1
|
Saidi S, Shtrahman M. Evaluation of compact pulsed lasers for two-photon microscopy using a simple method for measuring two-photon excitation efficiency. NEUROPHOTONICS 2023; 10:044303. [PMID: 38076726 PMCID: PMC10704185 DOI: 10.1117/1.nph.10.4.044303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 09/26/2023] [Accepted: 10/17/2023] [Indexed: 02/12/2024]
Abstract
Significance Two-photon (2p) microscopy has historically relied on titanium sapphire pulsed lasers that are expensive and have a large footprint. Recently, several manufacturers have developed less expensive compact pulsed lasers optimized for 2p excitation of green fluorophores. However, quantitative evaluation of their quality is lacking. Aim We describe a simple approach to systematically evaluate 2p excitation efficiency, an empiric measure of the quality of a pulsed laser and its ability to elicit 2p induced fluorescence. Approach By measuring pulse width, repetition rate, and fluorescence output, we calculated a measure of 2p excitation efficiency η , which we compared for four commercially available compact pulsed lasers in the 920 to 930 nm wavelength range. Results 2p excitation efficiency varied substantially among tested lasers. The Coherent Axon exhibited the best 2p excitation efficiency (1.09 ± 0.03 ), exceeding that of a titanium sapphire reference laser (defined to have efficiency = 1). However, its measured fluorescence was modest due to its long pulse width. Of the compact lasers, the Toptica Femtofiber Ultra exhibited the best combination of measured fluorescence (0.75 ± 0.01 ) and 2p excitation efficiency (0.86 ± 0.01 ). Conclusions We describe a simple method that both laser developers and end users can use to benchmark the 2p excitation efficiency of lasers used for 2p microscopy.
Collapse
Affiliation(s)
- Samir Saidi
- University of California, San Diego, Shu Chien-Gene Lay Department of Bioengineering, La Jolla, California, United States
| | - Matthew Shtrahman
- University of California, San Diego, Department of Neurosciences, La Jolla, California, United States
| |
Collapse
|
2
|
Xu C, Fitting S. Inhibition of GABAergic Neurotransmission by HIV-1 Tat and Opioid Treatment in the Striatum Involves μ-Opioid Receptors. Front Neurosci 2016; 10:497. [PMID: 27877102 PMCID: PMC5099255 DOI: 10.3389/fnins.2016.00497] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 10/17/2016] [Indexed: 01/07/2023] Open
Abstract
Due to combined antiretroviral therapy (cART), human immunodeficiency virus type 1 (HIV-1) is considered a chronic disease with high prevalence of mild forms of neurocognitive impairments, also referred to as HIV-associated neurocognitive disorders (HAND). Although opiate drug use can exacerbate HIV-1 Tat-induced neuronal damage, it remains unknown how and to what extent opioids interact with Tat on the GABAergic system. We conducted whole-cell recordings in mouse striatal slices and examined the effects of HIV-1 Tat in the presence and absence of morphine (1 μM) and damgo (1 μM) on GABAergic neurotransmission. Results indicated a decrease in the frequency and amplitude of spontaneous inhibitory postsynaptic currents (sIPSCs) and miniature IPSCs (mIPSCs) by Tat (5–50 nM) in a concentration-dependent manner. The significant Tat-induced decrease in IPSCs was abolished when removing extracellular and/or intracellular calcium. Treatment with morphine or damgo alone significantly decreased the frequency, but not amplitude of IPSCs. Interestingly, morphine but not damgo indicated an additional downregulation of the mean frequency of mIPSCs in combination with Tat. Pretreatment with naloxone (1 μM) and CTAP (1 μM) prevented the Tat-induced decrease in sIPSCs frequency but only naloxone prevented the combined Tat and morphine effect on mIPSCs frequency. Results indicate a Tat- or opioid-induced decrease in GABAergic neurotransmission via μ-opioid receptors with combined Tat and morphine effects involving additional opioid receptor-related mechanisms. Exploring the interactions between Tat and opioids on the GABAergic system may help to guide future research on HAND in the context of opiate drug use.
