1
|
Hetz C, Dillin A. Central role of the ER proteostasis network in healthy aging. Trends Cell Biol 2024:S0962-8924(24)00209-5. [PMID: 39547881 DOI: 10.1016/j.tcb.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 11/17/2024]
Abstract
Aging trajectories vary among individuals, characterized by progressive functional decline, often leading to disease states. One of the central hallmarks of aging is the deterioration of proteostasis, where the function of the endoplasmic reticulum (ER) is dramatically affected. ER stress is monitored and adjusted by the unfolded protein response (UPR); a signaling pathway that mediates adaptive processes to restore proteostasis. Studies in multiple model organisms (yeast, worms, flies, and mice) in addition to human tissue indicates that adaptive UPR signaling contributes to healthy aging. Strategies to improve ER proteostasis using small molecules and gene therapy reduce the decline of organ function during normal aging in mammals. This article reviews recent advances in understanding the significance of the ER proteostasis network to normal aging and its relationship with other hallmarks of aging such as senescence.
Collapse
Affiliation(s)
- Claudio Hetz
- The Buck Institute for Research in Aging, Novato, CA 94945, USA; Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), University of Chile, Santiago, Chile.
| | - Andrew Dillin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
2
|
Hemagirri M, Chen Y, Gopinath SCB, Sahreen S, Adnan M, Sasidharan S. Crosstalk between protein misfolding and endoplasmic reticulum stress during ageing and their role in age-related disorders. Biochimie 2024; 221:159-181. [PMID: 37918463 DOI: 10.1016/j.biochi.2023.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/04/2023]
Abstract
Maintaining the proteome is crucial to retaining cell functionality and response to multiple intrinsic and extrinsic stressors. Protein misfolding increased the endoplasmic reticulum (ER) stress and activated the adaptive unfolded protein response (UPR) to restore cell homeostasis. Apoptosis occurs when ER stress is prolonged or the adaptive response fails. In healthy young cells, the ratio of protein folding machinery to quantities of misfolded proteins is balanced under normal circumstances. However, the age-related deterioration of the complex systems for handling protein misfolding is accompanied by ageing-related disruption of protein homeostasis, which results in the build-up of misfolded and aggregated proteins. This ultimately results in decreased cell viability and forms the basis of common age-related diseases called protein misfolding diseases. Proteins or protein fragments convert from their ordinarily soluble forms to insoluble fibrils or plaques in many of these disorders, which build up in various organs such as the liver, brain, or spleen. Alzheimer's, Parkinson's, type II diabetes, and cancer are diseases in this group commonly manifest in later life. Thus, protein misfolding and its prevention by chaperones and different degradation paths are becoming understood from molecular perspectives. Proteodynamics information will likely affect future interventional techniques to combat cellular stress and support healthy ageing by avoiding and treating protein conformational disorders. This review provides an overview of the diverse proteostasis machinery, protein misfolding, and ER stress involvement, which activates the UPR sensors. Here, we will discuss the crosstalk between protein misfolding and ER stress and their role in developing age-related diseases.
Collapse
Affiliation(s)
- Manisekaran Hemagirri
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Yeng Chen
- Department of Oral & Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Subash C B Gopinath
- Faculty of Chemical Engineering and Technology, Universiti Malaysia Perlis, Arau, 02600, Malaysia
| | - Sumaira Sahreen
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia
| | - Mohd Adnan
- Department of Biology, College of Science, University of Ha'il, Ha'il, P. O. Box 2440, Saudi Arabia.
| | - Sreenivasan Sasidharan
- Institute for Research in Molecular Medicine (INFORMM), Universiti Sains Malaysia, USM, 11800, Pulau Pinang, Malaysia.
