1
|
Lee CH, Holloman M, Salzer JL, Zhang J. Multiparametric MRI Can Detect Enhanced Myelination in the Ex Vivo Gli1 -/- Mouse Brain. NMR IN BIOMEDICINE 2025; 38:e70025. [PMID: 40174963 DOI: 10.1002/nbm.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 03/06/2025] [Accepted: 03/20/2025] [Indexed: 04/04/2025]
Abstract
This study investigated the potential of combining multiple MR parameters to enhance the characterization of myelin in the mouse brain. We collected ex vivo multiparametric MR data at 7 T from control and Gli1-/- mice; the latter exhibit enhanced myelination at Postnatal Day 10 (P10) in the corpus callosum and cortex. The MR data included relaxivity, magnetization transfer, and diffusion measurements, each targeting distinct myelin properties. This analysis was followed by and compared to myelin basic protein (MBP) staining of the same samples. Although a majority of the MR parameters included in this study showed significant differences in the corpus callosum between the control and Gli1-/- mice, only T2, T1/T2, and radial diffusivity (RD) demonstrated a significant correlation with MBP values. Based on data from the corpus callosum, partial least square regression suggested that combining T2, T1/T2, and inhomogeneous magnetization transfer ratio could explain approximately 80% of the variance in the MBP values. Myelin predictions based on these three parameters yielded stronger correlations with the MBP values in the P10 mouse brain corpus callosum than any single MR parameter. In the motor cortex, combining T2, T1/T2, and radial kurtosis could explain over 90% of the variance in the MBP values at P10. This study demonstrates the utility of multiparametric MRI in improving the detection of myelin changes in the mouse brain.
Collapse
Affiliation(s)
- Choong H Lee
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| | - Mara Holloman
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - James L Salzer
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, New York, USA
| | - Jiangyang Zhang
- Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Jang A, Chan KS, Mareyam A, Stockmann J, Huang SY, Wang N, Jang H, Lee HH, Liu F. Simultaneous 3D quantitative magnetization transfer imaging and susceptibility mapping. Magn Reson Med 2025. [PMID: 40096542 DOI: 10.1002/mrm.30493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/13/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
PURPOSE Introduce a unified acquisition and modeling strategy to simultaneously quantify magnetization transfer (MT), tissue susceptibility (χ $$ \chi $$ ) andT 2 * $$ {T}_2^{\ast } $$ . THEORY AND METHODS Magnetization transfer is induced through the application of off-resonance irradiation between excitation and acquisition of an RF-spoiled gradient-echo scheme, where free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular proton fraction (f $$ f $$ ) and magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) were calculated by modeling the magnitude of the MR signal using a binary spin-bath MT model withB 1 + $$ {B}_1^{+} $$ inhomogeneity correction via Bloch-Siegert shift. Simultaneously, a multi-echo acquisition is incorporated into this framework to measure the time evolution of both signal magnitude and phase, which was further modeled for estimatingT 2 * $$ {T}_2^{\ast } $$ and tissue susceptibility. In this work, we demonstrate the feasibility of this new acquisition and modeling strategy in vivo on the brain tissue. RESULTS In vivo brain experiments were conducted on five healthy subjects to validate our method. Utilizing an analytically derived signal model, we simultaneously obtained 3DT 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ,χ $$ \chi $$ andT 2 * $$ {T}_2^{\ast } $$ maps of the whole brain. Our results from the brain regional analysis show good agreement with those previously reported in the literature, which used separate MT and QSM methods. CONCLUSION A unified acquisition and modeling strategy based on an analytical signal model that fully leverages both the magnitude and phase of the acquired signals was demonstrated and validated for simultaneous MT, susceptibility andT 2 * $$ {T}_2^{\ast } $$ quantification that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Kwok-Shing Chan
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Azma Mareyam
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Yi Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nian Wang
- Biomedical Engineering, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hyungseok Jang
- Radiology, University of California, Davis, Davis, California, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Luu HM, Park SH. SIMPLEX: Multiple phase-cycled bSSFP quantitative magnetization transfer imaging with physic-guided simulation learning of neural network. Neuroimage 2023; 284:120449. [PMID: 37951485 DOI: 10.1016/j.neuroimage.2023.120449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/21/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023] Open
