1
|
Terracciano A, Walker KA, An Y, Bilgel M, Sutin AR, Luchetti M, Karakose S, Stephan Y, Blennow K, Zetterberg H, Ashton NJ, Karikari TK, Kac PR, Moghekar AR, Thambisetty M, Ferrucci L, Resnick SM. Loneliness and Biomarkers of Alzheimer's Disease, Axonal Damage, and Astrogliosis: A Coordinated Analysis of Two Longitudinal Cohorts. J Gerontol B Psychol Sci Soc Sci 2025; 80:gbaf006. [PMID: 39820401 PMCID: PMC11898208 DOI: 10.1093/geronb/gbaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Indexed: 01/19/2025] Open
Abstract
OBJECTIVES Loneliness is associated with an elevated risk of dementia. There is mixed evidence from imaging studies on whether loneliness is associated with neuropathology in dementia-free adults. This study tests whether loneliness is associated with plasma neurobiomarkers of amyloid (Aβ42/Aβ40), phosphorylated tau 181 (pTau181), neurofilament light chain (NfL), and glial fibrillary acidic protein (GFAP) and imaging measures of amyloid and tau. METHODS Participants were cognitively unimpaired older adults from the Baltimore Longitudinal Study on Aging (BLSA; N = 1,028 individuals and up to 2,277 neurobiomarker measurements; Baseline mean age = 66, SD = 15 years) and the UK Biobank (N = 1,263 individuals and up to 2,526 neurobiomarker measurements; Baseline mean age = 60, SD = 7 years). Single-item measures of loneliness and the Quanterix Single Molecule Array assays were used in both samples. In a subset of BLSA participants, positron emission tomography (PET) was used to assess cerebral amyloid burden (n = 220) and tau in the entorhinal cortex (n = 102). RESULTS In both samples and meta-analyses, loneliness was unrelated to plasma measures of Aβ42/Aβ40, pTau181, NfL, and GFAP. Changes in loneliness were also unrelated to changes in the plasma neurobiomarkers, and no consistent evidence of moderation by age, sex, or APOE ε4 allele was found. Loneliness was also unrelated to PET-based measures of amyloid and tau. DISCUSSION This study found no associations between loneliness and measures of Alzheimer's disease pathology, axonal damage, or astrogliosis.
Collapse
Affiliation(s)
- Antonio Terracciano
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, Florida, USA
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Keenan A Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, Florida, USA
| | - Selin Karakose
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, Florida, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Banner Alzheimer’s Institute and University of Arizona, Phoenix, Arizona, USA
| | - Thomas K Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Przemysław R Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
| | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Pich EM, Tarnanas I, Brigidi P, Collo G. Gut Microbiome-Liver-Brain axis in Alcohol Use Disorder. The role of gut dysbiosis and stress in alcohol-related cognitive impairment progression: possible therapeutic approaches. Neurobiol Stress 2025; 35:100713. [PMID: 40092632 PMCID: PMC11909761 DOI: 10.1016/j.ynstr.2025.100713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 01/20/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
The Gut Microbiome-Liver-Brain Axis is a relatively novel construct with promising potential to enhance our understanding of Alcohol Use Disorder (AUD), and its therapeutic approaches. Significant alterations in the gut microbiome occur in AUD even before any other systemic signs or symptoms manifest. Prolonged and inappropriate alcohol consumption, by affecting the gut microbiota and gut mucosa permeability, is thought to contribute to the development of behavioral and cognitive impairments, leading to Alcohol-Related Liver Disorders and potentially progressing into alcoholic cirrhosis, which is often associated with severe cognitive impairment related to neurodegeneration, such as hepatic encephalopathy and alcoholic dementia. The critical role of the gut microbiota is further supported by the efficacy of FDA-approved treatments for hepatic encephalopathy in alcoholic cirrhosis (i.e., lactulose and rifaximin). To stimulate new research, we hypothesize that interactions between a maladaptive stress response and a constitutional predisposition to neurodegeneration underlie the progression of AUD to conditions of Alcohol-Related Clinical Concerns with severe cognitive impairment, which represent a significant and costly burden to society. Early identification of AUD individuals at risk for developing these conditions could help to prioritize integrated therapeutic interventions targeting different substrates of the Gut Microbiome-Liver-Brain axis. Specifically, addiction medications, microbiome modulators, stress-reducing interventions, and, possibly soon, novel agents that reduce hepatic steatosis/fibrosis will be discussed in the context of digitally supported integrated therapeutic approaches. The explicit goal of this AUD treatment performed on the early stage of the disorder would be to reduce the transition from AUD to those conditions of Alcohol-Related Common Clinical Concerns associated with severe cognitive impairment, a strategy recommended for most neurological neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Ioannis Tarnanas
- Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
- Altoida Inc., Washington DC, USA
| | - Patrizia Brigidi
- Human Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, Italy
| | - Ginetta Collo
- Human Neuropharmacology Unit, Department of Molecular & Translational Medicine, University of Brescia, Italy
| |
Collapse
|
3
|
Tian Q, Greig EE, Walker KA, Duggan MR, Yang Z, Moghekar A, Landman BA, Davatzikos C, Resnick SM, Ferrucci L. Longitudinal patterns of brain aging and neurodegeneration among older adults with dual decline in memory and gait. Alzheimers Dement 2025; 21:e14612. [PMID: 39988983 PMCID: PMC11848002 DOI: 10.1002/alz.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Dual cognitive and mobility decline is more strongly associated with dementia risk than cognitive decline only. It remains unknown whether this syndrome is associated with brain atrophy patterns, white matter (WM) damage, or pathology. METHODS In the Baltimore Longitudinal Study of Aging participants with and without dual decline, we used linear mixed-effects models to compare up to 13-year longitudinal changes in MRI-derived atrophy patterns, WM hyperintensities (n = 339), microstructure (n = 307), plasma glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), amyloid beta 42/40 (Aβ42/40) ratio (n = 349), and phosphorylated tau 181 (pTau181) (n = 258). RESULTS Those experiencing dual decline showed accelerated atrophy in medial temporal (p = .004), parietotemporal (p = .029), and perisylvian regions (p = .028), whereas gait decline only showed accelerated parietotemporal atrophy (p = .035) and memory decline only showed perisylvian atrophy (p = .021). Dual decline was also associated with unique microstructural deterioration in several WM tracts (p < .05), a greater decrease in Aβ42/40 ratio (p = .015), and greater increases in GFAP (p = .009) and NfL (p < .001). DISCUSSION Individuals experiencing dual decline are at an increased risk for regional brain atrophy, microstructural degradation, and biomarker-defined molecular changes underlying dementia. HIGHLIGHTS Those experiencing dual decline showed several accelerated brain atrophy patterns. Those experiencing dual decline showed unique microstructural deterioration. Dual decline showed a greater decline in plasma Aβ42/40 ratio. Dual decline showed greater increases in plasma GFAP and NfL. Dual decline may indicate brain and blood markers underlying dementia.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | - Erin E. Greig
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Michael R. Duggan
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging LabPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Abhay Moghekar
- Department of Neurology and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bennett A. Landman
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging LabPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| |
Collapse
|
4
|
Nedelea G, Mușat MI, Mitran SI, Ciorbagiu MC, Cătălin B. Morphological Differences in Hippocampal Microglia in C57BL/6N Mice with Liver Injury and Depressive-Like Behavior. CURRENT HEALTH SCIENCES JOURNAL 2024; 50:577-584. [PMID: 40143885 PMCID: PMC11936073 DOI: 10.12865/chsj.50.04.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 11/11/2024] [Indexed: 03/28/2025]
Abstract
INTRODUCTION Microglia, one of the most important cells of the central nervous system, undergo specific changes depending on the pathology. It has been reported that both depressive disorders and liver diseases generate hippocampal changes and neuroinflammation. However, the combined effects of the two pathologies on microglia morphology in the hippocampus have not been sufficiently explored. MATERIAL AND METHODS In this study, we analyzed the morphological changes of the hippocampal microglia using confocal microscopy and a semi-manual method of quantification. We focused on total branch length, the branch number and the mean branch length. C57BL/6N mice were used and subjected to a methionine and choline deficient diet (MCD) to induce liver damage, and a chronic unpredictable mild stress (CUMS) procedure for depressive-like behavior. RESULTS We were able to show that CUMS protocol and MCD diet led to a reduction in total branch length, branch number and mean branch length. Also, CUMS alone was associated with a decrease in the number of secondary and terminal branches. CONCLUSION Our study showed that depressive-like behavior and liver damage influence microglial morphology in the hippocampus, and it may be considered in future research of these intricate pathologies.