| |
Collapse
|
3
|
Catterson JH, Minkley L, Aspe S, Judd-Mole S, Moura S, Dyson MC, Rajasingam A, Woodling NS, Atilano ML, Ahmad M, Durrant CS, Spires-Jones TL, Partridge L. Protein retention in the endoplasmic reticulum rescues Aβ toxicity in Drosophila. Neurobiol Aging 2023; 132:154-174. [PMID: 37837732 PMCID: PMC10940166 DOI: 10.1016/j.neurobiolaging.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/18/2023] [Accepted: 09/18/2023] [Indexed: 10/16/2023]
Abstract
Amyloid β (Aβ) accumulation is a hallmark of Alzheimer's disease. In adult Drosophila brains, human Aβ overexpression harms climbing and lifespan. It's uncertain whether Aβ is intrinsically toxic or activates downstream neurodegeneration pathways. Our study uncovers a novel protective role against Aβ toxicity: intra-endoplasmic reticulum (ER) protein accumulation with a focus on laminin and collagen subunits. Despite high Aβ, laminin B1 (LanB1) overexpression robustly counters toxicity, suggesting a potential Aβ resistance mechanism. Other laminin subunits and collagen IV also alleviate Aβ toxicity; combining them with LanB1 augments the effect. Imaging reveals ER retention of LanB1 without altering Aβ secretion. LanB1's rescue function operates independently of the IRE1α/XBP1 ER stress response. ER-targeted GFP overexpression also mitigates Aβ toxicity, highlighting broader ER protein retention advantages. Proof-of-principle tests in murine hippocampal slices using mouse Lamb1 demonstrate ER retention in transduced cells, indicating a conserved mechanism. Though ER protein retention generally harms, it could paradoxically counter neuronal Aβ toxicity, offering a new therapeutic avenue for Alzheimer's disease.
Collapse
Affiliation(s)
- James H Catterson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Lucy Minkley
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Salomé Aspe
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sebastian Judd-Mole
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Sofia Moura
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Miranda C Dyson
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Arjunan Rajasingam
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Nathaniel S Woodling
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Magda L Atilano
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Mumtaz Ahmad
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK
| | - Claire S Durrant
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Tara L Spires-Jones
- Centre for Discovery Brain Sciences, UK Dementia Research Institute, The University of Edinburgh, 1 George Square, Edinburgh EH8 9JZ, Scotland, UK
| | - Linda Partridge
- Institute of Healthy Ageing, Genetics, Evolution and Environment, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK; Max Planck Institute for Biology of Ageing, Joseph-Stelzmann-Strasse 9b, 50931 Cologne, Germany.
| |
Collapse
|
4
|
Duran-Aniotz C, Poblete N, Rivera-Krstulovic C, Ardiles ÁO, Díaz-Hung ML, Tamburini G, Sabusap CMP, Gerakis Y, Cabral-Miranda F, Diaz J, Fuentealba M, Arriagada D, Muñoz E, Espinoza S, Martinez G, Quiroz G, Sardi P, Medinas DB, Contreras D, Piña R, Lourenco MV, Ribeiro FC, Ferreira ST, Rozas C, Morales B, Plate L, Gonzalez-Billault C, Palacios AG, Hetz C. The unfolded protein response transcription factor XBP1s ameliorates Alzheimer's disease by improving synaptic function and proteostasis. Mol Ther 2023; 31:2240-2256. [PMID: 37016577 PMCID: PMC10362463 DOI: 10.1016/j.ymthe.2023.03.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 02/03/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Alteration in the buffering capacity of the proteostasis network is an emerging feature of Alzheimer's disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress. The unfolded protein response (UPR) is the main adaptive pathway to cope with protein folding stress at the ER. Inositol-requiring enzyme-1 (IRE1) operates as a central ER stress sensor, enabling the establishment of adaptive and repair programs through the control of the expression of the transcription factor X-box binding protein 1 (XBP1). To artificially enforce the adaptive capacity of the UPR in the AD brain, we developed strategies to express the active form of XBP1 in the brain. Overexpression of XBP1 in the nervous system using transgenic mice reduced the load of amyloid deposits and preserved synaptic and cognitive function. Moreover, local delivery of XBP1 into the hippocampus of an 5xFAD mice using adeno-associated vectors improved different AD features. XBP1 expression corrected a large proportion of the proteomic alterations observed in the AD model, restoring the levels of several synaptic proteins and factors involved in actin cytoskeleton regulation and axonal growth. Our results illustrate the therapeutic potential of targeting UPR-dependent gene expression programs as a strategy to ameliorate AD features and sustain synaptic function.
