1
|
Dhawan SS, Hacein-Bey L, Massoud TF. Choroid plexus enlargement in idiopathic normal pressure hydrocephalus and concept proposal for noninvasive volume-reductive therapies. Brain Res 2025; 1857:149593. [PMID: 40157411 DOI: 10.1016/j.brainres.2025.149593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/16/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
BACKGROUND Aberrant CSF dynamics in idiopathic normal pressure hydrocephalus (iNPH) are associated with excessive CSF volume and impaired resorption. Yet, the role of choroid plexus (CP) size in development and progression of iNPH remains unknown. Moreover, newer noninvasive CP-targeted volume-reductive treatments for iNPH might benefit selected vulnerable patients to avoid problematic long-term ventricular shunting. However, there are no studies to date that describe CP size in iNPH patients. METHODS We retrospectively studied brain 3T MRIs for 50 iNPH patients and 50 age and sex-matched healthy controls (HCs). We delineated areas and volumes of lateral ventricular CPs, then statistically compared both cohorts, with significance set at p < 0.05. RESULTS In iNPH patients, CP volume (1.58-fold) alone, CP volume normalized to total intracranial volume (1.75-fold), and CP areas at four different locations and their combined values (1.24-fold) were highly significantly larger (p < 0.000) in iNPH patients. CONCLUSION The novel finding of CP enlargement in iNPH should guide and support future investigations into potentially interrelated pathogenetic mechanisms. It also benefits considerations of new noninvasive targeted therapies (such as MR-guided high intensity focused ultrasound, and radiosurgery) to partially ablate CP and reduce its CSF secretion as a conceivable alternative to conventional ventricular shunting.
Collapse
Affiliation(s)
- Siddhant S Dhawan
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA.
| | - Lotfi Hacein-Bey
- Division of Neuroradiology and Interventional Neuroradiology, Department of Radiology, University of California Davis School of Medicine, 4860 Y Street, Suite 3100, Sacramento, CA 95817, USA.
| | - Tarik F Massoud
- Division of Neuroimaging and Neurointervention, Department of Radiology, Stanford University School of Medicine, 453 Quarry Road, Palo Alto, CA 94304, USA.
| |
Collapse
|
2
|
Wang N, Lu J, Liu X, Liu J, Lu Y, Xu C, Piao S, Yang L, Liu F, Li Y. Choroid plexus enlargement correlates with subcortical tau deposition in progressive supranuclear palsy. Fluids Barriers CNS 2025; 22:52. [PMID: 40414959 DOI: 10.1186/s12987-025-00663-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 05/11/2025] [Indexed: 05/27/2025] Open
Abstract
OBJECTIVE The choroid plexus (CP) has gained renewed attention for its role in waste clearance in neurodegenerative disorders. However, its involvement in progressive supranuclear palsy (PSP) remains unclear. This study aimed to investigate CP volume changes in patients with PSP compared to Parkinson's disease (PD), and explore its relationship with tau deposition in PSP patients. METHODS A total of 204 participants (92 PSP, 78 PD, 34 healthy controls (HC)) underwent structural MRI, with 63 PSP patients receiving 18F-Florzolotau positron emission tomography. CP volume was compared across the three groups, and its ability to differentiate PSP from PD was assessed. Mean standardized uptake value ratios (SUVRs) from bilateral subcortical regions were extracted: ROIs1 including early involved nuclei of red nucleus, subthalamic nucleus, raphe nuclei, and globus pallidus; ROIs2 including late involved nuclei of substantia nigra, locus coeruleus, putamen, and thalamus. The relationship between CP volume, tau deposition and clinical assessments was analyzed. RESULTS PSP patients exhibited increased CP volume compared to PD and HC groups. The area under the curve value was 0.84 in differentiating PSP from PD, with CP volume and age as predictive variables. In the PSP group, CP volume was positively correlated with mean 18F-Florzolotau SUVRs in the ROIs2. Furthermore, in the PSP and PD groups, CP volume was negatively correlated with cognitive scores, but positively correlated with motor scores. CONCLUSIONS CP enlargement is a distinguishing feature of PSP and may serve as an imaging biomarker for tau accumulation, offering potential for differentiating PSP from PD.
Collapse
Affiliation(s)
- Na Wang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - JiaYing Lu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - XueLing Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - JianPeng Liu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - YuCheng Lu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - ChengLing Xu
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - SiRong Piao
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - LiQin Yang
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China
| | - FengTao Liu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China.
| | - YuXin Li
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Kudo J, Watanabe K, Sasaki M, Shintaku T, Kakehata S, Kasai S, Saito K, Mikami T, Kokubu D, Ushida Y, Matsuzaka M, Kakeda S. Serum Carotenoid Concentrations Are Associated with Enlarged Choroid Plexus, Lateral Ventricular Volume, and Perivascular Spaces on Magnetic Resonance Imaging: A Large Cohort Study. Acad Radiol 2025:S1076-6332(25)00399-X. [PMID: 40399167 DOI: 10.1016/j.acra.2025.04.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Revised: 04/08/2025] [Accepted: 04/19/2025] [Indexed: 05/23/2025]
Abstract
RATIONALE AND OBJECTIVES Since carotenoids have various physiological activities, including antioxidant activity, several epidemiological studies have linked the consumption of a carotenoid-rich diet to a decreased risk of neurodegenerative diseases. Increased choroid plexus volume (CPV) and enlarged perivascular spaces (PVS) on brain magnetic resonance imaging (MRI) may be indicators of impaired glymphatic system function. The purpose of this large-scale elderly population study was to assess whether serum concentrations of major carotenoids (α-carotene, β-carotene, cis-lycopene, trans-lycopene, β-cryptoxanthin, zeaxanthin, and lutein) concentrations are associated with CPV, lateral ventricular volume (LVV), and PVS. MATERIALS AND METHODS This cross-sectional study included 2050 individuals (median age, 69 years; 61.02% females) who underwent 3 T MRI. The imaging characteristics included total intracranial volume (ICV), CPV, LVV, and basal ganglia-enlarged PVS on T2-weighted images. RESULTS Low serum β-carotene concentration was a significant independent predictor of increased CPV/ICV (p=0.046), increased LVV/ICV (p=0.035), and enlarged PVS (p=0.009) after adjusting for potential confounders (age, sex, body mass index, HbA1c level, systolic blood pressure, smoking history, drinking history, educational history, and Mini-Mental State Examination score, CRP level). Low serum α-carotene concentration was also a significant independent predictor of an enlarged PVS (p=0.014). CONCLUSION In this study, β-carotene concentration was associated to the CPV, LVV, and PVS, suggesting that the antioxidant activity of β-carotene may have an important role in maintaining glymphatic system function. Since β-carotene is a dietary carotenoid, our results emphasize the importance of interventions for effective β-carotene intake among elderly people.
Collapse
Affiliation(s)
- Jusei Kudo
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, Kyoto, Japan (K.W.).
| | - Miho Sasaki
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Tomohiro Shintaku
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Shinya Kakehata
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Sera Kasai
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Kana Saito
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University, Hirosaki, Japan (T.M.)
| | - Daichi Kokubu
- Diet and Well-being Research Institute, KAGOME CO., LTD., Nasushiobara, Japan (D.K., Y.U.)
| | - Yusuke Ushida
- Diet and Well-being Research Institute, KAGOME CO., LTD., Nasushiobara, Japan (D.K., Y.U.)
| | - Masashi Matsuzaka
- Department of Medical Informatics, Hirosaki University Hospital, Hirosaki, Japan (M.M.)
| | - Shingo Kakeda
- Department of Radiology, Graduate School of Medicine, Hirosaki University, Hirosaki, Japan (J.K., M.S., T.S., S.K., S.K., K.S., S.K.)
| |
Collapse
|
4
|
Xu X, Yang X, Zhang J, Wang Y, Selim M, Zheng Y, Shen R, Sun L, Huang Q, Wang W, Xu W, Guan Y, Liu J, Deng Y, Xie F, Li B, the Alzheimer's Disease Neuroimaging Initiative (ADNI). Choroid plexus free-water correlates with glymphatic function in Alzheimer's disease. Alzheimers Dement 2025; 21:e70239. [PMID: 40394891 PMCID: PMC12092370 DOI: 10.1002/alz.70239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/12/2025] [Accepted: 04/07/2025] [Indexed: 05/22/2025]
Abstract
INTRODUCTION Free-water imaging of the choroid plexus (CP) may improve the evaluation of Alzheimer's disease (AD). METHODS Our study investigated the role of free-water fraction (FWf) of CP in AD among 216 participants (133 Aβ+ participants and 83 Aβ- controls) enrolled in the NeuroBank-Dementia cohort at Ruijin Hospital (RJNB-D). The Alzheimer's Disease Neuroimaging Initiative dataset was used for external validation. RESULTS At baseline, Aβ+ participants showed higher CP FWf, increased white matter hyperintensity (WMH) volume, and decreased diffusion tensor image analysis along the perivascular space (DTI-ALPS). In Aβ+ participants, DTI-ALPS mediated the association between CP FWf and periventricular WMH. CP FWf was associated with cortical tau accumulation, synaptic loss, hippocampal and cortical atrophy, and cognitive performance. During follow-up, CP FWf increased faster in Aβ+ participants than controls. DISCUSSION Elevated CP FWf indicated impaired glymphatic function and AD neurodegeneration, and can be a sensitive biomarker for AD progression. The study was registered on ClinicalTrials.gov (NCT05623124). HIGHLIGHTS This cohort study found higher free-water fraction (FWf) of the choroid plexus (CP) in amyloid beta (Aβ)+ participants. CP FWf was related to glymphatic function, brain atrophy, tau burden, synaptic loss, and cognition. Aβ+ participants showed faster growth of CP FWf than Aβ- controls during follow-up. The growth rate of CP FWf exceeded that of white matter lesion and tau accumulation in Aβ+ participants. CP FWf can serve as a sensitive imaging marker of glymphatic function and Alzheimer's disease progression.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xinyuan Yang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Junfang Zhang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yan Wang
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Magdy Selim
- Stroke DivisionDepartment of NeurologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMassachusettsUSA
| | - Yingting Zheng
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Ruinan Shen
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Lipeng Sun
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Qi Huang
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Wenjing Wang
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Wei Xu
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yihui Guan
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Jun Liu
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Yulei Deng
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Fang Xie
- Department of Nuclear Medicine and PET CenterHuashan HospitalFudan UniversityShanghaiChina
| | - Binyin Li
- Department of Neurology and Institute of NeurologyRuijin HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
- Clinical Neuroscience CenterRuijin Hospital LuWan BranchShanghai Jiao Tong University School of MedicineShanghaiChina
| | | |
Collapse
|
5
|
Liang P, Li M, Chen Y, Cheng Z, Wang N, Wang Y, Zhang N, Che Y, Li J, Liang C, Guo L. Associations of choroid plexus volume with white matter hyperintensity volume and susceptibility and plasma amyloid markers in cerebral small vessel disease. Alzheimers Res Ther 2025; 17:90. [PMID: 40270041 PMCID: PMC12016351 DOI: 10.1186/s13195-025-01740-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 04/14/2025] [Indexed: 04/25/2025]
Abstract
BACKGROUND White matter hyperintensity (WMH) is a key feature of cerebral small vessel disease (CSVD). The impact of the choroid plexus (CP) volume on disease progression remains largely unexplored. This study evaluated the relationship between CP volume and CSVD severity via WMH volume and susceptibility values. Additionally, we explored whether Alzheimer's disease (AD)-related plasma proteins influence the volume of the CP. METHODS AND MATERIALS Our study included 291 CSVD individuals, with 84 participants completing subsequent brain MRI at a mean follow-up of 20 months. To explore the potential CP-associated pathways, we assessed the relationships between AD-related plasma biomarkers and CP volume via multiple linear regression analysis. The longitudinal associations between CP volume and WMH characteristics (WMH volume and susceptibility) were analyzed via linear mixed-effects models. Finally, we employed random forest analysis with the Boruta algorithm to identify key predictors of CSVD severity. RESULTS Plasma Aβ1‒40 levels were positively correlated with CP volume (β = 0.115, P = 0.009), whereas Aβ42‒40 ratio were negatively associated with CP volume (β = -0.135, P = 0.03). Notably, increased CP volume was associated with both greater WMH burden (β = 0.191, P = 0.011) and decreased WMH susceptibility (β = -0.192, P = 0.012). Furthermore, random forest modeling identified CP volume and WMH susceptibility as the strongest predictors of CSVD severity. CONCLUSIONS CP volume changes were significantly correlated with both WMH volume and WMH susceptibility in CSVD patients. These findings suggest that CP-mediated pathways may link amyloid metabolism to CSVD progression.
Collapse
Affiliation(s)
- Pengcheng Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Philosophenweg 3, Jena, 07743, Germany
| | - Yiwen Chen
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Zhenyu Cheng
- Binzhou Medical University, China. Guanhai Road No.346, Yantai, Shandong, 264003, China
| | - Na Wang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Yuanyuan Wang
- Binzhou Medical University, China. Guanhai Road No.346, Yantai, Shandong, 264003, China
| | - Nan Zhang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Yena Che
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua Medicine, Tsinghua University, 168 Litang Road, Changping District, Beijing, 102218, China.
| | - Changhu Liang
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China.
| | - Lingfei Guo
- Key Laboratory of Endocrine Glucose & Lipids Metabolism and Brain Aging, Ministry of Education; Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, 324 Jing-Wu Road, Jinan, Shandong, 250021, China.
| |
Collapse
|
6
|
Peng T, Lin Y, Xu X, Li J, Liu M, Zhang C, Liao X, Ji X, Xiong Z, Gu Z, Cai X, Tao T, Zhang Y, Zhu L, Zhuang D, Huang X, Xiong M, Zhang P, Liu J, Cheng G. Assessing neonatal brain glymphatic system development using diffusion tensor imaging along the perivascular space and choroid plexus volume. BMC Med Imaging 2025; 25:126. [PMID: 40247273 PMCID: PMC12007372 DOI: 10.1186/s12880-025-01673-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 04/11/2025] [Indexed: 04/19/2025] Open
Abstract
PURPOSE Neonatal brain development constitutes a critical period of structural and functional maturation underpinning sensory, motor, and cognitive capacities. The glymphatic system-a cerebral waste clearance network-remains poorly understood in neonates. We investigated non-invasive magnetic resonance imaging (MRI) biomarkers of glymphatic system and their developmental correlates in neonates. METHODS In 117 neonates undergoing high-resolution T1-weighted and diffusion MRI, we quantified two glymphatic metrics: (1) diffusion tensor imaging along the perivascular space (DTI-ALPS) index, reflecting perivascular fluid dynamics; (2) choroid plexus (CP) volume, a cerebrospinal fluid (CSF) production marker. Associations with postmenstrual age (PMA) at MRI scan, gestational age (GA), birth weight (BW), and sex were analyzed using covariate-adjusted models. RESULTS Preterm neonates displayed significantly reduced DTI-ALPS indices versus term neonates (total index: 1.01 vs. 1.05, P = 0.002), with reductions persisting after adjustment (P < 0.05). CP volumes showed right-dominant pre-adjustment differences (preterm: 0.33 vs. term: 0.39, P = 0.039) that attenuated post-adjustment (P = 0.348). DTI-ALPS indices demonstrated transient correlations with PMA/GA/BW in unadjusted analyses (P < 0.05), whereas CP volumes maintained robust PMA associations post-adjustment in all neonates (P = 0.037) and term subgroup (P = 0.013). No significant effects of sex on both metrics were observed. CONCLUSION Our findings reveal prematurity-associated delays in glymphatic maturation, rather than biological sex. The persistent PMA-CP volume relationship suggests developmental regulation of CSF production, while attenuated DTI-ALPS correlations highlight covariate-mediated effects. These glymphatic metrics show potential for monitoring neurodevelopmental trajectories, though longitudinal validation is required to establish their clinical utility in neonatal care. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Ting Peng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Ying Lin
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xin Xu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Jiaqi Li
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Miaoshuang Liu
- Department of Neonatology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Chaowei Zhang
- Department of Neonatology, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Xiaohui Liao
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Xiaoshan Ji
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhongmeng Xiong
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China
| | - Zhuoyang Gu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Xinyi Cai
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Tianli Tao
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Yajuan Zhang
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Lixuan Zhu
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, 201102, China
| | - Deyi Zhuang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China
| | - Man Xiong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, 200032, China
| | - Peng Zhang
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
| | - Jungang Liu
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| | - Guoqiang Cheng
- Department of Neonatology, Children's Hospital of Fudan University, National Children's Medical Center, Shanghai, 201102, China.
