1
|
de Ávila C, Suazo C, Nolz J, Nicholas Cochran J, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. Neurobiol Aging 2024; 141:160-170. [PMID: 38964013 DOI: 10.1016/j.neurobiolaging.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Eric Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
2
|
Fan W, Zhou J. Icariside II protects dopaminergic neurons from 1‑methyl‑4‑phenylpyridinium‑induced neurotoxicity by downregulating HDAC2 to restore mitochondrial function. Exp Ther Med 2024; 27:40. [PMID: 38125349 PMCID: PMC10731403 DOI: 10.3892/etm.2023.12328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/18/2023] [Indexed: 12/23/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease after Alzheimer's disease (AD). Icariside II (ICS II) is known to confer notable therapeutic effects against a variety of neurodegenerative diseases, such as AD. Therefore, the present study aimed to evaluate the possible effects of ICS II on 1-methyl-4-phenylpyridinium (MPP+)-induced SK-N-SH cell injury, in addition to understanding the underlying mechanism of action. The MPP+-induced SK-N-SH cell model was used to simulate PD in vitro. The viability and mitochondrial membrane potential of SK-N-SH cells were detected by MTT assay and JC-1 staining, respectively. Lactate dehydrogenase (LDH) release, ATP levels and complex I activity in treated SK-N-SH cells were measured using LDH activity, ATP and Complex I assay kits, respectively. The protein expression levels of histone deacetylase 2 (HDAC2) and γ-H2A histone family member X and the copy number of mitochondrial DNA were measured by western blotting or reverse transcription-quantitative PCR, respectively. Autodock 4.2 was used to predict the molecular docking site of ICS II on HDAC2. The results of the present study demonstrated that ICS II mitigated SK-N-SH cytotoxicity induced by MPP+. Specifically, ICS II alleviated DNA damage and restored mitochondrial function in SK-N-SH cells treated with MPP+. In addition, ICS II reduced the HDAC2 protein expression levels in MPP+-induced SK-N-SH cells. However, overexpression of HDAC2 reversed the protective effects of ICS II on DNA damage and mitochondrial dysfunction in MPP+-induced SK-N-SH cells. In conclusion, the results of the present study suggest that ICS II can protect dopaminergic neurons from MPP+-induced neurotoxicity by downregulating HDAC2 expression to restore mitochondrial function.
Collapse
Affiliation(s)
- Wenbo Fan
- Pharmaceutical Technology Department, Chemical Engineering School, Jiuquan Vocational Technical College, Jiuquan, Gansu 735000, P.R. China
| | - Jianwu Zhou
- Medical Laboratory of Qinghai Provincial People's Hospital, Xining, Qinghai 810000, P.R. China
| |
Collapse
|
3
|
de Ávila C, Suazo C, Nolz J, Cochran JN, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 gene expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553279. [PMID: 37645898 PMCID: PMC10462057 DOI: 10.1101/2023.08.14.553279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify the molecular networks that underpin the sex-associated risk of AD. Recent efforts have identified PIN1 as a key regulator of tau phosphorylation signaling pathway. Pin1 is the only gene, to date, that when deleted can cause both tau and Aβ-related pathologies in an age-dependent manner. We analyzed multiple brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels, in an aging and AD cohort, which revealed reduced PIN1 levels driven by females. Then, we validated this observation in an independent dataset (ROS/MAP) which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function, in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again, driven predominantly by female subjects. Our results show that while both male and female AD patients show decreased PIN1 expression, changes occur before the onset of clinical symptoms of AD in females and correlate to early events associated with AD risk (e.g., synaptic dysfunction). These changes are specific to neurons, and may be a potential prognostic marker to assess AD risk in the aging population and even more so in AD females with increased risk of AD.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - J. Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Eric Dammer
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
4
|
He JY, Li DD, Wen Q, Qin TY, Long H, Zhang SB, Zhang F. Synergistic effects of lipopolysaccharide and rotenone on dopamine neuronal damage in rats. CNS Neurosci Ther 2023. [PMID: 36942519 DOI: 10.1111/cns.14180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/03/2023] [Accepted: 03/05/2023] [Indexed: 03/23/2023] Open
Abstract
INTRODUCTION The etiology of Parkinson's disease (PD) is still unknown. Until now, oxidative stress and neuroinflammation play a crucial role in the pathogenesis of PD. However, the specific synergistic role of oxidative stress and neuroinflammation in the occurrence and development of PD remains unclear. METHODS The changes in motor behavior, dopamine (DA) neurons quantification and their mitochondrial respiratory chain, glial cells activation and secreted cytokines, Nrf2 signaling pathway, and redox balance in the brain of rats were evaluated. RESULTS Lipopolysaccharide (LPS)-induced neuroinflammation and rotenone (ROT)-induced oxidative stress synergistically aggravated motor dysfunction, DA neuron damage, activation of glial cells, and release of related mediators, activation of Nrf2 signaling and destruction of oxidative balance. In addition, further studies indicated that after ROT-induced oxidative stress caused direct damage to DA neurons, LPS-induced inflammatory effects had stronger promoting neurotoxic effects on the above aspects. CONCLUSIONS Neuroinflammation and oxidative stress synergistically aggravated DA neuronal loss. Furtherly, oxidative stress followed by neuroinflammation caused more DA neuronal loss than neuroinflammation followed by oxidative stress.