Abstract
Most quantitative magnetization transfer (qMT) imaging methods require acquiring additional quantitative maps (such as T1) for data fitting. A method based on multiple phase-cycled bSSFP was recently proposed to enable high-resolution 3D qMT imaging based on least square fitting without any extra acquisition, and thus has high potential for simplifying the qMT procedure. However, the quantification of qMT parameters with this method was suboptimal, limiting its potential for clinical application despite its simpler protocol and higher spatial resolution. To improve the fitting of qMT data obtained with multiple phase-cycled bSSFP, we propose SIMulation-based Physics-guided Learning of neural network for qMT parameters EXtraction, or SIMPLEX. In contrast to previous deep learning supervised approaches for quantitative MR that require the acquisition of input data and corresponding ground truth for training, we leveraged the MR signal model to generate training samples without expensive data curation. The network was trained exclusively with simulation data by predicting the simulation parameters. The same network was applied directly to in-vivo data without additional training. The approach was verified with both simulation and in-vivo data. SIMPLEX showed a decrease in fitting mean squared error for all simulation data compared to the existing least-square fitting method. The in-vivo experiment revealed that the network performed well with the real in vivo data unseen during training. For all experiments, we observed that SIMPLEX consistently improved the quantification quality of the qMT parameters whilst being more robust to noise compared to the prior technique. The proposed SIMPLEX will expedite the routine clinical application of qMT by providing qMT parameters (exchange rate, pool fraction) as well as T1, T2, and ΔB0 maps simultaneously with high spatial resolution, better reliability, and reduced processing time.
Collapse
Affiliation(s)
- Huan Minh Luu
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Rm 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea
| | - Sung-Hong Park
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Rm 1002, CMS (E16) Building, 291 Daehak-ro, Yuseong-gu, Daejeon 34141, South Korea.
| |
Collapse
|
4
|
Jang A, Han PK, Ma C, El Fakhri G, Wang N, Samsonov A, Liu F. B 1 inhomogeneity-corrected T 1 mapping and quantitative magnetization transfer imaging via simultaneously estimating Bloch-Siegert shift and magnetization transfer effects. Magn Reson Med 2023; 90:1859-1873. [PMID: 37427533 PMCID: PMC10528411 DOI: 10.1002/mrm.29778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 05/10/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023]
Abstract
PURPOSE To introduce a method of inducing Bloch-Siegert shift and magnetization Transfer Simultaneously (BTS) and demonstrate its utilization for measuring binary spin-bath model parameters free pool spin-lattice relaxation (T 1 F $$ {T}_1^{\mathrm{F}} $$ ), macromolecular fraction (f $$ f $$ ), magnetization exchange rate (k F $$ {k}_{\mathrm{F}} $$ ) and local transmit field (B 1 + $$ {B}_1^{+} $$ ). THEORY AND METHODS Bloch-Siegert shift and magnetization transfer is simultaneously induced through the application of off-resonance irradiation in between excitation and acquisition of an RF-spoiled gradient-echo scheme. Applying the binary spin-bath model, an analytical signal equation is derived and verified through Bloch simulations. Monte Carlo simulations were performed to analyze the method's performance. The estimation of the binary spin-bath parameters withB 1 + $$ {B}_1^{+} $$ compensation was further investigated through experiments, both ex vivo and in vivo. RESULTS Comparing BTS with existing methods, simulations showed that existing methods can significantly biasT 1 $$ {T}_1 $$ estimation when not accounting for transmitB 1 $$ {B}_1 $$ heterogeneity and MT effects that are present. Phantom experiments further showed that the degree of this bias increases with increasing macromolecular proton fraction. Multi-parameter fit results from an in vivo brain study generated values in agreement with previous literature. Based on these studies, we confirmed that BTS is a robust method for estimating the binary spin-bath parameters in macromolecule-rich environments, even in the presence ofB 1 + $$ {B}_1^{+} $$ inhomogeneity. CONCLUSION A method of estimating Bloch-Siegert shift and magnetization transfer effect has been developed and validated. Both simulations and experiments confirmed that BTS can estimate spin-bath parameters (T 1 F $$ {T}_1^{\mathrm{F}} $$ ,f $$ f $$ ,k F $$ {k}_{\mathrm{F}} $$ ) that are free fromB 1 + $$ {B}_1^{+} $$ bias.