Collapse
Affiliation(s)
- Claudia Duran-Aniotz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Latin American Institute for Brain Health (BrainLat), Universidad Adolfo Ibáñez, Santiago, Chile; Center for Social and Cognitive Neuroscience (CSCN), School of Psychology, Universidad Adolfo Ibanez, Santiago, Chile.
| | - Natalia Poblete
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Catalina Rivera-Krstulovic
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Álvaro O Ardiles
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Mei Li Díaz-Hung
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Giovanni Tamburini
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Carleen Mae P Sabusap
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Yannis Gerakis
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Felipe Cabral-Miranda
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Javier Diaz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Matias Fuentealba
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Diego Arriagada
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Ernesto Muñoz
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicina, Universidad de Chile, Santiago, Chile
| | - Sandra Espinoza
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gabriela Martinez
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Gabriel Quiroz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Pablo Sardi
- Rare and Neurological Diseases Therapeutic Area, Sanofi, Framingham, MA, USA
| | - Danilo B Medinas
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Darwin Contreras
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Ricardo Piña
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Felipe C Ribeiro
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; D'Or Institute for Research and Education, Rio de Janeiro, Brazil
| | - Carlos Rozas
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Bernardo Morales
- Laboratory of Neuroscience, Department of Biology, Faculty of Chemistry and Biology, University of Santiago de Chile, Santiago, Chile
| | - Lars Plate
- Department of Chemistry and Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Christian Gonzalez-Billault
- FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Department of Biology, Faculty of Sciences and Department of Neurosciences, Faculty of Medicina, Universidad de Chile, Santiago, Chile
| | - Adrian G Palacios
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute (BNI), Faculty of Medicine, University of Chile, Santiago, Chile; FONDAP Center for Geroscience, Brain Health, and Metabolism (GERO), Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA 94945, USA.
| |
Collapse
|
5
|
Chen G, Wei T, Ju F, Li H. Protein quality control and aggregation in the endoplasmic reticulum: From basic to bedside. Front Cell Dev Biol 2023; 11:1156152. [PMID: 37152279 PMCID: PMC10154544 DOI: 10.3389/fcell.2023.1156152] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/09/2023] Open
Abstract
Endoplasmic reticulum (ER) is the largest membrane-bound compartment in all cells and functions as a key regulator in protein biosynthesis, lipid metabolism, and calcium balance. Mammalian endoplasmic reticulum has evolved with an orchestrated protein quality control system to handle defective proteins and ensure endoplasmic reticulum homeostasis. Nevertheless, the accumulation and aggregation of misfolded proteins in the endoplasmic reticulum may occur during pathological conditions. The inability of endoplasmic reticulum quality control system to clear faulty proteins and aggregates from the endoplasmic reticulum results in the development of many human disorders. The efforts to comprehensively understand endoplasmic reticulum quality control network and protein aggregation will benefit the diagnostics and therapeutics of endoplasmic reticulum storage diseases. Herein, we overview recent advances in mammalian endoplasmic reticulum protein quality control system, describe protein phase transition model, and summarize the approaches to monitor protein aggregation. Moreover, we discuss the therapeutic applications of enhancing endoplasmic reticulum protein quality control pathways in endoplasmic reticulum storage diseases.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tingyi Wei
- Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Institute of Precision Medicine, Shanghai, China
| | - Furong Ju
- Ming Wai Lau Centre for Reparative Medicine, Karolinska Institutet, Sha Tin, Hong kong SAR, China
| | - Haisen Li
- School of Life Sciences, Fudan University, Shanghai, China
- AoBio Medical, Shanghai, China
- *Correspondence: Haisen Li,
| |
Collapse
|
6
|
Liu Y, Ding R, Xu Z, Xue Y, Zhang D, Zhang Y, Li W, Li X. Roles and Mechanisms of the Protein Quality Control System in Alzheimer's Disease. Int J Mol Sci 2021; 23:345. [PMID: 35008771 PMCID: PMC8745298 DOI: 10.3390/ijms23010345] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/27/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by the deposition of senile plaques (SPs) and the formation of neurofibrillary tangles (NTFs), as well as neuronal dysfunctions in the brain, but in fact, patients have shown a sustained disease progression for at least 10 to 15 years before these pathologic biomarkers can be detected. Consequently, as the most common chronic neurological disease in the elderly, the challenge of AD treatment is that it is short of effective biomarkers for early diagnosis. The protein quality control system is a collection of cellular pathways that can recognize damaged proteins and thereby modulate their turnover. Abundant evidence indicates that the accumulation of abnormal proteins in AD is closely related to the dysfunction of the protein quality control system. In particular, it is the synthesis, degradation, and removal of essential biological components that have already changed in the early stage of AD, which further encourages us to pay more attention to the protein quality control system. The review mainly focuses on the endoplasmic reticulum system (ERS), autophagy-lysosome system (ALS) and the ubiquitin-proteasome system (UPS), and deeply discusses the relationship between the protein quality control system and the abnormal proteins of AD, which can not only help us to understand how and why the complex regulatory system becomes malfunctional during AD progression, but also provide more novel therapeutic strategies to prevent the development of AD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Li
- Department of Nutrition and Food Hygiene, College of Public Health, Zhengzhou University, Zhengzhou 450001, China; (Y.L.); (R.D.); (Z.X.); (Y.X.); (D.Z.); (Y.Z.); (W.L.)
