adults with metabolic syndrome at high dementia risk- Study rationale and design. Mech Ageing Dev 2024; 218:111898. [PMID: 38159613 DOI: 10.1016/j.mad.2023.111898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
INTRODUCTION We present the rationale and design of a double-blind placebo-controlled feasibility trial combining intranasal insulin (INI) with semaglutide, a GLP-1 receptor agonist, to improve cognition in older adults with metabolic syndrome (MetS) and mild cognitive impairment (MCI). Since both INI and dulaglutide have beneficial effects on the cerebrovascular disease (CVD), we anticipate that improved CVD will underlie the hypothesized cognitive benefits. METHODS This 12-months trial will include 80 older adults aged > 60 with MetS and MCI, randomized to 4 groups: INI/oral semaglutide, intranasal placebo/oral semaglutide, INI/oral placebo, and intranasal placebo/oral placebo. Feasibility of combining INI with semaglutide will be tested by examining the ease of use of INI (20IU, twice/day) with semaglutide (14 once daily), adherence, and safety profile are the efficacy of combination therapy on global cognition and neurobiological markers: cerebral blood flow, cerebral glucose utilization, white matter hyperintensities, Alzheimer's related blood biomarkers and expression of insulin signaling proteins measured in brain-derived exosomes. Efficacy will be assessed for the intent-to-treat sample. DISCUSSION This feasibility study is anticipated to provide the basis for a multi-center large-scale randomized clinical trial (RCT) of the cognitive benefits of the combination of INI with semaglutide in individuals enriched for CVD and at high dementia risk.
Collapse
Affiliation(s)
- Tal Davidy
- The Joseph Sagol Neuroscience, Center Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| | - Iscka Yore
- The Joseph Sagol Neuroscience, Center Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tali Cukierman-Yaffe
- Gertner Institute for Epidemiology and Health Policy Research, Endocrinology Institute Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Medicine and Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience, Center Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Memory Clinic, Sheba Medical Center, Ramat Gan, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience, Center Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Orit H Lesman-Segev
- The Joseph Sagol Neuroscience, Center Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yossi Azuri
- Maccabi Healthcare Services, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging (NIA/NIH), Baltimore, MD, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - HungMo Lin
- Department of Anesthesiology and Yale Center for Analytical Sciences, USA
| | - Mary Sano
- James J. Peters VA Medical Research Center, New York, NY, USA
| | - Michal Schnaider Beeri
- The Krieger Klein Alzheimer's Research Center, Brain Health Institute, Rutgers University, NJ, USA
| |
Collapse
|
12
|
Fernandez L, Corben LA, Bilal H, Delatycki MB, Egan GF, Harding IH. Free-Water Imaging in Friedreich Ataxia Using Multi-Compartment Models. Mov Disord 2024; 39:370-379. [PMID: 37927246 DOI: 10.1002/mds.29648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/14/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The neurological phenotype of Friedreich ataxia (FRDA) is characterized by neurodegeneration and neuroinflammation in the cerebellum and brainstem. Novel neuroimaging approaches quantifying brain free-water using diffusion magnetic resonance imaging (dMRI) are potentially more sensitive to these processes than standard imaging markers. OBJECTIVES To quantify the extent of free-water and microstructural change in FRDA-relevant brain regions using neurite orientation dispersion and density imaging (NODDI), and bitensor diffusion tensor imaging (btDTI). METHOD Multi-shell dMRI was acquired from 14 individuals with FRDA and 14 controls. Free-water measures from NODDI (FISO) and btDTI (FW) were compared between groups in the cerebellar cortex, dentate nuclei, cerebellar peduncles, and brainstem. The relative sensitivity of the free-water measures to group differences was compared to microstructural measures of NODDI intracellular volume, free-water corrected fractional anisotropy, and conventional uncorrected fractional anisotropy. RESULTS In individuals with FRDA, FW was elevated in the cerebellar cortex, peduncles (excluding middle), dentate, and brainstem (P < 0.005). FISO was elevated primarily in the cerebellar lobules (P < 0.001). On average, FW effect sizes were larger than all other markers (mean ηρ 2 = 0.43), although microstructural measures also had very large effects in the superior and inferior cerebellar peduncles and brainstem (ηρ 2 > 0.37). Across all regions and metrics, effect sizes were largest in the superior cerebellar peduncles (ηρ 2 > 0.46). CONCLUSIONS Multi-compartment diffusion measures of free-water and neurite integrity distinguish FRDA from controls with large effects. Free-water magnitude in the brainstem and cerebellum provided the greatest distinction between groups. This study supports further applications of multi-compartment diffusion modeling, and investigations of free-water as a measure of disease expression and progression in FRDA. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Lara Fernandez
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Hiba Bilal
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Service, Melbourne, Victoria, Australia
| | - Gary F Egan
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
13
|
Cheng Y, Lin L, Jiang S, Huang P, Zhang J, Xin J, Xu H, Wang Y, Pan X. Aberrant microstructural integrity of white matter in mild and severe orthostatic hypotension: A NODDI study. CNS Neurosci Ther 2024; 30:e14586. [PMID: 38421091 PMCID: PMC10851318 DOI: 10.1111/cns.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/11/2023] [Accepted: 12/20/2023] [Indexed: 03/02/2024] Open
Abstract
OBJECTIVE Scarce evidence is available to elucidate the association between the abnormal microstructure of white matter (WM) and cognitive performance in patients with orthostatic hypotension (OH). This study investigated the microstructural integrity of WM in patients with mild OH (MOH) and severe OH (SOH) and evaluated the association of abnormal WM microstructure with the broad cognitive domains and cognition-related plasma biomarkers. METHODS Our study included 72 non-OH (NOH), 17 MOH, and 11 SOH participants. Across the groups, the WM integrity was analyzed by neurite orientation dispersion and density imaging (NODDI), and differences in WM microstructure were evaluated by nonparametric tests and post hoc models. The correlations between WM microstructure and broad cognitive domains and cognition-related plasma biomarkers were assessed by Spearman's correlation analysis. RESULTS The abnormal WM microstructure was localized to the WM fiber bundles in MOH patients but distributed widely in SOH cohorts (p < 0.05). Further analysis showed that the neurite density index of the left cingulate gyrus was negatively associated with amyloid β-40, glial fibrillary acidic protein, neurofilament light chain, phospho-tau181 (p < 0.05) but positively with global cognitive function (MOCA, MMSE, AER-III), memory, attention, language, language fluency, visuospatial function and amyloid β-40 / amyloid β-42 (p < 0.05). Additionally, other abnormal WM microstructures of OH were associated with broad cognitive domains and cognition-related plasma biomarkers to varying degrees. CONCLUSION The findings evidence that abnormal WM microstructures may present themselves as early as in the MOH phase and that these structural abnormalities are associated with cognitive functions and cognition-related plasma biomarkers.
Collapse
Affiliation(s)
- Yingzhe Cheng
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Lin Lin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Shaofan Jiang
- Department of RadiologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Key Laboratory of Intelligent Imaging and Precision Radiotherapy for TumorsFujian Medical UniversityFuzhou CityChina
| | - Peilin Huang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Jiejun Zhang
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
- Center for GeriatricsHainan General HospitalHainanChina
| | - Jiawei Xin
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| | - Haibin Xu
- Fujian Medical UniversityFuzhou CityChina
| | - Yanping Wang
- Department of EndocrinologyFujian Medical University Union HospitalFuzhou CityChina
| | - Xiaodong Pan
- Department of Neurology, Center for Cognitive NeurologyFujian Medical University Union HospitalFuzhou CityChina
- Fujian Institute of GeriatricsFujian Medical University Union HospitalFuzhou CityChina
- Institute of Clinical NeurologyFujian Medical UniversityFuzhou CityChina
- Fujian Key Laboratory of Molecular NeurologyFujian Medical UniversityFuzhou CityChina
| |
Collapse
|
14
|
Burzynska AZ, Anderson C, Arciniegas DB, Calhoun V, Choi IY, Mendez Colmenares A, Kramer AF, Li K, Lee J, Lee P, Thomas ML. Correlates of axonal content in healthy adult span: Age, sex, myelin, and metabolic health. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2024; 6:100203. [PMID: 38292016 PMCID: PMC10827486 DOI: 10.1016/j.cccb.2024.100203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
As the emerging treatments that target grey matter pathology in Alzheimer's Disease have limited effectiveness, there is a critical need to identify new neural targets for treatments. White matter's (WM) metabolic vulnerability makes it a promising candidate for new interventions. This study examined the age and sex differences in estimates of axonal content, as well the associations of with highly prevalent modifiable health risk factors such as metabolic syndrome and adiposity. We estimated intra-axonal volume fraction (ICVF) using the Neurite Orientation Dispersion and Density Imaging (NODDI) in a sample of 89 cognitively and neurologically healthy adults (20-79 years). We showed that ICVF correlated positively with age and estimates of myelin content. The ICVF was also lower in women than men, across all ages, which difference was accounted for by intracranial volume. Finally, we found no association of metabolic risk or adiposity scores with the current estimates of ICVF. In addition, the previously observed adiposity-myelin associations (Burzynska et al., 2023) were independent of ICVF. Although our findings confirm the vulnerability of axons to aging, they suggest that metabolic dysfunction may selectively affect myelin content, at least in cognitively and neurologically healthy adults with low metabolic risk, and when using the specific MRI techniques. Future studies need to revisit our findings using larger samples and different MRI approaches, and identify modifiable factors that accelerate axonal deterioration as well as mechanisms linking peripheral metabolism with the health of myelin.
Collapse
Affiliation(s)
- Agnieszka Z Burzynska
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Charles Anderson
- Department of Computer Science, Colorado State University, Fort Collins, CO, USA
| | - David B. Arciniegas
- Marcus Institute for Brain Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Vince Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, GA, USA
| | - In-Young Choi
- Department of Neurology, Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrea Mendez Colmenares
- The BRAiN lab, Department of Human Development and Family Studies/Molecular, Cellular and Integrative Neurosciences, Colorado State University, Fort Collins, CO, USA
| | - Arthur F Kramer
- Beckman Institute for Advanced Science and Technology at the University of Illinois, IL, USA
- Center for Cognitive & Brain Health, Northeastern University, Boston, MA, USA
| | - Kaigang Li
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
| | - Jongho Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, Republic of Korea
| | - Phil Lee
- Department of Radiology, Hoglund Biomedical Imaging Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Michael L Thomas
- Department of Psychology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
15
|
Dong QY, Lin JH, Wu Y, Cao YB, Zhou MX, Chen HJ. White matter microstructural disruption in minimal hepatic encephalopathy: a neurite orientation dispersion and density imaging (NODDI) study. Neuroradiology 2023; 65:1589-1604. [PMID: 37486421 DOI: 10.1007/s00234-023-03201-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/11/2023] [Indexed: 07/25/2023]
Abstract
PURPOSE To evaluate the ability of neurite orientation dispersion and density imaging (NODDI) for detecting white matter (WM) microstructural abnormalities in minimal hepatic encephalopathy (MHE). METHODS Diffusion-weighted images, enabling the estimation of NODDI and diffusion tensor imaging (DTI) parameters, were acquired from 20 healthy controls (HC), 22 cirrhotic patients without MHE (NHE), and 15 cirrhotic patients with MHE. Tract-based spatial statistics were used to determine differences in DTI (including fractional anisotropy [FA] and mean/axial/radial diffusivity [MD/AD/RD]) and NODDI parameters (including neurite density index [NDI], orientation dispersion index [ODI], and isotropic volume fraction [ISO]). Voxel-wise analyses of correlations between diffusion parameters and neurocognitive performance determined by Psychometric Hepatic Encephalopathy Score (PHES) were completed. RESULTS MHE patients had extensive NDI reduction and rare ODI reduction, primarily involving the genu and body of corpus callosum and the bilateral frontal lobe, corona radiata, external capsule, anterior limb of internal capsule, temporal lobe, posterior thalamic radiation, and brainstem. The extent of NDI and ODI reduction expanded from NHE to MHE. In both MHE and NHE groups, the extent of NDI change was quite larger than that of FA change. No significant intergroup difference in ISO/MD/AD/RD was observed. Tissue specificity afforded by NODDI revealed the underpinning of FA reduction in MHE. The NDI in left frontal lobe was significantly correlated with PHES. CONCLUSION MHE is characterized by diffuse WM microstructural impairment (especially neurite density reduction). NODDI can improve the detection of WM microstructural impairments in MHE and provides more precise information about MHE-related pathology than DTI.