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361006, China.
| |
Collapse
|
7
|
Ozsahin I, Wang X, Zhou L, Xi K, Hojjati SH, Tanzi E, Maloney T, Fung EK, Dyke JP, Chen K, Pahlajani S, McIntire LB, Costa AP, Dartora WJ, Razlighi QR, Glodzik L, Li Y, Chiang GC, Rusinek H, de Leon MJ, Butler TA. Divergent neurodegeneration associations with choroid plexus volume and degree of calcification in cognitively normal APOE ε4 carriers and non-carriers. Sci Rep 2025; 15:12818. [PMID: 40229453 PMCID: PMC11997051 DOI: 10.1038/s41598-025-97409-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 04/04/2025] [Indexed: 04/16/2025] Open
Abstract
Choroid plexus (CP), best known for producing CSF, also regulate inflammation and clear metabolic waste to maintain brain homeostasis. CP dysfunction is implicated in Alzheimer's Disease (AD), with MRI studies showing CP enlargement in AD. The basis for CP enlargement is unknown. We hypothesized that calcium deposition within CP, which increases with aging and in certain neurodegenerative conditions, might underlie pathologic CP enlargement and be linked to neurodegeneration. In 166 cognitively normal participants, we used multimodal imaging to examine CP structure (MRI-measured overall volume, CT-measured calcium volume), PET-measured Aβ, age, and APOE genotype as predictors of neurodegeneration, indexed as hippocampal volume. CP enlargement was associated with reduced hippocampal volume, particularly in APOE4 carriers. CP calcium was not independently associated with hippocampal volume. However, a significant interaction revealed APOE4 genotype-specific associations between CP calcium and neurodegeneration, with APOE4 carriers showing greater hippocampal volumes in association with greater CP calcium-opposite to our hypothesis. Results suggest that a factor other than calcium drives pathologic CP enlargement associated with neurodegeneration, with this factor especially important in APOE4 carriers. Candidate factors include lipids and inflammatory cells, which are known to accumulate in CP and be regulated by APOE. Our findings highlight CP as a critical locus for studying AD pathogenesis and the mechanisms by which APOE4 promotes AD.
Collapse
Affiliation(s)
- Ilker Ozsahin
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
- Operational Research Center in Healthcare, Near East University, Near East Boulevard, Nicosia/TRNC, 99138, Mersin 10, Turkey.
| | - Xiuyuan Wang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Liangdong Zhou
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ke Xi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Seyed Hani Hojjati
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Emily Tanzi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Thomas Maloney
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Jonathan P Dyke
- Department of Radiology, Weill Cornell Medicine, 525 East 68th Street, New York, NY, 10065, USA
| | - Kewei Chen
- Banner Alzheimer Institute, Arizona State University, 901 E Willetta St, Phoenix, AZ, 85006, USA
| | - Silky Pahlajani
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Laura Beth McIntire
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Ana Paula Costa
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - William Jones Dartora
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Qolamreza R Razlighi
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Lidia Glodzik
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Yi Li
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Gloria C Chiang
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Henry Rusinek
- Department of Radiology, New York University, 660 1st Avenue, New York, NY, 10016, USA
| | - Mony J de Leon
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA
| | - Tracy A Butler
- Department of Radiology, Brain Health Imaging Institute, Weill Cornell Medicine, 407 East 61st Street, 2nd floor, New York, NY, 10065, USA.
| |
Collapse
|
8
|
Xie Q, Chen Z, Wang J, Zhang H, Wang Y, Wang X, Li C, Wang Y, Cong L, Ferreira D, Welmer AK, Song L, Du Y, Qiu C. Enlarged choroid plexus is linked with poorer physical function in rural older adults: a population-based study. Fluids Barriers CNS 2025; 22:33. [PMID: 40176085 PMCID: PMC11966853 DOI: 10.1186/s12987-025-00642-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Accepted: 03/14/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND The choroid plexus (ChP) plays an important role in producing cerebrospinal fluid (CSF) and physical dysfunction has been associated with alterations in CSF circulation. However, no population-based studies have thus far examined the association of ChP with physical function in older people. METHODS This population-based cross-sectional study included 1217 participants (age ≥ 60 years; 57.35% women) in the MRI substudy of the Multimodal Interventions to delay Dementia and disability in rural China. ChP volume was automatically segmented using three-dimensional T1-weighted sequences. Physical function was assessed using the Short Physical Performance Battery (SPPB). Data were analyzed using general linear regression and mediation models. RESULTS Controlling for demographic characteristics, cardiovascular risk factors, stroke, disproportionately enlarged subarachnoid-space hydrocephalus (DESH), and total intracranial volume, per 1-ml increase in ChP volume was associated with β-coefficient of -0.24 (95% confidence interval: -0.37 to -0.11) for SPPB summary score, with the association being stronger in females (-0.40; -0.60 to -0.20) than in males (-0.17; -0.33 to -0.01) (p for ChP volume×sex interaction = 0.028). The associations were similar across three domains of balance, chair stand, and walking speed. In addition, enlarged ChP volume was associated with increased ventricular volume and white matter hyperintensity (WMH) volume. Mediation analysis suggested that lateral ventricular volume and periventricular WMH volume significantly mediated the association of ChP volume with the SPPB summary score, with the proportion of mediation being 54.22% and 14.48%, respectively. CONCLUSION Larger ChP volume is associated with poorer physical function in older adults, especially in women. The association is largely mediated by lateral ventricular and periventricular WMH volumes.
Collapse
Affiliation(s)
- Qianqian Xie
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Ziwei Chen
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Jiafeng Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Huisi Zhang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yan Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Xiaoyu Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Chunyan Li
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
| | - Yongxiang Wang
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| | - Lin Cong
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China
| | - Daniel Ferreira
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Facultad de Ciencias de la Salud, Universidad Fernando Pessoa Canarias, Las Palmas, Spain
| | - Anna-Karin Welmer
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Medical Unit Medical Psychology, Women´s Health and Allied Health Professionals Theme, Karolinska University Hospital, Stockholm, Sweden
| | - Lin Song
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China.
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.
| | - Yifeng Du
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China.
- Department of Neurology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, P.R. China.
- Shandong Provincial Clinical Research Center for Neurological Diseases, Jinan, Shandong, P.R. China.
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China.
| | - Chengxuan Qiu
- Department of Neurology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P.R. China
- Institute of Brain Science and Brain-Inspired Research, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong, P.R. China
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet-Stockholm University, Stockholm, Sweden
| |
Collapse
|
9
|
Lee DA, Lee HJ, Park KM. Choroid plexus enlargement in patients with rapid eye movement sleep behavior disorder: relevance to glymphatic system dysfunction. Sleep Biol Rhythms 2025; 23:189-195. [PMID: 40190611 PMCID: PMC11971069 DOI: 10.1007/s41105-024-00568-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/28/2024] [Indexed: 04/09/2025]
Abstract
Choroid plexus volume change has been suggested as a biomarker for the course of various neurological diseases. However, its role in sleep disorders remains unclear. We analyzed choroid plexus volume changes in patients with isolated rapid eye movement sleep behavior disorder (iRBD) compared with healthy controls. We enrolled 27 patients with iRBD and 27 healthy controls. All participants underwent brain magnetic resonance imaging (MRI), including three-dimensional T1-weighted imaging suitable for volumetric analysis. iRBD was diagnosed based on overnight polysomnography and corresponding clinical history. We compared the choroid plexus volume between patients with iRBD and healthy controls, and investigated the relationship between choroid plexus volume and polysomnographic findings. The mean choroid plexus volume was significantly larger in patients with iRBD than in healthy controls (2.379% vs. 2.116%, p = 0.002). No significant correlation was observed between choroid plexus volume and polysomnographic findings in patients with iRBD. Patients with iRBD demonstrated choroid plexus enlargement compared with healthy controls. This finding could be related with glymphatic system dysfunction in this population.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108 Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Haeundae-ro 875, Haeundae-gu, Busan, 48108 Republic of Korea
| |
Collapse
|
10
|
Nakaya M, Kamagata K, Takabayashi K, Andica C, Uchida W, Hagiwara A, Akashi T, Wada A, Taoka T, Naganawa S, Abe O, Aoki S. Magnetic resonance imaging indices for early Alzheimer's disease detection: Brain clearance markers. J Cereb Blood Flow Metab 2025:271678X251321305. [PMID: 40079562 PMCID: PMC11907505 DOI: 10.1177/0271678x251321305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
The Alzheimer's disease (AD) continuum is characterized by amyloid and tau protein deposition, which is partly attributable to the dysfunction of the brain clearance system. However, the specific phase in the AD continuum wherein aberrant clearance is present remains unclear. This study aimed to assess noninvasive magnetic resonance imaging (MRI) indices related to brain clearance functions, such as choroid plexus volume (CPV), lateral ventricular volume (LVV), and the index of diffusivity along the perivascular space (ALPS index), across the Alzheimer's disease (AD) spectrum. The CPV, LVV, and ALPS index in amyloid beta (Aβ)-negative healthy controls (HCs) and Aβ-positive HCs as well as in patients with Aβ-negative subjective cognitive decline (SCD), with Aβ-positive SCD, with mild cognitive impairment, and with AD were evaluated. The CPV and LVV were higher, whereas the ALPS index was lower in the patients with more severe disease. The ALPS index was significantly lower in Aβ-positive HCs than in Aβ-negative HCs. In SCD patients and those in the AD continuum, the MRI-based clearance markers were correlated with P-tau and T-tau protein levels and cognitive scores. In summary, brain clearance markers on MRI are associated with tau deposition, neurodegeneration and cognitive dysfunction.
Collapse
Affiliation(s)
- Moto Nakaya
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kaito Takabayashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Akashi
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Akihiko Wada
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Toshiaki Taoka
- Department of Innovative Biomedical Visualization, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Aichi, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University Graduate School of Medicine, Juntendo University, Tokyo, Japan
- Faculty of Health Data Science, Juntendo University, Chiba, Japan
| |
Collapse
|
11
|
Wu N, Xu M, Chen S, Wu S, Li J, Hui Y, Li X, Wang Z, Lv H. Retinal Vascular Morphology Reflects and Predicts Cerebral Small Vessel Disease: Evidences from Eye-Brain Imaging Analysis. RESEARCH (WASHINGTON, D.C.) 2025; 8:0633. [PMID: 40052159 PMCID: PMC11883085 DOI: 10.34133/research.0633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 01/30/2025] [Accepted: 02/16/2025] [Indexed: 03/09/2025]
Abstract
Cerebral small vessel disease (SVD) involves ischemic white matter damage and choroid plexus (CP) dysfunction for cerebrospinal fluid (CSF) production. Given the vascular and CSF links between the eye and brain, this study explored whether retinal vascular morphology can indicate cerebrovascular injury and CP dysfunction in SVD. We assessed SVD burden using imaging phenotypes like white matter hyperintensities (WMH), perivascular spaces, lacunes, and microbleeds. Cerebrovascular injury was quantified by WMH volume and peak width of skeletonized mean diffusivity (PSMD), while CP volume measured its dysfunction. Retinal vascular markers were derived from fundus images, with associations analyzed using generalized linear models and Pearson correlations. Path analysis quantified contributions of cerebrovascular injury and CP volume to retinal changes. Support vector machine models were developed to predict SVD severity using retinal and demographic data. Among 815 participants, 578 underwent ocular imaging. Increased SVD burden markedly correlated with both cerebral and retinal biomarkers, with retinal alterations equally influenced by cerebrovascular damage and CP enlargement. Machine learning models showed robust predictive power for severe SVD burden (AUC was 0.82), PSMD (0.81), WMH volume (0.77), and CP volume (0.80). These findings suggest that retinal imaging could serve as a cost-effective, noninvasive tool for SVD screening based on vascular and CSF connections.
Collapse
Affiliation(s)
- Ning Wu
- Department of Medical Imaging, Yanjing Medical College,
Capital Medical University, Beijing, China
| | - Mingze Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies,
Peking University, Beijing, China
| | - Shuohua Chen
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Shouling Wu
- Department of Cardiology, Kailuan General Hospital, Tangshan, China
| | - Jing Li
- Department of Radiology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine,
Tsinghua University, Beijing, China
| | - Ying Hui
- Department of Radiology, Kailuan General Hospital, Tangshan, China
| | - Xiaoshuai Li
- Department of Radiology,
Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Zhenchang Wang
- Department of Radiology,
Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| | - Han Lv
- Department of Radiology,
Capital Medical University Affiliated Beijing Friendship Hospital, Beijing, China
| |
Collapse
|
12
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. Lateral Ventricular Enlargement and Asymmetry and Myelin Content Imbalance in Individuals With Bipolar and Depressive Disorders: Clinical and Research Implications. Bipolar Disord 2025; 27:119-131. [PMID: 39981613 PMCID: PMC11950717 DOI: 10.1111/bdi.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/08/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025]
Abstract
BACKGROUND The link between ventricular enlargement and asymmetry with other indices of brain structure remains underexplored in individuals with bipolar (BD) and depressive (DD) disorders. Our study compared the lateral ventricular size, ventricular asymmetry, and cortical myelin content in individuals with BD versus those with DD versus healthy controls (HC). METHODS We obtained T1w and T2w images from 149 individuals (age = 27.7 (SD = 6.1) years, 78% female, BD = 38, DD = 57, HC = 54) using Magnetic Resonance Imaging (MRI). The BD group consisted of individuals with BD Type I (n = 11) and BD Type II (n = 27), while the DD group consisted of individuals with major depressive disorder (MDD, n = 38) and persistent depressive disorder (PDD, n = 19) Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. RESULTS Individuals with BD and DD had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p < 0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not in other groups, ventricular enlargement was related to altered myelin content in the right insular regions. CONCLUSIONS Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
Affiliation(s)
- Anna Manelis
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Hang Hu
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Miceli
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Skye Satz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Rachel Lau
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Satish Iyengar
- Department of StatisticsUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Holly A. Swartz
- Department of PsychiatryUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
13
|
Choi Y, Jung HJ, Jung HK, Jeong E, Kim S, Kim JY, Lee EJ, Lim YM, Kim H. In vivo imaging markers of glymphatic dysfunction in amyotrophic lateral sclerosis: Analysis of ALPS index and choroid plexus volume. J Neurol Sci 2025; 469:123393. [PMID: 39818026 DOI: 10.1016/j.jns.2025.123393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025]
Abstract
BACKGROUND The glymphatic system, essential for brain waste clearance, has been implicated in neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Emerging imaging markers, such as the analysis along the perivascular space (ALPS) index and choroid plexus volume (CPV), may provide insights into glymphatic function, but their relevance to ALS remains unclear. OBJECTIVE To assess glymphatic dysfunction in ALS patients using the ALPS index and CPV. METHODS In this prospective single-center study, we analyzed 51 ALS patients and 51 age- and sex-matched healthy controls (HC). The ALPS index was calculated using diffusion tensor imaging, and 3D T1-weighted MRI was used for automated estimation of CPV and its fraction (CPV/total intracranial volume). Diagnostic performance was assessed using area under the receiver operating curve (AUC). Correlations between imaging markers and clinical parameters were also examined. RESULTS ALS patients had a significantly lower ALPS index (ALS: 1.45 ± 0.15; HC: 1.55 ± 0.16; p = 0.002) and higher CPV fraction (ALS: 0.12 ± 0.04 %; HC: 0.10 ± 0.02 %; p < 0.001). The ALPS index and CPV fraction had AUCs of 0.70 and 0.72, respectively. A significant inverse correlation was observed between the ALPS index and CPV fraction (r = -0.31, p = 0.002). Both markers correlated with aging but not with clinical disability or progression rate. CONCLUSION This study identifies glymphatic dysfunction in ALS, as evidenced by changes in the ALPS index and CPV. Larger studies are warranted to validate these findings and assess their potential as biomarkers for ALS.