Collapse
Affiliation(s)
- Changqing Xu
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill Chapel Hill, NC, USA
| | - Sylvia Fitting
- Department of Psychology and Neuroscience, University of North Carolina Chapel Hill Chapel Hill, NC, USA
| |
Collapse
|
3
|
Intracellular Ca2+ stores and Ca2+ influx are both required for BDNF to rapidly increase quantal vesicular transmitter release. Neural Plast 2012; 2012:203536. [PMID: 22811938 PMCID: PMC3397209 DOI: 10.1155/2012/203536] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/29/2012] [Indexed: 12/22/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is well known as a survival factor during brain development as well as a regulator of adult synaptic plasticity. One potential mechanism to initiate BDNF actions is through its modulation of quantal presynaptic transmitter release. In response to local BDNF application to CA1 pyramidal neurons, the frequency of miniature excitatory postsynaptic currents (mEPSC) increased significantly within 30 seconds; mEPSC amplitude and kinetics were unchanged. This effect was mediated via TrkB receptor activation and required both full intracellular Ca2+ stores as well as extracellular Ca2+. Consistent with a role of Ca2+-permeable plasma membrane channels of the TRPC family, the inhibitor SKF96365 prevented the BDNF-induced increase in mEPSC frequency. Furthermore, labeling presynaptic terminals with amphipathic styryl dyes and then monitoring their post-BDNF destaining in slice cultures by multiphoton excitation microscopy revealed that the increase in frequency of mEPSCs reflects vesicular fusion events. Indeed, BDNF application to CA3-CA1 synapses in TTX rapidly enhanced FM1-43 or FM2-10 destaining with a time course that paralleled the phase of increased mEPSC frequency. We conclude that BDNF increases mEPSC frequency by boosting vesicular fusion through a presynaptic, Ca2+-dependent mechanism involving TrkB receptors, Ca2+ stores, and TRPC channels.
Collapse
|
4
|
Upreti C, Otero R, Partida C, Skinner F, Thakker R, Pacheco LF, Zhou ZY, Maglakelidze G, Velíšková J, Velíšek L, Romanovicz D, Jones T, Stanton PK, Garrido-Sanabria ER. Altered neurotransmitter release, vesicle recycling and presynaptic structure in the pilocarpine model of temporal lobe epilepsy. ACTA ACUST UNITED AC 2012; 135:869-85. [PMID: 22344585 DOI: 10.1093/brain/awr341] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
In searching for persistent seizure-induced alterations in brain function that might be causally related to epilepsy, presynaptic transmitter release has relatively been neglected. To measure directly the long-term effects of pilocarpine-induced status epilepticus on vesicular release and recycling in hippocampal mossy fibre presynaptic boutons, we used (i) two-photon imaging of FM1-43 vesicular release in rat hippocampal slices; and (ii) transgenic mice expressing the genetically encoded pH-sensitive fluorescent reporter synaptopHluorin preferentially at glutamatergic synapses. In this study we found that, 1-2 months after pilocarpine-induced status epilepticus, there were significant increases in mossy fibre bouton size, faster rates of action potential-driven vesicular release and endocytosis. We also analysed the ultrastructure of rat mossy fibre boutons using transmission electron microscopy. Pilocarpine-induced status epilepticus led to a significant increase in the number of release sites, active zone length, postsynaptic density area and number of vesicles in the readily releasable and recycling pools, all correlated with increased release probability. Our data show that presynaptic release machinery is persistently altered in structure and function by status epilepticus, which could contribute to the development of the chronic epileptic state and may represent a potential new target for antiepileptic therapies.