Collapse
Affiliation(s)
- Qiu-Yi Dong
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yun-Bin Cao
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China
| | - Min-Xiong Zhou
- College of Medical Imaging, Shang Hai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, China.
| |
Collapse
|
16
|
Pieciak T, París G, Beck D, Maximov II, Tristán-Vega A, de Luis-García R, Westlye LT, Aja-Fernández S. Spherical means-based free-water volume fraction from diffusion MRI increases non-linearly with age in the white matter of the healthy human brain. Neuroimage 2023; 279:120324. [PMID: 37574122 DOI: 10.1016/j.neuroimage.2023.120324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023] Open
Abstract
The term free-water volume fraction (FWVF) refers to the signal fraction that could be found as the cerebrospinal fluid of the brain, which has been demonstrated as a sensitive measure that correlates with cognitive performance and various neuropathological processes. It can be quantified by properly fitting the isotropic component of the magnetic resonance (MR) signal in diffusion-sensitized sequences. Using N=287 healthy subjects (178F/109M) aged 25-94, this study examines in detail the evolution of the FWVF obtained with the spherical means technique from multi-shell acquisitions in the human brain white matter across the adult lifespan, which has been previously reported to exhibit a positive trend when estimated from single-shell data using the bi-tensor signal representation. We found evidence of a noticeably non-linear gain after the sixth decade of life, with a region-specific variate and varying change rate of the spherical means-based multi-shell FWVF parameter with age, at the same time, a heteroskedastic pattern across the adult lifespan is suggested. On the other hand, the FW corrected diffusion tensor imaging (DTI) leads to a region-dependent flattened age-related evolution of the mean diffusivity (MD) and fractional anisotropy (FA), along with a considerable reduction in their variability, as compared to the studies conducted over the standard (single-component) DTI. This way, our study provides a new perspective on the trajectory-based assessment of the brain and explains the conceivable reason for the variations observed in FA and MD parameters across the lifespan with previous studies under the standard diffusion tensor imaging.
Collapse
Affiliation(s)
- Tomasz Pieciak
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain.
| | - Guillem París
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Dani Beck
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway. https://twitter.com/_DaniBeck
| | - Ivan I Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Antonio Tristán-Vega
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Rodrigo de Luis-García
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain
| | - Lars T Westlye
- Department of Psychology, University of Oslo, Oslo, Norway; NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway; KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway. https://twitter.com/larswestlye
| | - Santiago Aja-Fernández
- Laboratorio de Procesado de Imagen (LPI), ETSI Telecomunicación, Universidad de Valladolid, Valladolid, Spain. https://twitter.com/SantiagoAjaFer1
| |
Collapse
|
17
|
Alsameen MH, Gong Z, Qian W, Kiely M, Triebswetter C, Bergeron CM, Cortina LE, Faulkner ME, Laporte JP, Bouhrara M. C-NODDI: a constrained NODDI model for axonal density and orientation determinations in cerebral white matter. Front Neurol 2023; 14:1205426. [PMID: 37602266 PMCID: PMC10435293 DOI: 10.3389/fneur.2023.1205426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/14/2023] [Indexed: 08/22/2023] Open
Abstract
Purpose Neurite orientation dispersion and density imaging (NODDI) provides measures of neurite density and dispersion through computation of the neurite density index (NDI) and the orientation dispersion index (ODI). However, NODDI overestimates the cerebrospinal fluid water fraction in white matter (WM) and provides physiologically unrealistic high NDI values. Furthermore, derived NDI values are echo-time (TE)-dependent. In this work, we propose a modification of NODDI, named constrained NODDI (C-NODDI), for NDI and ODI mapping in WM. Methods Using NODDI and C-NODDI, we investigated age-related alterations in WM in a cohort of 58 cognitively unimpaired adults. Further, NDI values derived using NODDI or C-NODDI were correlated with the neurofilament light chain (NfL) concentration levels, a plasma biomarker of axonal degeneration. Finally, we investigated the TE dependence of NODDI or C-NODDI derived NDI and ODI. Results ODI derived values using both approaches were virtually identical, exhibiting constant trends with age. Further, our results indicated a quadratic relationship between NDI and age suggesting that axonal maturation continues until middle age followed by a decrease. This quadratic association was notably significant in several WM regions using C-NODDI, while limited to a few regions using NODDI. Further, C-NODDI-NDI values exhibited a stronger correlation with NfL concentration levels as compared to NODDI-NDI, with lower NDI values corresponding to higher levels of NfL. Finally, we confirmed the previous finding that NDI estimation using NODDI was dependent on TE, while NDI derived values using C-NODDI exhibited lower sensitivity to TE in WM. Conclusion C-NODDI provides a complementary method to NODDI for determination of NDI in white matter.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
18
|
Davidy T, Yore I, Cukierman-Yaffe T, Ravona-Springer R, Livny A, Lesman-Segev OH, Azuri Y, Carmichael O, Kapogiannis D, Zetterberg H, Lin H, Sano M, Beeri MS. A feasibility study of the combination of intranasal insulin with dulaglutide for cognition in older adults with metabolic syndrome at high dementia risk - Study rationale and design. Mech Ageing Dev 2023; 213:111825. [PMID: 37245533 DOI: 10.1016/j.mad.2023.111825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 05/30/2023]
Abstract
INTRODUCTION We present the rationale and design of a double-blind placebo-controlled feasibility trial combining intranasal insulin (INI) with dulaglutide, a GLP-1 receptor agonist, to improve cognition in older adults with metabolic syndrome (MetS) and mild cognitive impairment (MCI). Since both INI and dulaglutide have beneficial effects on the cerebrovascular disease (CVD), we anticipate that improved CVD will underlie the hypothesized cognitive benefits. METHODS This 12-months trial will include 80 older adults aged > 60 with MetS and MCI, randomized to 4 groups: INI/dulaglutide injection, intranasal placebo/dulaglutide injection, INI/placebo injection, and intranasal placebo/placebo injection. Feasibility of combining INI with dulaglutide will be tested by examining the ease of use of INI (20IU, twice/day) with dulaglutide (1.5 mg/week), adherence, and safety profile are the efficacy of combination therapy on global cognition and neurobiological markers: cerebral blood flow, cerebral glucose utilization, white matter hyperintensities, Alzheimer's related blood biomarkers and expression of insulin signaling proteins measured in brain-derived exosomes. Efficacy will be assessed for the intent-to-treat sample. DISCUSSION This feasibility study is anticipated to provide the basis for a multi-center large-scale randomized clinical trial of the cognitive benefits of the combination of INI with dulaglutide in individuals enriched for CVD and at high dementia risk.
Collapse
Affiliation(s)
- Tal Davidy
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Neurology, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel.
| | - Iscka Yore
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel
| | - Tali Cukierman-Yaffe
- Gertner Institute for Epidemiology and Health Policy Research, Endocrinology Institute Sheba Medical Center, Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel; Department of Medicine and Population Health Research Institute, McMaster University and Hamilton Health Sciences, Hamilton, Ontario, Canada
| | - Ramit Ravona-Springer
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Memory Clinic, Sheba Medical Center, Ramat Gan, Israel
| | - Abigail Livny
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Orit H Lesman-Segev
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Department of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Ramat Gan, Israel
| | - Yossi Azuri
- Maccabi Healthcare Services, Israel; Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Dimitrios Kapogiannis
- Laboratory of Clinical Investigation, Intramural Research Program, National Institute on Aging (NIA/NIH), Baltimore, MD, USA
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - HungMo Lin
- Department of anesthesiology and Yale Center for Analytical Sciences, USA
| | - Mary Sano
- James J. Peters VA Medical Research Center, New York, NY, USA
| | - Michal Schnaider Beeri
- The Joseph Sagol Neuroscience Center, Sheba Medical Center, Tel-Hashomer, Ramat-Gan, Israel; Icahn School of Medicine at Mount Sinai, Department of Psychiatry, New York, NY 10029, USA
| |
Collapse
|
19
|
Villalon-Reina JE, Nir TM, Nourollahimoghadam E, Dhinagar N, Jahanshad N, Thompson PM, Henriques RN. Evaluating Fiber Orientation Dispersion Measures Computed From Single-Shell Diffusion MRI. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-6. [PMID: 38083769 DOI: 10.1109/embc40787.2023.10340067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Fiber orientation dispersion is one of the fundamental features that can be estimated from diffusion magnetic resonance imaging (dMRI) of the brain. Several approaches have been proposed to estimate dispersion from single- and multi-shell dMRI acquisitions. Here, we derive solutions to bring these proposed methods to a standard orientation dispersion index (ODI) with the goal of making them comparable across different dMRI acquisitions. To illustrate the utility of the measures in studying brain aging, we further examined the age-dependent trajectory of the different single- and multi-shell ODI estimates in the white matter across the lifespan.Clinical Relevance- This work computes metrics of brain microstructure that can be adapted for large neuroimaging initiatives that aim to study the brain's development and aging, and to identify deviations that may serve as biomarkers of brain disease.