| |
Collapse
|
7
|
Good SC, Dewison KM, Radford SE, van Oosten-Hawle P. Global Proteotoxicity Caused by Human β 2 Microglobulin Variants Impairs the Unfolded Protein Response in C. elegans. Int J Mol Sci 2021; 22:10752. [PMID: 34639093 PMCID: PMC8509642 DOI: 10.3390/ijms221910752] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/27/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
Aggregation of β2 microglobulin (β2m) into amyloid fibrils is associated with systemic amyloidosis, caused by the deposition of amyloid fibrils containing the wild-type protein and its truncated variant, ΔN6 β2m, in haemo-dialysed patients. A second form of familial systemic amyloidosis caused by the β2m variant, D76N, results in amyloid deposits in the viscera, without renal dysfunction. Although the folding and misfolding mechanisms of β2 microglobulin have been widely studied in vitro and in vivo, we lack a comparable understanding of the molecular mechanisms underlying toxicity in a cellular and organismal environment. Here, we established transgenic C. elegans lines expressing wild-type (WT) human β2m, or the two highly amyloidogenic naturally occurring variants, D76N β2m and ΔN6 β2m, in the C. elegans bodywall muscle. Nematodes expressing the D76N β2m and ΔN6 β2m variants exhibit increased age-dependent and cell nonautonomous proteotoxicity associated with reduced motility, delayed development and shortened lifespan. Both β2m variants cause widespread endogenous protein aggregation contributing to the increased toxicity in aged animals. We show that expression of β2m reduces the capacity of C. elegans to cope with heat and endoplasmic reticulum (ER) stress, correlating with a deficiency to upregulate BiP/hsp-4 transcripts in response to ER stress in young adult animals. Interestingly, protein secretion in all β2m variants is reduced, despite the presence of the natural signal sequence, suggesting a possible link between organismal β2m toxicity and a disrupted ER secretory metabolism.
Collapse
Affiliation(s)
| | | | | | - Patricija van Oosten-Hawle
- Faculty of Biological Sciences, School of Molecular and Cell Biology & Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, UK; (S.C.G.); (K.M.D.); (S.E.R.)
| |
Collapse
|
8
|
Yu G, Hyun S. Proteostasis-associated aging: lessons from a Drosophila model. Genes Genomics 2020; 43:1-9. [PMID: 33111208 DOI: 10.1007/s13258-020-01012-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/13/2020] [Indexed: 12/25/2022]
Abstract
As cells age, they lose their ability to properly fold proteins, maintain protein folding, and eliminate misfolded proteins, which leads to the accumulation of abnormal protein aggregates and loss of protein homeostasis (proteostasis). Loss of proteostasis can accelerate aging and the onset of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. Mechanisms exist to prevent the detrimental effects of abnormal proteins that incorporate chaperones, autophagy, and the ubiquitin-proteasome system. These mechanisms are evolutionarily conserved across various species. Therefore, the effect of impaired proteostasis on aging has been studied using model organisms that are appropriate for aging studies. In this review, we focus on the relationship between proteostasis and aging, and factors that affect proteostasis in Drosophila. The manipulation of proteostasis can alter lifespan, modulate neurotoxicity, and delay the onset of neurodegeneration, indicating that proteostasis may be a novel pharmacological target for the development of treatments for various age-associated diseases.