Collapse
Affiliation(s)
- Jing-Yi He
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Dai-Di Li
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Qian Wen
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Ting-Yang Qin
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Hong Long
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Shi-Bin Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| | - Feng Zhang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education and Key Laboratory of Basic Pharmacology of Guizhou Province and Laboratory Animal Center, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
5
|
Jiang D, Li T, Guo C, Tang TS, Liu H. Small molecule modulators of chromatin remodeling: from neurodevelopment to neurodegeneration. Cell Biosci 2023; 13:10. [PMID: 36647159 PMCID: PMC9841685 DOI: 10.1186/s13578-023-00953-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
The dynamic changes in chromatin conformation alter the organization and structure of the genome and further regulate gene transcription. Basically, the chromatin structure is controlled by reversible, enzyme-catalyzed covalent modifications to chromatin components and by noncovalent ATP-dependent modifications via chromatin remodeling complexes, including switch/sucrose nonfermentable (SWI/SNF), inositol-requiring 80 (INO80), imitation switch (ISWI) and chromodomain-helicase DNA-binding protein (CHD) complexes. Recent studies have shown that chromatin remodeling is essential in different stages of postnatal and adult neurogenesis. Chromatin deregulation, which leads to defects in epigenetic gene regulation and further pathological gene expression programs, often causes a wide range of pathologies. This review first gives an overview of the regulatory mechanisms of chromatin remodeling. We then focus mainly on discussing the physiological functions of chromatin remodeling, particularly histone and DNA modifications and the four classes of ATP-dependent chromatin-remodeling enzymes, in the central and peripheral nervous systems under healthy and pathological conditions, that is, in neurodegenerative disorders. Finally, we provide an update on the development of potent and selective small molecule modulators targeting various chromatin-modifying proteins commonly associated with neurodegenerative diseases and their potential clinical applications.
Collapse
Affiliation(s)
- Dongfang Jiang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tingting Li
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Caixia Guo
- grid.9227.e0000000119573309Beijing Institute of Genomics, Chinese Academy of Sciences/China National Center for Bioinformation, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Tie-Shan Tang
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China ,grid.410726.60000 0004 1797 8419Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101 China
| | - Hongmei Liu
- grid.458458.00000 0004 1792 6416State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101 China ,grid.512959.3Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101 China
| |
Collapse
|
6
|
Hernaiz A, Sentre S, Betancor M, López-Pérez Ó, Salinas-Pena M, Zaragoza P, Badiola JJ, Toivonen JM, Bolea R, Martín-Burriel I. 5-Methylcytosine and 5-Hydroxymethylcytosine in Scrapie-Infected Sheep and Mouse Brain Tissues. Int J Mol Sci 2023; 24:ijms24021621. [PMID: 36675131 PMCID: PMC9864596 DOI: 10.3390/ijms24021621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Scrapie is a neurodegenerative disorder belonging to the group of transmissible spongiform encephalopathies or prion diseases, which are caused by an infectious isoform of the innocuous cellular prion protein (PrPC) known as PrPSc. DNA methylation, one of the most studied epigenetic mechanisms, is essential for the proper functioning of the central nervous system. Recent findings point to possible involvement of DNA methylation in the pathogenesis of prion diseases, but there is still a lack of knowledge about the behavior of this epigenetic mechanism in such neurodegenerative disorders. Here, we evaluated by immunohistochemistry the 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels in sheep and mouse brain tissues infected with scrapie. Expression analysis of different gene coding for epigenetic regulatory enzymes (DNMT1, DNMT3A, DNMT3B, HDAC1, HDAC2, TET1, and TET2) was also carried out. A decrease in 5mC levels was observed in scrapie-affected sheep and mice compared to healthy animals, whereas 5hmC displayed opposite patterns between the two models, demonstrating a decrease in 5hmC in scrapie-infected sheep and an increase in preclinical mice. 5mC correlated with prion-related lesions in mice and sheep, but 5hmC was associated with prion lesions only in sheep. Differences in the expression changes of epigenetic regulatory genes were found between both disease models, being differentially expressed Dnmt3b, Hdac1, and Tet1 in mice and HDAC2 in sheep. Our results support the evidence that DNA methylation in both forms, 5mC and 5hmC, and its associated epigenetic enzymes, take part in the neurodegenerative course of prion diseases.