Collapse
|
20
|
Lin JH, Chen XH, Wu Y, Cao YB, Chen HJ, Huang NX. Altered isotropic volume fraction in gray matter after sleep deprivation and its association with visuospatial memory: A neurite orientation dispersion and density imaging study. Front Neurosci 2023; 17:1144802. [PMID: 37034160 PMCID: PMC10076534 DOI: 10.3389/fnins.2023.1144802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Background and aims Diffusion magnetic resonance imaging (dMRI) studies have revealed microstructural abnormalities in white matter resulting from sleep deprivation (SD). This study aimed to adopt neurite orientation dispersion and density imaging (NODDI) to investigate the effect of SD on gray matter (GM) microstructural properties and its association to visuospatial memory (VSM). Methods Twenty-four healthy women underwent two sessions of dMRI scanning and visuospatial ability assessment by Complex Figure Test (CFT), once during rested wakefulness (RW) and once after 24 h of SD. We calculated NODDI metrics, including intracellular volume fraction (ICVF), orientation dispersion index (ODI), and isotropic volume fraction (ISO). Differences in NODDI-related metrics between RW and SD were determined using a voxel-wise paired t-test. We identified an association between NODDI metrics and CFT results using Spearman's correlation coefficient. Results Sleep deprivation worsened subjects' performance in the delayed-CFT trial. We observed no significant difference in ICVF and ODI between RW and SD. After SD, subjects showed decreases in ISO, primarily in the prefrontal cortex and temporal lobe, while exhibiting ISO increases in the anterior and posterior cerebellar lobe and cerebellar vermis. Furthermore, ISO change in the left superior, middle and inferior frontal gyrus was significantly correlated with completion time change in delayed-CFT trial performance. Conclusion Our results suggested that SD hardly affected the density and spatial organization of neurites in GM, but the extra-neurite water molecule diffusion process was affected (perhaps resulting from neuroinflammation), which contributed to VSM dysfunction.
Collapse
Affiliation(s)
- Jia-Hui Lin
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xu-Hui Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ye Wu
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing, China
| | - Yun-Bin Cao
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- *Correspondence: Hua-Jun Chen,
| | - Nao-Xin Huang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
- Nao-Xin Huang,
| |
Collapse
|
21
|
Rau A, Jost WH, Demerath T, Kellner E, Reisert M, Urbach H. Diffusion microstructure imaging in progressive supranuclear palsy: reduced axonal volumes in the superior cerebellar peduncles, dentato-rubro-thalamic tracts, ventromedial thalami, and frontomesial white matter. Cereb Cortex 2022; 32:5628-5636. [PMID: 35165694 DOI: 10.1093/cercor/bhac041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 01/25/2023] Open
Abstract
Differentiating between Parkinson's disease (PD) and atypical Parkinson syndromes such as progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal degeneration is challenging. Diffusion microstructure imaging (DMI) was analyzed in patients with clinically suspected atypical Parkinson syndromes and healthy controls. In an exploration cohort, the spatial distribution of PSP-related changes of DMI parameters were evaluated in a voxel-wise analysis and a region-of-interest (ROI)-based approach was established. The diagnostic performance was subsequently tested in an independent validation cohort. In the exploration cohort, 53 PSP patients were compared to a pooled comparison group of 19 patients with PD, 26 patients with MSA, 7 patients with corticobasal syndrome, and 25 healthy controls. PSP patients showed widespread axonal loss in the superior cerebellar peduncles, the dentato-rubro-thalamic tracts, the thalami and the frontal white matter (each P < 0.001). In the validation cohort consisting of 12 patients with PSP vs. 13 patients with other movement disorders, the accuracy of this ROI-based approach for identifying the PSP was highest in the thalamus and the frontal white matter (accuracy 0.96 each). This DMI approach can identify PSP patients on an individual level in a collective with suspected atypical Parkinson syndromes and allows further insight on microstructural alterations in vivo.
Collapse
Affiliation(s)
- Alexander Rau
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Wolfgang H Jost
- Parkinson-Klinik Ortenau, Center for Movement Disorders, 77709 Wolfach, Germany
| | - Theo Demerath
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
| | - Elias Kellner
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Marco Reisert
- Medical Physics, Department of Radiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany.,Department of Stereotactic and Functional Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Germany
| | - Horst Urbach
- Department of Neuroradiology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisacher Straße 64, 79106 Freiburg, Germany
| |
Collapse
|
22
|
Brain Microstructural Changes in Patients with Amnestic mild Cognitive Impairment. Clin Neuroradiol 2022; 33:445-453. [DOI: 10.1007/s00062-022-01226-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 10/10/2022] [Indexed: 12/02/2022]
|
23
|
Filley CM. White matter dementia then… and now. Front Neurol 2022; 13:1043583. [PMID: 36479053 PMCID: PMC9721363 DOI: 10.3389/fneur.2022.1043583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 10/19/2022] [Indexed: 03/27/2024] Open
Abstract
White matter dementia (WMD) is a concept introduced in 1988 to highlight the importance of white matter pathology in producing cognitive dysfunction and dementia. Whereas gray matter, particularly the cerebral cortex, has been primarily investigated in the dementias, subcortical pathology has long been correlated with cognitive loss, and a corticocentric perspective cannot account for the full range of neurobehavioral disorders. Within the subcortical regions, white matter is prominent, accounting for about half the volume of the adult brain, and many white matter diseases, injuries, and intoxications can produce cognitive dysfunction so severe as to justify the term dementia. Recognition of this novel syndrome relied heavily on the introduction of magnetic resonance imaging (MRI) that permitted in vivo visualization of white matter lesions. Neuropsychological studies clarified the clinical presentation of WMD by identifying a profile dominated by cognitive slowing and executive dysfunction, and a precursor syndrome of mild cognitive dysfunction was proposed to identify early cognitive impairment that may later evolve to WMD. As knowledge advanced, the role of white matter in structural connectivity within distributed neural networks was elucidated. In addition, highlighting the frequent commingling of gray and white matter involvement, white matter pathology was associated with neurodegenerative diseases such as Alzheimer's disease and chronic traumatic encephalopathy, with potentially transformative clinical implications. In particular, preventive measures and treatments exploiting white matter restoration and plasticity are gaining much attention. Today, WMD has matured into a concept that not only integrates knowledge from across the spectrum of clinical neuroscience, but also informs new investigations into many perplexing disorders and enables a more complete understanding of brain-behavior relationships.
Collapse
Affiliation(s)
- Christopher M. Filley
- Behavioral Neurology Section, Department of Neurology and Psychiatry, University of Colorado School of Medicine, Marcus Institute for Brain Health, Aurora, CO, United States
| |
Collapse
|
24
|
Bauer CE, Zachariou V, Maillard P, Caprihan A, Gold BT. Multi-compartment diffusion magnetic resonance imaging models link tract-related characteristics with working memory performance in healthy older adults. Front Aging Neurosci 2022; 14:995425. [PMID: 36275003 PMCID: PMC9581239 DOI: 10.3389/fnagi.2022.995425] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 09/09/2022] [Indexed: 11/25/2022] Open
Abstract
Multi-compartment diffusion MRI metrics [such as metrics from free water elimination diffusion tensor imaging (FWE-DTI) and neurite orientation dispersion and density imaging (NODDI)] may reflect more specific underlying white-matter tract characteristics than traditional, single-compartment metrics [i.e., metrics from Diffusion Tensor Imaging (DTI)]. However, it remains unclear if multi-compartment metrics are more closely associated with age and/or cognitive performance than single-compartment metrics. Here we compared the associations of single-compartment [Fractional Anisotropy (FA)] and multi-compartment diffusion MRI metrics [FWE-DTI metrics: Free Water Eliminated Fractional Anisotropy (FWE-FA) and Free Water (FW); NODDI metrics: Intracellular Volume Fraction (ICVF), Orientation Dispersion Index (ODI), and CSF-Fraction] with both age and working memory performance. A functional magnetic resonance imaging (fMRI) guided, white matter tractography approach was employed to compute diffusion metrics within a network of tracts connecting functional regions involved in working memory. Ninety-nine healthy older adults (aged 60-85) performed an in-scanner working memory task while fMRI was performed and also underwent multi-shell diffusion acquisition. The network of white matter tracts connecting functionally-activated regions was identified using probabilistic tractography. Diffusion metrics were extracted from skeletonized white matter tracts connecting fMRI activation peaks. Diffusion metrics derived from both single and multi-compartment models were associated with age (p s ≤ 0.011 for FA, FWE-FA, ICVF and ODI). However, only multi-compartment metrics, specifically FWE-FA (p = 0.045) and ICVF (p = 0.020), were associated with working memory performance. Our results suggest that while most current diffusion metrics are sensitive to age, several multi-compartment metrics (i.e., FWE-FA and ICVF) appear more sensitive to cognitive performance in healthy older adults.
Collapse
Affiliation(s)
- Christopher E. Bauer
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Valentinos Zachariou
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Pauline Maillard
- Department of Neurology, University of California at Davis, Davis, CA, United States
- Center for Neuroscience, University of California at Davis, Davis, CA, United States
| | | | - Brian T. Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
- Sanders-Brown Center on Aging, Lexington, KY, United States
| |
Collapse
|
25
|
Ruiz-Rizzo AL, Viviano RP, Daugherty AM, Finke K, Müller HJ, Damoiseaux JS. Subjective cognitive decline predicts lower cingulo-opercular network functional connectivity in individuals with lower neurite density in the forceps minor: Cingulo-opercular network in SCD. Neuroimage 2022; 263:119662. [PMID: 36198354 DOI: 10.1016/j.neuroimage.2022.119662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/19/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022] Open
Abstract
Cognitive complaints of attention/concentration problems are highly frequent in older adults with subjective cognitive decline (SCD). Functional connectivity in the cingulo-opercular network (CON-FC) supports cognitive control, tonic alertness, and visual processing speed. Thus, those complaints in SCD may reflect a decrease in CON-FC. Frontal white-matter tracts such as the forceps minor exhibit age- and SCD-related alterations and, therefore, might influence the CON-FC decrease in SCD. Here, we aimed to determine whether SCD predicts an impairment in CON-FC and whether neurite density in the forceps minor modulates that effect. To do so, we integrated cross-sectional and longitudinal analyses of multimodal data in a latent growth curve modeling approach. Sixty-nine healthy older adults (13 males; 68.33 ± 7.95 years old) underwent resting-state functional and diffusion-weighted magnetic resonance imaging, and the degree of SCD was assessed at baseline with the memory functioning questionnaire (greater score indicating more SCD). Forty-nine of the participants were further enrolled in two follow-ups, each about 18 months apart. Baseline SCD did not predict CON-FC after three years or its rate of change (p-values > 0.092). Notably, however, the forceps minor neurite density did modulate the relation between SCD and CON-FC (intercept; b = 0.21, 95% confidence interval, CI, [0.03, 0.39], p = 0.021), so that SCD predicted a greater CON-FC decrease in older adults with relatively lower neurite density in the forceps minor. The neurite density of the forceps minor, in turn, negatively correlated with age. These results suggest that CON-FC alterations in SCD are dependent upon the forceps minor neurite density. Accordingly, these results imply modifiable age-related factors that could help delay or mitigate both age and SCD-related effects on brain connectivity.