Collapse
Affiliation(s)
- Garbin Yu
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea
| | - Seogang Hyun
- Department of Life Science, Chung-Ang University, 156-756, Seoul, South Korea.
| |
Collapse
|
9
|
Hoffman TE, Hanneman WH, Moreno JA. Network Simulations Reveal Molecular Signatures of Vulnerability to Age-Dependent Stress and Tau Accumulation. Front Mol Biosci 2020; 7:590045. [PMID: 33195439 PMCID: PMC7606936 DOI: 10.3389/fmolb.2020.590045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/30/2020] [Indexed: 01/02/2023] Open
Abstract
Alzheimer’s disease (AD) is the leading cause of dementia and one of the most common causes of death worldwide. As an age-dependent multifactorial disease, the causative triggers of AD are rooted in spontaneous declines in cellular function and metabolic capacity with increases in protein stressors such as the tau protein. This multitude of age-related processes that cause neurons to change from healthy states to ones vulnerable to the damage seen in AD are difficult to simultaneously investigate and even more difficult to quantify. Here we aimed to diminish these gaps in our understanding of neuronal vulnerability in AD development by using simulation methods to theoretically quantify an array of cellular stress responses and signaling molecules. This temporally-descriptive molecular signature was produced using a novel multimethod simulation approach pioneered by our laboratory for biological research; this methodology combines hierarchical agent-based processes and continuous equation-based modeling in the same interface, all while maintaining intrinsic distributions that emulate natural biological stochasticity. The molecular signature was validated for a normal organismal aging trajectory using experimental longitudinal data from Caenorhabditis elegans and rodent studies. In addition, we have further predicted this aging molecular signature for cells impacted by the pathogenic tau protein, giving rise to distinct stress response conditions needed for cytoprotective aging. Interestingly, our simulation experiments showed that oxidative stress signaling (via daf-16 and skn-1 activities) does not substantially protect cells from all the early stressors of aging, but that it is essential in preventing a late-life degenerative cellular phenotype. Together, our simulation experiments aid in elucidating neurodegenerative triggers in the onset of AD for different genetic conditions. The long-term goal of this work is to provide more detailed diagnostic and prognostic tools for AD development and progression, and to provide more comprehensive preventative measures for this disease.
Collapse
Affiliation(s)
- Timothy E Hoffman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - William H Hanneman
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Julie A Moreno
- Department of Environmental and Radiological Health Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
10
|
Lottes EN, Cox DN. Homeostatic Roles of the Proteostasis Network in Dendrites. Front Cell Neurosci 2020; 14:264. [PMID: 33013325 PMCID: PMC7461941 DOI: 10.3389/fncel.2020.00264] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 12/13/2022] Open
Abstract
Cellular protein homeostasis, or proteostasis, is indispensable to the survival and function of all cells. Distinct from other cell types, neurons are long-lived, exhibiting architecturally complex and diverse multipolar projection morphologies that can span great distances. These properties present unique demands on proteostatic machinery to dynamically regulate the neuronal proteome in both space and time. Proteostasis is regulated by a distributed network of cellular processes, the proteostasis network (PN), which ensures precise control of protein synthesis, native conformational folding and maintenance, and protein turnover and degradation, collectively safeguarding proteome integrity both under homeostatic conditions and in the contexts of cellular stress, aging, and disease. Dendrites are equipped with distributed cellular machinery for protein synthesis and turnover, including dendritically trafficked ribosomes, chaperones, and autophagosomes. The PN can be subdivided into an adaptive network of three major functional pathways that synergistically govern protein quality control through the action of (1) protein synthesis machinery; (2) maintenance mechanisms including molecular chaperones involved in protein folding; and (3) degradative pathways (e.g., Ubiquitin-Proteasome System (UPS), endolysosomal pathway, and autophagy. Perturbations in any of the three arms of proteostasis can have dramatic effects on neurons, especially on their dendrites, which require tightly controlled homeostasis for proper development and maintenance. Moreover, the critical importance of the PN as a cell surveillance system against protein dyshomeostasis has been highlighted by extensive work demonstrating that the aggregation and/or failure to clear aggregated proteins figures centrally in many neurological disorders. While these studies demonstrate the relevance of derangements in proteostasis to human neurological disease, here we mainly review recent literature on homeostatic developmental roles the PN machinery plays in the establishment, maintenance, and plasticity of stable and dynamic dendritic arbors. Beyond basic housekeeping functions, we consider roles of PN machinery in protein quality control mechanisms linked to dendritic plasticity (e.g., dendritic spine remodeling during LTP); cell-type specificity; dendritic morphogenesis; and dendritic pruning.