Collapse
Affiliation(s)
- Albert Jang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Paul K Han
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Chao Ma
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Georges El Fakhri
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Nian Wang
- Indiana University, Indianapolis, Indiana, United States
| | | | - Fang Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
5
|
Lawless RD, McKnight CD, O’Grady KP, Combes AJE, Rogers BP. Detecting macromolecular differences of the CSF in low disability multiple sclerosis using quantitative MT MRI at 3T. Mult Scler J Exp Transl Clin 2023; 9:20552173231211396. [PMID: 38021451 PMCID: PMC10644741 DOI: 10.1177/20552173231211396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Background Imaging investigation of cerebrospinal fluid (CSF) in multiple sclerosis (MS) is understudied. Development of noninvasive methods to detect pathological CSF changes would have a profound effect on MS diagnosis and would offer insight into MS pathophysiology and mechanisms of neurological impairment. Objective We propose magnetization transfer (MT) MRI as a tool to detect macromolecular changes in spinal CSF. Methods MT and quantitative MT (qMT) data were acquired in the cervical region in 27 people with relapsing-remitting multiple sclerosis (pwRRMS) and 38 age and sex-matched healthy controls (HCs). MT ratio (MTR), the B1, B0, and R1 corrected qMT-derived pool size ratio (PSR) were quantified in the spinal cord and CSF of each group. Results Both CSF MTR and CSF qMT-derived PSR were significantly increased in pwRRMS compared to HC (p = 0.027 and p = 0.020, respectively). CSF PSR of pwRRMS was correlated to Expanded Disability Status Scale Scores (p = 0.045, R = 0.352). Conclusion Our findings demonstrate increased CSF macromolecular content in pwRRMS and link CSF macromolecular content with clinical impairment. This highlights the potential role of CSF in processing products of demyelination.
Collapse
Affiliation(s)
- Richard D Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Colin D McKnight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kristin P O’Grady
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Anna JE Combes
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
6
|
Soustelle L, Troalen T, Hertanu A, Ranjeva JP, Guye M, Varma G, Alsop DC, Duhamel G, Girard OM. Quantitative magnetization transfer MRI unbiased by on-resonance saturation and dipolar order contributions. Magn Reson Med 2023. [PMID: 37154400 DOI: 10.1002/mrm.29678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/22/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023]
Abstract
PURPOSE To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.
Collapse
Affiliation(s)
- Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | | | - Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Jean-Philippe Ranjeva
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Maxime Guye
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Gopal Varma
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France
- APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
7
|
Kisel AA, Naumova AV, Yarnykh VL. Macromolecular Proton Fraction as a Myelin Biomarker: Principles, Validation, and Applications. Front Neurosci 2022; 16:819912. [PMID: 35221905 PMCID: PMC8863973 DOI: 10.3389/fnins.2022.819912] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/17/2022] [Indexed: 12/16/2022] Open
Abstract
Macromolecular proton fraction (MPF) is a quantitative MRI parameter describing the magnetization transfer (MT) effect and defined as a relative amount of protons bound to biological macromolecules with restricted molecular motion, which participate in magnetic cross-relaxation with water protons. MPF attracted significant interest during past decade as a biomarker of myelin. The purpose of this mini review is to provide a brief but comprehensive summary of MPF mapping methods, histological validation studies, and MPF applications in neuroscience. Technically, MPF maps can be obtained using a variety of quantitative MT methods. Some of them enable clinically reasonable scan time and resolution. Recent studies demonstrated the feasibility of MPF mapping using standard clinical MRI pulse sequences, thus substantially enhancing the method availability. A number of studies in animal models demonstrated strong correlations between MPF and histological markers of myelin with a minor influence of potential confounders. Histological studies validated the capability of MPF to monitor both demyelination and re-myelination. Clinical applications of MPF have been mainly focused on multiple sclerosis where this method provided new insights into both white and gray matter pathology. Besides, several studies used MPF to investigate myelin role in other neurological and psychiatric conditions. Another promising area of MPF applications is the brain development studies. MPF demonstrated the capabilities to quantitatively characterize the earliest stage of myelination during prenatal brain maturation and protracted myelin development in adolescence. In summary, MPF mapping provides a technically mature and comprehensively validated myelin imaging technology for various preclinical and clinical neuroscience applications.