Collapse
Affiliation(s)
- Adelaida Hernaiz
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Sara Sentre
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Marina Betancor
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Óscar López-Pérez
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Mónica Salinas-Pena
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Pilar Zaragoza
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
| | - Juan José Badiola
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Janne Markus Toivonen
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
| | - Rosa Bolea
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
| | - Inmaculada Martín-Burriel
- Laboratorio de Genética Bioquímica (LAGENBIO), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Encefalopatías y Enfermedades Transmisibles Emergentes (CEETE), Facultad de Veterinaria, Universidad de Zaragoza, IA2, IIS Aragón, 50013 Zaragoza, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Instituto Carlos III, 28029 Madrid, Spain
- Correspondence: ; Tel.: +34-976-761662
| |
Collapse
|
7
|
Shanmukha KD, Paluvai H, Lomada SK, Gokara M, Kalangi SK. Histone deacetylase (HDACs) inhibitors: Clinical applications. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:119-152. [DOI: 10.1016/bs.pmbts.2023.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
8
|
Epigenetic Changes in Prion and Prion-like Neurodegenerative Diseases: Recent Advances, Potential as Biomarkers, and Future Perspectives. Int J Mol Sci 2022; 23:ijms232012609. [PMID: 36293477 PMCID: PMC9604074 DOI: 10.3390/ijms232012609] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/09/2022] [Accepted: 10/18/2022] [Indexed: 12/01/2022] Open
Abstract
Prion diseases are transmissible spongiform encephalopathies (TSEs) caused by a conformational conversion of the native cellular prion protein (PrPC) to an abnormal, infectious isoform called PrPSc. Amyotrophic lateral sclerosis, Alzheimer’s, Parkinson’s, and Huntington’s diseases are also known as prion-like diseases because they share common features with prion diseases, including protein misfolding and aggregation, as well as the spread of these misfolded proteins into different brain regions. Increasing evidence proposes the involvement of epigenetic mechanisms, namely DNA methylation, post-translational modifications of histones, and microRNA-mediated post-transcriptional gene regulation in the pathogenesis of prion-like diseases. Little is known about the role of epigenetic modifications in prion diseases, but recent findings also point to a potential regulatory role of epigenetic mechanisms in the pathology of these diseases. This review highlights recent findings on epigenetic modifications in TSEs and prion-like diseases and discusses the potential role of such mechanisms in disease pathology and their use as potential biomarkers.
Collapse
|
9
|
Epigenetic Regulation in Neurodegeneration Disease. Int J Mol Sci 2022; 23:ijms23116185. [PMID: 35682863 PMCID: PMC9181079 DOI: 10.3390/ijms23116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 01/27/2023] Open
|
10
|
Hernandez-Diaz S, Ghimire S, Sanchez-Mirasierra I, Montecinos-Oliva C, Swerts J, Kuenen S, Verstreken P, Soukup SF. Endophilin-B regulates autophagy during synapse development and neurodegeneration. Neurobiol Dis 2021; 163:105595. [PMID: 34933093 DOI: 10.1016/j.nbd.2021.105595] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 12/13/2021] [Accepted: 12/17/2021] [Indexed: 01/18/2023] Open
Abstract
Synapses are critical for neuronal communication and brain function. To maintain neuronal homeostasis, synapses rely on autophagy. Autophagic alterations cause neurodegeneration and synaptic dysfunction is a feature in neurodegenerative diseases. In Parkinson's disease (PD), where the loss of synapses precedes dopaminergic neuron loss, various PD-causative proteins are involved in the regulation of autophagy. So far only a few factors regulating autophagy at the synapse have been identified and the molecular mechanisms underlying autophagy at the synapse is only partially understood. Here, we describe Endophilin-B (EndoB) as a novel player in the regulation of synaptic autophagy in health and disease. We demonstrate that EndoB is required for autophagosome biogenesis at the synapse, whereas the loss of EndoB blocks the autophagy induction promoted by the PD mutation LRRK2G2019S. We show that EndoB is required to prevent neuronal loss. Moreover, loss of EndoB in the Drosophila visual system leads to an increase in synaptic contacts between photoreceptor terminals and their post-synaptic synapses. These data confirm the role of autophagy in synaptic contact formation and neuronal survival.
Collapse
Affiliation(s)
| | - Saurav Ghimire
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Jef Swerts
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Sabine Kuenen
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | - Patrik Verstreken
- VIB Center for the Biology of Disease, Belgium; KU Leuven, Department for Human Genetics, Leuven Institute for Neurodegenerative Disease (LIND), 3000 Leuven, Belgium
| | | |
Collapse
|
11
|
Zhang S, Zhan L, Li X, Yang Z, Luo Y, Zhao H. Preclinical and clinical progress for HDAC as a putative target for epigenetic remodeling and functionality of immune cells. Int J Biol Sci 2021; 17:3381-3400. [PMID: 34512154 PMCID: PMC8416716 DOI: 10.7150/ijbs.62001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 07/26/2021] [Indexed: 11/17/2022] Open
Abstract
Genetic changes are difficult to reverse; thus, epigenetic aberrations, including changes in DNA methylation, histone modifications, and noncoding RNAs, with potential reversibility, have attracted attention as pharmaceutical targets. The current paradigm is that histone deacetylases (HDACs) regulate gene expression via deacetylation of histone and nonhistone proteins or by forming corepressor complexes with transcription factors. The emergence of epigenetic tools related to HDACs can be used as diagnostic and therapeutic markers. HDAC inhibitors that block specific or a series of HDACs have proven to be a powerful therapeutic treatment for immune-related diseases. Here, we summarize the various roles of HDACs and HDAC inhibitors in the development and function of innate and adaptive immune cells and their implications for various diseases and therapies.