Collapse
Affiliation(s)
| | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
11
|
Bocai NI, Marcora MS, Belfiori-Carrasco LF, Morelli L, Castaño EM. Endoplasmic Reticulum Stress in Tauopathies: Contrasting Human Brain Pathology with Cellular and Animal Models. J Alzheimers Dis 2020; 68:439-458. [PMID: 30775999 DOI: 10.3233/jad-181021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The accumulation and spreading of protein tau in the human brain are major features of neurodegenerative disorders known as tauopathies. In addition to several subcellular abnormalities, tau aggregation within neurons seems capable of triggering endoplasmic reticulum (ER) stress and the consequent unfolded protein response (UPR). In metazoans, full activation of a complex ER-UPR network may restore proteostasis and ER function or, if stress cannot be solved, commit cells to apoptosis. Due to these alternative outcomes (survival or death), the pharmacological manipulation of ER-UPR has become the focus of potential therapies in many human diseases, including tauopathies. Here we update and analyze the experimental data from human brain, cellular, and animal models linking tau accumulation and ER-UPR. We further discuss mechanistic aspects and put the ER-UPR into perspective as a possible therapeutic target in this group of diseases.
Collapse
Affiliation(s)
- Nadia I Bocai
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - María S Marcora
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Lautaro F Belfiori-Carrasco
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Morelli
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Eduardo M Castaño
- Laboratory of Amyloidosis and Neurodegeneration, Fundación Instituto Leloir, Buenos Aires, Argentina.,Instituto de Investigaciones Bioquímicas de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
12
|
Genetic Dissection of Alzheimer's Disease Using Drosophila Models. Int J Mol Sci 2020; 21:ijms21030884. [PMID: 32019113 PMCID: PMC7037931 DOI: 10.3390/ijms21030884] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/26/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD), a main cause of dementia, is the most common neurodegenerative disease that is related to abnormal accumulation of the amyloid β (Aβ) protein. Despite decades of intensive research, the mechanisms underlying AD remain elusive, and the only available treatment remains symptomatic. Molecular understanding of the pathogenesis and progression of AD is necessary to develop disease-modifying treatment. Drosophila, as the most advanced genetic model, has been used to explore the molecular mechanisms of AD in the last few decades. Here, we introduce Drosophila AD models based on human Aβ and summarize the results of their genetic dissection. We also discuss the utility of functional genomics using the Drosophila system in the search for AD-associated molecular mechanisms in the post-genomic era.
Collapse
|
13
|
Chadwick SR, Lajoie P. Endoplasmic Reticulum Stress Coping Mechanisms and Lifespan Regulation in Health and Diseases. Front Cell Dev Biol 2019; 7:84. [PMID: 31231647 PMCID: PMC6558375 DOI: 10.3389/fcell.2019.00084] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/03/2019] [Indexed: 12/30/2022] Open
Abstract
Multiple factors lead to proteostatic perturbations, often resulting in the aberrant accumulation of toxic misfolded proteins. Cells, from yeast to humans, can respond to sudden accumulation of secretory proteins within the endoplasmic reticulum (ER) through pathways such as the Unfolded Protein Response (UPR). The ability of cells to adapt the ER folding environment to the misfolded protein burden ultimately dictates cell fate. The aging process is a particularly important modifier of the proteostasis network; as cells age, both their ability to maintain this balance in protein folding/degradation and their ability to respond to insults in these pathways can break down, a common element of age-related diseases (including neurodegenerative diseases). ER stress coping mechanisms are central to lifespan regulation under both normal and disease states. In this review, we give a brief overview of the role of ER stress response pathways in age-dependent neurodegeneration.