Collapse
Affiliation(s)
- Gabriel Nedelea
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
| | - Mădălina Iuliana Mușat
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
| | - Smaranda Ioana Mitran
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
| | - Mihai Călin Ciorbagiu
- Department of Surgery, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
| | - Bogdan Cătălin
- Experimental Research Centre for Normal and Pathological Aging, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
- Department of Physiology, University of Medicine and Pharmacy of Craiova, Petru Rares Street 2, 200349, Craiova, Dolj, Romania
| |
Collapse
|
5
|
Zhang B, Zhang C, Wang Y, Cheng L, Wang Y, Qiao Y, Peng D. Associations of liver function with plasma biomarkers for Alzheimer's Disease. Neurol Sci 2024; 45:2625-2631. [PMID: 38177970 DOI: 10.1007/s10072-023-07284-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024]
Abstract
BACKGROUND Blood-based biomarkers for Alzheimer's disease (AD) are promising to be used in clinical settings. The liver is an important degradation organ of the body. Whether liver function affects the levels of AD biomarkers needs to be studied. OBJECTIVE To investigate the associations between liver function and the plasma levels of AD biomarkers. METHODS We conducted an ADNI cohort-based cross-sectional study. Thirteen liver function markers commonly used in clinical settings were analyzed: total protein (TP), albumin (AL), globulin (GL), AL/GL ratio (A/G), total bilirubin (TB), direct bilirubin (DB), indirect bilirubin (IB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), AST/ALT ratio, alkaline phosphatase (ALP), lactate dehydrogenase (LDH), and γ-glutamyltransferase (GGT). Liquid chromatography-tandem mass spectrometry was used to detect the plasma Aβ42 and Aβ40 concentrations. Single Molecule array technique was used to measure the plasma p-tau181 and NfL concentrations. We used linear regression models to analyze the associations between liver function markers and the levels of AD plasma biomarkers. RESULTS ALP was positively associated with the levels of plasma Aβ42 (β = 0.16, P = 0.018) and Aβ40 (β = 0.21, P = 0.004). LDH was positively associated with the levels of plasma p-tau181 (β = 0.09, P = 0.022). While NfL was correlated with multiple liver function markers, including AL, A/G, ALT, AST/ALT, and LDH. CONCLUSION Liver function was associated with the plasma levels of AD biomarkers. It needs to consider the potential influence of liver function on the reference ranges and the interpretation of results for AD biomarkers before clinical use.
Collapse
Affiliation(s)
- Bin Zhang
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Cheng Zhang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - YuYe Wang
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - LeiAn Cheng
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China
| | - YaNan Qiao
- Department of Neurology, China-Japan Friendship Hospital, Beijing, China.
| | - Dantao Peng
- Department of Neurology, China-Japan Friendship Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
6
|
Lu Y, Pike JR, Hoogeveen R, Walker K, Raffield L, Selvin E, Avery C, Engel S, Mielke MM, Garcia T, Heiss G, Palta P. Nonalcoholic Fatty Liver Disease and Longitudinal Change in Imaging and Plasma Biomarkers of Alzheimer Disease and Vascular Pathology. Neurology 2024; 102:e209203. [PMID: 38471046 PMCID: PMC11033987 DOI: 10.1212/wnl.0000000000209203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Prospective measures of plasma and cerebral MRI biomarkers of Alzheimer disease (AD) and vascular neuropathology provide an opportunity to investigate possible mechanisms linking liver disease and dementia. We aimed to quantify the association of midlife nonalcoholic fatty liver disease (NAFLD) with change in plasma and brain MRI biomarkers of AD and vascular neuropathology. METHODS We included participants from the Atherosclerosis Risk in Communities Study with brain MRI measurements of white matter hyperintensity (WMH) volume and temporal-parietal lobe cortical thickness meta region of interest (ROI) at up to 2 different visits, in 2011-13 and 2016-19, and plasma biomarkers of β-amyloid (Aβ)42:40, phosphorylated tau at threonine 181, and neurofilament light (NfL) were measured up to 3 times in 1993-95, 2011-13, and 2016-19. NAFLD was categorized using the fatty liver index in 1990-92. Multivariate linear regression was performed for associations between midlife NAFLD and change in plasma and brain MRI biomarkers of AD and vascular neuropathology. The primary models adjusted for demographics, Apolipoprotein E, alcohol use, and kidney function. RESULTS Among 1,706 participants (mean age 56 years, 62% female, 28% Black), midlife NAFLD vs no NAFLD was associated with greater late-life WMH volume (difference per SD 0.19, 95% CI 0.06-0.31) and faster late-life WMH increase over 6 years (difference in annual change, SD 0.28, 95% CI 0.05-0.51), suggesting accumulating vascular pathology. Midlife NAFLD vs no NAFLD was also associated with AD biomarkers in midlife (lower Aβ42:40 [SD -0.21, 95% CI -0.39 to -0.04] measured in 1993-95) and late life (lower Aβ42:40 [SD -0.13, 95% CI -0.23 to -0.03] and lower temporal-parietal lobe cortical thickness meta ROI [SD -0.16, 95% CI -0.28 to -0.05] measured in 2011-13). Although midlife NfL was lower in individuals with vs without midlife NAFLD, those with NAFLD exhibited a faster rate of NfL increase that accelerated over time. DISCUSSION Midlife NAFLD shows associations with AD and accumulating vascular pathology, revealing potential pathways linking liver function to dementia. Plasma biomarkers of neuropathology and neuronal injury may serve as easily measurable and dynamic indicators for monitoring the impacts of impaired liver function on brain health.