Collapse
Affiliation(s)
- Alena A. Kisel
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
| | - Anna V. Naumova
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, United States
- Laboratory of Neurobiology, Tomsk State University, Tomsk, Russia
- *Correspondence: Vasily L. Yarnykh,
| |
Collapse
|
8
|
Yarnykh VL, Korostyshevskaya AM, Savelov AA, Isaeva YO, Gornostaeva AM, Tulupov AA, Sagdeev RZ. Macromolecular proton fraction mapping in magnetic resonance imaging: physicochemical principles and biomedical applications. Russ Chem Bull 2022. [DOI: 10.1007/s11172-021-3343-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Hertanu A, Soustelle L, Le Troter A, Buron J, Le Priellec J, Carvalho VND, Cayre M, Durbec P, Varma G, Alsop DC, Girard OM, Duhamel G. T 1D -weighted ihMT imaging - Part I. Isolation of long- and short-T 1D components by T 1D -filtering. Magn Reson Med 2022; 87:2313-2328. [PMID: 35037302 DOI: 10.1002/mrm.29139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/29/2021] [Accepted: 12/12/2021] [Indexed: 01/15/2023]
Abstract
PURPOSE To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.
Collapse
Affiliation(s)
- Andreea Hertanu
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Lucas Soustelle
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Arnaud Le Troter
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Julie Buron
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Victor N D Carvalho
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France.,Aix Marseille Univ, CNRS, ICR, Marseille, France
| | - Myriam Cayre
- Aix Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Gopal Varma
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David C Alsop
- Division of MR Research, Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Olivier M Girard
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| | - Guillaume Duhamel
- Aix Marseille Univ, CNRS, CRMBM, Marseille, France.,APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France
| |
Collapse
|
10
|
Yarnykh VL. Data-Driven Retrospective Correction of B 1 Field Inhomogeneity in Fast Macromolecular Proton Fraction and R 1 Mapping. IEEE TRANSACTIONS ON MEDICAL IMAGING 2021; 40:3473-3484. [PMID: 34110989 PMCID: PMC8711232 DOI: 10.1109/tmi.2021.3088258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Correction of B1 field non-uniformity is critical for many quantitative MRI methods including variable flip angle (VFA) T1 mapping and single-point macromolecular proton fraction (MPF) mapping. The latter method showed promising results as a fast and robust quantitative myelin imaging approach and involves VFA-based R1=1/T1 map reconstruction as an intermediate processing step. The need for B1 correction restricts applications of the above methods, since B1 mapping sequences increase the examination time and are not commonly available in clinics. A new algorithm was developed to enable retrospective data-driven simultaneous B1 correction in VFA R1 and single-point MPF mapping. The principle of the algorithm is based on different mathematical dependences of B1 -related errors in R1 and MPF allowing extraction of a surrogate B1 field map from uncorrected R1 and MPF maps. To validate the method, whole-brain R1 and MPF maps with isotropic 1.25 mm3 resolution were obtained on a 3 T MRI scanner from 11 volunteers. Mean parameter values in segmented brain tissues were compared between three reconstruction options including the absence of correction, actual B1 correction, and surrogate B1 correction. Surrogate B1 maps closely reproduced actual patterns of B1 inhomogeneity. Without correction, B1 non-uniformity caused highly significant biases in R1 and MPF ( ). Surrogate B1 field correction reduced the biases in both R1 and MPF to a non-significant level ( 0.1 ≤ P ≤ 0.8 ). The described algorithm obviates the use of dedicated B1 mapping sequences in fast single-point MPF mapping and provides an alternative solution for correction of B1 non-uniformities in VFA R1 mapping.