Collapse
Affiliation(s)
- Sarah R Chadwick
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, ON, Canada
| |
Collapse
|
14
|
Pu Z, Ma S, Wang L, Li M, Shang L, Luo Y, Chen W. Amyloid-beta Degradation and Neuroprotection of Dauricine Mediated by Unfolded Protein Response in a Caenorhabditis elegans Model of Alzheimer’s disease. Neuroscience 2018; 392:25-37. [DOI: 10.1016/j.neuroscience.2018.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/06/2018] [Accepted: 09/17/2018] [Indexed: 01/04/2023]
|
15
|
Omura T, Matsuda H, Nomura L, Imai S, Denda M, Nakagawa S, Yonezawa A, Nakagawa T, Yano I, Matsubara K. Ubiquitin ligase HMG-CoA reductase degradation 1 (HRD1) prevents cell death in a cellular model of Parkinson's disease. Biochem Biophys Res Commun 2018; 506:516-521. [PMID: 30361093 DOI: 10.1016/j.bbrc.2018.10.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 10/15/2018] [Indexed: 12/22/2022]
Abstract
Endoplasmic reticulum (ER) stress may play a role in the etiology of Parkinson's disease (PD). We have previously reported that ubiquitin ligase 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase degradation 1 (HRD1) involved in ER stress degrades unfolded protein that accumulates in the ER due to loss of function of Parkin, which is a causative factor in familial PD. We have also demonstrated that cell death is suppressed by the degradation of unfolded proteins. These findings indicate that HRD1 may serve as a compensatory mechanism for the loss of function of Parkin in familial PD patients. However, the role of HRD1 in sporadic PD has not yet been identified. This study aimed to reveal the roles of HRD1 and associated molecules in a cellular model of PD. We demonstrated that expressions of HRD1 and Suppressor/Enhancer Lin12 1-like (SEL1L: a HRD1 stabilizer) increased in SH-SY5Y human neuroblastoma cells upon exposure to 6-hydroxydopamine (6-OHDA). The 6-OHDA-induced cell death was suppressed in cells overexpressing wt-HRD1, whereas cell death was enhanced in cells with knockdown of HRD1 expression. These results suggest that HRD1 is a key molecule involved in 6-OHDA-induced cell death. By contrast, suppression of SEL1L expression decreased the amount of HRD1 protein. As a result, 6-OHDA-induced cell death was enhanced in cells suppressing SEL1L expression, and this cell death was much more evident than that in cells with suppression of HRD1 expression. These findings strongly indicate that SEL1L is necessary for maintaining and stabilizing the amount of HRD1 protein, and stabilizing the amount of HRD1 protein through SEL1L may serve to protect against 6-OHDA-induced cell death. Furthermore, the expression of Parkin was reinforced when HRD1 mRNA had been suppressed in cells, but was not observed when SEL1L mRNA had been restrained. It is possible that Parkin expression is induced as a compensatory mechanism when HRD1 mRNA decreases. This intracellular transduction may suppress the enhancement of 6-OHDA-induced cell death caused by the loss of HRD1. Taken together with these results, it is suggested that HRD1 and its stabilizer (SEL1L) are key molecules for elucidating the pathogenesis and treatment of PD.
Collapse
Affiliation(s)
- Tomohiro Omura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan.
| | - Hiroki Matsuda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Luna Nomura
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Satoshi Imai
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Masaya Denda
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Shunsaku Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Atsushi Yonezawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Takayuki Nakagawa
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| | - Ikuko Yano
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan; Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Matsubara
- Department of Clinical Pharmacology and Therapeutics, Kyoto University Hospital, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
16
|
Kong Y, Jiang B, Luo X. Gut microbiota influences Alzheimer's disease pathogenesis by regulating acetate in Drosophila model. Future Microbiol 2018; 13:1117-1128. [PMID: 30043649 DOI: 10.2217/fmb-2018-0185] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM The aim of present study is to investigate the relationship between gut microbiota and Alzheimer's disease (AD) using Drosophila model. MATERIALS & METHODS The microbiota was characterized by Illumina sequencing of 16S rRNA gene. Gas chromatography-mass spectrometer was performed to measure the level of short-chain fatty acids (SCFAs), metabolites of the commensal microbiota. RESULTS The diversity of the gut microbiota increased in AD Drosophila. As the most enriched bacteria at genus level, the proportions of Acetobacter and Lactobacillus decreased dramatically. Acetate was the most abundant SCFA derived from the dysregulated microbiota and markedly downregulated in AD Drosophila. CONCLUSION Our study on Drosophila model suggests that dysregulation of gut microbiota may participate in AD pathogenesis by influencing SCFA level.