Collapse
Affiliation(s)
- Sijia Zhang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Lingjun Zhan
- Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences, Beijing, China
| | - Xue Li
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Zhenhong Yang
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China.,Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Haiping Zhao
- Institute of Cerebrovascular Disease Research, Xuanwu Hospital of Capital Medical University, Beijing, China.,Beijing Geriatric Medical Research Center and National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
12
|
Logan RW, Ozburn AR, Arey RN, Ketchesin KD, Winquist A, Crain A, Tobe BTD, Becker-Krail D, Jarpe MB, Xue X, Zong W, Huo Z, Parekh PK, Zhu X, Fitzgerald E, Zhang H, Oliver-Smith J, DePoy LM, Hildebrand MA, Snyder EY, Tseng GC, McClung CA. Valproate reverses mania-like behaviors in mice via preferential targeting of HDAC2. Mol Psychiatry 2021; 26:4066-4084. [PMID: 33235333 PMCID: PMC8141541 DOI: 10.1038/s41380-020-00958-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/20/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Valproate (VPA) has been used in the treatment of bipolar disorder since the 1990s. However, the therapeutic targets of VPA have remained elusive. Here we employ a preclinical model to identify the therapeutic targets of VPA. We find compounds that inhibit histone deacetylase proteins (HDACs) are effective in normalizing manic-like behavior, and that class I HDACs (e.g., HDAC1 and HDAC2) are most important in this response. Using an RNAi approach, we find that HDAC2, but not HDAC1, inhibition in the ventral tegmental area (VTA) is sufficient to normalize behavior. Furthermore, HDAC2 overexpression in the VTA prevents the actions of VPA. We used RNA sequencing in both mice and human induced pluripotent stem cells (iPSCs) derived from bipolar patients to further identify important molecular targets. Together, these studies identify HDAC2 and downstream targets for the development of novel therapeutics for bipolar mania.
Collapse
Affiliation(s)
- Ryan W. Logan
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Angela R. Ozburn
- Department of Behavioral Neuroscience, Portland Alcohol Research Center, Oregon Health & Science University, Portland, OR 97239, USA.,VA Portland Health Care System, Portland, OR 97239, USA
| | - Rachel N. Arey
- Department of Molecular and Cellular Biology and Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kyle D. Ketchesin
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Alicia Winquist
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Andrew Crain
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA
| | - Brian T. D. Tobe
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Psychiatry, Veterans Administration Medical Center, La Jolla, CA 92037, USA
| | - Darius Becker-Krail
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Matthew B. Jarpe
- Regenacy Pharmaceuticals, 303 Wyman St, Suite 300, Waltham, MA, 02451, USA
| | - Xiangning Xue
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Wei Zong
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhiguang Huo
- Department of Biostatistics, University of Florida, Gainesville, FL, 32611, USA
| | - Puja K. Parekh
- Brain and Mind Research Institute, Department of Psychiatry, and Sackler Institute for Developmental Psychobiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Xiyu Zhu
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Department of Neuroscience, University of Pittsburgh, PA, 15260, USA
| | - Ethan Fitzgerald
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Hui Zhang
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Peking Union Medical College Hospital, Beijing, China 100730
| | - Jeffrey Oliver-Smith
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Lauren M. DePoy
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Mariah A. Hildebrand
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA
| | - Evan Y. Snyder
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA.,Sanford Consortium for Regenerative Medicine, La Jolla, CA 92037, USA.,Department of Pediatrics, University of California San Diego, La Jolla, CA, 92037, USA
| | - George C. Tseng
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15261, USA.,Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Colleen A. McClung
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA.,Corresponding Author: Colleen A. McClung, Ph.D., Department of Psychiatry, 450 Technology Drive, Suite 223, Pittsburgh, PA 15219, , 412-624-5547
| |
Collapse
|
13
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
14
|