Collapse
Affiliation(s)
- Yifei Lu
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - James R Pike
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Ron Hoogeveen
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Keenan Walker
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Laura Raffield
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Elizabeth Selvin
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Christy Avery
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Stephanie Engel
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Michelle M Mielke
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Tanya Garcia
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Gerardo Heiss
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| | - Priya Palta
- From the Departments of Epidemiology (Y.L., C.A., S.E., G.H.) and Biostatistics (T.G.), Gillings School of Global Public Health and Departments of Genetics (L.R.) and Neurology (P.P.), School of Medicine, University of North Carolina at Chapel Hill, NC; Department of Epidemiology (J.R.P., E.S.), Johns Hopkins Bloomberg School of Public Health, Baltimore, MD; Department of Medicine (R.H.), Baylor College of Medicine, Houston, TX; Laboratory of Behavioral Neuroscience (K.W.), National Institute on Aging, Bethesda, MD; and Department of Epidemiology and Prevention (M.M.M.), Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
7
|
Lu Y, Pike JR, Hoogeveen RC, Walker KA, Raffield LM, Selvin E, Avery CL, Engel SM, Mielke MM, Garcia T, Palta P. Liver integrity and the risk of Alzheimer's disease and related dementias. Alzheimers Dement 2024; 20:1913-1922. [PMID: 38153336 PMCID: PMC10947929 DOI: 10.1002/alz.13601] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/29/2023]
Abstract
INTRODUCTION We examined midlife (1990-1992, mean age 57) and late-life (2011-2013, mean age 75) nonalcoholic fatty liver disease (NAFLD) and aminotransferase with incident dementia risk through 2019 in the Atherosclerosis Risk in Communities (ARIC) Study. METHODS We characterized NAFLD using the fatty liver index and fibrosis-4, and we categorized aminotransferase using the optimal equal-hazard ratio (HR) approach. We estimated HRs for incident dementia ascertained from multiple data sources. RESULTS Adjusted for demographics, alcohol consumption, and kidney function, individuals with low, intermediate, and high liver fibrosis in midlife (HRs: 1.45, 1.40, and 2.25, respectively), but not at older age, had higher dementia risks than individuals without fatty liver. A U-shaped association was observed for alanine aminotransferase with dementia risk, which was more pronounced in late-life assessment. DISCUSSION Our findings highlight dementia burden in high-prevalent NAFLD and the important feature of late-life aminotransaminase as a surrogate biomarker linking liver hypometabolism to dementia. Highlights Although evidence of liver involvement in dementia development has been documented in animal studies, the evidence in humans is limited. Midlife NAFLD raised dementia risk proportionate to severity. Late-life NAFLD was not associated with a high risk of dementia. Low alanine aminotransferase was associated with an elevated dementia risk, especially when measured in late life.
Collapse
Affiliation(s)
- Yifei Lu
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - James Russell Pike
- Department of Biostatistics, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Ron C. Hoogeveen
- Department of Medicine, Baylor College of MedicineOne Baylor PlazaHoustonTexasUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Laura M. Raffield
- Department of Genetics, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Elizabeth Selvin
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Christy L. Avery
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Stephanie M. Engel
- Department of Epidemiology, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Michelle M. Mielke
- Department of Epidemiology and PreventionWake Forest University School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Tanya Garcia
- Department of Biostatistics, Gillings School of Global Public HealthUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| | - Priya Palta
- Department of Neurology, School of MedicineUniversity of North Carolina at Chapel HillChapel HillNorth CarolinaUSA
| |
Collapse
|
8
|
Dark HE, Paterson C, Daya GN, Peng Z, Duggan MR, Bilgel M, An Y, Moghekar A, Davatzikos C, Resnick SM, Loupy K, Simpson M, Candia J, Mosley T, Coresh J, Palta P, Ferrucci L, Shapiro A, Williams SA, Walker KA. Proteomic Indicators of Health Predict Alzheimer's Disease Biomarker Levels and Dementia Risk. Ann Neurol 2024; 95:260-273. [PMID: 37801487 PMCID: PMC10842994 DOI: 10.1002/ana.26817] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/08/2023]
Abstract
OBJECTIVE Few studies have comprehensively examined how health and disease risk influence Alzheimer's disease (AD) biomarkers. The present study examined the association of 14 protein-based health indicators with plasma and neuroimaging biomarkers of AD and neurodegeneration. METHODS In 706 cognitively normal adults, we examined whether 14 protein-based health indices (ie, SomaSignal® tests) were associated with concurrently measured plasma-based biomarkers of AD pathology (amyloid-β [Aβ]42/40 , tau phosphorylated at threonine-181 [pTau-181]), neuronal injury (neurofilament light chain [NfL]), and reactive astrogliosis (glial fibrillary acidic protein [GFAP]), brain volume, and cortical Aβ and tau. In a separate cohort (n = 11,285), we examined whether protein-based health indicators associated with neurodegeneration also predict 25-year dementia risk. RESULTS Greater protein-based risk for cardiovascular disease, heart failure mortality, and kidney disease was associated with lower Aβ42/40 and higher pTau-181, NfL, and GFAP levels, even in individuals without cardiovascular or kidney disease. Proteomic indicators of body fat percentage, lean body mass, and visceral fat were associated with pTau-181, NfL, and GFAP, whereas resting energy rate was negatively associated with NfL and GFAP. Together, these health indicators predicted 12, 31, 50, and 33% of plasma Aβ42/40 , pTau-181, NfL, and GFAP levels, respectively. Only protein-based measures of cardiovascular risk were associated with reduced regional brain volumes; these measures predicted 25-year dementia risk, even among those without clinically defined cardiovascular disease. INTERPRETATION Subclinical peripheral health may influence AD and neurodegenerative disease processes and relevant biomarker levels, particularly NfL. Cardiovascular health, even in the absence of clinically defined disease, plays a central role in brain aging and dementia. ANN NEUROL 2024;95:260-273.