Collapse
Affiliation(s)
- Yangsean Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hee-Jae Jung
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ha-Kyung Jung
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eunseon Jeong
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Shina Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji-Yon Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Eun-Jae Lee
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Young-Min Lim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunjin Kim
- Department of Neurology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea.
| |
Collapse
|
14
|
Zhen Z, Zhang R, Gui L, Chen J, Xu S, Deng L, Yu Y, Liu H, Chen K, Han Q, Hsu Y, Cheng Y, Liu Y, Huang P, Liu C, Chen W. Choroid plexus cysts on 7T MRI: Relationship to aging and neurodegenerative diseases. Alzheimers Dement 2025; 21:e14484. [PMID: 39732521 PMCID: PMC11848175 DOI: 10.1002/alz.14484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/13/2024] [Accepted: 11/26/2024] [Indexed: 12/30/2024]
Abstract
INTRODUCTION The choroid plexus (CP) may play a crucial role in brain degeneration. We aim to assess whether CP cysts (CPCs), defined using ultra-high field magnetic resonance imaging (MRI), relate to aging and neurodegeneration. METHODS We used multi-sequence 7T MRI to observe CPCs, characterizing their presence and characteristics in healthy younger controls, healthy older controls (OCs), patients with Alzheimer's disease (AD), patients with Parkinson's disease (PD), and patients with uremic encephalopathy. CP volume (CPV) and CPC characteristics were compared across groups, and associations between CPV and CPC features were analyzed across all subjects. RESULTS The AD group showed a significantly higher presence and number of CPCs compared to other groups and also had a significantly larger CPV than healthy OCs. The number and size of CPCs were associated with CPV. DISCUSSION 7T MRI offers a distinct advantage in observing CPCs, and the high prevalence of CPCs in patients with AD warrants further investigation. HIGHLIGHTS 7T MRI enables visualization of the fine structures of the choroid plexus. Patients with Alzheimer's disease (AD) exhibit a higher number of choroid plexus cysts (CPCs) compared to healthy older adults and other patient groups. CPCs may serve as an auxiliary marker for AD.
Collapse
Affiliation(s)
- Zhiming Zhen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Ruiting Zhang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Li Gui
- Department of NeurologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Jiafei Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Siyao Xu
- Department of RadiologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Lihua Deng
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yaling Yu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - He Liu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Kang Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Qi Han
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yi‐Cheng Hsu
- MR Research Collaboration TeamSiemens Healthineers Ltd.ShanghaiChina
| | - Yue Cheng
- Department of GastroenterologyInstitute of Digestive Diseases of PLACholestatic Liver Diseases Center and Center for Metabolic Dysfunction‐Associated Fatty Liver DiseaseSouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Yaou Liu
- Department of RadiologyBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Peiyu Huang
- Department of Radiologythe Second Affiliated Hospital of Zhejiang University School of MedicineHangzhouChina
| | - Chen Liu
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| | - Wei Chen
- 7T Magnetic Resonance Imaging Translational Medical CenterDepartment of RadiologySouthwest HospitalThird Military Medical University (Army Medical University)ChongqingChina
| |
Collapse
|
15
|
Liu H, Liu H, Li H, Tian B, Sun Z, Xiong W, Li Z, Yang P, Fan G. A volumetric study of the choroid plexus in neuropsychiatric systemic lupus erythematosus. Sci Rep 2025; 15:3663. [PMID: 39881162 PMCID: PMC11779818 DOI: 10.1038/s41598-024-84331-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 12/23/2024] [Indexed: 01/31/2025] Open
Abstract
Much evidence suggests that the choroid plexus (CP) plays an important role in the pathophysiology of systemic lupus erythematosus (SLE), but its imaging profile in neuropsychiatric SLE (NPSLE) remains unexplored. To evaluate CP volume in NPSLE patients using MRI. This retrospective study evaluated patients with SLE who underwent MRI of the brain, including three-dimensional T1-weighted imaging. CP volumes were automatically segmented. CP volume was evaluated using multivariable linear regression adjusted for age, sex, and total intracranial volume among three groups: NPSLE group, non-NPSLE group, and healthy control group (HC). Correlation analysis was performed between CP volume and clinical variables in the patient group. A total of 138 patients with SLE were included in the analysis. It was found that the right CP volume was greater in NPSLE compared with non-NPSLE and HC. When stratified according to their diagnosed status, newly diagnosed NPSLE had significantly greater CP volumes bilaterally compared with HC. Right CP volume was positively associated with Systemic Lupus Erythematosus Disease Activity Index (SLEDAI) scores in the patient group. All statistical significance levels were p < 0.05. CP enlargement could reflect a neuroinflammatory response that occurs at NPSLE disease onset. CP volume may serve as a promising marker for SLE, especially for newly diagnosed NPSLE.
Collapse
Affiliation(s)
- Hu Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Huiyang Liu
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Huanhuan Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Bailing Tian
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhen Sun
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Wen Xiong
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Zhenxing Li
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China
| | - Pingting Yang
- Department of Rheumatology and Immunology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, Shenyang, Liaoning, PR China.
| |
Collapse
|
16
|
Deng JH, Zhang HW, Lan XX, Liu YF, Liu XL, Deng HZ, Luo SP, Yao GZ, Wu HL, Huang B, Lin F. Different Imaging Evaluating Performances Between Glymphatic System and Motor Symptoms and Levodopa Responsiveness of Parkinson Disease. J Comput Assist Tomogr 2025:00004728-990000000-00416. [PMID: 39876537 DOI: 10.1097/rct.0000000000001720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/04/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND AND PURPOSE Parkinson disease (PD) is defined by its unique motor symptoms, where responsiveness to levodopa (L-DOPA) is fundamental for management. Recent research has highlighted a significant relationship between PD symptoms and glymphatic dysfunction. This study endeavors to clarify the connection between glymphatic system functionality and initial motor symptoms in PD, utilizing imaging biomarkers to determine its predictive capacity for L-DOPA responsiveness (LR). MATERIALS AND METHODS Retrospective study of 86 PD patients with 3.0-T MRI scans (July 2019 to March 2021), assessing the diffusion tensor image analysis along the perivascular space (DTI-ALPS) methods, enlarged perivascular spaces (ePVSs) load, and choroid plexus volume (CPV). Analyzed metrics versus the third part of the Unified Parkinson Disease Rating Scale (UPDRSIII) scores and %LR using linear regression, creating a %LR prediction model for the L-DOPA challenge. Explored relationships with age, sex, Hoehn and Yahr stage, Montreal Cognitive Assessment scores, and Mini-Mental State Examination score. Examined DTI-ALPS index, ePVSs, and CPV interrelations. RESULTS Pre-L-DOPA, UPDRSIII inversely correlated with DTI-ALPS index (P=0.049), positively with bilateral basal ganglia ePVSs (P<0.001). Age-adjusted BG-ePVSs-UPDRSIII link (P<0.001). Post-L-DOPA, UPDRSIII correlated similarly and CPV was positive. %LR positively linked to DTI-ALPS index (P<0.001), negatively to BG-ePVSs (P=0.04), CPV (P<0.001). Adjusted %LR-DTI-ALPS index positive (P=0.005), %LR-CPV negative (P=0.04). DTI-ALPS index, CPV predicted LCT outcomes (%LR ≥33%) with area under the curves 0.78, 0.79; accuracies 86.01%, 81.4%. The combined model area under the curve is 0.82, with an accuracy of 87.2%. Significant linear correlations were observed (CPV-DTI-ALPS, CPV-ePVSs, DTI-ALPS-ePVSs). CONCLUSIONS A study affirms the link between glymphatic impairment, motor symptoms, and L-DOPA responses in PD. As glymphatic function declines, symptoms worsen, and L-DOPA effectiveness diminishes. The DTI-ALPS index and CPV emerge as potential predictors of PD patient LCT outcomes.
Collapse
Affiliation(s)
- Jin-Huan Deng
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Han-Wen Zhang
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Xin-Xin Lan
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Yu-Feng Liu
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Xiao-Lei Liu
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Hua-Zhen Deng
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Si-Ping Luo
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Gui-Zhi Yao
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - He-Lv Wu
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| | - Biao Huang
- Department of Radiology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong, China
| | - Fan Lin
- Department of Radiology, the First Affiliated Hospital of Shenzhen University, Health Science Center, Shenzhen Second People's Hospital, Shenzhen
| |
Collapse
|
17
|
Diez-Cirarda M, Yus-Fuertes M, Delgado-Alonso C, Gil-Martínez L, Jiménez-García C, Gil-Moreno MJ, Gómez-Ruiz N, Oliver-Mas S, Polidura C, Jorquera M, Gómez-Pinedo U, Arrazola J, Sánchez-Ramón S, Matias-Guiu J, Gonzalez-Escamilla G, Matias-Guiu JA. Choroid plexus volume is enlarged in long COVID and associated with cognitive and brain changes. Mol Psychiatry 2025:10.1038/s41380-024-02886-x. [PMID: 39815057 DOI: 10.1038/s41380-024-02886-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 12/09/2024] [Accepted: 12/31/2024] [Indexed: 01/18/2025]
Abstract
Patients with post-COVID condition (PCC) present with diverse symptoms which persist at long-term after SARS-CoV-2 infection. Among these symptoms, cognitive impairment is one of the most prevalent and has been related to brain structural and functional changes. The underlying mechanisms of these cognitive and brain alterations remain elusive but neuroinflammation and immune mechanisms have been majorly considered. In this sense, the choroid plexus (ChP) volume has been proposed as a marker of neuroinflammation in immune-mediated conditions and the ChP epithelium has been found particularly susceptible to the effects of SARS-CoV-2. The objective was to investigate the ChP in PCC and evaluate its relationships with cognition, brain, and immunological alterations. One-hundred and twenty-nine patients with PCC after a mean of 14.79 ± 7.17 months of evolution since the infection and 36 healthy controls were recruited. Participants underwent a neuropsychological, and neuroimaging assessment and immunological markers evaluation. Results revealed ChP volume enlargement in PCC compared to healthy controls. The ChP enlargement was associated with cognitive dysfunction, grey matter volume reduction in frontal and subcortical areas, white matter integrity and diffusivity changes and functional connectivity changes. These ChP changes were also related to intermediate monocytes levels. Findings suggest that the ChP integrity may play a relevant role in the pathophysiology of cognitive deficits and the observed brain changes in PCC. The previously documented function of the ChP in maintaining brain homeostasis and regulating the entry of immune cells into the brain supports the presence of neuroinflammatory mechanisms in this disorder.
Collapse
Affiliation(s)
- Maria Diez-Cirarda
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain.
| | - Miguel Yus-Fuertes
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Cristina Delgado-Alonso
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Lidia Gil-Martínez
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Carlos Jiménez-García
- Department of Immunology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Maria José Gil-Moreno
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Natividad Gómez-Ruiz
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Oliver-Mas
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Carmen Polidura
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Manuela Jorquera
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Ulises Gómez-Pinedo
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Juan Arrazola
- Department of Radiology, Hospital Universitario Clinico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Silvia Sánchez-Ramón
- Department of Immunology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Jorge Matias-Guiu
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain
| | - Gabriel Gonzalez-Escamilla
- Department of Neurology, Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg, University Mainz, Mainz, Germany
| | - Jordi A Matias-Guiu
- Department of Neurology, Hospital Universitario Clínico San Carlos. Health Research Institute "San Carlos" (IdISCC). Universidad Complutense de Madrid, Madrid, Spain.
| |
Collapse
|
18
|
Bergström S, Mravinacová S, Lindberg O, Zettergren A, Westman E, Wahlund LO, Blennow K, Zetterberg H, Kern S, Skoog I, Månberg A. CSF levels of brain-derived proteins correlate with brain ventricular volume in cognitively healthy 70-year-olds. Clin Proteomics 2024; 21:65. [PMID: 39668376 PMCID: PMC11636040 DOI: 10.1186/s12014-024-09517-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 12/14/2024] Open
Abstract
BACKGROUND The effect of varying brain ventricular volume on the cerebrospinal fluid (CSF) proteome has been discussed as possible confounding factors in comparative protein level analyses. However, the relationship between CSF volume and protein levels remains largely unexplored. Moreover, the few existing studies provide conflicting findings, indicating the need for further research. METHODS Here, we explored the association between levels of 88 pre-selected CSF proteins and ventricular volume derived from magnetic resonance imaging (MRI) measurements in 157 cognitively healthy 70-year-olds from the H70 Gothenburg Birth Cohort Studies, including individuals with and without pathological levels of Alzheimer's disease (AD) CSF markers (n = 123 and 34, respectively). Both left and right lateral, the inferior horn as well as the third and the fourth ventricular volumes were measured. Different antibody-based methods were employed for the protein measurements, with most being analyzed using a multiplex bead-based microarray technology. Furthermore, the associations between the protein levels and cortical thickness, fractional anisotropy, and mean diffusivity were assessed. RESULTS CSF levels of many brain-derived proteins correlated with ventricular volumes in A-T- individuals, with lower levels in individuals with larger ventricles. The strongest negative correlations with total ventricular volume were observed for neurocan (NCAN) and neurosecretory protein VGF (rho = -0.34 for both). Significant negative correlations were observed also for amyloid beta (Ab) 38, Ab40, total tau (t-tau), and phosphorylated tau (p-tau), with correlation ranging between - 0.34 and - 0.28, while no association was observed between ventricular volumes and Ab42 or neurofilament light chain (NfL). Proteins with negative correlations to ventricular volumes further demonstrated negative correlations to mean diffusivity and positive correlation to fractional anisotropy. However, only weak or no correlations were observed between the CSF protein levels and cortical thickness. A + T + individuals demonstrated higher CSF protein levels compared to A-T- individuals with the most significant differences observed for neurogranin (NRGN) and synuclein beta (SNCB). CONCLUSIONS Our findings suggest that the levels of many brain-derived proteins in CSF may be subjected to dilution effects depending on the size of the brain ventricles in healthy individuals without AD pathology. This phenomenon could potentially contribute to the inter-individual variations observed in CSF proteomic studies.
Collapse
Affiliation(s)
- Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Sára Mravinacová
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Olof Lindberg
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Anna Zettergren
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Division of Clinical Geriatrics, Department of Neurobiology, Center for Alzheimer Research, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Blennow
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- UK Dementia Research Institute at UCL, London, UK
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Silke Kern
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Neuropsychiatry, Mölndal, Sweden
| | - Ingmar Skoog
- Neuropsychiatric Epidemiology Unit, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, Centre for Ageing and Health (AGECAP), University of Gothenburg, Mölndal, Sweden
- Region Västra Götaland, Sahlgrenska University Hospital, Neuropsychiatry, Mölndal, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden.
| |
Collapse
|
19
|
Sun Z, Li C, Muccio M, Jiang L, Masurkar A, Buch S, Chen Y, Zhang J, Haacke EM, Wisniewski T, Ge Y. Vascular Aging in the Choroid Plexus: A 7T Ultrasmall Superparamagnetic Iron Oxide (USPIO)-MRI Study. J Magn Reson Imaging 2024; 60:2564-2575. [PMID: 38587279 PMCID: PMC11458823 DOI: 10.1002/jmri.29381] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/21/2024] [Accepted: 03/24/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The choroid plexus (ChP), a densely vascularized structure, has drawn increasing attention for its involvement in brain homeostasis and waste clearance. While the volumetric changes have been explored in many imaging studies, few studies have investigated the vascular degeneration associated with aging in the ChP. PURPOSE To investigate the sub-structural characteristics of the ChP, particularly the vascular compartment using high-resolution 7T imaging enhanced with Ferumoxytol, an ultrasmall super-paramagnetic iron oxide, which greatly increase the susceptibility contrast for vessels. STUDY TYPE Prospective. SUBJECTS Forty-nine subjects without neurological disorders (age: 21-80 years; 42 ± 17 years; 20 females). FIELD STRENGTH/SEQUENCE 7-T with 2D and 3D T2* GRE, 3D MPRAGE T1, 2D TSE T2, and 2D FLAIR. ASSESSMENT The vascular and stromal compartments of the ChP were segmented using K-means clustering on post-contrast 2D GRE images. Visual and qualitative assessment of ChP vascular characteristics were conducted independently by three observers. Vascular density (Volvessel/VolChP ratio) and susceptibility change (Δχ) induced by Ferumoxytol were analyzed on 3D GRE-derived susceptibility-weighted imaging and quantitative susceptibility mapping, respectively. STATISTICAL TESTS Independent t-test, Mann-Whitney U test, and Chi-square test were utilized for group comparisons. The relationship between age and ChP's vascular alterations was examined using Pearson's correlation. Intra-class coefficient was calculated for inter-observer agreement. A P value <0.05 was considered statistically significant. RESULTS 2D GRE images demonstrated superior contrast and accurate delineation of ChP substructures (ICC = 0.86). Older subjects exhibited a significantly smaller vascular density (16.5 ± 4.34%) and lower Δχ (22.10 ± 12.82 ppb) compared to younger subjects (24.85 ± 6.84% and 34.64 ± 12.69 ppb). Vascular density and mean Δχ within the ChP negatively correlated with age (r = -0.48, and r = -0.45). DATA CONCLUSION Ferumoxytol-enhanced 7T images can demonstrate ChP alterations in elderly with decreased vascular density and expansion of nonvascular compartment. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhe Sun
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Chenyang Li
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Medical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Marco Muccio
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Li Jiang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - Arjun Masurkar
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
| | - Sagar Buch
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Yongsheng Chen
- Department of Neurology, Wayne State University, Detroit, MI, USA
| | - Jiangyang Zhang
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| | - E. Mark Haacke
- Department of Radiology, Wayne State University, Detroit, MI, USA
| | - Thomas Wisniewski
- Department of Neurology, NYU Grossman School of Medicine, New York, NY, USA
- Departments of Pathology and Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
20
|
Visani V, Veronese M, Pizzini FB, Colombi A, Natale V, Marjin C, Tamanti A, Schubert JJ, Althubaity N, Bedmar-Gómez I, Harrison NA, Bullmore ET, Turkheimer FE, Calabrese M, Castellaro M. ASCHOPLEX: A generalizable approach for the automatic segmentation of choroid plexus. Comput Biol Med 2024; 182:109164. [PMID: 39326265 DOI: 10.1016/j.compbiomed.2024.109164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/23/2024] [Accepted: 09/16/2024] [Indexed: 09/28/2024]
Abstract
BACKGROUND The Choroid Plexus (ChP) plays a vital role in brain homeostasis, serving as part of the Blood-Cerebrospinal Fluid Barrier, contributing to brain clearance pathways and being the main source of cerebrospinal fluid. Since the involvement of ChP in neurological and psychiatric disorders is not entirely established and currently under investigation, accurate and reproducible segmentation of this brain structure on large cohorts remains challenging. This paper presents ASCHOPLEX, a deep-learning tool for the automated segmentation of human ChP from structural MRI data that integrates existing software architectures like 3D UNet, UNETR, and DynUNet to deliver accurate ChP volume estimates. METHODS Here we trained ASCHOPLEX on 128 T1-w MRI images comprising both controls and patients with Multiple Sclerosis. ASCHOPLEX's performances were evaluated using traditional segmentation metrics; manual segmentation by experts served as ground truth. To overcome the generalizability problem that affects data-driven approaches, an additional fine-tuning procedure (ASCHOPLEXtune) was implemented on 77 T1-w PET/MRI images of both controls and depressed patients. RESULTS ASCHOPLEX showed superior performance compared to commonly used methods like FreeSurfer and Gaussian Mixture Model both in terms of Dice Coefficient (ASCHOPLEX 0.80, ASCHOPLEXtune 0.78) and estimated ChP volume error (ASCHOPLEX 9.22%, ASCHOPLEXtune 9.23%). CONCLUSION These results highlight the high accuracy, reliability, and reproducibility of ASCHOPLEX ChP segmentations.