Collapse
|
11
|
Bayer FM, Bock M, Jezzard P, Smith AK. Unbiased signal equation for quantitative magnetization transfer mapping in balanced steady-state free precession MRI. Magn Reson Med 2021; 87:446-456. [PMID: 34331470 PMCID: PMC8951070 DOI: 10.1002/mrm.28940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/12/2021] [Accepted: 07/06/2021] [Indexed: 12/20/2022]
Abstract
Purpose Quantitative magnetization transfer (qMT) imaging can be used to quantify the proportion of protons in a voxel attached to macromolecules. Here, we show that the original qMT balanced steady‐state free precession (bSSFP) model is biased due to over‐simplistic assumptions made in its derivation. Theory and Methods We present an improved model for qMT bSSFP, which incorporates finite radiofrequency (RF) pulse effects as well as simultaneous exchange and relaxation. Furthermore, a correction relating to finite RF pulse effects for sinc‐shaped excitations is derived. The new model is compared to the original one in numerical simulations of the Bloch‐McConnell equations and in previously acquired in vivo data. Results Our numerical simulations show that the original signal equation is significantly biased in typical brain tissue structures (by 7%‐20%), whereas the new signal equation outperforms the original one with minimal bias (<1%). It is further shown that the bias of the original model strongly affects the acquired qMT parameters in human brain structures, with differences in the clinically relevant parameter of pool‐size‐ratio of up to 31%. Particularly high biases of the original signal equation are expected in an MS lesion within diseased brain tissue (due to a low T2/T1‐ratio), demanding a more accurate model for clinical applications. Conclusion The improved model for qMT bSSFP is recommended for accurate qMT parameter mapping in healthy and diseased brain tissue structures.
Collapse
Affiliation(s)
- Fritz M Bayer
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,D-BSSE, ETH Zurich, Basel, Switzerland
| | - Michael Bock
- Department of Radiology, Medical Physics, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Peter Jezzard
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
12
|
Buyanova IS, Arsalidou M. Cerebral White Matter Myelination and Relations to Age, Gender, and Cognition: A Selective Review. Front Hum Neurosci 2021; 15:662031. [PMID: 34295229 PMCID: PMC8290169 DOI: 10.3389/fnhum.2021.662031] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 06/02/2021] [Indexed: 12/22/2022] Open
Abstract
White matter makes up about fifty percent of the human brain. Maturation of white matter accompanies biological development and undergoes the most dramatic changes during childhood and adolescence. Despite the advances in neuroimaging techniques, controversy concerning spatial, and temporal patterns of myelination, as well as the degree to which the microstructural characteristics of white matter can vary in a healthy brain as a function of age, gender and cognitive abilities still exists. In a selective review we describe methods of assessing myelination and evaluate effects of age and gender in nine major fiber tracts, highlighting their role in higher-order cognitive functions. Our findings suggests that myelination indices vary by age, fiber tract, and hemisphere. Effects of gender were also identified, although some attribute differences to methodological factors or social and learning opportunities. Findings point to further directions of research that will improve our understanding of the complex myelination-behavior relation across development that may have implications for educational and clinical practice.
Collapse
Affiliation(s)
- Irina S. Buyanova
- Neuropsy Lab, HSE University, Moscow, Russia
- Center for Language and Brain, HSE University, Moscow, Russia
| | - Marie Arsalidou
- Neuropsy Lab, HSE University, Moscow, Russia
- Cognitive Centre, Sirius University of Science and Technology, Sochi, Russia
- Department of Psychology, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Soustelle L, Antal MC, Lamy J, Harsan LA, Loureiro de Sousa P. Determination of optimal parameters for 3D single-point macromolecular proton fraction mapping at 7T in healthy and demyelinated mouse brain. Magn Reson Med 2020; 85:369-379. [PMID: 32767495 DOI: 10.1002/mrm.28397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 06/05/2020] [Accepted: 06/05/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE To determine optimal constrained tissue parameters and off-resonance sequence parameters for single-point macromolecular proton fraction (SP-MPF) mapping based on a comprehensive quantitative magnetization transfer (qMT) protocol in healthy and demyelinated living mice at 7T. METHODS Using 3D spoiled gradient echo-based sequences, a comprehensive qMT protocol is performed by sampling the Z-spectrum of mice brains, in vivo. Provided additional T1 , B 1 + and B0 maps allow for the estimation of qMT tissue parameters, among which three will be constrained, namely the longitudinal and transverse relaxation characteristics of the free pool (R1,f T2,f ), the cross-relaxation rate (R) and the bound pool transverse relaxation time (T2,r ). Different sets of constrained parameters are investigated to reduce the bias between the SP-MPF and its reference based on the comprehensive protocol. RESULTS Based on a whole-brain histogram analysis about the constrained parameters, the optimal experimental parameters that minimize the global bias between reference and SP-MPF maps consist of a 600° and 6 kHz off-resonance irradiation pulse. Following a Bland-Altman analysis over regions of interest, optimal constrained parameters were R1,f T2,f = 0.0129, R = 26.5 s-1 , and T2,r = 9.1 µs, yielding an overall MPF bias of 10-4 (limits of agreement [-0.0068;0.0070]) and a relative variation of 0.64% ± 5.95% between the reference and the optimal single-point method across all mice. CONCLUSION The necessity of estimating animal model- and field-dependent constrained parameters was demonstrated. The single-point MPF method can be reliably applied at 7T, as part of routine preclinical in vivo imaging protocol in mice.