Collapse
Affiliation(s)
- Adriana L Ruiz-Rizzo
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Munich 80802, Germany; Department of Neurology, Jena University Hospital, Am Klinikum 1, Jena 07747, Germany.
| | - Raymond P Viviano
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Ana M Daugherty
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| | - Kathrin Finke
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Munich 80802, Germany; Department of Neurology, Jena University Hospital, Am Klinikum 1, Jena 07747, Germany
| | - Hermann J Müller
- Department of Psychology, General and Experimental Psychology Unit, LMU Munich, Munich 80802, Germany
| | - Jessica S Damoiseaux
- Department of Psychology and Institute of Gerontology, Wayne State University, Detroit, MI 48202, USA
| |
Collapse
|
26
|
Zachariou V, Bauer CE, Pappas C, Gold BT. High cortical iron is associated with the disruption of white matter tracts supporting cognitive function in healthy older adults. Cereb Cortex 2022; 33:4815-4828. [PMID: 36182267 PMCID: PMC10110441 DOI: 10.1093/cercor/bhac382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 01/25/2023] Open
Abstract
Aging is associated with brain iron accumulation, which has been linked to cognitive decline. However, how brain iron affects the structure and function of cognitive brain networks remains unclear. Here, we explored the possibility that iron load in gray matter is associated with disruption of white matter (WM) microstructure within a network supporting cognitive function, in a cohort of 95 cognitively normal older adults (age range: 60-86). Functional magnetic resonance imaging was used to localize a set of brain regions involved in working memory and diffusion tensor imaging based probabilistic tractography was used to identify a network of WM tracts connecting the functionally defined regions. Brain iron concentration within these regions was evaluated using quantitative susceptibility mapping and microstructural properties were assessed within the identified tracts using neurite orientation dispersion and density imaging. Results indicated that high brain iron concentration was associated with low neurite density (ND) within the task-relevant WM network. Further, regional associations were observed such that brain iron in cortical regions was linked with lower ND in neighboring but not distant WM tracts. Our results provide novel evidence suggesting that age-related increases in brain iron concentration are associated with the disruption of WM tracts supporting cognitive function in normal aging.
Collapse
Affiliation(s)
- Valentinos Zachariou
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Christopher E Bauer
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Colleen Pappas
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States
| | - Brian T Gold
- Department of Neuroscience, University of Kentucky, Lexington, KY 40536-0298, United States.,College of Medicine, University of Kentucky, Lexington, KY 40536-0298, United States.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY 40536-0298, United States.,Magnetic Resonance Imaging and Spectroscopy Center, University of Kentucky, Lexington, KY 40536-0298, United States
| |
Collapse
|
27
|
Wu J, Shahid SS, Lin Q, Hone-Blanchet A, Smith JL, Risk BB, Bisht AS, Loring DW, Goldstein FC, Levey AI, Lah JJ, Qiu D. Multimodal magnetic resonance imaging reveals distinct sensitivity of hippocampal subfields in asymptomatic stage of Alzheimer’s disease. Front Aging Neurosci 2022; 14:901140. [PMID: 36034141 PMCID: PMC9413400 DOI: 10.3389/fnagi.2022.901140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
While hippocampal atrophy and its regional susceptibility to Alzheimer’s disease (AD) are well reported at late stages of AD, studies of the asymptomatic stage of AD are limited but could elucidate early stage pathophysiology as well as provide predictive biomarkers. In this study, we performed multi-modal magnetic resonance imaging (MRI) to estimate morphometry, functional connectivity, and tissue microstructure of hippocampal subfields in cognitively normal adults including those with asymptomatic AD. High-resolution resting-state functional, diffusion and structural MRI, cerebral spinal fluid (CSF), and neuropsychological evaluations were performed in healthy young adults (HY: n = 40) and healthy older adults with negative (HO−: n = 47) and positive (HO+ : n = 25) CSF biomarkers of AD. Morphometry, functional connectivity, and tissue microstructure were estimated from the structural, functional, and diffusion MRI images, respectively. Our results indicated that normal aging affected morphometry, connectivity, and microstructure in all hippocampal subfields, while the subiculum and CA1-3 demonstrated the greatest sensitivity to asymptomatic AD pathology. Tau, rather than amyloid-β, was closely associated with imaging-derived synaptic and microstructural measures. Microstructural metrics were significantly associated with neuropsychological assessments. These findings suggest that the subiculum and CA1-3 are the most vulnerable in asymptomatic AD and tau level is driving these early changes.
Collapse
Affiliation(s)
- Junjie Wu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- *Correspondence: Junjie Wu, ,
| | - Syed S. Shahid
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qixiang Lin
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Antoine Hone-Blanchet
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jeremy L. Smith
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
| | - Benjamin B. Risk
- Department of Biostatistics and Bioinformatics, Emory University Rollins School of Public Health, Atlanta, GA, United States
| | - Aditya S. Bisht
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - David W. Loring
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Felicia C. Goldstein
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - Allan I. Levey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
| | - James J. Lah
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, United States
- James J. Lah,
| | - Deqiang Qiu
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, United States
- Joint Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, GA, United States
- Deqiang Qiu,
| |
Collapse
|
28
|
Radhakrishnan H, Bennett IJ, Stark CE. Higher-order multi-shell diffusion measures complement tensor metrics and volume in gray matter when predicting age and cognition. Neuroimage 2022; 253:119063. [PMID: 35272021 PMCID: PMC10538083 DOI: 10.1016/j.neuroimage.2022.119063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/02/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022] Open
Abstract
Recent advances in diffusion-weighted imaging have enabled us to probe the microstructure of even gray matter non-invasively. However, these advanced multi-shell protocols are often not included in large-scale studies as they significantly increase scan time. In this study, we investigated whether one set of multi-shell diffusion metrics commonly used in gray matter (as derived from Neurite Orientation Dispersion and Density Imaging, NODDI) provide enough additional information over typical tensor and volume metrics to justify the increased acquisition time, using the cognitive aging framework in the human hippocampus as a testbed. We first demonstrated that NODDI metrics are robust and reliable by replicating previous findings from our lab in a larger population of 79 younger (20.41 ± 1.89 years, 46 females) and 75 older (73.56 ± 6.26 years, 45 females) adults, showing that these metrics in the hippocampal subfields are sensitive to age and memory performance. We then asked how these subfield specific hippocampal NODDI metrics compared with standard tensor metrics and volume in predicting age and memory ability. We discovered that both NODDI and tensor measures separately predicted age and cognition in comparable capacities. However, integrating these modalities together considerably increased the predictive power of our logistic models, indicating that NODDI and tensor measures may be capturing independent microstructural information. We use these findings to encourage neuroimaging data collection consortiums to include a multi-shell diffusion sequence in their protocols since existing NODDI measures (and potential future multi-shell measures) may be able to capture microstructural variance that is missed by traditional approaches, even in studies exclusively examining gray matter.
Collapse
Affiliation(s)
- Hamsanandini Radhakrishnan
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States
| | - Ilana J Bennett
- Department of Psychology, University of California Riverside, Riverside, California, United States
| | - Craig El Stark
- Mathematical, Computational and Systems Biology, University of California, Postal Address: 1400 Biological Sciences III, Irvine, CA 92697, United States; Department of Neurobiology and Behavior, University of California, Irvine, California 92697, United States.
| |
Collapse
|
29
|
Brosnan MB, Shalev N, Ramduny J, Sotiropoulos SN, Chechlacz M. Right fronto-parietal networks mediate the neurocognitive benefits of enriched environments. Brain Commun 2022; 4:fcac080. [PMID: 35474852 PMCID: PMC9035529 DOI: 10.1093/braincomms/fcac080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/10/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Exposure to enriched environments throughout a lifetime, providing so-called reserve, protects against cognitive decline in later years. It has been hypothesized that high levels of alertness necessitated by enriched environments might strengthen the right fronto-parietal networks to facilitate this neurocognitive resilience. We have previously shown that enriched environments offset age-related deficits in selective attention by preserving grey matter within right fronto-parietal regions. Here, using neurite orientation dispersion and density imaging, we examined the relationship between enriched environments, microstructural properties of fronto-parietal white matter association pathways (three branches of the superior longitudinal fasciculus), structural brain health (atrophy), and attention (alertness, orienting and executive control) in a group of older adults. We show that exposure to enriched environments is associated with a lower orientation dispersion index within the right superior longitudinal fasciculus 1 which in turn mediates the relationship between enriched environments and alertness, as well as grey and white matter atrophy. This suggests that enriched environments may induce white matter plasticity (and prevent age-related dispersion of axons) within the right fronto-parietal networks to facilitate the preservation of neurocognitive health in later years.
Collapse
Affiliation(s)
- Méadhbh B. Brosnan
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Nir Shalev
- Department of Experimental Psychology, University of Oxford, Oxford, UK
- Oxford Centre for Human Brain Activity, University of Oxford, Oxford, UK
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, UK
| | - Jivesh Ramduny
- School of Psychology, Trinity College Dublin, Dublin, Ireland
- Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Stamatios N. Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
- National Institute for Health Research (NIHR), Nottingham Biomedical Research Centre, Queen’s Medical Centre, Nottingham, UK
| | - Magdalena Chechlacz
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- School of Psychology, University of Birmingham, Birmingham, UK
| |
Collapse
|
30
|
Motovylyak A, Vogt NM, Adluru N, Ma Y, Wang R, Oh JM, Kecskemeti SR, Alexander AL, Dean DC, Gallagher CL, Sager MA, Hermann BP, Rowley HA, Johnson SC, Asthana S, Bendlin BB, Okonkwo OC. Age-related differences in white matter microstructure measured by advanced diffusion MRI in healthy older adults at risk for Alzheimer's disease. AGING BRAIN 2022; 2:100030. [PMID: 36908893 PMCID: PMC9999444 DOI: 10.1016/j.nbas.2022.100030] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 11/19/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) is an advanced diffusion imaging technique, which can detect more distinct microstructural features compared to conventional Diffusion Tensor Imaging (DTI). NODDI allows the signal to be divided into multiple water compartments and derive measures for orientation dispersion index (ODI), neurite density index (NDI) and volume fraction of isotropic diffusion compartment (FISO). This study aimed to investigate which diffusion metric-fractional anisotropy (FA), mean diffusivity (MD), NDI, ODI, or FISO-is most influenced by aging and reflects cognitive function in a population of healthy older adults at risk for Alzheimer's disease (AD). Age was significantly associated with all but one diffusion parameters and regions of interest. NDI and MD in the cingulate region adjacent to the cingulate cortex showed a significant association with a composite measure of Executive Function and was proven to partially mediate the relationship between aging and Executive Function decline. These results suggest that both DTI and NODDI parameters are sensitive to age-related differences in white matter regions vulnerable to aging, particularly among older adults at risk for AD.