Collapse
Affiliation(s)
- Valentina Visani
- Department of Information Engineering, University of Padova, Padova, Italy.
| | - Mattia Veronese
- Department of Information Engineering, University of Padova, Padova, Italy; Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Francesca B Pizzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy.
| | | | - Valerio Natale
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy.
| | - Corina Marjin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Julia J Schubert
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Noha Althubaity
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Department of Radiological Sciences, College of Applied Medical Science, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia.
| | - Inés Bedmar-Gómez
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK.
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, UK; Cambridgeshire and Peterborough NHS Foundation Trust, Cambridge, UK; Immuno-Psychiatry, Immuno-Inflammation Therapeutic Area Unit, GlaxoSmithKline R&D, Stevenage, UK.
| | - Federico E Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
21
|
Sun S, Chen Y, Yun Y, Zhao B, Ren Q, Sun X, Meng X, Yan C, Lin P, Liu S. Elevated peripheral inflammation is associated with choroid plexus enlargement in independent sporadic amyotrophic lateral sclerosis cohorts. Fluids Barriers CNS 2024; 21:83. [PMID: 39434103 PMCID: PMC11492712 DOI: 10.1186/s12987-024-00586-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/09/2024] [Indexed: 10/23/2024] Open
Abstract
BACKGROUND Using neuroimaging techniques, growing evidence has suggested that the choroid plexus (CP) volume is enlarged in multiple neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS). Notably, the CP has been suggested to play an important role in inflammation-induced CNS damage under disease conditions. However, to our knowledge, no study has investigated the relationships between peripheral inflammation and CP volume in sporadic ALS patients. Thus, in this study, we aimed to verify CP enlargement and explore its association with peripheral inflammation in vivo in independent ALS cohorts. METHODS Based on structural MRI data, CP volume was measured using Gaussian mixture models and further manually corrected in two independent cohorts of sporadic ALS patients and healthy controls (HCs). Serum inflammatory protein levels were measured using a novel high-sensitivity Olink proximity extension assay (PEA) technique. Xtreme gradient boosting (XGBoost) was used to explore the contribution of peripheral inflammatory factors to CP enlargement. Then, partial correlation analyses were performed. RESULTS CP volumes were significantly higher in ALS patients than in HCs in the independent cohorts. Compared with HCs, serum levels of CRP, IL-6, CXCL10, and 35 other inflammatory factors were significantly increased in ALS patients. Using the XGBoost approach, we established a model-based importance of features, and the top three predictors of CP volume in ALS patients were CRP, IL-6, and CXCL10 (with gains of 0.24, 0.18, and 0.15, respectively). Correlation analyses revealed that CRP, IL-6, and CXCL10 were significantly associated with CP volume in ALS patients (r = 0.462 ∼ 0.636, p < 0.001). CONCLUSION Our study is the first to reveal a consistent and replicable contribution of peripheral inflammation to CP enlargement in vivo in sporadic ALS patients. Given that CP enlargement has been recently detected in other brain diseases, these findings should consider extending to other disease conditions with a peripheral inflammatory component.
Collapse
Affiliation(s)
- Sujuan Sun
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Yujing Chen
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Yan Yun
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Bing Zhao
- Department of Neurology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Qingguo Ren
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Xiaohan Sun
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
| | - Xiangshui Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
| | - Shuangwu Liu
- Department of Neurology, Research Institute of Neuromuscular and Neurodegenerative Diseases, Shandong Provincial Key Laboratory of Mitochondrial Medicine and Rare Diseases, Qilu Hospital of Shandong University, West Wenhua Street No.107, Jinan, 250012, Shandong, China.
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China.
| |
Collapse
|
22
|
Park S, Park BS, Lee HJ, Heo CM, Ko J, Lee DA, Park KM. Choroid plexus enlargement in patients with end-stage renal disease: implications for glymphatic system dysfunction. Front Neurol 2024; 15:1459356. [PMID: 39469069 PMCID: PMC11513315 DOI: 10.3389/fneur.2024.1459356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024] Open
Abstract
Objectives The choroid plexus plays a role in eliminating detrimental metabolites from the brain as an integral component of the glymphatic system. This study aimed to investigate alterations in choroid plexus volume in patients with end-stage renal disease (ESRD) compared with healthy controls. Methods We enrolled 40 patients with ESRD and 42 healthy controls. They underwent brain magnetic resonance imaging (MRI), specifically using three dimensional T1-weighted imaging. We analyzed choroid plexus volumes and compared them between patients with ESRD and healthy controls. The diffusion tensor image analysis along the perivascular space (DTI-ALPS) index was calculated. We compared the DTI-ALPS index between the ESRD patients and healthy controls. Additionally, we evaluated the association between choroid plexus volume and neuropsychological tests results in patients with ESRD. Results There were significant differences in choroid plexus volumes between patients with ESRD and healthy controls. The choroid plexus volumes in patients with ESRD were higher than those in healthy controls (1.392 vs. 1.138%, p < 0.001). The DTI-ALPS index in patients with ESRD was lower than that in healthy controls (1.470 ± 0.239 vs. 1.641 ± 0.266, p = 0.005). There were no differences in choroid plexus volumes between patients with ESRD, regardless of the presence of cognitive impairment. However, among the neuropsychological tests, the scores for word-list recognition in verbal memory were negatively correlated with the choroid plexus volume (r = -0.428, p = 0.006). Conclusion We demonstrated a significant enlargement of the choroid plexus volume in patients with ESRD compared to healthy controls. This finding suggests that patients with ESRD have glymphatic system dysfunction, which may be related to cognitive impairment.
Collapse
Affiliation(s)
- Sihyung Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Bong Soo Park
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Chang Min Heo
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Junghae Ko
- Department of Internal Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
23
|
Lee DA, Lee HJ, Jo G, Park KM. Choroid plexus volumes in patients with transient global amnesia: A retrospective study. Medicine (Baltimore) 2024; 103:e40077. [PMID: 39465804 PMCID: PMC11479460 DOI: 10.1097/md.0000000000040077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Increased choroid plexus (ChP) volume is well known to be associated with glymphatic system dysfunction. This study aimed to investigate glymphatic system function in patients with transient global amnesia (TGA) compared to healthy controls through ChP volumes measurements. We retrospectively enrolled patients with TGA from our hospital, as well as healthy controls. This was retrospectively observational study followed STROBE guideline. All participants underwent brain magnetic resonance imaging, including three-dimensional T1-weighted imaging. We analyzed and compared ChP volumes between patients with TGA and healthy controls and investigated the relationship between ChP volumes and clinical characteristics in patients with TGA. We enrolled 44 patients with TGA and 47 healthy controls. Among the 44 patients with TGA, 38 experienced a single TGA event, while 6 had recurrent TGA events. ChP volumes did not significantly differ between patients with TGA and healthy controls (2.140% vs 2.089%, P = .568). However, ChP volumes were higher in patients with a single TGA event compared to those with recurrent events (2.204% vs 1.740%, P < .013). We observed a significant positive correlation between ChP volumes and age in patients with TGA (R = 0.282, P = .007). ChP volumes were not associated with the duration of amnesia in patients with TGA (R = 0.187, P = .274). We find no differences in the glymphatic system function, as demonstrated by ChP volume for the first time. This study also found a significant correlation between ChP volume and age in patients with TGA, indicating that aging influences glymphatic system function.
Collapse
Affiliation(s)
- Dong Ah Lee
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Geunyeol Jo
- Department of Rehabilitation Medicine, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Kang Min Park
- Department of Neurology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| |
Collapse
|
24
|
Bouhrara M, Walker KA, Alisch JSR, Gong Z, Mazucanti CH, Lewis A, Moghekar AR, Turek L, Collingham V, Shehadeh N, Fantoni G, Kaileh M, Bergeron CM, Bergeron J, Resnick SM, Egan JM. Association of Plasma Markers of Alzheimer's Disease, Neurodegeneration, and Neuroinflammation with the Choroid Plexus Integrity in Aging. Aging Dis 2024; 15:2230-2240. [PMID: 38300640 PMCID: PMC11346414 DOI: 10.14336/ad.2023.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joseph S. R. Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Caio H. Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexandria Lewis
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Abhay R. Moghekar
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Lisa Turek
- Clinical Research Core, Baltimore, MD 21224, USA.
| | | | | | | | - Mary Kaileh
- Clinical Research Core, Baltimore, MD 21224, USA.
| | - Christopher M. Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
25
|
Umemura Y, Watanabe K, Kasai S, Ide S, Ishimoto Y, Sasaki M, Nagaya H, Tatsuo S, Mikami T, Tamada Y, Tomiyama M, Kakeda S. Choroid plexus enlargement in mild cognitive impairment on MRI: a large cohort study. Eur Radiol 2024; 34:5297-5304. [PMID: 38221583 DOI: 10.1007/s00330-023-10572-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/16/2024]
Abstract
OBJECTIVES Previous studies have shown possible choroid plexus (CP) dysfunction in Alzheimer's disease (AD) and highlighted CP enlargement on magnetic resonance imaging (MRI) as a predictive factor of AD. However, few studies have assessed the relationship between CP volume (CPV) and mild cognitive impairment (MCI). In this large elderly population study, we investigated the changes in CPV in patients with MCI using MRI above 65 years. METHODS This cross-sectional study included 2144 participants (median age, 69 years; 60.9% females) who underwent 3T MRI; they were grouped as 218 MCI participants and 1904 cognitively healthy controls. The total intracranial volume (ICV), total brain volume (TBV), CPV, hippocampal volume (HV), and lateral ventricle volume (LVV) were calculated. RESULTS CPV/ICV was a significant independent predictor of MCI (p < 0.01) after adjusting for potential confounders (age, sex, hypertension, hyperlipidemia, diabetes, and education level). The CPV/ICV ratio was also a significant independent predictor of MCI after adjusting for the TBV/ICV ratio (p = 0.022) or HV/ICV ratio (p = 0.017), in addition to potential confounders. The CPV was significantly correlated with the LVV (r = 0.97, p < 0.01). CONCLUSION We identified a relationship between CPV and MCI, which could not be explained by the degree of brain atrophy. Our results support CP dysfunction in MCI. CLINICAL RELEVANCE STATEMENT Choroid plexus volume measurement may serve as a valuable imaging biomarker for diagnosing and monitoring mild cognitive impairment. The enlargement of the choroid plexus, independent of brain atrophy, suggests its potential role in mild cognitive impairment pathology. KEY POINTS • The study examines choroid plexus volume in relation to cognitive decline in elderly. • Enlarged choroid plexus volume independently indicates mild cognitive impairment presence. • Choroid plexus volume could be a specific biomarker for early mild cognitive impairment diagnosis.
Collapse
Affiliation(s)
- Yoshihito Umemura
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Keita Watanabe
- Department of Radiology, Kyoto Prefectural University of Medicine, 465 Kajiimachi, Jokyo-ku, Kyoto-shi, Kyoto-fu, Kyoto, Japan.
| | - Sera Kasai
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Satoru Ide
- Department of Radiology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Yuka Ishimoto
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Miho Sasaki
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Haruka Nagaya
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Soichiro Tatsuo
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Tatsuya Mikami
- Innovation Center for Health Promotion, Hirosaki University, Hirosaki, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Hirosaki University, Hirosaki, Japan
| | - Masahiko Tomiyama
- Department of Neurology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shingo Kakeda
- Department of Radiology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
26
|
Li J, Hu Y, Xu Y, Feng X, Meyer CH, Dai W, Zhao L. Associations between the choroid plexus and tau in Alzheimer's disease using an active learning segmentation pipeline. Fluids Barriers CNS 2024; 21:56. [PMID: 38997764 PMCID: PMC11245807 DOI: 10.1186/s12987-024-00554-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/26/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND The cerebrospinal fluid (CSF), primarily generated by the choroid plexus (ChP), is the major carrier of the glymphatic system. The alternations of CSF production and the ChP can be associated with the Alzheimer's disease (AD). The present work investigated the roles of the ChP in the AD based on a proposed ChP image segmentation pipeline. METHODS A human-in-the-loop ChP image segmentation pipeline was implemented with intermediate and active learning datasets. The performance of the proposed pipeline was evaluated on manual contours by five radiologists, compared to the FreeSurfer and FastSurfer toolboxes. The ChP volume and blood flow were investigated among AD groups. The correlations between the ChP volume and AD CSF biomarkers including phosphorylated tau (p-tau), total tau (t-tau), amyloid-β42 (Aβ42), and amyloid-β40 (Aβ40) was investigated using three models (univariate, multiple variables, and stepwise regression) on two datasets with 806 and 320 subjects. RESULTS The proposed ChP segmentation pipeline achieved superior performance with a Dice coefficient of 0.620 on the test dataset, compared to the FreeSurfer (0.342) and FastSurfer (0.371). Significantly larger volumes (p < 0.001) and higher perfusion (p = 0.032) at the ChP were found in AD compared to CN groups. Significant correlations were found between the tau and the relative ChP volume (the ChP volume and ChP/parenchyma ratio) in each patient groups and in the univariate regression analysis (p < 0.001), the multiple regression model (p < 0.05 except for the t-tau in the LMCI), and in the step-wise regression model (p < 0.021). In addition, the correlation coefficients changed from - 0.32 to - 0.21 along with the AD progression in the multiple regression model. In contrast, the Aβ42 and Aβ40 shows consistent and significant associations with the lateral ventricle related measures in the step-wise regression model (p < 0.027). CONCLUSIONS The proposed pipeline provided accurate ChP segmentation which revealed the associations between the ChP and tau level in the AD. The proposed pipeline is available on GitHub ( https://github.com/princeleeee/ChP-Seg ).