Collapse
Affiliation(s)
- Chirag Upreti
- Department of Cell Biology and Anatomy, New York Medical College, Valhalla, NY 10595, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Calfa G, Hablitz JJ, Pozzo-Miller L. Network hyperexcitability in hippocampal slices from Mecp2 mutant mice revealed by voltage-sensitive dye imaging. J Neurophysiol 2011; 105:1768-84. [PMID: 21307327 PMCID: PMC3075283 DOI: 10.1152/jn.00800.2010] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Accepted: 02/03/2011] [Indexed: 11/22/2022] Open
Abstract
Dysfunctions of neuronal and network excitability have emerged as common features in disorders associated with intellectual disabilities, autism, and seizure activity, all common clinical manifestations of Rett syndrome (RTT), a neurodevelopmental disorder caused by loss-of-function mutations in the transcriptional regulator methyl-CpG-binding protein 2 (MeCP2). Here, we evaluated the consequences of Mecp2 mutation on hippocampal network excitability, as well as synapse structure and function using a combination of imaging and electrophysiological approaches in acute slices. Imaging the amplitude and spatiotemporal spread of neuronal depolarizations with voltage-sensitive dyes (VSD) revealed that the CA1 and CA3 regions of hippocampal slices from symptomatic male Mecp2 mutant mice are highly hyperexcitable. However, only the density of docked synaptic vesicles and the rate of release from the readily releasable pool are impaired in Mecp2 mutant mice, while synapse density and morphology are unaffected. The differences in network excitability were not observed in surgically isolated CA1 minislices, and blockade of GABAergic inhibition enhanced VSD signals to the same extent in Mecp2 mutant and wild-type mice, suggesting that network excitability originates in area CA3. Indeed, extracellular multiunit recordings revealed a higher level of spontaneous firing of CA3 pyramidal neurons in slices from symptomatic Mecp2 mutant mice. The neuromodulator adenosine reduced the amplitude and spatiotemporal spread of VSD signals evoked in CA1 of Mecp2 mutant slices to wild-type levels, suggesting its potential use as an anticonvulsant in RTT individuals. The present results suggest that hyperactive CA3 pyramidal neurons contribute to hippocampal dysfunction and possibly to limbic seizures observed in Mecp2 mutant mice and RTT individuals.
Collapse
Affiliation(s)
- Gaston Calfa
- Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL 35294-2182, USA
| | | | | |
Collapse
|
6
|
Mathew SS, Hablitz JJ. Presynaptic NMDA receptors mediate IPSC potentiation at GABAergic synapses in developing rat neocortex. PLoS One 2011; 6:e17311. [PMID: 21365001 PMCID: PMC3041804 DOI: 10.1371/journal.pone.0017311] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 01/28/2011] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND NMDA receptors are traditionally viewed as being located postsynaptically, at both synaptic and extrasynaptic locations. However, both anatomical and physiological studies have indicated the presence of NMDA receptors located presynaptically. Physiological studies of presynaptic NMDA receptors on neocortical GABAergic terminals and their possible role in synaptic plasticity are lacking. METHODOLOGY/PRINCIPAL FINDINGS We report here that presynaptic NMDA receptors are present on GABAergic terminals in developing (postnatal day (PND) 12-15) but not older (PND21-25) rat frontal cortex. Using MK-801 in the recording pipette to block postsynaptic NMDA receptors, evoked and miniature IPSCs were recorded in layer II/III pyramidal cells in the presence of AMPA/KA receptor antagonists. Bath application of NMDA or NMDA receptor antagonists produced increases and decreases in mIPSC frequency, respectively. Physiologically patterned stimulation (10 bursts of 10 stimuli at 25 Hz delivered at 1.25 Hz) induced potentiation at inhibitory synapses in PND12-15 animals. This consisted of an initial rapid, large increase in IPSC amplitude followed by a significant but smaller persistent increase. Similar changes were not observed in PND21-25 animals. When 20 mM BAPTA was included in the recording pipette, potentiation was still observed in the PND12-15 group indicating that postsynaptic increases in calcium were not required. Potentiation was not observed when patterned stimulation was given in the presence of D-APV or the NR2B subunit antagonist Ro25-6981. CONCLUSIONS/SIGNIFICANCE The present results indicate that presynaptic NMDA receptors modulate GABA release onto neocortical pyramidal cells. Presynaptic NR2B subunit containing NMDA receptors are also involved in potentiation at developing GABAergic synapses in rat frontal cortex. Modulation of inhibitory GABAergic synapses by presynaptic NMDA receptors may be important for proper functioning of local cortical networks during development.