Yang H, Ni W, Wei P, Li S, Gao X, Su J, Jiang H, Lei Y, Zhou L, Gu Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2021; 41:958-974. [PMID: 32703113 PMCID: PMC8054714 DOI: 10.1177/0271678x20942613] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylases (HDACs) has been shown to reduce inflammation and white matter damage after various forms of brain injury via modulation of microglia/macrophage polarization. Previously we showed that the HDAC inhibitor scriptaid could attenuate white matter injury (WMI) after ICH. To access whether modulation of microglia/macrophage polarization might underlie this protection, we investigated the modulatory role of HDAC2 in microglia/macrophage polarization in response to WMI induced by intracerebral hemorrhage (ICH) and in primary microglia and oligodendrocyte co-cultures. HDAC2 activity was inhibited via conditional knockout of the Hdac2 gene in microglia or via administration of scriptaid. Conditional knockout of the Hdac2 gene in microglia and HDAC inhibition with scriptaid both improved neurological functional recovery and reduced WMI after ICH. Additionally, HDAC inhibition shifted microglia/macrophage polarization toward the M2 phenotype and reduced proinflammatory cytokine secretion after ICH in vivo. In vitro, a transwell co-culture model of microglia and oligodendrocytes also demonstrated that the HDAC inhibitor protected oligodendrocytes by modulating microglia polarization and mitigating neuroinflammation. Moreover, we found that scriptaid decreased the expression of pJAK2 and pSTAT1 in cultured microglia when stimulated with hemoglobin. Thus, HDAC inhibition ameliorated ICH-mediated neuroinflammation and WMI by modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Hanqiang Jiang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yuxiang Gu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| |
Collapse
|
15
|
The Spinal Extracellular Matrix Modulates a Multi-level Protein Net and Epigenetic Inducers Following Peripheral Nerve Injury. Neuroscience 2020; 451:216-225. [DOI: 10.1016/j.neuroscience.2020.09.051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/12/2020] [Accepted: 09/23/2020] [Indexed: 12/30/2022]
|
16
|
Domingues AV, Pereira IM, Vilaça-Faria H, Salgado AJ, Rodrigues AJ, Teixeira FG. Glial cells in Parkinson´s disease: protective or deleterious? Cell Mol Life Sci 2020; 77:5171-5188. [PMID: 32617639 PMCID: PMC11104819 DOI: 10.1007/s00018-020-03584-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
Glial cells have been identified more than 100 years ago, and are known to play a key role in the central nervous system (CNS) function. A recent piece of evidence is emerging showing that in addition to the capacity of CNS modulation and homeostasis, glial cells are also being looked like as a promising cell source not only to study CNS pathologies initiation and progression but also to the establishment and development of new therapeutic strategies. Thus, in the present review, we will discuss the current evidence regarding glial cells' contribution to neurodegenerative diseases as Parkinson's disease, providing cellular, molecular, functional, and behavioral data supporting its active role in disease initiation, progression, and treatment. As so, considering their functional relevance, glial cells may be important to the understanding of the underlying mechanisms regarding neuronal-glial networks in neurodegeneration/regeneration processes, which may open new research opportunities for their future use as a target or treatment in human clinical trials.
Collapse
Affiliation(s)
- Ana V Domingues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Inês M Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Helena Vilaça-Faria
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - António J Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal
| | - Ana J Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| | - Fábio G Teixeira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, 4710-057, Braga, Portugal.
- ICVS/3B's Associate Lab, PT Government Associated Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
17
|
Beaver M, Bhatnagar A, Panikker P, Zhang H, Snook R, Parmar V, Vijayakumar G, Betini N, Akhter S, Elefant F. Disruption of Tip60 HAT mediated neural histone acetylation homeostasis is an early common event in neurodegenerative diseases. Sci Rep 2020; 10:18265. [PMID: 33106538 PMCID: PMC7588445 DOI: 10.1038/s41598-020-75035-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
Epigenetic dysregulation is a common mechanism shared by molecularly and clinically heterogenous neurodegenerative diseases (NDs). Histone acetylation homeostasis, maintained by the antagonistic activity of histone acetyltransferases (HATs) and histone deacetylases (HDACs), is necessary for appropriate gene expression and neuronal function. Disruption of neural acetylation homeostasis has been implicated in multiple types of NDs including Alzheimer's disease (AD), yet mechanisms underlying alterations remain unclear. We show that like AD, disruption of Tip60 HAT/HDAC2 balance with concomitant epigenetic repression of common Tip60 target neuroplasticity genes occurs early in multiple types of Drosophila ND models such as Parkinson's Disease (PD), Huntington's Disease (HD) and Amyotrophic Lateral Sclerosis (ALS). Repressed neuroplasticity genes show reduced enrichment of Tip60 and epigentic acetylation signatures at all gene loci examined with certain genes showing inappropriate HDAC2 repressor enrichment. Functional neuronal consequences for these disease conditions are reminiscent of human pathology and include locomotion, synapse morphology, and short-term memory deficits. Increasing Tip60 HAT levels specifically in the mushroom body learning and memory center in the Drosophila brain protects against locomotion and short-term memory function deficits in multiple NDs. Together, our results support a model by which Tip60 protects against neurological impairments in different NDs via similar modes of action.