Collapse
Affiliation(s)
- Jiaxin Li
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yueqin Hu
- Psychology, Beijing Normal University, Beijing, China
| | - Yunzhi Xu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Xue Feng
- Biomedical Engineering, University of Virginia, Charlottesville, VA, US
| | - Craig H Meyer
- Biomedical Engineering, University of Virginia, Charlottesville, VA, US
| | - Weiying Dai
- Department of Computer Science, State University of New York at Binghamton, Binghamton, NY, US
| | - Li Zhao
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
27
|
Jiang J, Zhuo Z, Wang A, Li W, Jiang S, Duan Y, Ren Q, Zhao M, Wang L, Yang S, Awan MUN, Liu Y, Xu J. Choroid plexus volume as a novel candidate neuroimaging marker of the Alzheimer's continuum. Alzheimers Res Ther 2024; 16:149. [PMID: 38961406 PMCID: PMC11221040 DOI: 10.1186/s13195-024-01520-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Enlarged choroid plexus (ChP) volume has been reported in patients with Alzheimer's disease (AD) and inversely correlated with cognitive performance. However, its clinical diagnostic and predictive value, and mechanisms by which ChP impacts the AD continuum remain unclear. METHODS This prospective cohort study enrolled 607 participants [healthy control (HC): 110, mild cognitive impairment (MCI): 269, AD dementia: 228] from the Chinese Imaging, Biomarkers, and Lifestyle study between January 1, 2021, and December 31, 2022. Of the 497 patients on the AD continuum, 138 underwent lumbar puncture for cerebrospinal fluid (CSF) hallmark testing. The relationships between ChP volume and CSF pathological hallmarks (Aβ42, Aβ40, Aβ42/40, tTau, and pTau181), neuropsychological tests [Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Neuropsychiatric Inventory (NPI), and Activities of Daily Living (ADL) scores], and multimodal neuroimaging measures [gray matter volume, cortical thickness, and corrected cerebral blood flow (cCBF)] were analyzed using partial Spearman's correlation. The mediating effects of four neuroimaging measures [ChP volume, hippocampal volume, lateral ventricular volume (LVV), and entorhinal cortical thickness (ECT)] on the relationship between CSF hallmarks and neuropsychological tests were examined. The ability of the four neuroimaging measures to identify cerebral Aβ42 changes or differentiate among patients with AD dementia, MCI and HCs was determined using receiver operating characteristic analysis, and their associations with neuropsychological test scores at baseline were evaluated by linear regression. Longitudinal associations between the rate of change in the four neuroimaging measures and neuropsychological tests scores were evaluated on the AD continuum using generalized linear mixed-effects models. RESULTS The participants' mean age was 65.99 ± 8.79 years. Patients with AD dementia exhibited the largest baseline ChP volume than the other groups (P < 0.05). ChP volume enlargement correlated with decreased Aβ42 and Aβ40 levels; lower MMSE and MoCA and higher NPI and ADL scores; and lower volume, cortical thickness, and cCBF in other cognition-related regions (all P < 0.05). ChP volume mediated the association of Aβ42 and Aβ40 levels with MMSE scores (19.08% and 36.57%), and Aβ42 levels mediated the association of ChP volume and MMSE or MoCA scores (39.49% and 34.36%). ChP volume alone better identified cerebral Aβ42 changes than LVV alone (AUC = 0.81 vs. 0.67, P = 0.04) and EC thickness alone (AUC = 0.81 vs.0.63, P = 0.01) and better differentiated patients with MCI from HCs than hippocampal volume alone (AUC = 0.85 vs. 0.81, P = 0.01), and LVV alone (AUC = 0.85 vs.0.82, P = 0.03). Combined ChP and hippocampal volumes significantly increased the ability to differentiate cerebral Aβ42 changes and patients among AD dementia, MCI, and HCs groups compared with hippocampal volume alone (all P < 0.05). After correcting for age, sex, years of education, APOE ε4 status, eTIV, and hippocampal volume, ChP volume was associated with MMSE, MoCA, NPI, and ADL score at baseline, and rapid ChP volume enlargement was associated with faster deterioration in NPI scores with an average follow-up of 10.03 ± 4.45 months (all P < 0.05). CONCLUSIONS ChP volume may be a novel neuroimaging marker associated with neurodegenerative changes and clinical AD manifestations. It could better detect the early stages of the AD and predict prognosis, and significantly enhance the differential diagnostic ability of hippocampus on the AD continuum.
Collapse
Affiliation(s)
- Jiwei Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Zhizheng Zhuo
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Anxin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Wenyi Li
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shirui Jiang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yunyun Duan
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Qiwei Ren
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Min Zhao
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Linlin Wang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Shiyi Yang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- National Clinical Research Center for Neurological Diseases, Beijing, China
| | | | - Yaou Liu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| | - Jun Xu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Beijing, China.
| |
Collapse
|
28
|
Pearson MJ, Wagstaff R, Williams RJ, for the Alzheimer's Disease Neuroimaging Initiative. Choroid plexus volumes and auditory verbal learning scores are associated with conversion from mild cognitive impairment to Alzheimer's disease. Brain Behav 2024; 14:e3611. [PMID: 38956818 PMCID: PMC11219301 DOI: 10.1002/brb3.3611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/30/2024] [Accepted: 06/01/2024] [Indexed: 07/04/2024] Open
Abstract
PURPOSE Mild cognitive impairment (MCI) can be the prodromal phase of Alzheimer's disease (AD) where appropriate intervention might prevent or delay conversion to AD. Given this, there has been increasing interest in using magnetic resonance imaging (MRI) and neuropsychological testing to predict conversion from MCI to AD. Recent evidence suggests that the choroid plexus (ChP), neural substrates implicated in brain clearance, undergo volumetric changes in MCI and AD. Whether the ChP is involved in memory changes observed in MCI and can be used to predict conversion from MCI to AD has not been explored. METHOD The current study used data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database to investigate whether later progression from MCI to AD (progressive MCI [pMCI], n = 115) or stable MCI (sMCI, n = 338) was associated with memory scores using the Rey Auditory Verbal Learning Test (RAVLT) and ChP volumes as calculated from MRI. Classification analyses identifying pMCI or sMCI group membership were performed to compare the predictive ability of the RAVLT and ChP volumes. FINDING The results indicated a significant difference between pMCI and sMCI groups for right ChP volume, with the pMCI group showing significantly larger right ChP volume (p = .01, 95% confidence interval [-.116, -.015]). A significant linear relationship between the RAVLT scores and right ChP volume was found across all participants, but not for the two groups separately. Classification analyses showed that a combination of left ChP volume and auditory verbal learning scores resulted in the most accurate classification performance, with group membership accurately predicted for 72% of the testing data. CONCLUSION These results suggest that volumetric ChP changes appear to occur before the onset of AD and might provide value in predicting conversion from MCI to AD.
Collapse
Affiliation(s)
- Michael J. Pearson
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | - Ruth Wagstaff
- Faculty of HealthCharles Darwin UniversityDarwinNorthern TerritoryAustralia
| | | | | |
Collapse
|
29
|
Castillo PR, Patel V, Mera RM, Rumbea DA, Del Brutto OH. Choroid plexus calcifications are not associated with putative markers of glymphatic dysfunction: A population study in middle-aged and older adults. Neuroradiol J 2024; 37:342-350. [PMID: 38490679 PMCID: PMC11138340 DOI: 10.1177/19714009241240315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND AND PURPOSE Recent studies have suggested an association between dysfunction of the choroid plexus and the glymphatic system. However, information is inconclusive. Following a population-based study design, we aimed to assess the association between choroid plexus calcifications (CPCs)-as a surrogate of choroid plexus dysfunction-and severity and progression of putative markers of glymphatic dysfunction, including white matter hyperintensities (WMH) of presumed vascular origin and abnormally enlarged basal ganglia perivascular spaces (BG-PVS). METHODS This study recruited community-dwellers aged ≥40 years living in neighboring Ecuadorian villages. Participants who had baseline head CTs and brain MRIs were included in cross-sectional analyses and those who additional had follow-up MRIs (after a mean of 6.4 ± 1.5 years) were included in longitudinal analyses. Logistic and Poisson regression models, adjusted for demographics and cardiovascular risk factors, were fitted to assess associations between CPCs and WMH and enlarged BG-PVS severity and progression. RESULTS A total of 590 individuals were included in the cross-sectional component of the study, and 215 in the longitudinal component. At baseline, 25% of participants had moderate-to-severe WMH and 27% had abnormally enlarged BG-PVS. At follow-up, 36% and 20% of participants had WMH and enlarged BG-PVS progression, respectively. Logistic regression models showed no significant differences between CPCs volumes stratified in quartiles and severity of WMH and enlarged BG-PVS. Poisson regression models showed no association between the exposure and WMH and enlarged BG-PVS progression. Baseline age remained significant in these models. CONCLUSIONS Choroid plexus calcifications are not associated with putative markers of glymphatic system dysfunction.
Collapse
Affiliation(s)
| | - Vishal Patel
- Department of Radiology, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Robertino M Mera
- Biostatistics/Epidemiology, Freenome, Inc., South San Francisco, CA, USA
| | - Denisse A Rumbea
- School of Medicine and Research Center, Universidad Espíritu Santo – Ecuador, Samborondón, Ecuador
| | - Oscar H Del Brutto
- School of Medicine and Research Center, Universidad Espíritu Santo – Ecuador, Samborondón, Ecuador
| |
Collapse
|
30
|
Storelli L, Pagani E, Rubin M, Margoni M, Filippi M, Rocca MA. A Fully Automatic Method to Segment Choroid Plexuses in Multiple Sclerosis Using Conventional MRI Sequences. J Magn Reson Imaging 2024; 59:1643-1652. [PMID: 37530734 DOI: 10.1002/jmri.28937] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Choroid plexus (CP) volume has been recently proposed as a proxy for brain neuroinflammation in multiple sclerosis (MS). PURPOSE To develop and validate a fast automatic method to segment CP using routinely acquired brain T1-weighted and FLAIR MRI. STUDY TYPE Retrospective. POPULATION Fifty-five MS patients (33 relapsing-remitting, 22 progressive; mean age = 46.8 ± 10.2 years; 31 women) and 60 healthy controls (HC; mean age = 36.1 ± 12.6 years, 33 women). FIELD STRENGTH/SEQUENCE 3D T2-weighted FLAIR and 3D T1-weighted gradient echo sequences at 3.0 T. ASSESSMENT Brain tissues were segmented on T1-weighted sequences and a Gaussian Mixture Model (GMM) was fitted to FLAIR image intensities obtained from the ventricle masks of the SIENAX. A second GMM was then applied on the thresholded and filtered ventricle mask. CP volumes were automatically determined and compared with those from manual segmentation by two raters (with 3 and 10 years' experience; reference standard). CP volumes from previously published automatic segmentation methods (freely available Freesurfer [FS] and FS-GMM) were also compared with reference standard. Expanded Disability Status Scale (EDSS) score was assessed within 3 days of MRI. Computational time was assessed for each automatic technique and manual segmentation. STATISTICAL TESTS Comparisons of CP volumes with reference standard were evaluated with Bland Altman analysis. Dice similarity coefficients (DSC) were computed to assess automatic CP segmentations. Volume differences between MS and HC for each method were assessed with t-tests and correlations of CP volumes with EDSS were assessed with Pearson's correlation coefficients (R). A P value <0.05 was considered statistically significant. RESULTS Compared to manual segmentation, the proposed method had the highest segmentation accuracy (mean DSC = 0.65 ± 0.06) compared to FS (mean DSC = 0.37 ± 0.08) and FS-GMM (0.58 ± 0.06). The percentage CP volume differences relative to manual segmentation were -0.1% ± 0.23, 4.6% ± 2.5, and -0.48% ± 2 for the proposed method, FS, and FS-GMM, respectively. The Pearson's correlations between automatically obtained CP volumes and the manually obtained volumes were 0.70, 0.54, and 0.56 for the proposed method, FS, and FS-GMM, respectively. A significant correlation between CP volume and EDSS was found for the proposed automatic pipeline (R = 0.2), for FS-GMM (R = 0.3) and for manual segmentation (R = 0.4). Computational time for the proposed method (32 ± 2 minutes) was similar to the manual segmentation (20 ± 5 minutes) but <25% of the FS (120 ± 15 minutes) and FS-GMM (125 ± 15 minutes) methods. DATA CONCLUSION This study developed an accurate and easily implementable method for automatic CP segmentation in MS using T1-weighted and FLAIR MRI. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 4.
Collapse
Affiliation(s)
- Loredana Storelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisabetta Pagani
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Martina Rubin
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Monica Margoni
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
31
|
Manelis A, Hu H, Miceli R, Satz S, Lau R, Iyengar S, Swartz HA. The relationship between the size and asymmetry of the lateral ventricles and cortical myelin content in individuals with mood disorders. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.30.24306621. [PMID: 38746112 PMCID: PMC11092679 DOI: 10.1101/2024.04.30.24306621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Background Although enlargement of the lateral ventricles was previously observed in individuals with mood disorders, the link between ventricular size and asymmetry with other indices of brain structure remains underexplored. In this study, we examined the association of lateral ventricular size and asymmetry with cortical myelin content in individuals with bipolar (BD) and depressive (DD) disorders compared to healthy controls (HC). Methods Magnetic resonance imaging (MRI) was used to obtain T1w and T2w images from 149 individuals (age=27.7 (SD=6.1) years, 78% female, BD=38, DD=57, HC=54). Cortical myelin content was calculated using the T1w/T2w ratio. Elastic net regularized regression identified brain regions whose myelin content was associated with ventricular size and asymmetry. A post-hoc linear regression examined how participants' diagnosis, illness duration, and current level of depression moderated the relationship between the size and asymmetry of the lateral ventricles and levels of cortical myelin in the selected brain regions. Results Individuals with mood disorders had larger lateral ventricles than HC. Larger ventricles and lower asymmetry were observed in individuals with BD who had longer lifetime illness duration and more severe current depressive symptoms. A greater left asymmetry was observed in participants with DD than in those with BD (p<0.01). Elastic net revealed that both ventricular enlargement and asymmetry were associated with altered myelin content in cingulate, frontal, and sensorimotor cortices. In BD, but not other groups, ventricular enlargement was related to altered myelin content in the right insular regions. Conclusions Lateral ventricular enlargement and asymmetry are linked to myelin content imbalance, thus, potentially leading to emotional and cognitive dysfunction in mood disorders.
Collapse
|
32
|
Zhang M, Hu X, Wang L. A Review of Cerebrospinal Fluid Circulation and the Pathogenesis of Congenital Hydrocephalus. Neurochem Res 2024; 49:1123-1136. [PMID: 38337135 PMCID: PMC10991002 DOI: 10.1007/s11064-024-04113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/13/2024] [Accepted: 01/20/2024] [Indexed: 02/12/2024]
Abstract
The brain's ventricles are filled with a colorless fluid known as cerebrospinal fluid (CSF). When there is an excessive accumulation of CSF in the ventricles, it can result in high intracranial pressure, ventricular enlargement, and compression of the surrounding brain tissue, leading to potential damage. This condition is referred to as hydrocephalus. Hydrocephalus is classified into two categories: congenital and acquired. Congenital hydrocephalus (CH) poses significant challenges for affected children and their families, particularly in resource-poor countries. Recognizing the psychological and economic impacts is crucial for developing interventions and support systems that can help alleviate the distress and burden faced by these families. As our understanding of CSF production and circulation improves, we are gaining clearer insights into the causes of CH. In this article, we will summarize the current knowledge regarding CSF circulation pathways and the underlying causes of CH. The main causes of CH include abnormalities in the FoxJ1 pathway of ventricular cilia, dysfunctions in the choroid plexus transporter Na+-K+-2Cl- contransporter isoform 1, developmental abnormalities in the cerebral cortex, and structural abnormalities within the brain. Understanding the causes of CH is indeed crucial for advancing research and developing effective treatment strategies. In this review, we will summarize the findings from existing studies on the causes of CH and propose potential research directions to further our understanding of this condition.