Collapse
Affiliation(s)
- Seena S. Mathew
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - John J. Hablitz
- Department of Neurobiology and Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| |
Collapse
|
7
|
Welzel O, Tischbirek CH, Jung J, Kohler EM, Svetlitchny A, Henkel AW, Kornhuber J, Groemer TW. Synapse clusters are preferentially formed by synapses with large recycling pool sizes. PLoS One 2010; 5:e13514. [PMID: 20976002 PMCID: PMC2958124 DOI: 10.1371/journal.pone.0013514] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Synapses are distributed heterogeneously in neural networks. The relationship between the spatial arrangement of synapses and an individual synapse's structural and functional features remains to be elucidated. Here, we examined the influence of the number of adjacent synapses on individual synaptic recycling pool sizes. When measuring the discharge of the styryl dye FM1-43 from electrically stimulated synapses in rat hippocampal tissue cultures, a strong positive correlation between the number of neighbouring synapses and recycling vesicle pool sizes was observed. Accordingly, vesicle-rich synapses were found to preferentially reside next to neighbours with large recycling pool sizes. Although these synapses with large recycling pool sizes were rare, they were densely arranged and thus exhibited a high amount of release per volume. To consolidate these findings, functional terminals were marked by live-cell antibody staining with anti-synaptotagmin-1-cypHer or overexpression of synaptopHluorin. Analysis of synapse distributions in these systems confirmed the results obtained with FM 1-43. Our findings support the idea that clustering of synapses with large recycling pool sizes is a distinct developmental feature of newly formed neural networks and may contribute to functional plasticity.
Collapse
Affiliation(s)
- Oliver Welzel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Carsten H. Tischbirek
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Jasmin Jung
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Eva M. Kohler
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Alexei Svetlitchny
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Andreas W. Henkel
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
| | - Teja W. Groemer
- Department of Psychiatry and Psychotherapy, University of Erlangen-Nuremberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
8
|
Lindsly C, Frazier CJ. Two distinct and activity-dependent mechanisms contribute to autoreceptor-mediated inhibition of GABAergic afferents to hilar mossy cells. J Physiol 2010; 588:2801-22. [PMID: 20547680 DOI: 10.1113/jphysiol.2009.184648] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
We report that bath application of 3 mum carbachol (CCh), a muscarinic acetylcholine receptor agonist, reduces evoked IPSC amplitude recorded from hilar mossy cells in the rat dentate gyrus through a presynaptic mechanism. While CCh has been shown to inhibit evoked IPSCs in other systems, this effect is intriguing in that it does not require inhibitory action of either presynaptic muscarinic receptors or presynaptic cannabinoid receptors. Previous work from our lab has shown that identical application of CCh produces an action potential-dependent increase in ambient GABA in this system; however, inhibition of evoked IPSCs produced by both 3 and 10 mum CCh is insensitive to the GABA(B) antagonist CGP52432. Therefore we hypothesized that CCh-mediated inhibition of evoked IPSCs might be produced by activity-dependent increases in ambient GABA and subsequent activation of presynaptic GABA(A) receptors. Consistent with that hypothesis, we report that CCh-mediated inhibition of evoked IPSCs appears to be well correlated with CCh-mediated facilitation of spontaneous IPSCs and that CCh does not affect GABA(B)-mediated IPSCs recorded in the presence of the GABA(A) receptor antagonist picrotoxin. Intriguingly, however, we found that bath application of the GAT-1 transport blocker NO-711 (1 mum) produces inhibition of evoked IPSCs that is reversed by CGP52432, and that lower doses of CCh produce inhibition with greater CGP52432 sensitivity. These observations, combined with subsequent work on multiple pulse depression, reveal that feedback inhibition of GABAergic afferents to hilar mossy cells is governed by a complex relationship between two distinct and activity-dependent mechanisms.