Collapse
Affiliation(s)
- Mariah Beaver
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Akanksha Bhatnagar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Priyalakshmi Panikker
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Haolin Zhang
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Renee Snook
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Visha Parmar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Gayathri Vijayakumar
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Niteesha Betini
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Sunya Akhter
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA
| | - Felice Elefant
- Department of Biology, Drexel University, 3245 Chestnut Street, PISB 312, Philadelphia, PA, 19104, USA.
| |
Collapse
|
18
|
Regulation of Social Stress and Neural Degeneration by Activity-Regulated Genes and Epigenetic Mechanisms in Dopaminergic Neurons. Mol Neurobiol 2020; 57:4500-4510. [PMID: 32748368 PMCID: PMC7515954 DOI: 10.1007/s12035-020-02037-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 07/22/2020] [Indexed: 02/08/2023]
Abstract
Transcriptional and epigenetic regulation of both dopaminergic neurons and their accompanying glial cells is of great interest in the search for therapies for neurodegenerative disorders such as Parkinson’s disease (PD). In this review, we collate transcriptional and epigenetic changes identified in adult Drosophila melanogaster dopaminergic neurons in response to either prolonged social deprivation or social enrichment, and compare them with changes identified in mammalian dopaminergic neurons during normal development, stress, injury, and neurodegeneration. Surprisingly, a small set of activity-regulated genes (ARG) encoding transcription factors, and a specific pattern of epigenetic marks on gene promoters, are conserved in dopaminergic neurons over the long evolutionary period between mammals and insects. In addition to their classical function as immediate early genes to mark acute neuronal activity, these ARG transcription factors are repurposed in both insects and mammals to respond to chronic perturbations such as social enrichment, social stress, nerve injury, and neurodegeneration. We suggest that these ARG transcription factors and epigenetic marks may represent important targets for future therapeutic intervention strategies in various neurodegenerative disorders including PD.
Collapse
|
19
|
Shukla S, Tekwani BL. Histone Deacetylases Inhibitors in Neurodegenerative Diseases, Neuroprotection and Neuronal Differentiation. Front Pharmacol 2020; 11:537. [PMID: 32390854 PMCID: PMC7194116 DOI: 10.3389/fphar.2020.00537] [Citation(s) in RCA: 178] [Impact Index Per Article: 35.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Histone deacetylases (HADC) are the enzymes that remove acetyl group from lysine residue of histones and non-histone proteins and regulate the process of transcription by binding to transcription factors and regulating fundamental cellular process such as cellular proliferation, differentiation and development. In neurodegenerative diseases, the histone acetylation homeostasis is greatly impaired, shifting towards a state of hypoacetylation. The histone hyperacetylation produced by direct inhibition of HDACs leads to neuroprotective actions. This review attempts to elaborate on role of small molecule inhibitors of HDACs on neuronal differentiation and throws light on the potential of HDAC inhibitors as therapeutic agents for treatment of neurodegenerative diseases. The role of HDACs in neuronal cellular and disease models and their modulation with HDAC inhibitors are also discussed. Significance of these HDAC inhibitors has been reviewed on the process of neuronal differentiation, neurite outgrowth and neuroprotection regarding their potential therapeutic application for treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Surabhi Shukla
- Department of Pharmaceutical Sciences, College of Pharmacy, Larkin University, Miami, FL, United States
| | - Babu L Tekwani
- Division of Drug Discovery, Department of Infectious Diseases, Southern Research, Birmingham, AL, United States
| |
Collapse
|
20
|
Yuan Y, Wu C, Ling EA. Heterogeneity of Microglia Phenotypes: Developmental, Functional and Some Therapeutic Considerations. Curr Pharm Des 2020; 25:2375-2393. [PMID: 31584369 DOI: 10.2174/1381612825666190722114248] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Microglia play a pivotal role in maintaining homeostasis in complex brain environment. They first exist as amoeboid microglial cells (AMCs) in the developing brain, but with brain maturation, they transform into ramified microglial cells (RMCs). In pathological conditions, microglia are activated and have been classified into M1 and M2 phenotypes. The roles of AMCs, RMCs and M1/M2 microglia phenotypes especially in pathological conditions have been the focus of many recent studies. METHODS Here, we review the early development of the AMCs and RMCs and discuss their specific functions with reference to their anatomic locations, immunochemical coding etc. M1 and M2 microglia phenotypes in different neuropathological conditions are also reviewed. RESULTS Activated microglia are engaged in phagocytosis, production of proinflammatory mediators, trophic factors and synaptogenesis etc. Prolonged microglia activation, however, can cause damage to neurons and oligodendrocytes. The M1 and M2 phenotypes featured prominently in pathological conditions are discussed in depth. Experimental evidence suggests that microglia phenotype is being modulated by multiple factors including external and internal stimuli, local demands, epigenetic regulation, and herbal compounds. CONCLUSION Prevailing views converge that M2 polarization is neuroprotective. Thus, proper therapeutic designs including the use of anti-inflammatory drugs, herbal agents may be beneficial in suppression of microglial activation, especially M1 phenotype, for amelioration of neuroinflammation in different neuropathological conditions. Finally, recent development of radioligands targeting 18 kDa translocator protein (TSPO) in activated microglia may hold great promises clinically for early detection of brain lesion with the positron emission tomography.