Collapse
Affiliation(s)
- Yan Kong
- Department of Biochemistry & Molecular Biology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, PR China
| | - Baichun Jiang
- The Key Laboratory of Experimental Teratology, Ministry of Education & Department of Genetics, Shandong University School of Basic Medical Sciences, Jinan, Shandong 250012, PR China
| | - Xuancai Luo
- Department of Neurology, Huiyang Hospital, Southern Medical University, Huizhou, Guangdong 516211, PR China
| |
Collapse
|
17
|
O'Keefe L, Denton D. Using Drosophila Models of Amyloid Toxicity to Study Autophagy in the Pathogenesis of Alzheimer's Disease. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5195416. [PMID: 29888266 PMCID: PMC5985114 DOI: 10.1155/2018/5195416] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/20/2018] [Accepted: 04/10/2018] [Indexed: 12/24/2022]
Abstract
Autophagy is a conserved catabolic pathway that involves the engulfment of cytoplasmic components such as large protein aggregates and organelles that are delivered to the lysosome for degradation. This process is important in maintaining neuronal function and raises the possibility of a role for autophagy in neurodegenerative diseases. Alzheimer's disease (AD) is the most prevalent form of these diseases and is characterized by the accumulation of amyloid plaques in the brain which arise due to the misfolding and aggregation of toxic peptides, including amyloid beta (Aβ). There is substantial evidence from both AD patients and animal models that autophagy is dysregulated in this disease. However, it remains to be determined whether this is protective or pathogenic as there is evidence that autophagy can act to promote the degradation as well as function in the generation of toxic Aβ peptides. Understanding the molecular details of the extensive crosstalk that occurs between the autophagic and endolysosomal cellular pathways is essential for identifying the molecular details of amyloid toxicity. Drosophila models that express the toxic proteins that aggregate in AD have been generated and have been shown to recapitulate hallmarks of the disease. Here we focus on what is known about the role of autophagy in amyloid toxicity in AD from mammalian models and how Drosophila models can be used to further investigate AD pathogenesis.
Collapse
Affiliation(s)
- Louise O'Keefe
- Department of Genetics and Evolution, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia
- Hopwood Centre for Neurobiology, South Australian Health and Medical Research Institute, P.O. Box 11060, Adelaide, SA 5001, Australia
| | - Donna Denton
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia
| |
Collapse
|
18
|
Gerakis Y, Hetz C. A decay of the adaptive capacity of the unfolded protein response exacerbates Alzheimer's disease. Neurobiol Aging 2017; 63:162-164. [PMID: 29042130 DOI: 10.1016/j.neurobiolaging.2017.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 09/12/2017] [Accepted: 09/14/2017] [Indexed: 10/18/2022]
Abstract
Alterations in the buffering capacity of the proteostasis network are a salient feature of Alzheimer's disease, associated with the occurrence of chronic endoplasmic reticulum (ER) stress. To cope with ER stress, cells activate the unfolded protein response (UPR), a signal transduction pathway that enforces adaptive programs through the induction of transcription factors such as X-box binding protein 1 (XBP1). A new study by Marcora et al used a fly model to study amyloid β pathogenesis in the secretory pathway of neurons. Through genetic manipulation, authors identified a new role of XBP1s in the clearance of amyloid β and the improvement of neuronal function. However, although the activation of the UPR signaling was sustained over time, the transcriptional upregulation of XBP1-target genes was attenuated during aging. This study suggests that aging has a negative impact in the ability of the UPR to manage proteostasis alterations in Alzheimer's disease.
Collapse
Affiliation(s)
- Yannis Gerakis
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, University of Chile, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA; Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, USA.
| |
Collapse
|