Collapse
Affiliation(s)
- Casie Lindsly
- Department of Neuroscience, College of Medicine, University of Florida,1600 S.W. Archer Road, Gainesville, FL 32610, USA
| | | |
Collapse
|
9
|
Hablitz JJ, Mathew SS, Pozzo-Miller L. GABA vesicles at synapses: are there 2 distinct pools? Neuroscientist 2009; 15:218-24. [PMID: 19436074 DOI: 10.1177/1073858408326431] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Fast synaptic inhibition in the neocortex is mediated by the neurotransmitter GABA, acting on GABA( A) receptors. Neurotransmitters, including GABA, are stored in synaptic vesicles at presynaptic nerve terminals. A long-held assumption has been that evoked and spontaneous neurotransmissions draw on the same pools of vesicles. We review the evidence from FM1-43 studies supporting the contention that at least 2 distinct pools of GABA vesicles are present at inhibitory synapses in the rat neocortex. FM1-43 uptake during spontaneous vesicle endocytosis labels a vesicle pool within neocortical inhibitory nerve terminals that is released much more slowly ("reluctant" pool) than those vesicles loaded by electrical stimulation of afferent fibers or hyperkalemic solutions. These multiple pools may play diverse roles in such processes as long-term depression and/or potentiating of inhibitory synaptic transmission, homeostatic plasticity of inhibitory activity, or developmental changes in inhibitory synaptic transmission.
Collapse
Affiliation(s)
- John J Hablitz
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, Alabama.
| | | | | |
Collapse
|
10
|
Long P, Mercer A, Begum R, Stephens GJ, Sihra TS, Jovanovic JN. Nerve Terminal GABAA Receptors Activate Ca2+/Calmodulin-dependent Signaling to Inhibit Voltage-gated Ca2+ Influx and Glutamate Release. J Biol Chem 2009; 284:8726-37. [PMID: 19141616 DOI: 10.1074/jbc.m805322200] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptors, a family of Cl(-)-permeable ion channels, mediate fast synaptic inhibition as postsynaptically enriched receptors for gamma-aminobutyric acid at GABAergic synapses. Here we describe an alternative type of inhibition mediated by GABA(A) receptors present on neocortical glutamatergic nerve terminals and examine the underlying signaling mechanism(s). By monitoring the activity of the presynaptic CaM kinase II/synapsin I signaling pathway in isolated nerve terminals, we demonstrate that GABA(A) receptor activation correlated with an increase in basal intraterminal [Ca(2+)](i). Interestingly, this activation of GABA(A) receptors resulted in a reduction of subsequent depolarization-evoked Ca(2+) influx, which thereby led to an inhibition of glutamate release. To investigate how the observed GABA(A) receptor-mediated modulation operates, we determined the sensitivity of this process to the Na-K-2Cl cotransporter 1 antagonist bumetanide, as well as substitution of Ca(2+) with Ba(2+), or Ca(2+)/calmodulin inhibition by W7. All of these treatments abolished the modulation by GABA(A) receptors. Application of selective antagonists of voltage-gated Ca(2+) channels (VGCCs) revealed that the GABA(A) receptor-mediated modulation of glutamate release required the specific activity of L- and R-type VGCCs. Crucially, the inhibition of release by these receptors was abolished in terminals isolated from R-type VGCC knock-out mice. Together, our results indicate that a functional coupling between nerve terminal GABA(A) receptors and L- or R-type VGCCs is mediated by Ca(2+)/calmodulin-dependent signaling. This mechanism provides a GABA-mediated control of glutamatergic synaptic activity by a direct inhibition of glutamate release.