Collapse
Affiliation(s)
- Yun Yuan
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Chunyun Wu
- Department of Anatomy and Histology/Embryology, Kunming Medical University, 1168 West Chunrong Road, Kunming, China
| | - Eng-Ang Ling
- Department of Anatomy, Yong Loo Lin School of Medicine, 4 Medical Drive, MD10, National University of Singapore, 117594, Singapore
| |
Collapse
|
21
|
Zhao H, Li G, Wang R, Tao Z, Ma Q, Zhang S, Han Z, Yan F, Li F, Liu P, Ma S, Ji X, Luo Y. Silencing of microRNA-494 inhibits the neurotoxic Th1 shift via regulating HDAC2-STAT4 cascade in ischaemic stroke. Br J Pharmacol 2020; 177:128-144. [PMID: 31465536 PMCID: PMC6976789 DOI: 10.1111/bph.14852] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE T helper cell 1 (Th1)-skewed neurotoxicity contributes to the poor outcome of stroke in rodents. Here, we have elucidated the mechanism of the Th1/Th2 shift in acute ischaemic stroke (AIS) patients at hyperacute phase and have looked for a miRNA-based therapeutic target. EXPERIMENTAL APPROACH MiR-494 levels in blood from AIS patients and controls were measured by real-time PCR. C57BL/6J mice were subjected to transient middle cerebral artery occlusion, and cortical neurons were subjected to oxygen-glucose deprivation. Luciferase reporter system, chromatin immunoprecipitation sequencing (ChIP-Seq), and ChIP-PCR were used to uncover possible mechanisms. KEY RESULTS In lymphocytes from AIS patients, there was a Th1/Th2 shift and histone deacetylase 2 (HDAC2) was markedly down-regulated. ChIP-seq showed that HDAC2 binding sites were enriched in regulation of Th1 cytokine production, and ChIP-PCR confirmed that HDAC2 binding was changed at the intron of STAT4 and the promoter of T-box transcription factor 21 (T-bet) in lymphocytes from AIS patients. MiR-494 was the most significantly increased miRNA in lymphocytes from AIS patients, and miR-494-3p directly targeted HDAC2. A strong association existed between miR-494 and Th1 cytokines, and neurological deficit as measured by the National Institute of Health Stroke Scale (NIHSS) in AIS patients. In vitro and in vivo experiments showed that antagomir-494 reduced Th1 shift-mediated neuronal and sensorimotor functional damage in the mouse model of ischaemic stroke, via the HDAC2-STAT4 pathway. CONCLUSION AND IMPLICATIONS We demonstrated that miR-494 inhibition prevented Th1-skewed neurotoxicity through regulation of the HDAC2-STAT4 cascade.
Collapse
Affiliation(s)
- Haiping Zhao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Guangwen Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Rongliang Wang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Zhen Tao
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Qingfeng Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Sijia Zhang
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ziping Han
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Feng Yan
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
| | - Fangfang Li
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Ping Liu
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Shubei Ma
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Xunming Ji
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
| | - Yumin Luo
- Institute of Cerebrovascular Disease Research and Department of NeurologyXuanwu Hospital of Capital Medical UniversityBeijingChina
- Beijing Geriatric Medical Research Center and Beijing Key Laboratory of Translational Medicine for Cerebrovascular DiseasesBeijingChina
- Beijing Institute for Brain DisordersCapital Medical UniversityBeijingChina
| |
Collapse
|
22
|
Sun XY, Zheng T, Yang X, Liu L, Gao SS, Xu HB, Song YT, Tong K, Yang L, Gao Y, Wu T, Hao JR, Lu C, Ma T, Gao C. HDAC2 hyperexpression alters hippocampal neuronal transcription and microglial activity in neuroinflammation-induced cognitive dysfunction. J Neuroinflammation 2019; 16:249. [PMID: 31796106 PMCID: PMC6889553 DOI: 10.1186/s12974-019-1640-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/12/2019] [Indexed: 02/08/2023] Open
Abstract
Background Inflammation can induce cognitive dysfunction in patients who undergo surgery. Previous studies have demonstrated that both acute peripheral inflammation and anaesthetic insults, especially isoflurane (ISO), are risk factors for memory impairment. Few studies are currently investigating the role of ISO under acute peri-inflammatory conditions, and it is difficult to predict whether ISO can aggravate inflammation-induced cognitive deficits. HDACs, which are essential for learning, participate in the deacetylation of lysine residues and the regulation of gene transcription. However, the cell-specific mechanism of HDACs in inflammation-induced cognitive impairment remains unknown. Methods Three-month-old C57BL/6 mice were treated with single versus combined exposure to LPS injected intraperitoneally (i.p.) to simulate acute abdominal inflammation and isoflurane to investigate the role of anaesthesia and acute peripheral inflammation in cognitive impairment. Behavioural tests, Western blotting, ELISA, immunofluorescence, qRT-PCR, and ChIP assays were performed to detect memory, the expressions of inflammatory cytokines, HDAC2, BDNF, c-Fos, acetyl-H3, microglial activity, Bdnf mRNA, c-fos mRNA, and Bdnf and c-fos transcription in the hippocampus. Results LPS, but not isoflurane, induced neuroinflammation-induced memory impairment and reduced histone acetylation by upregulating histone deacetylase 2 (HDAC2) in dorsal hippocampal CaMKII+ neurons. The hyperexpression of HDAC2 in neurons was mediated by the activation of microglia. The decreased level of histone acetylation suppressed the transcription of Bdnf and c-fos and the expressions of BDNF and c-Fos, which subsequently impaired memory. The adeno-associated virus ShHdac2, which suppresses Hdac2 after injection into the dorsal hippocampus, reversed microglial activation, hippocampal glutamatergic BDNF and c-Fos expressions, and memory deficits. Conclusions Reversing HDAC2 in hippocampal CaMKII+ neurons exert a neuroprotective effect against neuroinflammation-induced memory deficits.