Collapse
Affiliation(s)
- Alice Motovylyak
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Nicholas M. Vogt
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Nagesh Adluru
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Yue Ma
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Rui Wang
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- The Swedish School of Sport and Health Science, GIH, Lidingövägen 1, Box 5626, SE-11486 Stockholm, Sweden
| | - Jennifer M. Oh
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Steven R. Kecskemeti
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
| | - Andrew L. Alexander
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, 6001 Research Park Blvd, Madison, WI 53705, USA
| | - Douglas C. Dean
- Waisman Laboratory for Brain Imaging and Behavior, Waisman Center, University of Wisconsin, 1500 Highland Ave, Madison, WI 53705, USA
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Catherine L. Gallagher
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
- Department of Neurology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Ave, Madison, WI 53705, USA
| | - Mark A. Sager
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - Bruce P. Hermann
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Wisconsin Alzheimer’s Institute, University of Wisconsin School of Medicine and Public Health, 610 Walnut St Suite 957, Madison, WI 53726, USA
| | - Howard A. Rowley
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Sanjay Asthana
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Barbara B. Bendlin
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
| | - Ozioma C. Okonkwo
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, 600 Highland Avenue, Madison, WI 53792, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| |
Collapse
|
31
|
Brain age estimation at tract group level and its association with daily life measures, cardiac risk factors and genetic variants. Sci Rep 2021; 11:20563. [PMID: 34663856 PMCID: PMC8523533 DOI: 10.1038/s41598-021-99153-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/14/2021] [Indexed: 11/08/2022] Open
Abstract
Brain age can be estimated using different Magnetic Resonance Imaging (MRI) modalities including diffusion MRI. Recent studies demonstrated that white matter (WM) tracts that share the same function might experience similar alterations. Therefore, in this work, we sought to investigate such issue focusing on five WM bundles holding that feature that is Association, Brainstem, Commissural, Limbic and Projection fibers, respectively. For each tract group, we estimated brain age for 15,335 healthy participants from United Kingdom Biobank relying on diffusion MRI data derived endophenotypes, Bayesian ridge regression modeling and 10 fold-cross validation. Furthermore, we estimated brain age for an Ensemble model that gathers all the considered WM bundles. Association analysis was subsequently performed between the estimated brain age delta as resulting from the six models, that is for each tract group as well as for the Ensemble model, and 38 daily life style measures, 14 cardiac risk factors and cardiovascular magnetic resonance imaging features and genetic variants. The Ensemble model that used all tracts from all fiber groups (FG) performed better than other models to estimate brain age. Limbic tracts based model reached the highest accuracy with a Mean Absolute Error (MAE) of 5.08, followed by the Commissural ([Formula: see text]), Association ([Formula: see text]), and Projection ([Formula: see text]) ones. The Brainstem tracts based model was the less accurate achieving a MAE of 5.86. Accordingly, our study suggests that the Limbic tracts experience less brain aging or allows for more accurate estimates compared to other tract groups. Moreover, the results suggest that Limbic tract leads to the largest number of significant associations with daily lifestyle factors than the other tract groups. Lastly, two SNPs were significantly (p value [Formula: see text]) associated with brain age delta in the Projection fibers. Those SNPs are mapped to HIST1H1A and SLC17A3 genes.
Collapse
|
32
|
Cruz-Almeida Y, Coombes S, Febo M. Pain differences in neurite orientation dispersion and density imaging measures among community-dwelling older adults. Exp Gerontol 2021; 154:111520. [PMID: 34418483 PMCID: PMC9091979 DOI: 10.1016/j.exger.2021.111520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/07/2021] [Accepted: 08/13/2021] [Indexed: 01/29/2023]
Abstract
Neurite orientation dispersion and density imaging (NODDI) is a technique providing more detailed information on the microstructural bases of white matter. Given the previously reported white matter contributions to chronic pain, the present study aims to investigate pain-specific differences in NODDI measures across white matter tracts in a sample of community-dwelling older adults with (n = 29) and without (n = 18) chronic musculoskeletal pain. We further aimed to investigate associations between NODDI measures and clinical and experimental pain measures. As part of the Nepal study, a subset of older adults (>60 years old), underwent multiple laboratory sessions providing self-reported and experimental pain measures and a diffusion weighted neuroimaging sequence. Older adults with chronic musculoskeletal pain had a lower neurite density with less geometric complexity across a number of white matter tracts compared to older pain-free controls (corrected p's < 0.05). Lower neurite density was associated with greater self-reported pain intensity and anatomical pain sites, as well as greater experimental pain sensitivity (p's < 0.05). There were also significant pain-by-sex differences in neurite density and geometric complexity across multiple white matter tracts mainly around the hippocampus (corrected p's < 0.05). Finally, there were no pain differences with respect to extra-cellular water diffusion (corrected p's > 0.05). Our study demonstrates less geometric complexity in neurite density and architecture in chronic musculoskeletal pain, partly in a sex-dependent manner. An increased understanding of neurobiological mechanisms such as those measured by NODDI may contribute to the potential targeting of interventions in our older population suffering from chronic pain.
Collapse
Affiliation(s)
- Yenisel Cruz-Almeida
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, United States of America; Department of Community Dentistry & Behavioral Science, College of Dentistry, University of Florida, Gainesville, FL, United States of America; Department of Neuroscience, College of Medicine, University of Florida, Gainesville, FL, United States of America.
| | - Stephen Coombes
- Pain Research & Intervention Center of Excellence, University of Florida, Gainesville, FL, United States of America; Department of Applied Kinesiology & Physiology, College of Health & Human Performance, University of Florida, Gainesville, FL, United States of America
| | - Marcelo Febo
- Department of Psychiatry, College of Medicine, University of Florida, Gainesville, FL, United States of America
| |
Collapse
|
33
|
Radetz A, Mladenova K, Ciolac D, Gonzalez-Escamilla G, Fleischer V, Ellwardt E, Krämer J, Bittner S, Meuth SG, Muthuraman M, Groppa S. Linking Microstructural Integrity and Motor Cortex Excitability in Multiple Sclerosis. Front Immunol 2021; 12:748357. [PMID: 34712236 PMCID: PMC8546169 DOI: 10.3389/fimmu.2021.748357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Making Test part A and B (TMT-A and TMT-B) and the Symbol Digit Modalities Test (SDMT). Patients were evaluated clinically including assessments with the Expanded Disability Status Scale. A hierarchical regression model revealed that lower neurite density index (NDI) in primary motor cortex, suggestive for axonal loss in the grey matter, predicted higher motor thresholds, i.e. reduced excitability in MS patients (p = .009, adjusted r² = 0.117). Furthermore, lower NDI was indicative of decreased cognitive-motor performance (p = .007, adjusted r² = .142 for TMT-A; p = .009, adjusted r² = .129 for TMT-B; p = .006, adjusted r² = .142 for SDMT). Motor WM tracts of patients were characterized by overlapping clusters of lowered NDI (p <.05, Cohen's d = 0.367) and DTI-based fractional anisotropy (FA) (p <.05, Cohen's d = 0.300), with NDI exclusively detecting a higher amount of abnormally appearing voxels. Further, orientation dispersion index of motor tracts was increased in patients compared to controls, suggesting a decreased fiber coherence (p <.05, Cohen's d = 0.232). This study establishes a link between microstructural characteristics and excitability of neural tissue, as well as cognitive-motor performance in multiple sclerosis. We further demonstrate that the NODDI parameters neurite density index and orientation dispersion index detect a larger amount of abnormally appearing voxels in patients compared to healthy controls, as opposed to the classical DTI parameter FA. Our work outlines the potential for microstructure imaging using advanced biophysical models to forecast excitability alterations in neuroinflammation.
Collapse
Affiliation(s)
- Angela Radetz
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kalina Mladenova
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chişinău, Moldova
- Department of Neurology, Institute of Emergency Medicine, Chişinău, Moldova
| | - Gabriel Gonzalez-Escamilla
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Erik Ellwardt
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Krämer
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Bittner
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven G. Meuth
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Muthuraman Muthuraman
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
34
|
Romero-Garcia R, Suckling J, Owen M, Assem M, Sinha R, Coelho P, Woodberry E, Price SJ, Burke A, Santarius T, Erez Y, Hart MG. Memory recovery in relation to default mode network impairment and neurite density during brain tumor treatment. J Neurosurg 2021; 136:358-368. [PMID: 34359041 DOI: 10.3171/2021.1.jns203959] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 01/25/2021] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The aim of this study was to test brain tumor interactions with brain networks, thereby identifying protective features and risk factors for memory recovery after resection. METHODS Seventeen patients with diffuse nonenhancing glioma (ages 22-56 years) underwent longitudinal MRI before and after surgery, and during a 12-month recovery period (47 MRI scans in total after exclusion). After each scanning session, a battery of memory tests was performed using a tablet-based screening tool, including free verbal memory, overall verbal memory, episodic memory, orientation, forward digit span, and backward digit span. Using structural MRI and neurite orientation dispersion and density imaging (NODDI) derived from diffusion-weighted images, the authors estimated lesion overlap and neurite density, respectively, with brain networks derived from normative data in healthy participants (somatomotor, dorsal attention, ventral attention, frontoparietal, and default mode network [DMN]). Linear mixed-effect models (LMMs) that regressed out the effect of age, gender, tumor grade, type of treatment, total lesion volume, and total neurite density were used to test the potential longitudinal associations between imaging markers and memory recovery. RESULTS Memory recovery was not significantly associated with either the tumor location based on traditional lobe classification or the type of treatment received by patients (i.e., surgery alone or surgery with adjuvant chemoradiotherapy). Nonlocal effects of tumors were evident on neurite density, which was reduced not only within the tumor but also beyond the tumor boundary. In contrast, high preoperative neurite density outside the tumor but within the DMN was associated with better memory recovery (LMM, p value after false discovery rate correction [Pfdr] < 10-3). Furthermore, postoperative and follow-up neurite density within the DMN and frontoparietal network were also associated with memory recovery (LMM, Pfdr = 0.014 and Pfdr = 0.001, respectively). Preoperative tumor and postoperative lesion overlap with the DMN showed a significant negative association with memory recovery (LMM, Pfdr = 0.002 and Pfdr < 10-4, respectively). CONCLUSIONS Imaging biomarkers of cognitive recovery and decline can be identified using NODDI and resting-state networks. Brain tumors and their corresponding treatment affecting brain networks that are fundamental for memory functioning such as the DMN can have a major impact on patients' memory recovery.
Collapse
Affiliation(s)
| | - John Suckling
- 1Department of Psychiatry, University of Cambridge.,2Behavioural and Clinical Neuroscience Institute, University of Cambridge.,3Cambridge and Peterborough NHS Foundation Trust, Cambridge
| | - Mallory Owen
- 1Department of Psychiatry, University of Cambridge
| | - Moataz Assem
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | | | | | - Emma Woodberry
- 7Department of Neuropsychology, Cambridge University Hospitals NHS Foundation Trust, Cambridge
| | - Stephen J Price
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| | - Amos Burke
- 8Department of Paediatric Haematology, Oncology, and Palliative Care, Addenbrooke's Hospital, Cambridge; and
| | - Thomas Santarius
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge.,9Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridgeshire, United Kingdom
| | - Yaara Erez
- 4MRC Cognition and Brain Sciences Unit, University of Cambridge
| | - Michael G Hart
- 5Department of Neurosurgery, Addenbrooke's Hospital, Cambridge
| |
Collapse
|
35
|
van de Stadt SIW, Huffnagel IC, Turk BR, van der Knaap MS, Engelen M. Imaging in X-Linked Adrenoleukodystrophy. Neuropediatrics 2021; 52:252-260. [PMID: 34192790 DOI: 10.1055/s-0041-1730937] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic resonance imaging (MRI) is the gold standard for the detection of cerebral lesions in X-linked adrenoleukodystrophy (ALD). ALD is one of the most common peroxisomal disorders and is characterized by a defect in degradation of very long chain fatty acids (VLCFA), resulting in accumulation of VLCFA in plasma and tissues. The clinical spectrum of ALD is wide and includes adrenocortical insufficiency, a slowly progressive myelopathy in adulthood, and cerebral demyelination in a subset of male patients. Cerebral demyelination (cerebral ALD) can be treated with hematopoietic cell transplantation (HCT) but only in an early (pre- or early symptomatic) stage and therefore active MRI surveillance is recommended for male patients, both pediatric and adult. Although structural MRI of the brain can detect the presence and extent of cerebral lesions, it does not predict if and when cerebral demyelination will occur. There is a great need for imaging techniques that predict onset of cerebral ALD before lesions appear. Also, imaging markers for severity of myelopathy as surrogate outcome measure in clinical trials would facilitate drug development. New quantitative MRI techniques are promising in that respect. This review focuses on structural and quantitative imaging techniques-including magnetic resonance spectroscopy, diffusion tensor imaging, MR perfusion imaging, magnetization transfer (MT) imaging, neurite orientation dispersion and density imaging (NODDI), and myelin water fraction imaging-used in ALD and their role in clinical practice and research opportunities for the future.