Collapse
Affiliation(s)
- Philip Long
- Department of Pharmacology, School of Pharmacy, University of London, London WC1N 1AX
| | | | | | | | | | | |
Collapse
|
11
|
Abstract
Inhibitory control of local neuronal circuits is critical for prefrontal cortical functioning. Modulation of inhibitory circuits by several neuromodulators has been demonstrated, but the underlying mechanisms are unclear. Neuromodulator effects on synaptic vesicle recycling have received little attention. Controversy also exists whether different pools of synaptic vesicles underlie spontaneous and activity-dependent vesicle recycling. We therefore investigated the effects of kainate receptor activation on GABA release in rat prefrontal neocortex using electrophysiological and styryl dye imaging techniques in acute neocortical slices. Electrophysiological studies demonstrated that activation of kainate receptors increased the frequency, but not the amplitude of miniature IPSCs, suggesting a presynaptic action. Using styryl dye staining and multiphoton excitation microscopy, we visualized vesicular release from inhibitory GABAergic terminals in prefrontal cortical slices and demonstrate that kainate facilitates GABA release from presynaptic terminals. Our findings also indicate the presence of two pools of GABA-containing vesicles within inhibitory terminals. Kainate modulates both pools but only when vesicles are endocytosed and exocytosed by matching protocols of dye loading, i.e., spontaneous or evoked afferent activity.
Collapse
|
12
|
Abstract
The release of transmitters through vesicle exocytosis from nerve terminals is not constant but is subject to modulation by various mechanisms, including prior activity at the synapse and the presence of neurotransmitters or neuromodulators in the synapse. Instantaneous responses of postsynaptic cells to released transmitters are mediated by ionotropic receptors. In contrast to metabotropic receptors, ionotropic receptors mediate the actions of agonists in a transient manner within milliseconds to seconds. Nevertheless, transmitters can control vesicle exocytosis not only via slowly acting metabotropic, but also via fast acting ionotropic receptors located at the presynaptic nerve terminals. In fact, members of the following subfamilies of ionotropic receptors have been found to control transmitter release: ATP P2X, nicotinic acetylcholine, GABA(A), ionotropic glutamate, glycine, 5-HT(3), andvanilloid receptors. As these receptors display greatly diverging structural and functional features, a variety of different mechanisms are involved in the regulation of transmitter release via presynaptic ionotropic receptors. This text gives an overview of presynaptic ionotropic receptors and briefly summarizes the events involved in transmitter release to finally delineate the most important signaling mechanisms that mediate the effects of presynaptic ionotropic receptor activation. Finally, a few examples are presented to exemplify the physiological and pharmacological relevance of presynaptic ionotropic receptors.
Collapse
Affiliation(s)
- M M Dorostkar
- Institute of Experimental and Clinical Pharmacology, Medical University of Graz, Universitäts-platz 4, Graz, Austria
| | | |
Collapse
|
13
|
Abstract
Following the classical work on presynaptic inhibition in the spinal cord, recent work has revealed an astonishing abundance and diversity of presynaptic ionotropic GABA receptors. While modern techniques allow for detailed studies at the cellular and molecular level in almost all regions of the CNS, our understanding of the function of such receptors is still far from complete. One major shortcoming is the lack of knowledge regarding chloride concentration inside axons or axon terminals. Therefore, the voltage change upon activation of presynaptic GABA receptors is difficult to predict. Moreover, even if the presynaptic potential transient was known, it turns out difficult to predict the effects on presynaptic function, which may be differentially influenced by various mechanisms, including activation or inactivation of voltage-gated ion channels and shunt effects. This review summarizes several key examples of presynaptic ionotropic GABA receptors and outlines the possible mechanisms that have to be kept in mind when unravelling this potentially important mechanism of synaptic signalling and plasticity.