Collapse
Affiliation(s)
- Heather E. Dark
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | | | - Gulzar N. Daya
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Zhongsheng Peng
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Michael R. Duggan
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| | | | | | - Julián Candia
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Thomas Mosley
- University of Mississippi Medical Center, Jackson, MS, USA
| | - Josef Coresh
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Priya Palta
- Department of Medicine, Columbia University Irving Medical Center, New York, New York, USA
- Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD USA
| | - Allison Shapiro
- Department of Pediatrics, School of Medicine, University of Colorado Anschutz Medical Campus
| | | | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Intramural Research Program, Baltimore, MD, USA
| |
Collapse
|
9
|
Jin H, Yang Q, Chen G, Zhang W, Wu Y, Wang R. Effects of Hepatorenal Function on Urinary Alzheimer-Associated Neuronal Thread Protein: A Laboratory-Based Cross-Sectional Study Among the Older Chinese Population. J Alzheimers Dis 2024; 100:911-921. [PMID: 38968047 DOI: 10.3233/jad-240148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
Background Urinary Alzheimer-associated neuronal thread protein (AD7c-NTP) is a biomarker for the early diagnosis of Alzheimer's disease (AD). It remains unclear whether hepatorenal function affects the urinary AD7c-NTP level. Objective To evaluate the effects of hepatorenal function on urinary AD7c-NTP level. Methods We enrolled 453 participants aged 60-100 years. An automated chemistry analyzer was used to determine the indicators of serum hepatorenal function. Enzyme-linked immunosorbent assay was used to measure the urinary AD7c-NTP level. Results Spearman's correlation analysis showed a negative correlation between urinary AD7c-NTP levels and indicators of hepatorenal function, including albumin (r = -0.181, p < 0.001), albumin/globulin ratio (r = -0.224, p < 0.001), cholinesterase (r = -0.094, p = 0.046), total carbon dioxide (r = -0.102, p = 0.030), and glomerular filtration rate (r = -0.260, p < 0.001), as well as a positive correlation with globulin (r = 0.141, p = 0.003), aspartate transaminase (r = 0.186, p < 0.001), blood urine nitrogen (r = 0.210, p < 0.001), creatinine (r = 0.202, p < 0.001), uric acid (r = 0.229, p < 0.001), and cystatin C (r = 0.265, p < 0.001). The least absolute shrinkage and selection operator (LASSO) regression analysis and multiple linear regression model analyses showed that the statistically significant hepatorenal indicators for predicting AD7c-NTP were A/G (p = 0.007), AST (p = 0.002), BUN (p = 0.019), and UA (p = 0.003). Conclusions The effects of hepatorenal indicators should be considered when using urinary AD7c-NTP levels in clinical settings.