Collapse
Affiliation(s)
- Mingzhao Zhang
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | - Xiangjun Hu
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| | - Lifeng Wang
- Laboratory of pathology, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China.
| |
Collapse
|
33
|
Yin KF, Gu XJ, Su WM, Chen T, Long J, Gong L, Ying ZY, Dou M, Jiang Z, Duan QQ, Cao B, Gao X, Chi LY, Chen YP. Causal association and mediating effect of blood biochemical metabolic traits and brain image-derived endophenotypes on Alzheimer's disease. Heliyon 2024; 10:e27422. [PMID: 38644883 PMCID: PMC11033073 DOI: 10.1016/j.heliyon.2024.e27422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 04/23/2024] Open
Abstract
Background Recent genetic evidence supports that circulating biochemical and metabolic traits (BMTs) play a causal role in Alzheimer's disease (AD), which might be mediated by changes in brain structure. Here, we leveraged publicly available genome-wide association study data to investigate the intrinsic causal relationship between blood BMTs, brain image-derived phenotypes (IDPs) and AD. Methods Utilizing the genetic variants associated with 760 blood BMTs and 172 brain IDPs as the exposure and the latest AD summary statistics as the outcome, we analyzed the causal relationship between blood BMTs and brain IDPs and AD by using a two-sample Mendelian randomization (MR) method. Additionally, we used two-step/mediation MR to study the mediating effect of brain IDPs between blood BMTs and AD. Results Twenty-five traits for genetic evidence supporting a causal association with AD were identified, including 12 blood BMTs and 13 brain IDPs. For BMTs, glutamine consistently reduced the risk of AD in 3 datasets. For IDPs, specific alterations of cortical thickness (atrophy in frontal pole and insular lobe, and incrassation in superior parietal lobe) and subcortical volume (atrophy in hippocampus and its subgroups, left accumbens and left choroid plexus, and expansion in cerebral white matter) are vulnerable to AD. In the two-step/mediation MR analysis, superior parietal lobe, right hippocampal fissure and left accumbens were identified to play a potential mediating role among three blood BMTs and AD. Conclusions The results obtained in our study suggest that 12 circulating BMTs and 13 brain IDPs play a causal role in AD. Importantly, a subset of BMTs exhibit shared genetic architecture and potentially causal relationships with brain structure, which may contribute to the alteration of brain IDPs in AD.
Collapse
Affiliation(s)
- Kang-Fu Yin
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiao-Jing Gu
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wei-Ming Su
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Chen
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiang Long
- Mental Health Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Li Gong
- Rare Diseases Center, Outpatient Department, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhi-Ye Ying
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Meng Dou
- Chengdu institute of computer application, Chinese Academy of Sciences, Chengdu, 610041, Sichuan, China
| | - Zheng Jiang
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qing-Qing Duan
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Bei Cao
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xia Gao
- Department of Geriatrics, Dazhou central hospital, Dazhou, 635000, Sichuan, China
| | - Li-Yi Chi
- Department of Neurology, First Affiliated Hospital of Air Force Military Medical University, Xi'an, 710072, Shanxi, China
| | - Yong-Ping Chen
- Department of Neurology, Institute of Brain Science and Brain-inspired Technology, Centre for Rare Diseases, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| |
Collapse
|
34
|
Dai T, Lou J, Kong D, Li J, Ren Q, Chen Y, Sun S, Yun Y, Sun X, Yang Y, Shao K, Li W, Zhao Y, Meng X, Yan C, Lin P, Liu S. Choroid plexus enlargement in amyotrophic lateral sclerosis patients and its correlation with clinical disability and blood-CSF barrier permeability. Fluids Barriers CNS 2024; 21:36. [PMID: 38632611 PMCID: PMC11025206 DOI: 10.1186/s12987-024-00536-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Using in vivo neuroimaging techniques, growing evidence has demonstrated that the choroid plexus (CP) volume is enlarged in patients with several neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. However, although animal and postmortem findings suggest that CP abnormalities are likely important pathological mechanisms underlying amyotrophic lateral sclerosis (ALS), the third most common neurodegenerative disease, no available study has been conducted to thoroughly assess CP abnormalities and their clinical relevance in vivo in ALS patients to date. Thus, we aimed to determine whether in vivo CP enlargement may occur in ALS patients. We also aimed to identify the relationships of CP volume with clinical disabilities and blood-CSF barrier (BCSFB) permeability in ALS patients. METHODS In this retrospective study, based on structural MRI data, CP volume was assessed using a Gaussian mixture model and underwent further manual correction in 155 ALS patients and 105 age- and sex-matched HCs from October 2021 to April 2023. The ALS Functional Rating Scale-Revised (ALSFRS-R) was used to assess clinical disability. The CSF/serum albumin quotient (Qalb) was used to assess BCSFB permeability. Moreover, all the ALS patients completed genetic testing, and according to genetic testing, the ALS patients were further divided into genetic ALS subgroup and sporadic ALS subgroup. RESULTS We found that compared with HCs, ALS patients had a significantly higher CP volume (p < 0.001). Moreover, compared with HCs, CP volume was significantly increased in both ALS patients with and without known genetic mutations after family-wise error correction (p = 0.006 and p < 0.001, respectively), while there were no significant differences between the two ALS groups. Furthermore, the CP volume was significantly correlated with the ALSFRS-r score (r = -0.226; p = 0.005) and the Qalb (r = 0.479; p < 0.001) in ALS patients. CONCLUSION Our study first demonstrates CP enlargement in vivo in ALS patients, and continues to suggest an important pathogenetic role for CP abnormalities in ALS. Moreover, assessing CP volume is likely a noninvasive and easy-to-implement approach for screening BCSFB dysfunction in ALS patients.
Collapse
Affiliation(s)
- Tingjun Dai
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Jianwei Lou
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Deyuan Kong
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Jinyu Li
- Department of Neurology, Xiamen Branch, Zhongshan Hospital, Fudan University, 361015, Xiamen, China
| | - Qingguo Ren
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Yujing Chen
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Sujuan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yan Yun
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital, Shandong University, Jinan, China
| | - Xiaohan Sun
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yiru Yang
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Kai Shao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Wei Li
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
| | - Xiangshui Meng
- Department of Radiology, Cheeloo College of Medicine, Qilu Hospital (Qingdao), Shandong University, Qingdao, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China
- Department of Clinical Laboratory, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, China
| | - Pengfei Lin
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
| | - Shuangwu Liu
- Research Institute of Neuromuscular and Neurodegenerative Disease, Department of Neurology, Qilu Hospital, Shandong University, West Wenhua Street No.107, 250012, Jinan, China.
- School of Nursing and Rehabilitation, Cheeloo College of Medicine, Shandong University, Jinan, China.
| |
Collapse
|
35
|
Andravizou A, Stavropoulou De Lorenzo S, Kesidou E, Michailidou I, Parissis D, Boziki MK, Stamati P, Bakirtzis C, Grigoriadis N. The Time Trajectory of Choroid Plexus Enlargement in Multiple Sclerosis. Healthcare (Basel) 2024; 12:768. [PMID: 38610190 PMCID: PMC11011748 DOI: 10.3390/healthcare12070768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/22/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Choroid plexus (CP) can be seen as a watchtower of the central nervous system (CNS) that actively regulates CNS homeostasis. A growing body of literature suggests that CP alterations are involved in the pathogenesis of multiple sclerosis (MS) but the underlying mechanisms remain elusive. CPs are enlarged and inflamed in relapsing-remitting (RRMS) but also in clinically isolated syndrome (CIS) and radiologically isolated syndrome (RIS) stages, far beyond MS diagnosis. Increases in the choroid plexus/total intracranial volume (CP/TIV) ratio have been robustly associated with increased lesion load, higher translocator protein (TSPO) uptake in normal-appearing white matter (NAWM) and thalami, as well as with higher annual relapse rate and disability progression in highly active RRMS individuals, but not in progressive MS. The CP/TIV ratio has only slightly been correlated with magnetic resonance imaging (MRI) findings (cortical or whole brain atrophy) and clinical outcomes (EDSS score) in progressive MS. Therefore, we suggest that plexus volumetric assessments should be mainly applied to the early disease stages of MS, whereas it should be taken into consideration with caution in progressive MS. In this review, we attempt to clarify the pathological significance of the temporal CP volume (CPV) changes in MS and highlight the pitfalls and limitations of CP volumetric analysis.
Collapse
Affiliation(s)
- Athina Andravizou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Iliana Michailidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Marina-Kleopatra Boziki
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, 41334 Larissa, Greece;
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (A.A.); (S.S.D.L.); (E.K.); (I.M.); (D.P.); (M.-K.B.); (N.G.)
| |
Collapse
|
36
|
Bonifacio C, Savini G, Reca C, Garoli F, Levi R, Vatteroni G, Balzarini L, Allocca M, Furfaro F, Dal Buono A, Armuzzi A, Danese S, Matteoli M, Rescigno M, Fiorino G, Politi LS. The gut-brain axis: Correlation of choroid plexus volume and permeability with inflammatory biomarkers in Crohn's disease. Neurobiol Dis 2024; 192:106416. [PMID: 38272141 DOI: 10.1016/j.nbd.2024.106416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/11/2024] [Accepted: 01/22/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND The dysregulation of the gut-brain axis in chronic inflammatory bowel diseases can cause neuro-psychological disturbances, but the underlying mechanisms are still not fully understood. The choroid plexus (CP) maintains brain homeostasis and nourishment through the secretion and clearance of cerebrospinal fluid. Recent research has demonstrated the existence of a CP vascular barrier in mice which is modulated during intestinal inflammation. This study investigates possible correlations between CP modifications and inflammatory activity in patients with Crohn's disease (CD). METHODS In this prospective study, 17 patients with CD underwent concomitant abdominal and brain 3 T MRI. The volume and permeability of CP were compared with levels of C-reactive protein (CRP), fecal calprotectin (FC), sMARIA and SES-CD scores. RESULTS The CP volume was negatively correlated with CRP levels (R = -0.643, p-value = 0.024) and FC (R = -0.571, p-value = 0.050). DCE metrics normalized by CP volume were positively correlated with CRP (K-trans: R = 0.587, p-value = 0.045; Vp: R = 0.706, p-value = 0.010; T1: R = 0.699, p-value = 0.011), and FC (Vp: R = 0.606, p-value = 0.037). CONCLUSIONS Inflammatory activity in patients with CD is associated with changes in CP volume and permeability, thus supporting the hypothesis that intestinal inflammation could affect the brain through the modulation of CP vascular barrier also in humans.
Collapse
Affiliation(s)
- Cristiana Bonifacio
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giovanni Savini
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Christian Reca
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Federico Garoli
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Riccardo Levi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Giulia Vatteroni
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy
| | - Luca Balzarini
- Radiology Department, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Mariangela Allocca
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Arianna Dal Buono
- IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Alessandro Armuzzi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IBD Center, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Silvio Danese
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy
| | - Michela Matteoli
- Laboratory of Pharmacology and Brain Pathology, Neuro Center, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy; Institute of Neuroscience, National Research Council of Italy (CNR) c/o Humanitas Mirasole S.p.A, Via Manzoni 56, 20089, Rozzano, Milan, Italy
| | - Maria Rescigno
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089 Milan, Italy
| | - Gionata Fiorino
- Department of Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital and Vita-Salute San Raffaele University, Milan, Italy; Gastroenterology and Digestive Endoscopy, San Camillo-Forlanini Hospital, Rome, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Via R. Levi Montalcini 4, 20072, Pieve Emanuele, Milan, Italy; Neuroradiology Unit, IRCCS Humanitas Research Hospital, Via Manzoni 56, 20089, Rozzano, Milan, Italy.
| |
Collapse
|
37
|
He P, Gao Y, Shi L, Li Y, Qiu Y, Feng S, Tie Z, Gong L, Ma G, Zhang Y, Nie K, Wang L. The association of CSF biomarkers and cognitive decline with choroid plexus volume in early Parkinson's disease. Parkinsonism Relat Disord 2024; 120:105987. [PMID: 38183890 DOI: 10.1016/j.parkreldis.2023.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/19/2023] [Accepted: 12/28/2023] [Indexed: 01/08/2024]
Abstract
OBJECTIVE This study aims to determine the link between choroid plexus (CP) volume and cognitive decline in patients with early-stage Parkinson's disease (PD) and to test whether pathological proteins in the cerebrospinal fluid (CSF) are involved in the modulation of any detrimental effects from CP volume. METHODS Data on 95 early-stage PD patients with 5 years of follow-up were collected from the Parkinson's Progression Marker Initiative cohort. The patients were separated into three groups based on tertiles of baseline CP volume. We then used a linear mixed model for longitudinal analysis and conducted path analysis to investigate mediating effects. RESULTS At baseline, the patients in both the upper and middle tertile group were older and had lower concentrations of CSF Aβ1-42 than those in the lowest tertile group. Longitudinal analysis showed that the upper tertile group suffered from a more rapid cognitive decline in the Symbol Digit Modalities test, Hopkins Verbal Learning Test (HVLT)-retention, and HVLT delayed recalled score. Furthermore, path analysis showed that the pathological effects of CP volume on the 5-year decline in memory might be partly mediated by the CSF Aβ1-42/αsyn ratio. CONCLUSION CP enlargement could be an independent risk factor for decreased cognition in patients with early-stage PD, and this risk may be mediated by CSF pathological proteins.
Collapse
Affiliation(s)
- Peikun He
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuyuan Gao
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lin Shi
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; BrainNow Research Institute, Shenzhen, Guangdong Province, China
| | - Yanyi Li
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yihui Qiu
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shujun Feng
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zihui Tie
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Liangxu Gong
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Guixian Ma
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuhu Zhang
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China
| | - Kun Nie
- Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| | - Lijuan Wang
- School of Medicine, South China University of Technology, Guangzhou, 510006, Guangdong Province, China; Department of Neurology, Guangdong Neuroscience Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China; Guangzhou Key Laboratory of Diagnosis and Treatment for Neurodegenerative Diseases, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
38
|
Bannai D, Reuter M, Hegde R, Hoang D, Adhan I, Gandu S, Pong S, Raymond N, Zeng V, Chung Y, He G, Sun D, van Erp TGM, Addington J, Bearden CE, Cadenhead K, Cornblatt B, Mathalon DH, McGlashan T, Jeffries C, Stone W, Tsuang M, Walker E, Woods SW, Cannon TD, Perkins D, Keshavan M, Lizano P. Linking enlarged choroid plexus with plasma analyte and structural phenotypes in clinical high risk for psychosis: A multisite neuroimaging study. Brain Behav Immun 2024; 117:70-79. [PMID: 38169244 PMCID: PMC10932816 DOI: 10.1016/j.bbi.2023.12.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/04/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Choroid plexus (ChP) enlargement exists in first-episode and chronic psychosis, but whether enlargement occurs before psychosis onset is unknown. This study investigated whether ChP volume is enlarged in individuals with clinical high-risk (CHR) for psychosis and whether these changes are related to clinical, neuroanatomical, and plasma analytes. METHODS Clinical and neuroimaging data from the North American Prodrome Longitudinal Study 2 (NAPLS2) was used for analysis. 509 participants (169 controls, 340 CHR) were recruited. Conversion status was determined after 2-years of follow-up, with 36 psychosis converters. The lateral ventricle ChP was manually segmented from baseline scans. A subsample of 31 controls and 53 CHR had plasma analyte and neuroimaging data. RESULTS Compared to controls, CHR (d = 0.23, p = 0.017) and non-converters (d = 0.22, p = 0.03) demonstrated higher ChP volumes, but not in converters. In CHR, greater ChP volume correlated with lower cortical (r = -0.22, p < 0.001), subcortical gray matter (r = -0.21, p < 0.001), and total white matter volume (r = -0.28,p < 0.001), as well as larger lateral ventricle volume (r = 0.63,p < 0.001). Greater ChP volume correlated with makers functionally associated with the lateral ventricle ChP in CHR [CCL1 (r = -0.30, p = 0.035), ICAM1 (r = 0.33, p = 0.02)], converters [IL1β (r = 0.66, p = 0.004)], and non-converters [BMP6 (r = -0.96, p < 0.001), CALB1 (r = -0.98, p < 0.001), ICAM1 (r = 0.80, p = 0.003), SELE (r = 0.59, p = 0.026), SHBG (r = 0.99, p < 0.001), TNFRSF10C (r = 0.78, p = 0.001)]. CONCLUSIONS CHR and non-converters demonstrated significantly larger ChP volumes compared to controls. Enlarged ChP was associated with neuroanatomical alterations and analyte markers functionally associated with the ChP. These findings suggest that the ChP may be a key an important biomarker in CHR.