Collapse
Affiliation(s)
- Andreas Draguhn
- Institut für Physiologie und Pathophysiologie, Universität Heidelberg, Im Neuenheimer Feld 326, 69120 Heidelberg, Germany.
| | | | | |
Collapse
|
14
|
Tyler WJ, Zhang XL, Hartman K, Winterer J, Muller W, Stanton PK, Pozzo-Miller L. BDNF increases release probability and the size of a rapidly recycling vesicle pool within rat hippocampal excitatory synapses. J Physiol 2006; 574:787-803. [PMID: 16709633 PMCID: PMC1817733 DOI: 10.1113/jphysiol.2006.111310] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Exerting its actions pre-, post- and peri-synaptically, brain-derived neurotrophic factor (BDNF) is one of the most potent modulators of hippocampal synaptic function. Here, we examined the effects of BDNF on a rapidly recycling pool (RRP) of vesicles within excitatory synapses. First, we estimated vesicular release in hippocampal cultures by performing FM4-64 imaging in terminals impinging on enhanced green fluorescent protein (eGFP)-labelled dendritic spines - a hallmark of excitatory synapses. Consistent with a modulation of the RRP, BDNF increased the evoked destaining rate of FM4-64 only during the initial phase of field stimulation. Multiphoton microscopy in acute hippocampal slices confirmed these observations by selectively imaging the RRP, which was loaded with FM1-43 by hyperosmotic shock. Slices exposed to BDNF showed an increase in the evoked and spontaneous rates of FM1-43 destaining from terminals in CA1 stratum radiatum, mostly representing excitatory terminals of Schaffer collaterals. Variance-mean analysis of evoked EPSCs in CA1 pyramidal neurons further confirmed that release probability is increased in BDNF-treated slices, without changes in the number of independent release sites or average postsynaptic quantal amplitude. Because BDNF was absent during dye loading, imaging, destaining and whole-cell recordings, these results demonstrate that BDNF induces a long-lasting enhancement in the probability of transmitter release at hippocampal excitatory synapses by modulating the RRP. Since the endogenous BDNF scavenger TrkB-IgG prevented the enhancement of FM1-43 destaining rate caused by induction of long-term potentiation in acute hippocampal slices, the modulation of a rapidly recycling vesicle pool may underlie the role of BDNF in hippocampal long-term synaptic plasticity.
Collapse
Affiliation(s)
- William J Tyler
- Department of Neurobiology, SHEL-1002, University of Alabama at Birmingham, 1825 University Blvd, Birmingham, AL 35294-2182, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Winterer J, Stanton PK, Müller W. Direct monitoring of vesicular release and uptake in brain slices by multiphoton excitation of the styryl FM 1-43. Biotechniques 2006; 40:343-51. [PMID: 16568823 DOI: 10.2144/000112120] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescence imaging using FM 1-43 and related styryl dyes has provided invaluable insights into presynaptic function of synapses in culture preparations, but has been limited in use for studying central synapses in vivo or in brain slices, because of excessive fluorescence background due to nonspecific membrane binding of dye. We demonstrate here that focal excitation of FM dyes using two-photon laser-scanning microscopy (TPLSM) provides high resolution of FM 1-43-labeled nerve terminals in brain slices by suppressing out-of-focus background and that a readily releasable pool of vesicles can be selectively and stably labeled by hypertonic shock despite slice diffusion barriers. We find direct TPLSM of FM 1-43-labeled nerve terminals to be superior to treatment of slices with either the fluorescent quencher sulforhodamine 101 or dye scavenger ADVASEP-7 in resolving nerve terminal against background fluorescence, enabling continuous monitoring of vesicular uptake, and release of styryl dyes from individual nerve terminals in brain slices.
Collapse
|
16
|
Draguhn A, Hartmann K. GABAergic Synaptic Transmission. ADVANCES IN MOLECULAR AND CELL BIOLOGY 2006. [DOI: 10.1016/s1569-2558(06)38009-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|