Collapse
Affiliation(s)
- He Jin
- Central Laboratory, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
- Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Qiu Yang
- Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Guodong Chen
- Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Wei Zhang
- Central Laboratory, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yanchuan Wu
- Central Laboratory, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Wang
- Central Laboratory, Beijing Geriatric Medical Research Center, Key Laboratory for Neurodegenerative Disease of Ministry of Education, Xuanwu Hospital, Capital Medical University, Beijing, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, China
- National Clinical Research Center for Geriatric Disorders, Beijing, China
| |
Collapse
|
10
|
Bilgel M, An Y, Walker KA, Moghekar AR, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Jedynak BM, Thambisetty M, Ferrucci L, Resnick SM. Longitudinal changes in Alzheimer's-related plasma biomarkers and brain amyloid. Alzheimers Dement 2023; 19:4335-4345. [PMID: 37216632 PMCID: PMC10592628 DOI: 10.1002/alz.13157] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS We examined the temporal order of changes in plasma amyloid-β ratio (A β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios (p-tau181 / A β 42 $\text{p-tau181}/\mathrm{A}{\beta}_{42}$ ,p-tau231 / A β 42 $\text{p-tau231}/\mathrm{A}{\beta}_{42}$ ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS PiB groups exhibited different rates of longitudinal change inA β 42 / A β 40 ( β = 5.41 × 10 - 4 , SE = 1.95 × 10 - 4 , p = 0.0073 ) ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}\ ( {\beta \ = \ 5.41 \times {{10}}^{ - 4},{\rm{\ SE\ }} = \ 1.95 \times {{10}}^{ - 4},\ p\ = \ 0.0073} )$ . Change in brain amyloid correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). The greatest relative decline inA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ (-1%/year) preceded brain amyloid positivity by 41 years (95% CI = [32, 53]). DISCUSSION PlasmaA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time. HIGHLIGHTS PlasmaA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ declines over time among PiB- but does not change among PiB+. Phosphorylated-tau to Aβ42 ratios increase over time among PiB+ but do not change among PiB-. Rate of change in brain amyloid is correlated with change in GFAP and neurofilament light chain. The greatest decline inA β 42 / A β 40 ${{\rm A}\beta }_{42}/{{\rm A}\beta }_{40}$ may precede brain amyloid positivity by decades.
Collapse
Affiliation(s)
- Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Abhay R. Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research, Unit for Dementia at South London and Maudsley, NHS Foundation, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4019 Stavanger, Norway
| | - Przemysław R. Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Bruno M. Jedynak
- Department of Mathematics and Statistics, Portland State University, Portland, Oregon, 97201, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| |
Collapse
|
11
|
Terracciano A, Walker K, An Y, Luchetti M, Stephan Y, Moghekar AR, Sutin AR, Ferrucci L, Resnick SM. The association between personality and plasma biomarkers of astrogliosis and neuronal injury. Neurobiol Aging 2023; 128:65-73. [PMID: 37210782 PMCID: PMC10247521 DOI: 10.1016/j.neurobiolaging.2023.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/31/2023] [Accepted: 04/22/2023] [Indexed: 05/23/2023]
Abstract
Personality traits have been associated with the risk of dementia and Alzheimer's disease neuropathology, including amyloid and tau. This study examines whether personality traits are concurrently related to plasma glial fibrillary acidic protein (GFAP), a marker of astrogliosis, and neurofilament light (NfL), a marker of neuronal injury. Cognitively unimpaired participants from the Baltimore Longitudinal Study on Aging (N = 786; age: 22-95) were assayed for plasma GFAP and NfL and completed the Revised NEO Personality Inventory, which measures 5 domains and 30 facets of personality. Neuroticism (particularly vulnerability to stress, anxiety, and depression) was associated with higher GFAP and NfL. Conscientiousness was associated with lower GFAP. Extraversion (particularly positive emotions, assertiveness, and activity) was related to lower GFAP and NfL. These associations were independent of demographic, behavioral, and health covariates and not moderated by age, sex, or apolipoprotein E genotype. The personality correlates of astrogliosis and neuronal injury tend to be similar, are found in individuals without cognitive impairment, and point to potential neurobiological underpinnings of the association between personality traits and neurodegenerative diseases.
Collapse
Affiliation(s)
- Antonio Terracciano
- Department of Geriatrics, Florida State University College of Medicine, Tallahassee, FL, USA; Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Keenan Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Martina Luchetti
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | | | - Abhay R Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Angelina R Sutin
- Department of Behavioral Sciences and Social Medicine, Florida State University College of Medicine, Tallahassee, FL, USA
| | - Luigi Ferrucci
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
12
|
Córdoba-Jover B, Ribera J, Portolés I, Lecue E, Rodriguez-Vita J, Pérez-Sisqués L, Mannara F, Solsona-Vilarrasa E, García-Ruiz C, Fernández-Checa JC, Casals G, Rodríguez-Revenga L, Álvarez-Mora MI, Arteche-López A, Díaz de Bustamante A, Calvo R, Pujol A, Azkargorta M, Elortza F, Malagelada C, Pinyol R, Huguet-Pradell J, Melgar-Lesmes P, Jiménez W, Morales-Ruiz M. Tcf20 deficiency is associated with increased liver fibrogenesis and alterations in mitochondrial metabolism in mice and humans. Liver Int 2023; 43:1822-1836. [PMID: 37312667 DOI: 10.1111/liv.15640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/23/2023] [Accepted: 05/28/2023] [Indexed: 06/15/2023]
Abstract
BACKGROUND & AIMS Transcription co-activator factor 20 (TCF20) is a regulator of transcription factors involved in extracellular matrix remodelling. In addition, TCF20 genomic variants in humans have been associated with impaired intellectual disability. Therefore, we hypothesized that TCF20 has several functions beyond those described in neurogenesis, including the regulation of fibrogenesis. METHODS Tcf20 knock-out (Tcf20-/- ) and Tcf20 heterozygous mice were generated by homologous recombination. TCF20 gene genotyping and expression was assessed in patients with pathogenic variants in the TCF20 gene. Neural development was investigated by immufluorescense. Mitochondrial metabolic activity was evaluated with the Seahorse analyser. The proteome analysis was carried out by gas chromatography mass-spectrometry. RESULTS Characterization of Tcf20-/- newborn mice showed impaired neural development and death after birth. In contrast, heterozygous mice were viable but showed higher CCl4 -induced liver fibrosis and a differential expression of genes involved in extracellular matrix homeostasis compared to wild-type mice, along with abnormal behavioural patterns compatible with autism-like phenotypes. Tcf20-/- embryonic livers and mouse embryonic fibroblast (MEF) cells revealed differential expression of structural proteins involved in the mitochondrial oxidative phosphorylation chain, increased rates of mitochondrial metabolic activity and alterations in metabolites of the citric acid cycle. These results parallel to those found in patients with TCF20 pathogenic variants, including alterations of the fibrosis scores (ELF and APRI) and the elevation of succinate concentration in plasma. CONCLUSIONS We demonstrated a new role of Tcf20 in fibrogenesis and mitochondria metabolism in mice and showed the association of TCF20 deficiency with fibrosis and metabolic biomarkers in humans.