Collapse
Affiliation(s)
- Deepthi Bannai
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Martin Reuter
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Rachal Hegde
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Dung Hoang
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Iniya Adhan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Swetha Gandu
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Sovannarath Pong
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Nick Raymond
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Victor Zeng
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, CT, USA
| | - George He
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Daqiang Sun
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA, USA
| | - Jean Addington
- Hotchkins Brain Institute, Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior and Department of Psychology, UCLA, Los Angeles, CA, USA
| | | | | | | | | | - Clark Jeffries
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA
| | - William Stone
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Ming Tsuang
- Department of Psychiatry, UCSD, San Diego, CA, USA
| | - Elaine Walker
- Department of Psychology, Yale University, New Haven, CT, USA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale University, New Haven, CT, USA
| | - Diana Perkins
- Renaissance Computing Institute, University of North Carolina, Chapel Hill, NC, USA; Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA
| | - Matcheri Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Paulo Lizano
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Division of Translational Neuroscience, Beth Israel Deaconess Medical Center, Boston, MA, USA.
| |
Collapse
|
39
|
Visani V, Pizzini FB, Natale V, Tamanti A, Anglani M, Bertoldo A, Calabrese M, Castellaro M. Choroid plexus volume in multiple sclerosis can be estimated on structural MRI avoiding contrast injection. Eur Radiol Exp 2024; 8:33. [PMID: 38409562 PMCID: PMC10897123 DOI: 10.1186/s41747-024-00421-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/11/2023] [Indexed: 02/28/2024] Open
Abstract
We compared choroid plexus (ChP) manual segmentation on non-contrast-enhanced (non-CE) sequences and reference standard CE T1- weighted (T1w) sequences in 61 multiple sclerosis patients prospectively included. ChP was separately segmented on T1w, T2-weighted (T2w) fluid-attenuated inversion-recovery (FLAIR), and CE-T1w sequences. Inter-rater variability assessed on 10 subjects showed high reproducibility between sequences measured by intraclass correlation coefficient (T1w 0.93, FLAIR 0.93, CE-T1w 0.99). CE-T1w showed higher signal-to-noise ratio and contrast-to-noise ratio (CE-T1w 23.77 and 18.49, T1w 13.73 and 7.44, FLAIR 13.09 and 10.77, respectively). Manual segmentation of ChP resulted 3.073 ± 0.563 mL (mean ± standard deviation) on T1w, 3.787 ± 0.679 mL on FLAIR, and 2.984 ± 0.506 mL on CE-T1w images, with an error of 28.02 ± 19.02% for FLAIR and 3.52 ± 12.61% for T1w. FLAIR overestimated ChP volume compared to CE-T1w (p < 0.001). The Dice similarity coefficient of CE-T1w versus T1w and FLAIR was 0.67 ± 0.05 and 0.68 ± 0.05, respectively. Spatial error distribution per slice was calculated after nonlinear coregistration to the standard MNI152 space and showed a heterogeneous profile along the ChP especially near the fornix and the hippocampus. Quantitative analyses suggest T1w as a surrogate of CE-T1w to estimate ChP volume.Relevance statement To estimate the ChP volume, CE-T1w can be replaced by non-CE T1w sequences because the error is acceptable, while FLAIR overestimates the ChP volume. This encourages the development of automatic tools for ChP segmentation, also improving the understanding of the role of the ChP volume in multiple sclerosis, promoting longitudinal studies.Key points • CE-T1w sequences are considered the reference standard for ChP manual segmentation.• FLAIR sequences showed a higher CNR than T1w sequences but overestimated the ChP volume.• Non-CE T1w sequences can be a surrogate of CE-T1w sequences for manual segmentation of ChP.
Collapse
Affiliation(s)
- Valentina Visani
- Department of Information Engineering, University of Padova, Padova, Italy
| | - Francesca B Pizzini
- Department of Engineering for Innovation Medicine, University of Verona, Verona, Italy
| | - Valerio Natale
- Department of Diagnostic and Public Health, University of Verona, Verona, Italy
| | - Agnese Tamanti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alessandra Bertoldo
- Department of Information Engineering, University of Padova, Padova, Italy
- Padova Neuroscience Center, University of Padova, Padova, Italy
| | - Massimiliano Calabrese
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Marco Castellaro
- Department of Information Engineering, University of Padova, Padova, Italy.
| |
Collapse
|
40
|
Akaishi T, Fujimori J, Nakashima I. Enlarged choroid plexus in multiple sclerosis is associated with increased lesion load and atrophy in white matter but not gray matter atrophy. Mult Scler Relat Disord 2024; 82:105424. [PMID: 38181695 DOI: 10.1016/j.msard.2024.105424] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/16/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND Enlargement of the choroid plexus (CP) is reported to associate with inflammatory activity and contribute to brain atrophy in patients with multiple sclerosis (pwMS). However, a recent study in healthy volunteers (HVTs) has suggested that CP enlargement can be attributed to ventriculomegaly. OBJECTIVES To clarify the pathological significance of the enlargement of CP in multiple sclerosis (MS). METHODS A total of 102 pwMS (89 with relapsing-remitting MS and 13 with secondary progressive MS) and 41 HVTs were cross-sectionally evaluated using brain volumetry. The CP volume was compared between disease groups and investigated for the relationships with other brain regional volumes. RESULTS CP volume was significantly larger in pwMS than in HVTs in the univariate analysis, but not in multivariable analysis. Meanwhile, the CP and lateral ventricle (LV) volumes were significantly correlated. CP enlargement was significantly associated with increased lesion load and cerebral white matter (WM) atrophy, even after adjusting for LV volume. In contrast, multivariable analyses revealed that LV enlargement, but not CP enlargement, was associated with total gray matter (GM) atrophy. CONCLUSION CP enlargement was closely associated with LV enlargement. After adjusting for LV volume, CP enlargement in pwMS was associated with increased lesion load and WM atrophy but not GM atrophy.
Collapse
Affiliation(s)
- Tetsuya Akaishi
- Department of Neurology, Tohoku University, Sendai, Japan; Department of Education and Support for Regional Medicine, Tohoku University, Sendai, Japan
| | - Juichi Fujimori
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan.
| | - Ichiro Nakashima
- Division of Neurology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| |
Collapse
|
41
|
Jeong SH, Park CJ, Cha J, Kim SY, Lee SK, Kim YJ, Sohn YH, Chung SJ, Lee PH. Choroid Plexus Volume, Amyloid Burden, and Cognition in the Alzheimer's Disease Continuum. Aging Dis 2024; 16:AD.2024.0118. [PMID: 38300638 PMCID: PMC11745423 DOI: 10.14336/ad.2024.0118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
As a part of the glymphatic system, the choroid plexus (CP) is involved in the clearance of harmful metabolites from the brain. We investigated the association between CP volume (CPV), amyloid-β (Aβ) burden, and cognition in patients on the Alzheimer's disease (AD) continuum. We retrospectively reviewed the records of 203 patients on the AD continuum and 82 healthy controls who underwent brain magnetic resonance imaging and 18F-florbetaben positron emission tomography. Automatic segmentation was performed, and the CPV was calculated. Cognitive function was assessed using detailed neuropsychological tests, and patients on the AD continuum were categorized into the non-dementia and dementia groups. The relationships between CPV, Aβ burden, and cognitive function were assessed using multivariate linear regression and linear mixed model. CPV was greater in the AD group than in the healthy control group (1.50 vs. 1.30, P < 0.001), but was comparable between the AD non-dementia and dementia groups (1.50 vs. 1.48, P = 0.585). After adjusting for age and sex, a larger CPV was significantly associated with greater global Aβ deposition (β = 0.20, P = 0.002). Larger CPV was also associated with worse general cognitive function assessed using the sum of boxes of the clinical dementia rating scale (β = 0.85, P = 0.034) and lower composite scores for memory (β = -0.68, P = 0.002) and frontal/executive function domains (β = -0.65, P < 0.001). In addition, a larger CPV was associated with a more rapid decline in Mini-Mental State Examination scores in the AD dementia group (β = -0.58, P = 0.004). The present study demonstrated that CP enlargement was associated with increased Aβ deposition and impaired memory and frontal/executive function in patients on the AD continuum.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea.
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.
| | - Jungho Cha
- Nash Family Center for Advanced Circuit Therapeutics, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Sang-Young Kim
- MR Clinical Science, Health Systems, Philips Korea, Seoul, Korea.
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea.
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.
- YONSEI BEYOND LAB, Yongin, Korea.
| | - Young H. Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea.
- YONSEI BEYOND LAB, Yongin, Korea.
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
42
|
Okar SV, Fagiani F, Absinta M, Reich DS. Imaging of brain barrier inflammation and brain fluid drainage in human neurological diseases. Cell Mol Life Sci 2024; 81:31. [PMID: 38212566 PMCID: PMC10838199 DOI: 10.1007/s00018-023-05073-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 01/13/2024]
Abstract
The intricate relationship between the central nervous system (CNS) and the immune system plays a crucial role in the pathogenesis of various neurological diseases. Understanding the interactions among the immunopathological processes at the brain borders is essential for advancing our knowledge of disease mechanisms and developing novel diagnostic and therapeutic approaches. In this review, we explore the emerging role of neuroimaging in providing valuable insights into brain barrier inflammation and brain fluid drainage in human neurological diseases. Neuroimaging techniques have enabled us not only to visualize and assess brain structures, but also to study the dynamics of the CNS in health and disease in vivo. By analyzing imaging findings, we can gain a deeper understanding of the immunopathology observed at the brain-immune interface barriers, which serve as critical gatekeepers that regulate immune cell trafficking, cytokine release, and clearance of waste products from the brain. This review explores the integration of neuroimaging data with immunopathological findings, providing valuable insights into brain barrier integrity and immune responses in neurological diseases. Such integration may lead to the development of novel diagnostic markers and targeted therapeutic approaches that can benefit patients with neurological disorders.
Collapse
Affiliation(s)
- Serhat V Okar
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Francesca Fagiani
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Martina Absinta
- Translational Neuropathology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
- Division of Neuroscience, Vita-Salute San Raffaele University, 20132, Milan, Italy.
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
43
|
Tu Y, Li Z, Xiong F, Gao F. Decreased DTI-ALPS and choroid plexus enlargement in fibromyalgia: a preliminary multimodal MRI study. Neuroradiology 2023; 65:1749-1755. [PMID: 37870589 DOI: 10.1007/s00234-023-03240-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/09/2023] [Indexed: 10/24/2023]
Abstract
PURPOSE The glymphatic system is a fluid exchange pathway that clears waste products that is crucial for the maintenance of brain homeostasis. However, the exact role it plays in the emergence of fibromyalgia (FM) is still not fully understood. Here, we explored the changes in non-invasive MRI proxy probably related to the glymphatic function in FM patients, and explored brain-behavior relationships. METHODS A total of 40 participants, consisting of 20 individuals with FM and 20 healthy controls (HCs), were included in the study. The participants underwent structural T1-weighted MRI, diffusion tensor imaging (DTI), and clinical assessment. The data was obtained from an open access dataset. The study compared non-invasive MRI indices, including choroid plexus (CP) volume and DTI analysis along the perivascular space (ALPS), between the FM and HC groups. Furthermore, correlation analysis was conducted to determine the correlation between clinical parameters and both CP volume and DTI-ALPS index. RESULTS Patients with FM had significantly higher CP volume and a lower DTI-ALPS index than HCs adjusting for age and intracranial volume. Higher CP volume was associated with lower DTI-ALPS index, and longer disease duration. CONCLUSION Our findings demonstrate aberrant glymphatic function in FM, and that dysfunction in the brain glymphatic system may play a role in the neural mechanisms underlying FM.
Collapse
Affiliation(s)
- Ye Tu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zheng Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Xiong
- Department of Radiology, PLA Central Theater General Hospital, Wuhan, China.
| | - Feng Gao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
44
|
Jeong SH, Park CJ, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Chung SJ. Association of choroid plexus volume with motor symptoms and dopaminergic degeneration in Parkinson's disease. J Neurol Neurosurg Psychiatry 2023; 94:1047-1055. [PMID: 37399288 DOI: 10.1136/jnnp-2023-331170] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
BACKGROUND The choroid plexus (CP) is involved in the clearance of harmful metabolites from the brain, as a part of the glymphatic system. This study aimed to investigate the association between CP volume (CPV), nigrostriatal dopaminergic degeneration and motor outcomes in Parkinson's disease (PD). METHODS We retrospectively searched drug-naïve patients with early-stage PD who underwent dopamine transporter (DAT) scanning and MRI. Automatic CP segmentation was performed, and the CPV was calculated. The relationship between CPV, DAT availability and Unified PD Rating Scale Part III (UPDRS-III) scores was assessed using multivariate linear regression. We performed longitudinal analyses to assess motor outcomes according to CPV. RESULTS CPV was negatively associated with DAT availability in each striatal subregion (anterior caudate, β=-0.134, p=0.012; posterior caudate, β=-0.162, p=0.002; anterior putamen, β=-0.133, p=0.024; posterior putamen, β=-0.125, p=0.039; ventral putamen, β=-0.125, p=0.035), except for the ventral striatum. CPV was positively associated with the UPDRS-III score even after adjusting for DAT availability in the posterior putamen (β=0.121; p=0.035). A larger CPV was associated with the future development of freezing of gait in the Cox regression model (HR 1.539, p=0.027) and a more rapid increase in dopaminergic medication in the linear mixed model (CPV×time, p=0.037), but was not associated with the risk of developing levodopa-induced dyskinesia or wearing off. CONCLUSION These findings suggest that CPV has the potential to serve as a biomarker for baseline and longitudinal motor disabilities in PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea (the Republic of)
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Geyonggi-do, Korea (the Republic of)
| | - Hyun-Jae Jeong
- Research Institute of Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Mun Kyung Sunwoo
- Department of Neurology, Daejin Medical Foundation Bundang Jesaeng Hospital, Seongnam, Gyeonggi-do, Korea (the Republic of)
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Korea (the Republic of)
- YONSEI BEYOND LAB, Yongin, Gyeonggi-do, South Korea
| | - Young Ho Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea (the Republic of)
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Gyeonggi-do, Korea (the Republic of)
- YONSEI BEYOND LAB, Yongin, Gyeonggi-do, South Korea
| |
Collapse
|
45
|
Ramagiri S, Pan S, DeFreitas D, Yang PH, Raval DK, Wozniak DF, Esakky P, Strahle JM. Deferoxamine Prevents Neonatal Posthemorrhagic Hydrocephalus Through Choroid Plexus-Mediated Iron Clearance. Transl Stroke Res 2023; 14:704-722. [PMID: 36308676 PMCID: PMC10147846 DOI: 10.1007/s12975-022-01092-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/14/2022]
Abstract
Posthemorrhagic hydrocephalus occurs in up to 30% of infants with high-grade intraventricular hemorrhage and is associated with the worst neurocognitive outcomes in preterm infants. The mechanisms of posthemorrhagic hydrocephalus after intraventricular hemorrhage are unknown; however, CSF levels of iron metabolic pathway proteins including hemoglobin have been implicated in its pathogenesis. Here, we develop an animal model of intraventricular hemorrhage using intraventricular injection of hemoglobin at post-natal day 4 that results in acute and chronic hydrocephalus, pathologic choroid plexus iron accumulation, and subsequent choroid plexus injury at post-natal days 5, 7, and 15. This model also results in increased expression of aquaporin-1, Na+/K+/Cl- cotransporter 1, and Na+/K+/ATPase on the apical surface of the choroid plexus 24 h post-intraventricular hemorrhage. We use this model to evaluate a clinically relevant treatment strategy for the prevention of neurological sequelae after intraventricular hemorrhage using intraventricular administration of the iron chelator deferoxamine at the time of hemorrhage. Deferoxamine treatment prevented posthemorrhagic hydrocephalus for up to 11 days after intraventricular hemorrhage and prevented the development of sensorimotor gating deficits. In addition, deferoxamine treatment facilitated acute iron clearance through the choroid plexus and subsequently reduced choroid plexus iron levels at 24 h with reversal of hemoglobin-induced aquaporin-1 upregulation on the apical surface of the choroid plexus. Intraventricular administration of deferoxamine at the time of intraventricular hemorrhage may be a clinically relevant treatment strategy for preventing posthemorrhagic hydrocephalus and likely acts through promoting iron clearance through the choroid plexus to prevent hemoglobin-induced injury.
Collapse
Affiliation(s)
- Sruthi Ramagiri
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - Shelei Pan
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - Dakota DeFreitas
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - Peter H Yang
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - Dhvanii K Raval
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - David F Wozniak
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
- Intellectual and Developmental Disabilities Research Center, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, MO, 63110-1093, USA
| | - Prabagaran Esakky
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA
| | - Jennifer M Strahle
- Department of Neurosurgery, Washington University School of Medicine, MO, 63110, St. Louis, USA.