Collapse
Affiliation(s)
- Xiao-Yu Sun
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Teng Zheng
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.,Department of Anesthesiology, the First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
| | - Xiu Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Le Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Shen-Shen Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Han-Bing Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Yu-Tong Song
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Kun Tong
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Ya Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tong Wu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Jing-Ru Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Chen Lu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Tao Ma
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China.,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China
| | - Can Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, 221004, Jiangsu, China. .,Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
23
|
Abstract
The regulation of glycemia is under a tight neuronal detection of glucose levels performed by the gut-brain axis and an efficient efferent neuronal message sent to the peripheral organs, as the pancreas to induce insulin and inhibit glucagon secretions. The neuronal detection of glucose levels is performed by the autonomic nervous system including the enteric nervous system and the vagus nerve innervating the gastro-intestinal tractus, from the mouth to the anus. A dysregulation of this detection leads to the one of the most important current health issue around the world i.e. diabetes mellitus. Furthemore, the consequences of diabetes mellitus on neuronal homeostasis and activities participate to the aggravation of the disease establishing a viscious circle. Prokaryotic cells as bacteria, reside in our gut. The strong relationship between prokaryotic cells and our eukaryotic cells has been established long ago, and prokaryotic and eukaryotic cells in our body have evolved synbiotically. For the last decades, studies demonstrated the critical role of the gut microbiota on the metabolic control and how its shift can induce diseases such as diabetes. Despite an important increase of knowledge, few is known about 1) how the gut microbiota influences the neuronal detection of glucose and 2) how the diabetes mellitus-induced gut microbiota shift observed participates to the alterations of autonomic nervous system and the gut-brain axis activity.
Collapse
Affiliation(s)
- Estelle Grasset
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, University of Gothenburg, 41345, Gothenburg, Sweden.
| | - Remy Burcelin
- Institut National de la Santé et de la Recherche Médicale (INSERM), Toulouse, France
- Unité Mixte de Recherche (UMR) 1048, Institut des Maladies Métaboliques et Cardiovasculaires (I2MC), Team 2 : 'Intestinal Risk Factors, Diabetes, Université Paul Sabatier (UPS), Dyslipidemia', F-31432, Toulouse, Cedex 4, France
| |
Collapse
|
24
|
Wu Y, Dou J, Wan X, Leng Y, Liu X, Chen L, Shen Q, Zhao B, Meng Q, Hou J. Histone Deacetylase Inhibitor MS-275 Alleviates Postoperative Cognitive Dysfunction in Rats by Inhibiting Hippocampal Neuroinflammation. Neuroscience 2019; 417:70-80. [PMID: 31430527 DOI: 10.1016/j.neuroscience.2019.08.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 08/07/2019] [Accepted: 08/10/2019] [Indexed: 12/28/2022]
Abstract
Neuroinflammation in the hippocampus plays essential roles in postoperative cognitive dysfunction (POCD). Histone deacetylases (HDACs) have recently been identified as key regulators of neuroinflammation. MS-275, an inhibitor of HDAC, has been reported to have neuroprotective effects. Therefore, the present study aimed to test the hypothesis that pretreatment with MS-275 prevents POCD by inhibiting neuroinflammation in rats. In this study, anesthesia/surgery impaired cognition, demonstrated by an increase escape latency and reduction in the number of platform crossings in Morris water maze (MWM) trials, through activating microglia neuroinflammation and decreasing PSD-95 expression. However, pretreatment with MS-275 attenuated postoperative cognitive impairment severity. Furthermore, pretreatment with MS-275 decreased activated microglia levels and increased PSD95 protein expression in the hippocampus. Pretreatment with MS-275 reduced NF-κB-p65 protein expression and nuclear accumulation as well as the neuroinflammatory response (production of proinflammatory cytokines including TNF-α and IL-1β) in the hippocampus. Additionally, MS-275 reduced HDAC2 expression and HDAC activity in the hippocampus, which were enhanced in vehicle-treated rats. These results suggest that MS-275 alleviates postoperative cognitive dysfunction by reducing neuroinflammation in the hippocampus of rats via HDAC inhibition.
Collapse
Affiliation(s)
- Yang Wu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Juan Dou
- Sterilization and Supply Center, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xing Wan
- Operating Room, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Yan Leng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Qingtao Meng
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital, Wuhan University, P.O. Box 430060, No. 238 Jiefang Road, Wuhan, China.
| |
Collapse
|