Collapse
Affiliation(s)
- Bernat Córdoba-Jover
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Jordi Ribera
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
| | - Irene Portolés
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Elena Lecue
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Rodriguez-Vita
- Tumour-Stroma Communication Laboratory, Centro de Investigación Príncipe Felipe, Valencia, Spain
| | - Leticia Pérez-Sisqués
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Francesco Mannara
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
| | - Estel Solsona-Vilarrasa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
| | - Carmen García-Ruiz
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - José C Fernández-Checa
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Cell Death and Proliferation, Institute of Biomedical Research of Barcelona (IIBB), Consejo Superior Investigaciones Científicas (CSIC), Liver Unit, Hospital Clínic, IDIBAPS, Universitat de Barcelona, Barcelona, Spain
- USC Research Center for ALPD, Keck School of Medicine, Los Angeles, California, USA
| | - Gregori Casals
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Laia Rodríguez-Revenga
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - María Isabel Álvarez-Mora
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBER of Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
| | - Ana Arteche-López
- Genetics Department, 12 de Octubre University Hospital, Madrid, Spain
- UDISGEN (Unidad de Dismorfología y Genética), 12 de Octubre University Hospital, Madrid, Spain
| | | | - Rosa Calvo
- Institut d'Investigacions Biomèdiques August Pi iSunyer (IDIBAPS), Barcelona, Spain
- Department of Child and Adolescent Psychiatry and Psychology, Hospital Clinic of Barcelona. School of Medicine, University of Barcelona, Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM), Madrid, Spain
| | - Anna Pujol
- Unidad de Animales Transgénicos UAT-CBATEG, Universitat Autònoma de Barcelona, Cerdanyola del Valles, Spain
| | - Mikel Azkargorta
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Felix Elortza
- Proteomics Platform, CIC bioGUNE, Basque Research and Technology Alliance (BRTA), CIBERehd, Derio, Spain
| | - Cristina Malagelada
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Roser Pinyol
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Júlia Huguet-Pradell
- Translational Research in Hepatic Oncology Group, Liver Unit, IDIBAPS, Barcelona Clínic Hospital, University of Barcelona, Barcelona, Spain
| | - Pedro Melgar-Lesmes
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Wladimiro Jiménez
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| | - Manuel Morales-Ruiz
- Biochemistry and Molecular Genetics Department, Hospital Clinic of Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- CIBERehd, Instituto de Salud Carlos III, Madrid, Spain
- Department of Biomedicine-Biochemistry Unit, School of Medicine University of Barcelona, Barcelona, Spain
| |
Collapse
|
13
|
Jiang R, Wu J, Rosenblatt M, Dai W, Rodriguez RX, Sui J, Qi S, Liang Q, Xu B, Meng Q, Calhoun VD, Scheinost D. Elevated C-reactive protein mediates the liver-brain axis: a preliminary study. EBioMedicine 2023; 93:104679. [PMID: 37356206 PMCID: PMC10320521 DOI: 10.1016/j.ebiom.2023.104679] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/10/2023] [Accepted: 06/11/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Chronic liver diseases of all etiologies exist along a spectrum with varying degrees of hepatic fibrosis. Despite accumulating evidence implying associations between liver fibrosis and cognitive functioning, there is limited research exploring the underlying neurobiological factors and the possible mediating role of inflammation on the liver-brain axis. METHODS Using data from the UK Biobank, we examined the cross-sectional association of liver fibrosis (as measured by Fibrosis-4 score) with cognitive functioning and regional grey matter volumes (GMVs) while adjusting for numerous covariates and multiple comparisons. We further performed post-hoc preliminary analysis to investigate the mediating effect of C-reactive protein (CRP) on the association between liver fibrosis and both cognitive functioning and GMVs. FINDINGS We analysed behaviour from up to 447,626 participants (N ranged from 45,055 to 447,533 per specific cognitive metric) 37 years and older. 