Collapse
Affiliation(s)
- Stephanie I W van de Stadt
- Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Irene C Huffnagel
- Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Bela R Turk
- Departments of Neurology and Pediatrics, Moser Center for Leukodystrophies, Kennedy Krieger Institute, Johns Hopkins University, Baltimore, Maryland, United States
| | - Marjo S van der Knaap
- Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Marc Engelen
- Department of Pediatric Neurology, Amsterdam Leukodystrophy Center, Emma Children's Hospital, Amsterdam University Medical Centers, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Gozdas E, Fingerhut H, Dacorro L, Bruno JL, Hosseini SMH. Neurite Imaging Reveals Widespread Alterations in Gray and White Matter Neurite Morphology in Healthy Aging and Amnestic Mild Cognitive Impairment. Cereb Cortex 2021; 31:5570-5578. [PMID: 34313731 DOI: 10.1093/cercor/bhab180] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/09/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Aging is the major risk factor for neurodegenerative diseases and affects neurite distributions throughout the brain, yet underlying neurobiological mechanisms remain unclear. Multi-shell diffusion-weighted imaging and neurite orientation dispersion and density imaging (NODDI) now provide in vivo biophysical measurements that explain these biological processes in the cortex and white matter. In this study, neurite distributions were evaluated in the cortex and white matter in healthy older adults and patients with amnestic mild cognitive impairment (aMCI) that provides fundamental contributions regarding healthy aging and neurodegeneration. Older age was associated with reduced neurite density and neurite orientation dispersion (ODI) in widespread cortical regions. In contrast, increased ODI was only observed in the right thalamus and hippocampus with age. For the first time, we also reported a widespread age-associated decrease in neurite density along major white matter tracts correlated with decreased cortical neurite density in the tract endpoints in healthy older adults. We further examined alterations in cortical and white matter neurite microstructures in aMCI patients and found significant neurite morphology deficits in memory networks correlated with memory performance. Our findings indicate that neurite parameters provide valuable information regarding cortical and white matter microstructure and complement myeloarchitectural information in healthy aging and aMCI.
Collapse
Affiliation(s)
- Elveda Gozdas
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Hannah Fingerhut
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Lauren Dacorro
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - Jennifer L Bruno
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| | - S M Hadi Hosseini
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94304, USA
| |
Collapse
|
37
|
Tsuchida A, Laurent A, Crivello F, Petit L, Joliot M, Pepe A, Beguedou N, Gueye MF, Verrecchia V, Nozais V, Zago L, Mellet E, Debette S, Tzourio C, Mazoyer B. The MRi-Share database: brain imaging in a cross-sectional cohort of 1870 university students. Brain Struct Funct 2021; 226:2057-2085. [PMID: 34283296 DOI: 10.1007/s00429-021-02334-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
We report on MRi-Share, a multi-modal brain MRI database acquired in a unique sample of 1870 young healthy adults, aged 18-35 years, while undergoing university-level education. MRi-Share contains structural (T1 and FLAIR), diffusion (multispectral), susceptibility-weighted (SWI), and resting-state functional imaging modalities. Here, we described the contents of these different neuroimaging datasets and the processing pipelines used to derive brain phenotypes, as well as how quality control was assessed. In addition, we present preliminary results on associations of some of these brain image-derived phenotypes at the whole brain level with both age and sex, in the subsample of 1722 individuals aged less than 26 years. We demonstrate that the post-adolescence period is characterized by changes in both structural and microstructural brain phenotypes. Grey matter cortical thickness, surface area and volume were found to decrease with age, while white matter volume shows increase. Diffusivity, either radial or axial, was found to robustly decrease with age whereas fractional anisotropy only slightly increased. As for the neurite orientation dispersion and densities, both were found to increase with age. The isotropic volume fraction also showed a slight increase with age. These preliminary findings emphasize the complexity of changes in brain structure and function occurring in this critical period at the interface of late maturation and early ageing.
Collapse
Affiliation(s)
- Ami Tsuchida
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Alexandre Laurent
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Fabrice Crivello
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Antonietta Pepe
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Naka Beguedou
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Marie-Fateye Gueye
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Violaine Verrecchia
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Victor Nozais
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France.,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France
| | - Laure Zago
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Emmanuel Mellet
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France.,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France
| | - Stéphanie Debette
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Christophe Tzourio
- Université de Bordeaux, INSERM, Bordeaux Population Health Research Center, U1219, CHU Bordeaux, Bordeaux, France.,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France
| | - Bernard Mazoyer
- Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, Université de Bordeaux, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, Bordeaux, France. .,Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CEA, Bordeaux, France. .,Ginesislab, Fealinx and Université de Bordeaux, Bordeaux, France. .,Centre Hospitalier Universitaire Pellegrin, Bordeaux, France.
| |
Collapse
|
38
|
Age- and gender-related differences in brain tissue microstructure revealed by multi-component T 2 relaxometry. Neurobiol Aging 2021; 106:68-79. [PMID: 34252873 DOI: 10.1016/j.neurobiolaging.2021.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/19/2022]
Abstract
In spite of extensive work, inconsistent findings and lack of specificity in most neuroimaging techniques used to examine age- and gender-related patterns in brain tissue microstructure indicate the need for additional research. Here, we performed the largest Multi-component T2 relaxometry cross-sectional study to date in healthy adults (N = 145, 18-60 years). Five quantitative microstructure parameters derived from various segments of the estimated T2 spectra were evaluated, allowing a more specific interpretation of results in terms of tissue microstructure. We found similar age-related myelin water fraction (MWF) patterns in men and women but we also observed differential male related results including increased MWF content in a few white matter tracts, a faster decline with age of the intra- and extra-cellular water fraction and its T2 relaxation time (i.e. steeper age related negative slopes) and a faster increase in the free and quasi-free water fraction, spanning the whole grey matter. Such results point to a sexual dimorphism in brain tissue microstructure and suggest a lesser vulnerability to age-related changes in women.
Collapse
|
39
|
Raghavan S, Reid RI, Przybelski SA, Lesnick TG, Graff-Radford J, Schwarz CG, Knopman DS, Mielke MM, Machulda MM, Petersen RC, Jack CR, Vemuri P. Diffusion models reveal white matter microstructural changes with ageing, pathology and cognition. Brain Commun 2021; 3:fcab106. [PMID: 34136811 PMCID: PMC8202149 DOI: 10.1093/braincomms/fcab106] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/24/2021] [Accepted: 04/12/2021] [Indexed: 01/20/2023] Open
Abstract
White matter microstructure undergoes progressive changes during the lifespan, but the neurobiological underpinnings related to ageing and disease remains unclear. We used an advanced diffusion MRI, Neurite Orientation Dispersion and Density Imaging, to investigate the microstructural alterations due to demographics, common age-related pathological processes (amyloid, tau and white matter hyperintensities) and cognition. We also compared Neurite Orientation Dispersion and Density Imaging findings to the older Diffusion Tensor Imaging model-based findings. Three hundred and twenty-eight participants (264 cognitively unimpaired, 57 mild cognitive impairment and 7 dementia with a mean age of 68.3 ± 13.1 years) from the Mayo Clinic Study of Aging with multi-shell diffusion imaging, fluid attenuated inversion recovery MRI as well as amyloid and tau PET scans were included in this study. White matter tract level diffusion measures were calculated from Diffusion Tensor Imaging and Neurite Orientation Dispersion and Density Imaging. Pearson correlation and multiple linear regression analyses were performed with diffusion measures as the outcome and age, sex, education/occupation, white matter hyperintensities, amyloid and tau as predictors. Analyses were also performed with each diffusion MRI measure as a predictor of cognitive outcomes. Age and white matter hyperintensities were the strongest predictors of all white matter diffusion measures with low associations with amyloid and tau. However, neurite density decrease from Neurite Orientation Dispersion and Density Imaging was observed with amyloidosis specifically in the temporal lobes. White matter integrity (mean diffusivity and free water) in the corpus callosum showed the greatest associations with cognitive measures. All diffusion measures provided information about white matter ageing and white matter changes due to age-related pathological processes and were associated with cognition. Neurite orientation dispersion and density imaging and diffusion tensor imaging are two different diffusion models that provide distinct information about variation in white matter microstructural integrity. Neurite Orientation Dispersion and Density Imaging provides additional information about synaptic density, organization and free water content which may aid in providing mechanistic insights into disease progression.
Collapse
Affiliation(s)
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, Rochester, MN 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Timothy G Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN 55905, USA.,Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Mary M Machulda
- Department of Psychology, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA
| | | |
Collapse
|
40
|
Reas ET, Hagler DJ, Zhong AJ, Lee RR, Dale AM, McEvoy LK. Brain microstructure mediates sex-specific patterns of cognitive aging. Aging (Albany NY) 2021; 13:3218-3238. [PMID: 33510046 PMCID: PMC7906181 DOI: 10.18632/aging.202561] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/14/2021] [Indexed: 11/25/2022]
Abstract
Normal brain aging is characterized by declining neuronal integrity, yet it remains unclear how microstructural injury influences cognitive aging and whether such mechanisms differ between sexes. Using restriction spectrum imaging (RSI), we examined sex differences in associations between brain microstructure and cognitive function in 147 community-dwelling older men and women (56-99 years). Gray and white matter microstructure correlated with global cognition, executive function, visuospatial memory, episodic memory, and logical memory, with the strongest associations for restricted, hindered and free isotropic diffusion. Associations were stronger for women than for men, a difference likely due to greater age-related variability in cognitive scores and microstructure in women. Isotropic diffusion mediated effects of age on cognition for both sexes, though distinct mediation patterns were present for women and men. For women, hippocampal and corpus callosum microstructure mediated age effects on verbal and visuospatial memory, respectively, whereas for men fiber microstructure (mainly fornix and corpus callosum) mediated age effects on executive function and visuospatial memory. These findings implicate sex-specific pathways by which changing brain cytoarchitecture contributes to cognitive aging, and suggest that RSI may be useful for evaluating risk for cognitive decline or monitoring efficacy of interventions to preserve brain health in later life.