- Department of Orthopedic Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, 63110, USA.
| |
Collapse
|
46
|
Jeong SH, Jeong HJ, Sunwoo MK, Ahn SS, Lee SK, Lee PH, Kim YJ, Sohn YH, Park CJ, Chung SJ. Association between choroid plexus volume and cognition in Parkinson disease. Eur J Neurol 2023; 30:3114-3123. [PMID: 37498202 DOI: 10.1111/ene.15999] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/05/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND AND PURPOSE The choroid plexus (CP) clears harmful metabolites from the central nervous system as part of the glymphatic system. We investigated the association of CP volume (CPV) with baseline and longitudinal cognitive decline in patients with Parkinson disease (PD). METHODS We retrospectively reviewed the medical records of 240 patients with newly diagnosed PD who had undergone detailed neuropsychological tests and high-resolution T1-weighted structural magnetic resonance imaging during the initial assessment. The CPV of each patient was automatically segmented, and the intracranial volume ratio was used in subsequent analyses. The relationship between CPV and baseline composite scores of each cognitive domain was assessed using multivariate linear regression analyses. A Cox proportional hazards model was used to compare the risk of dementia conversion with CPV. RESULTS CPV negatively correlated with composite scores of the frontal/executive function domain (β = -0.375, p = 0.002) after adjusting for age, sex, years of education, and parkinsonian symptom duration. The Cox regression model revealed that a larger CPV was associated with a higher risk of dementia conversion (hazard ratio [HR] = 1.509, p = 0.038), which was no longer significant after adjusting for the composite scores of the frontal/executive function domain. A mediation analysis demonstrated that the effect of CPV on the risk of dementia conversion was completely mediated by frontal/executive function (direct effect: HR = 1.203, p = 0.396; indirect effect: HR = 1.400, p = 0.015). CONCLUSIONS Baseline CPV is associated with baseline frontal/executive function, which subsequently influences dementia conversion risk in patients with PD.
Collapse
Affiliation(s)
- Seong Ho Jeong
- Department of Neurology, Inje University Sanggye Paik Hospital, Seoul, Korea
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun-Jae Jeong
- Research Institute of Center for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Mun Kyung Sunwoo
- Department of Neurology, Bundang Jesaeng General Hospital, Seongnam-si, Korea
| | - Sung Soo Ahn
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Research Institute of Radiological Science and Centre for Clinical Imaging Data Science, Yonsei University College of Medicine, Seoul, Korea
| | - Phil Hyu Lee
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Yun Joong Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| | - Young H Sohn
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
| | - Chae Jung Park
- Department of Radiology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
| | - Seok Jong Chung
- Department of Neurology, Yonsei University College of Medicine, Seoul, Korea
- Department of Neurology, Yongin Severance Hospital, Yonsei University Health System, Yongin, Korea
- YONSEI BEYOND LAB, Yongin, Korea
| |
Collapse
|
47
|
Assogna M, Premi E, Gazzina S, Benussi A, Ashton NJ, Zetterberg H, Blennow K, Gasparotti R, Padovani A, Tadayon E, Romanella S, Sprugnoli G, Pascual-Leone A, Di Lorenzo F, Koch G, Borroni B, Santarnecchi E. Association of Choroid Plexus Volume With Serum Biomarkers, Clinical Features, and Disease Severity in Patients With Frontotemporal Lobar Degeneration Spectrum. Neurology 2023; 101:e1218-e1230. [PMID: 37500561 PMCID: PMC10516270 DOI: 10.1212/wnl.0000000000207600] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/15/2023] [Indexed: 07/29/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Choroid plexus (ChP) is emerging as a key brain structure in the pathophysiology of neurodegenerative disorders. In this observational study, we investigated ChP volume in a large cohort of patients with frontotemporal lobar degeneration (FTLD) spectrum to explore a possible link between ChP volume and other disease-specific biomarkers. METHODS Participants included patients meeting clinical criteria for a probable syndrome in the FTLD spectrum. Structural brain MRI imaging, serum neurofilament light (NfL), serum phosphorylated-Tau181 (p-Tau181), and cognitive and behavioral data were collected. MRI ChP volumes were obtained from an ad-hoc segmentation model based on a Gaussian Mixture Models algorithm. RESULTS Three-hundred and sixteen patients within FTLD spectrum were included in this study, specifically 135 patients diagnosed with behavioral variant frontotemporal dementia (bvFTD), 75 primary progressive aphasia, 46 progressive supranuclear palsy, and 60 corticobasal syndrome. In addition, 82 age-matched healthy participants were recruited as controls (HCs). ChP volume was significantly larger in patients with FTLD compared with HC, across the clinical subtype. Moreover, we found a significant difference in ChP volume between HC and patients stratified for disease-severity based on CDR plus NACC FTLD, including patients at very early stage of the disease. Interestingly, ChP volume correlated with serum NfL, cognitive/behavioral deficits, and with patterns of cortical atrophy. Finally, ChP volume seemed to discriminate HC from patients with FTLD better than other previously identified brain structure volumes. DISCUSSION Considering the clinical, pathologic, and genetic heterogeneity of the disease, ChP could represent a potential biomarker across the FTLD spectrum, especially at the early stage of disease. Further longitudinal studies are needed to establish its role in disease onset and progression. CLASSIFICATION OF EVIDENCE This study provides Class III evidence that choroid plexus volume, as measured on MRI scan, can assist in differentiating patients with FTLD from healthy controls and in characterizing disease severity.
Collapse
Affiliation(s)
- Martina Assogna
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Enrico Premi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Stefano Gazzina
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alberto Benussi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Nicholas J Ashton
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Henrik Zetterberg
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Kaj Blennow
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Roberto Gasparotti
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alessandro Padovani
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Ehsan Tadayon
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Sara Romanella
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giulia Sprugnoli
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Alvaro Pascual-Leone
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Francesco Di Lorenzo
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Giacomo Koch
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Barbara Borroni
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy
| | - Emiliano Santarnecchi
- From the Precision Neuroscience & Neuromodulation Program (M.A., S.R., G.S., E.S.), Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; Non-Invasive Brain Stimulation Unit (M.A., F.D.L., G.K.), Department of Behavioural and Clinical Neurology, Santa Lucia Foundation IRCCS; Memory Clinic (M.A.), Department of Systems Medicine, University of Tor Vergata, Rome; Neurology Unit (E.P., S.G., A.B., A.P., B.B.), Department of Clinical and Experimental Sciences, University of Brescia, Italy; Institute of Neuroscience and Physiology (N.J.A.), Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg; Wallenberg Centre for Molecular and Translational Medicine (N.J.A.), University of Gothenburg, Mӧlndal, Sweden; King's College London (N.J.A.), Institute of Psychiatry, Psychology & Neuroscience, Maurice Wohl Clinical Neuroscience Institute; NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London and Maudsley NHS Foundation (N.J.A.), United Kingdom; Department of Psychiatry and Neurochemistry (H.Z., K.B.), Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg; Clinical Neurochemistry Laboratory (H.Z., K.B.), Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease (H.Z.), UCL Institute of Neurology, Queen Square; UK Dementia Research Institute at UCL (H.Z.), London, United Kingdom; Hong Kong Center for Neurodegenerative Diseases (H.Z.), Clear Water Bay, Hong Kong, China; Neuroradiology Unit (R.G.), University of Brescia, Italy; Berenson-Allen Center for Noninvasive Brain Stimulation (E.T.), Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA; Department of Medicine (G.S.), Surgery and Neuroscience, Siena Brain Investigation & Neuromodulation Laboratory, University of Siena, Siena, Italy; Hinda and Arthur Marcus Institute for Aging Research at Hebrew SeniorLife (A.P.-L.); Department of Neurology (A.P.-L.), Harvard MedicalSchool, Boston, MA, USA; and Department of Neuroscience and Rehabilitation (G.K.), University of Ferrara, Italy.
| |
Collapse
|
48
|
Jiang D, Liu L, Kong Y, Chen Z, Rosa‑Neto P, Chen K, Ren L, Chu M, Wu L, Frontotemporal Lobar Degeneration Neuroimaging Initiative. Regional Glymphatic Abnormality in Behavioral Variant Frontotemporal Dementia. Ann Neurol 2023; 94:442-456. [PMID: 37243334 PMCID: PMC10657235 DOI: 10.1002/ana.26710] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Glymphatic function has not yet been explored in behavioral variant frontotemporal dementia (bvFTD). The spatial correlation between regional glymphatic function and bvFTD remains unknown. METHOD A total of 74 patients with bvFTD and 67 age- and sex-matched healthy controls (HCs) were selected from discovery dataset and replication dataset. All participants underwent neuropsychological assessment. Glymphatic measures including choroid plexus (CP) volume, diffusion tensor imaging along the perivascular (DTI-ALPS) index, and coupling between blood-oxygen-level-dependent signals and cerebrospinal fluid signals (BOLD-CSF coupling), were compared between the two groups. Regional glymphatic function was evaluated by dividing DTI-ALPS and BOLD-CSF coupling into anterior, middle, and posterior regions. The bvFTD-related metabolic pattern was identified using spatial covariance analysis based on l8 F-FDG-PET. RESULTS Patients with bvFTD showed higher CP volume (p < 0.001); anterior and middle DTI-ALPS (p < 0.001); and weaker anterior BOLD-CSF coupling (p < 0.05) than HCs after controlling for cortical gray matter volume in both datasets. In bvFTD from the discovery dataset, the anterior DTI-ALPS was negatively associated with the expression of the bvFTD-related metabolic pattern (r = -0.52, p = 0.034) and positively related with regional standardized uptake value ratios of l8 F-FDG-PET in bvFTD-related brain regions (r range: 0.49 to 0.62, p range: 0.017 to 0.047). Anterior and middle glymphatic functions were related to global cognition and disease severity. INTERPRETATION Our findings reveal abnormal glymphatic function, especially in the anterior and middle regions of brain in bvFTD. Regional glymphatic dysfunction may contribute to the pathogenesis of bvFTD. ANN NEUROL 2023;94:442-456.
Collapse
Affiliation(s)
- Deming Jiang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Li Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Yu Kong
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Zhongyun Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Pedro Rosa‑Neto
- Alzheimer’s Disease Research Unit, McGill Centre for Studies in Aging, Montreal H4H 1R3, Canada
| | - Kewei Chen
- Banner Alzheimer’s Institute, University of Arizona, School of Mathematics and Statistics, Arizona Alzheimer’s Consortium, Arizona State University, Tempe, USA
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Min Chu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | - Liyong Wu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Changchun Street 45, Beijing, China
| | | |
Collapse
|
49
|
Ota M, Sato N, Nakaya M, Shigemoto Y, Kimura Y, Chiba E, Yokoi Y, Tsukamoto T, Matsuda H. Relationship between the tau protein and choroid plexus volume in Alzheimer's disease. Neuroreport 2023; 34:546-550. [PMID: 37384934 DOI: 10.1097/wnr.0000000000001923] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
Tau protein accumulation in the brain is thought to be one of the causes of Alzheimer's disease (AD). Recent studies found that the choroid plexus (CP) has a role in β-amyloid and tau protein clearance in the brain. We evaluated the relationships between CP volume and the ß-amyloid and tau protein depositions. Participants were 20 patients with AD and 35 healthy subjects who underwent MRI and PET scanning using the ß-amyloid tracer 11C-PiB and the tau/inflammatory tracer 18F-THK5351. We computed the volume of the CP and estimated the relationships between the CP volume and ß-amyloid and tau protein/inflammatory deposition by Spearman's correlation test. The CP volume was significantly positively correlated with both the standardized uptake value ratio (SUVR) of 11C-PiB and the SUVR of 18F-THK5351 in all participants. The CP volume was also significantly positively correlated with the SUVR of 18F-THK5351in patients with AD. Our data suggested that the volume of the CP was a good biomarker for the evaluation of tau deposition and neuroinflammation.
Collapse
Affiliation(s)
- Miho Ota
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Neuropsychiatry, University of Tsukuba, Tsukuba, Ibaraki
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Moto Nakaya
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Radiology, Graduate School of Medicine, University of Tokyo, Bunkyo-ku
| | - Yoko Shigemoto
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yukio Kimura
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Emiko Chiba
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
| | - Yuma Yokoi
- Department of Psychiatry, National Center of Neurology and Psychiatry
- Department of Educational Promotion, Clinical Research & Education Promotion Division, National Center of Neurology and Psychiatry
| | - Tadashi Tsukamoto
- Department of Neurology, National Center of Neurology and Psychiatry, Kodaira, Tokyo and
| | - Hiroshi Matsuda
- Department of Radiology, National Center of Neurology and Psychiatry, Kodaira, Tokyo
- Department of Biofunctional Imaging, Fukushima Medical University, Fukushima City, Fukushima, Japan
| |
Collapse
|
50
|
Čarna M, Onyango IG, Katina S, Holub D, Novotny JS, Nezvedova M, Jha D, Nedelska Z, Lacovich V, Vyvere TV, Houbrechts R, Garcia-Mansfield K, Sharma R, David-Dirgo V, Vyhnalek M, Texlova K, Chaves H, Bakkar N, Pertierra L, Vinkler M, Markova H, Laczo J, Sheardova K, Hortova-Kohoutkova M, Frič J, Forte G, Kaňovsky P, Belaškova S, Damborsky J, Hort J, Seyfried NT, Bowser R, Sevlever G, Rissman RA, Smith RA, Hajduch M, Pirrotte P, Spačil Z, Dammer EB, Limbäck-Stokin C, Stokin GB. Pathogenesis of Alzheimer's disease: Involvement of the choroid plexus. Alzheimers Dement 2023; 19:3537-3554. [PMID: 36825691 PMCID: PMC10634590 DOI: 10.1002/alz.12970] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 02/25/2023]
Abstract
The choroid plexus (ChP) produces and is bathed in the cerebrospinal fluid (CSF), which in aging and Alzheimer's disease (AD) shows extensive proteomic alterations including evidence of inflammation. Considering inflammation hampers functions of the involved tissues, the CSF abnormalities reported in these conditions are suggestive of ChP injury. Indeed, several studies document ChP damage in aging and AD, which nevertheless remains to be systematically characterized. We here report that the changes elicited in the CSF by AD are consistent with a perturbed aging process and accompanied by aberrant accumulation of inflammatory signals and metabolically active proteins in the ChP. Magnetic resonance imaging (MRI) imaging shows that these molecular aberrancies correspond to significant remodeling of ChP in AD, which correlates with aging and cognitive decline. Collectively, our preliminary post-mortem and in vivo findings reveal a repertoire of ChP pathologies indicative of its dysfunction and involvement in the pathogenesis of AD. HIGHLIGHTS: Cerebrospinal fluid changes associated with aging are perturbed in Alzheimer's disease Paradoxically, in Alzheimer's disease, the choroid plexus exhibits increased cytokine levels without evidence of inflammatory activation or infiltrates In Alzheimer's disease, increased choroid plexus volumes correlate with age and cognitive performance.
Collapse
Affiliation(s)
- Maria Čarna
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Isaac G. Onyango
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Stanislav Katina
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Dušan Holub
- Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Jan Sebastian Novotny
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Marketa Nezvedova
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Durga Jha
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Zuzana Nedelska
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Valentina Lacovich
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | | | | | - Krystine Garcia-Mansfield
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Ritin Sharma
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Victoria David-Dirgo
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Martin Vyhnalek
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Texlova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | | | - Nadine Bakkar
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Mojmir Vinkler
- Institute of Mathematics and Statistics, Masaryk University, Brno, Czech Republic
| | - Hana Markova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Jan Laczo
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Kateřina Sheardova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- 1 Department of Neurology, St. Anne’s University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | | | - Jan Frič
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Giancarlo Forte
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Petr Kaňovsky
- Department of Neurology, Faculty of Medicine and Dentistry, Palacky University Olomouc and Research and Science Department, University Hospital Olomouc, Olomouc, Czech Republic
| | - Silvie Belaškova
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
| | - Jiři Damborsky
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Jakub Hort
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Memory Clinic, Department of Neurology, 2 Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic
| | - Nicholas T. Seyfried
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
- Departments of Biochemistry and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Robert Bowser
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Robert A. Rissman
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | | | - Marian Hajduch
- Institute for Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, Olomouc, Czech Republic
| | - Patrick Pirrotte
- Collaborative Center for Translational Mass Spectrometry, Translational Genomics Research Institute, Phoenix, AZ, USA
- Mass Spectrometry & Proteomics Core Facility, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Zdeněk Spačil
- RECETOX Centre, Faculty of Sciences, Masaryk University, Brno, Czech Republic
| | - Eric B. Dammer
- Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
- Goizueta Alzheimer’s Disease Research Center, Emory University, Atlanta, GA, USA
| | - Clara Limbäck-Stokin
- Department of Cellular Pathology, Imperial College Healthcare NHS Trust, London, UK
- Imperial College London, Faculty of Medicine, London, UK
| | - Gorazd B. Stokin
- International Clinical Research Centre, St. Anne’s University Hospital, Brno, Czech Republic
- Division of Neurology, University Medical Centre, Ljubljana, Slovenia
- Translational Aging and Neuroscience Program, Mayo Clinic, MN, Rochester, USA
| |
Collapse
|