38,244 participants (age range 44-82 years) had GMV data collected at a median 9-year follow-up. Liver fibrosis showed significant associations with cognitive performance in reasoning, working memory, visual memory, prospective memory, executive function, and processing speed. Subgroup analysis indicated larger effects sizes for symbol digital substitution but smaller effect sizes for trail making in middle-aged people than their old counterparts. Neuroimaging analyses revealed significant associations between liver fibrosis and reduced regional GMVs, primarily in the hippocampus, thalamus, ventral striatum, parahippocampal gyrus, brain stem, and cerebellum. CRP levels were significantly higher in adults with advanced liver fibrosis than those without, indicating an elevated systemic inflammation. Moreover, the serum CRP significantly mediated the effect of liver fibrosis on most cognitive measures and regional GMVs in the hippocampus and brain stem. INTERPRETATION This study provides a well-powered characterization of associations between liver fibrosis, cognitive impairment, and grey matter atrophy. It also highlights the possibly mediating role of systemic inflammation on the liver-brain axis. Early surveillance and prevention of liver diseases may reduce cognitive decline and brain GMV loss. FUNDING National Science Foundation, and National Institutes of Health.
Collapse
Affiliation(s)
- Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Jing Wu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Wei Dai
- Department of Biostatistics, Yale University, New Haven, CT 06520, USA
| | - Raimundo X Rodriguez
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA
| | - Jing Sui
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100088, China
| | - Shile Qi
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Qinghao Liang
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Bin Xu
- Second Department of Liver Disease Center, Youan Hospital, Capital Medical University, Beijing, 100069, China.
| | - Qinghua Meng
- Department of Medical Oncology, Beijing You-An Hospital, Capital Medical University, Beijing, 100069, China
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Dustin Scheinost
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, 100 College Street, New Haven, CT 06510, USA.
| |
Collapse
|
14
|
Bilgel M, An Y, Walker KA, Moghekar AR, Ashton NJ, Kac PR, Karikari TK, Blennow K, Zetterberg H, Jedynak BM, Thambisetty M, Ferrucci L, Resnick SM. Longitudinal changes in Alzheimer's-related plasma biomarkers and brain amyloid. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.01.12.23284439. [PMID: 36711545 PMCID: PMC9882432 DOI: 10.1101/2023.01.12.23284439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Understanding longitudinal plasma biomarker trajectories relative to brain amyloid changes can help devise Alzheimer's progression assessment strategies. METHODS We examined the temporal order of changes in plasma amyloid-β ratio (Aβ 42 /Aβ 40 ), glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), and phosphorylated tau ratios (p-tau181/Aβ 42 , p-tau231/Aβ 42 ) relative to 11 C-Pittsburgh compound B (PiB) positron emission tomography (PET) cortical amyloid burden (PiB-/+). Participants (n = 199) were cognitively normal at index visit with a median 6.1-year follow-up. RESULTS PiB groups exhibited different rates of longitudinal change in Aβ 42 /Aβ 40 (β = 5.41 × 10^ -4 , SE = 1.95 × 10 -4 , p = 0.0073). Change in brain amyloid was correlated with change in GFAP (r = 0.5, 95% CI = [0.26, 0.68]). Greatest relative decline in Aβ 42 /Aβ 40 (-1%/year) preceded brain amyloid positivity onset by 41 years (95% CI = [32, 53]). DISCUSSION Plasma Aβ 42 /Aβ 40 may begin declining decades prior to brain amyloid accumulation, whereas p-tau ratios, GFAP, and NfL increase closer in time.
Collapse
Affiliation(s)
- Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Abhay R. Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, 21287, USA
| | - Nicholas J. Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RX, UK
- NIHR Biomedical Research Centre for Mental Health and Biomedical Research, Unit for Dementia at South London and Maudsley, NHS Foundation, London, SE5 8AF, UK
- Centre for Age-Related Medicine, Stavanger University Hospital, 4019 Stavanger, Norway
| | - Przemyslaw R. Kac
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Thomas K. Karikari
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 431 80 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, 431 80 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer’s Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53792, USA
| | - Bruno M. Jedynak
- Department of Mathematics and Statistics, Portland State University, Portland, Oregon, 97201, USA
| | - Madhav Thambisetty
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, Baltimore, Maryland, 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland, 21224, USA
| |
Collapse
|