Collapse
Affiliation(s)
- Emilie T Reas
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Donald J Hagler
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Roland R Lee
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA.,Radiology Services, VA San Diego Healthcare System, La Jolla, CA 92093, USA
| | - Anders M Dale
- Department of Neurosciences, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Linda K McEvoy
- Department of Radiology, University of California, San Diego, La Jolla, CA 92093, USA.,Department of Family Medicine and Public Health, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
41
|
Murray KD, Singh MV, Zhuang Y, Uddin MN, Qiu X, Weber MT, Tivarus ME, Wang HZ, Sahin B, Zhong J, Maggirwar SB, Schifitto G. Pathomechanisms of HIV-Associated Cerebral Small Vessel Disease: A Comprehensive Clinical and Neuroimaging Protocol and Analysis Pipeline. Front Neurol 2020; 11:595463. [PMID: 33384655 PMCID: PMC7769815 DOI: 10.3389/fneur.2020.595463] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Rationale: We provide an in-depth description of a comprehensive clinical, immunological, and neuroimaging study that includes a full image processing pipeline. This approach, although implemented in HIV infected individuals, can be used in the general population to assess cerebrovascular health. Aims: In this longitudinal study, we seek to determine the effects of neuroinflammation due to HIV-1 infection on the pathomechanisms of cerebral small vessel disease (CSVD). The study focuses on the interaction of activated platelets, pro-inflammatory monocytes and endothelial cells and their impact on the neurovascular unit. The effects on the neurovascular unit are evaluated by a novel combination of imaging biomarkers. Sample Size: We will enroll 110 HIV-infected individuals on stable combination anti-retroviral therapy for at least three months and an equal number of age-matched controls. We anticipate a drop-out rate of 20%. Methods and Design: Subjects are followed for three years and evaluated by flow cytometric analysis of whole blood (to measure platelet activation, platelet monocyte complexes, and markers of monocyte activation), neuropsychological testing, and brain MRI at the baseline, 18- and 36-month time points. MRI imaging follows the recommended clinical small vessel imaging standards and adds several advanced sequences to obtain quantitative assessments of brain tissues including white matter microstructure, tissue susceptibility, and blood perfusion. Discussion: The study provides further understanding of the underlying mechanisms of CSVD in chronic inflammatory disorders such as HIV infection. The longitudinal study design and comprehensive approach allows the investigation of quantitative changes in imaging metrics and their impact on cognitive performance.
Collapse
Affiliation(s)
- Kyle D Murray
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States
| | - Meera V Singh
- Department of Microbiology and Immunology, University of Rochester, Rochester, NY, United States
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States
| | - Md Nasir Uddin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Xing Qiu
- Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Miriam T Weber
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.,Department of Neuroscience, University of Rochester, Rochester, NY, United States
| | - Henry Z Wang
- Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| | - Bogachan Sahin
- Department of Neurology, University of Rochester, Rochester, NY, United States
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, United States.,Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, United States.,Department of Biostatistics, University of Rochester, Rochester, NY, United States
| | - Sanjay B Maggirwar
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University, Washington, DC, United States
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester, Rochester, NY, United States.,Department of Imaging Sciences, University of Rochester, Rochester, NY, United States
| |
Collapse
|
42
|
Qian W, Khattar N, Cortina LE, Spencer RG, Bouhrara M. Nonlinear associations of neurite density and myelin content with age revealed using multicomponent diffusion and relaxometry magnetic resonance imaging. Neuroimage 2020; 223:117369. [PMID: 32931942 PMCID: PMC7775614 DOI: 10.1016/j.neuroimage.2020.117369] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Most magnetic resonance imaging (MRI) studies investigating the relationship between regional brain myelination or axonal density and aging have relied upon nonspecific methods to probe myelin and axonal content, including diffusion tensor imaging and relaxation time mapping. While these studies have provided pivotal insights into changes in cerebral architecture with aging and pathology, details of the underlying microstructural alterations have not been fully elucidated. In the current study, we used the BMC-mcDESPOT analysis, a direct and specific multicomponent relaxometry method for imaging of myelin water fraction (MWF), a marker of myelin content, and NODDI, an emerging multicomponent diffusion technique, for neurite density index (NDI) imaging, a proxy of axonal density. We investigated age-related differences in MWF and NDI in several white matter brain regions in a cohort of cognitively unimpaired participants over a wide age range. Our results indicate a quadratic, inverted U-shape, relationship between MWF and age in all brain regions investigated, suggesting that myelination continues until middle age followed by a decrease at older ages, in agreement with previous work. We found a similarly complex regional association between NDI and age, with several cerebral structures also exhibiting a quadratic, inverted U-shape, relationship. This novel observation suggests an increase in axonal density until the fourth decade of age followed by a rapid loss at older ages. We also observed that these age-related differences in MWF and NDI vary across different brain regions, as expected. Finally, our study indicates no significant association between MWF and NDI in most cerebral structures investigated, although this association approached significance in a limited number of brain regions, indicating the complementary nature of their information and encouraging further investigation. Overall, we find evidence of nonlinear associations between age and myelin or axonal density in a sample of well-characterized adults, using direct myelin and axonal content imaging methods.
Collapse
Affiliation(s)
- Wenshu Qian
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigations, National Institute on Aging, National Institutes of Health, NIA, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Nikkita Khattar
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigations, National Institute on Aging, National Institutes of Health, NIA, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Luis E Cortina
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigations, National Institute on Aging, National Institutes of Health, NIA, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Richard G Spencer
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigations, National Institute on Aging, National Institutes of Health, NIA, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigations, National Institute on Aging, National Institutes of Health, NIA, NIH, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
43
|
Dimond D, Heo S, Ip A, Rohr CS, Tansey R, Graff K, Dhollander T, Smith RE, Lebel C, Dewey D, Connelly A, Bray S. Maturation and interhemispheric asymmetry in neurite density and orientation dispersion in early childhood. Neuroimage 2020; 221:117168. [DOI: 10.1016/j.neuroimage.2020.117168] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 06/15/2020] [Accepted: 07/12/2020] [Indexed: 12/13/2022] Open
|
44
|
Franco CY, Petok JR, Langley J, Hu X, Bennett IJ. Implicit associative learning relates to basal ganglia gray matter microstructure in young and older adults. Behav Brain Res 2020; 397:112950. [PMID: 33017642 DOI: 10.1016/j.bbr.2020.112950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/11/2020] [Accepted: 09/26/2020] [Indexed: 01/01/2023]
Abstract
Older adults are impaired at implicit associative learning (IAL), or the learning of relationships between stimuli in the environment without conscious awareness. These age effects have been attributed to differential engagement of the basal ganglia (e.g. caudate, globus pallidus) and hippocampus throughout learning. However, no studies have examined gray matter diffusion relations with IAL, which can reveal microstructural properties that vary with age and contribute to learning. In this study, young (18-29 years) and older (65-87 years) adults completed the Triplet Learning Task, in which participants implicitly learn that the location of cues predict the target location on some trials (high frequency triplets). Diffusion imaging was also acquired and multicompartment diffusion metrics were calculated using neurite orientation dispersion and density imaging (NODDI). As expected, results revealed age deficits in IAL (smaller differences in performance to high versus low frequency triplets in the late learning stage) and age-related differences in basal ganglia and hippocampus free, hindered, and restricted diffusion. Significant correlations were seen between restricted caudate diffusion and early IAL and between hindered globus pallidus diffusion and late IAL, which were not moderated by age group. These findings indicate that individual differences in basal ganglia, but not hippocampal, gray matter microstructure contribute to learning, independent of age, further supporting basal ganglia involvement in IAL.
Collapse
Affiliation(s)
- Corinna Y Franco
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA.
| | - Jessica R Petok
- Department of Psychology, St. Olaf College, 1520 St. Olaf Avenue, Northfield, MN 55057, USA
| | - Jason Langley
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Xiaoping Hu
- Center for Advanced Neuroimaging, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA; Department of Bioengineering, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| | - Ilana J Bennett
- Department of Psychology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA
| |
Collapse
|
45
|
Kamiya K, Hori M, Aoki S. NODDI in clinical research. J Neurosci Methods 2020; 346:108908. [PMID: 32814118 DOI: 10.1016/j.jneumeth.2020.108908] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Diffusion MRI (dMRI) has proven to be a useful imaging approach for both clinical diagnosis and research investigating the microstructures of nervous tissues, and it has helped us to better understand the neurophysiological mechanisms of many diseases. Though diffusion tensor imaging (DTI) has long been the default tool to analyze dMRI data in clinical research, acquisition with stronger diffusion weightings beyond the DTI regimen is now possible with modern clinical scanners, potentially enabling even more detailed characterization of tissue microstructures. To take advantage of such data, neurite orientation dispersion and density imaging (NODDI) has been proposed as a way to relate the dMRI signal to tissue features via biophysically inspired modeling. The number of reports demonstrating the potential clinical utility of NODDI is rapidly increasing. At the same time, the pitfalls and limitations of NODDI, and general challenges in microstructure modeling, are becoming increasingly recognized by clinicians. dMRI microstructure modeling is a rapidly evolving field with great promise, where people from different scientific backgrounds, such as physics, medicine, biology, neuroscience, and statistics, are collaborating to build novel tools that contribute to improving human healthcare. Here, we review the applications of NODDI in clinical research and discuss future perspectives for investigations toward the implementation of dMRI microstructure imaging in clinical practice.
Collapse
Affiliation(s)
- Kouhei Kamiya
- Department of Radiology, The University of Tokyo, Tokyo, Japan; Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan.
| | - Masaaki Hori
- Department of Radiology, Juntendo University, Tokyo, Japan; Department of Radiology, Toho University, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University, Tokyo, Japan
| |
Collapse
|
46
|
Associations between age and brain microstructure in older community-dwelling men and women: the Rancho Bernardo Study. Neurobiol Aging 2020; 95:94-103. [PMID: 32768868 DOI: 10.1016/j.neurobiolaging.2020.07.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/22/2020] [Accepted: 07/06/2020] [Indexed: 01/06/2023]
Abstract
Cytoarchitectural brain changes during normal aging remain poorly characterized, and it is unclear whether patterns of brain aging differ by sex. This study used restriction spectrum imaging to examine associations between age and brain microstructure in 147 community-dwelling participants (aged 56-99 years). Widespread associations with age in multiple diffusion compartments, including increased free water, decreased restricted and hindered diffusion, and reduced neurite complexity, were observed in the cortical gray matter, the white matter tracts, and the hippocampus. Age differences in cortical microstructure were largely independent of atrophy. Associations were mostly global, although foci of stronger effects emerged in the fornix, anterior thalamic radiation and commissural fibers, and the medial temporal, orbitofrontal, and occipital cortices. Age differences were stronger and more widespread for women than men, even after adjustment for education, hypertension, and body mass index. Restriction spectrum imaging may be a convenient, noninvasive tool for monitoring changes in diffusion properties that are thought to reflect reduced cellular fractions and neurite density or complexity, which occur with typical aging, and for detecting sex differences in patterns of brain aging.
Collapse
|
47
|
Gong T, Tong Q, He H, Sun Y, Zhong J, Zhang H. MTE-NODDI: Multi-TE NODDI for disentangling non-T2-weighted signal fractions from compartment-specific T2 relaxation times. Neuroimage 2020; 217:116906. [PMID: 32387626 DOI: 10.1016/j.neuroimage.2020.116906] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 05/01/2020] [Accepted: 05/03/2020] [Indexed: 12/28/2022] Open
Abstract
Neurite orientation dispersion and density imaging (NODDI) has become a popular diffusion MRI technique for investigating microstructural alternations during brain development, maturation and aging in health and disease. However, the NODDI model of diffusion does not explicitly account for compartment-specific T2 relaxation and its model parameters are usually estimated from data acquired with a single echo time (TE). Thus, the NODDI-derived measures, such as the intra-neurite signal fraction, also known as the neurite density index, could be T2-weighted and TE-dependent. This may confound the interpretation of studies as one cannot disentangle differences in diffusion from those in T2 relaxation. To address this challenge, we propose a multi-TE NODDI (MTE-NODDI) technique, inspired by recent studies exploiting the synergy between diffusion and T2 relaxation. MTE-NODDI could give robust estimates of the non-T2-weighted signal fractions and compartment-specific T2 values, as demonstrated by both simulation and in vivo data experiments. Results showed that the estimated non-T2 weighted intra-neurite fraction and compartment-specific T2 values in white matter were consistent with previous studies. The T2-weighted intra-neurite fractions from the original NODDI were found to be overestimated compared to their non-T2-weighted estimates; the overestimation increases with TE, consistent with the reported intra-neurite T2 being larger than extra-neurite T2. Finally, the inclusion of the free water compartment reduces the estimation error in intra-neurite T2 in the presence of cerebrospinal fluid contamination. With the ability to disentangle non-T2-weighted signal fractions from compartment-specific T2 relaxation, MTE-NODDI could help improve the interpretability of future neuroimaging studies, especially those in brain development, maturation and aging.
Collapse
Affiliation(s)
- Ting Gong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China; Department of Computer Science & Centre for Medical Image Computing, University College London, UK
| | - Qiqi Tong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China
| | - Hongjian He
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China.
| | - Yi Sun
- MR Collaboration, Siemens Healthcare, Shanghai, China
| | - Jianhui Zhong
- Center for Brain Imaging Science and Technology, College of Biomedical Engineering and Instrumental Science, Zhejiang University, Hangzhou, China; Department of Imaging Sciences, University of Rochester, Rochester, NY, United States.
| | - Hui Zhang
- Department of Computer Science & Centre for Medical Image Computing, University College London, UK
| |
Collapse
|
48
|
Sarrazin S, Poupon C, Teillac A, Mangin JF, Polosan M, Favre P, Laidi C, D'Albis MA, Leboyer M, Lledo PM, Henry C, Houenou J. Higher in vivo Cortical Intracellular Volume Fraction Associated with Lithium Therapy in Bipolar Disorder: A Multicenter NODDI Study. PSYCHOTHERAPY AND PSYCHOSOMATICS 2020; 88:171-176. [PMID: 30955011 DOI: 10.1159/000498854] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 02/12/2019] [Indexed: 11/19/2022]
Abstract
BACKGROUND MRI studies in patients with bipolar disorder have suggested that lithium is associated with grey matter increases that may underlie its therapeutic effects. However, the relationship between grey matter volume and cellular microstructural changes is not straightforward, as modifications of different cellular compartments of grey matter may be involved. OBJECTIVES Our aim was to test the hypothesis that dendritic density is higher in patients undergoing lithium therapy than in patients without lithium, using advanced modelling of water diffusion investigated with MRI. METHOD We included 41 patients and 40 controls matched for age and gender from two sites. All subjects underwent 3T MRI with 3 shells of diffusion. We used neurite orientation dispersion and density imaging to compare the grey matter neurite density between patients undergoing lithium therapy or not and control subjects. RESULTS We found a significant group effect in the left prefrontal region (p = 0.001, Bonferroni corrected): patients without lithium had a lower frontal neurite density than controls (p = 0.009), while those on lithium had a higher mean neurite density than those without (p < 0.001). Patients on lithium were not different from controls (p = 0.08). CONCLUSIONS This is the first study to report in vivo evidence of preserved neurite density of the prefrontal cortex in humans associated with lithium intake. Changes of intracellular volume fraction are thought to reflect changes of grey matter microstructural organization. This reinforces the hypothesis of lithium having a positive effect on the neuronal compartment in humans.
Collapse
Affiliation(s)
- Samuel Sarrazin
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France.,Assistance Publique - Hôpitaux de Paris, DHU PePSY, Department of Psychiatry, Mondor University Hospitals, Créteil, France.,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France.,Université Paris Est Créteil, Créteil, France
| | - Cyril Poupon
- NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France
| | | | | | - Mircea Polosan
- Grenoble Institut des Neurosciences (GIN), INSERM U836, La Tronche, France
| | - Pauline Favre
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France.,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France
| | - Charles Laidi
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France.,Assistance Publique - Hôpitaux de Paris, DHU PePSY, Department of Psychiatry, Mondor University Hospitals, Créteil, France.,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France.,Université Paris Est Créteil, Créteil, France.,Fondation FondaMental, Créteil, France
| | - Marc-Antoine D'Albis
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France.,Assistance Publique - Hôpitaux de Paris, DHU PePSY, Department of Psychiatry, Mondor University Hospitals, Créteil, France.,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France.,Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France.,Assistance Publique - Hôpitaux de Paris, DHU PePSY, Department of Psychiatry, Mondor University Hospitals, Créteil, France.,Université Paris Est Créteil, Créteil, France.,Fondation FondaMental, Créteil, France
| | | | - Chantal Henry
- Unité Perception et Mémoire, Institut Pasteur, Paris, France
| | - Josselin Houenou
- INSERM U955, IMRB, Team 15, "Translational Psychiatry", Créteil, France, .,Assistance Publique - Hôpitaux de Paris, DHU PePSY, Department of Psychiatry, Mondor University Hospitals, Créteil, France, .,NeuroSpin, Atomic Energy Commission, Gif-sur-Yvette, France, .,Université Paris Est Créteil, Créteil, France, .,Fondation FondaMental, Créteil, France,
| |
Collapse
|
49
|
Wen Q, Mustafi SM, Li J, Risacher SL, Tallman E, Brown SA, West JD, Harezlak J, Farlow MR, Unverzagt FW, Gao S, Apostolova LG, Saykin AJ, Wu YC. White matter alterations in early-stage Alzheimer's disease: A tract-specific study. ALZHEIMER'S & DEMENTIA: DIAGNOSIS, ASSESSMENT & DISEASE MONITORING 2019; 11:576-587. [PMID: 31467968 PMCID: PMC6713788 DOI: 10.1016/j.dadm.2019.06.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Introduction Diffusion magnetic resonance imaging may allow for microscopic characterization of white matter degeneration in early stages of Alzheimer's disease. Methods Multishell Diffusion magnetic resonance imaging data were acquired from 100 participants (40 cognitively normal, 38 with subjective cognitive decline, and 22 with mild cognitive impairment [MCI]). White matter microscopic degeneration in 27 major tracts of interest was assessed using diffusion tensor imaging (DTI), neurite orientation dispersion and density imaging, and q-space imaging. Results Lower DTI fractional anisotropy and higher radial diffusivity were observed in the cingulum, thalamic radiation, and forceps major of participants with MCI. These tracts of interest also had the highest predictive power to discriminate groups. Diffusion metrics were associated with cognitive performance, particularly Rey Auditory Verbal Learning Test immediate recall, with the highest association observed in participants with MCI. Discussion While DTI was the most sensitive, neurite orientation dispersion and density imaging and q-space imaging complementarily characterized reduced axonal density accompanied with dispersed and less restricted white matter microstructures. Mild cognitive decline poses microstructural alterations in white matter tracts. The alterations include higher axonal dispersion and lower tissue restriction. Diffusion metrics are associated with cognitive outcomes in AD continuum.
Collapse
Affiliation(s)
- Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sourajit M Mustafi
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Junjie Li
- University Information Technology Service - Research Technology, Indiana University, Indianapolis, IN, USA
| | - Shannon L Risacher
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eileen Tallman
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Steven A Brown
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - John D West
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, School of Public Health, Indiana University, Bloomington, IN, USA
| | - Martin R Farlow
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Frederick W Unverzagt
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Sujuan Gao
- Department of Biostatistics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Liana G Apostolova
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA.,Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Yu-Chien Wu
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA.,Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
50
|
Fu X, Shrestha S, Sun M, Wu Q, Luo Y, Zhang X, Yin J, Ni H. Microstructural White Matter Alterations in Mild Cognitive Impairment and Alzheimer's Disease : Study Based on Neurite Orientation Dispersion and Density Imaging (NODDI). Clin Neuroradiol 2019; 30:569-579. [PMID: 31175374 DOI: 10.1007/s00062-019-00805-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 05/21/2019] [Indexed: 12/28/2022]
Abstract
PURPOSE To investigate microstructural alterations in white matter in mild cognitive impairment (MCI) and Alzheimer's disease (AD) using neurite orientation dispersion and density imaging (NODDI) and to assess the potential diagnostic performance of NODDI-derived parameters. METHODS In this study 14 MCI patients, 14 AD patients, and 14 healthy controls (HC) were recruited. The diffusion tensor imaging(DTI)-derived fractional anisotropy (FA) and NODDI-derived neurite density index (NDI), orientation dispersion index (ODI), and volume fraction of isotropic water molecules (Viso) were calculated from the diffusion data. The tract-based spatial statistics (TBSS) method was used for statistical analysis with one-way ANOVA. The correlations between the parameter values and mini-mental state examination (MMSE) and Montreal cognitive assessment (MoCA) scores were examined. A receiver operating characteristic (ROC) curve was conducted to assess the diagnostic performance of different parameters. RESULTS Compared with the HC group, the NDI and ODI values decreased significantly and the Viso values were significantly increased in the MCI and AD groups (p < 0.01, threshold-free cluster enhancement (TFCE)-corrected); however, there were no significant differences in FA values in the MCI group. The NDI, ODI, and Viso values of multiple fibers were significantly correlated with MMSE and MoCA scores. For the diagnosis of AD, the area under the ROC curve (AUC) for the NDI value of the splenium of corpus callosum was larger than the FA value (AUC = 0.885, 0.714, p = 0.042). The AUC of the Viso value of the right cerebral peduncle was larger than FA value (AUC = 0.934, 0.531, p = 0.004). CONCLUSION The NDI is more sensitive to white matter microstructural changes than FA and NODDI could be superior to DTI in the diagnosis of AD.
Collapse
Affiliation(s)
- Xiuwei Fu
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Susan Shrestha
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | - Man Sun
- Department of Radiology, Tianjin Hospital of Tianjin, Tianjin, China
| | - Qiaoling Wu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yuan Luo
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Tianjin, China
| | | | - Jianzhong Yin
- Department of Radiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, 300192, Tianjin, China
| | - Hongyan Ni
- Department of Radiology, Tianjin First Central Hospital, 24 Fukang Road, Nankai District, 300192, Tianjin, China.
| |
Collapse
|