Collapse
Affiliation(s)
- Lucas Soustelle
- ICube, Université de Strasbourg, CNRS, Strasbourg, France.,Aix Marseille University, CNRS, CRMBM, Marseille, France
| | | | - Julien Lamy
- ICube, Université de Strasbourg, CNRS, Strasbourg, France
| | | | | |
Collapse
|
14
|
Anisimov NV, Pavlova OS, Pirogov YA, Yarnykh VL. Three-dimensional fast single-point macromolecular proton fraction mapping of the human brain at 0.5 Tesla. Quant Imaging Med Surg 2020; 10:1441-1449. [PMID: 32676363 DOI: 10.21037/qims-19-1057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Fast single-point macromolecular proton fraction (MPF) mapping is a recent magnetic resonance imaging (MRI) method enabling quantitative assessment of myelin content in neural tissues. To date, the reported technical implementations of MPF mapping utilized high-field MRI equipment (1.5 T or higher), while low-field applications might pose challenges due to signal-to-noise ratio (SNR) limitations and short T1 . This study aimed to evaluate the feasibility of MPF mapping of the human brain at 0.5 T. The three-dimensional MPF mapping protocol was implemented according to the single-point synthetic-reference method, which includes three spoiled gradient-echo sequences providing proton density, T1 , and magnetization transfer contrast weightings. Whole-brain MPF maps were obtained from three healthy volunteers with spatial resolution of 1.5×1.5×2 mm3 and the total scan time of 19 minutes. MPF values were measured in a series of white and gray matter structures and compared with literature data for 3 T magnetic field. MPF maps enabled high contrast between white and gray matter with notable insensitivity to paramagnetic effects in iron-rich structures, such as globus pallidus, substantia nigra, and dentate nucleus. MPF values at 0.5 T appeared in close agreement with those at 3 T. This study demonstrates the feasibility of fast MPF mapping with low-field MRI equipment and the independence of brain MPF values of magnetic field. The presented results confirm the utility of MPF as an absolute scale for MRI-based myelin content measurements across a wide range of magnetic field strengths and extend the applicability of fast MPF mapping to inexpensive low-field MRI hardware.
Collapse
Affiliation(s)
- Nikolay V Anisimov
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation
| | - Olga S Pavlova
- Faculty of Fundamental Medicine, Lomonosov Moscow State University, 117192, Moscow, Lomonosovsky Prospekt, 31-5, Russian Federation.,Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation
| | - Yury A Pirogov
- Faculty of Physics, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-2, Russian Federation.,Institute for Physical and Chemical Fundamentals of Artificial Intelligence, Lomonosov Moscow State University, 119991, Moscow, GSP-1, Leninskie Gory, 1-11, Russian Federation
| | - Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, WA 98109, USA.,Research Institute of Biology and Biophysics, Tomsk State University, 634050, Tomsk, Russian Federation
| |
Collapse
|
15
|
Cronin MJ, Xu J, Bagnato F, Gochberg DF, Gore JC, Dortch RD. Rapid whole-brain quantitative magnetization transfer imaging using 3D selective inversion recovery sequences. Magn Reson Imaging 2020; 68:66-74. [PMID: 32004710 PMCID: PMC8609909 DOI: 10.1016/j.mri.2020.01.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/04/2020] [Accepted: 01/26/2020] [Indexed: 10/25/2022]
Abstract
Selective inversion recovery (SIR) is a quantitative magnetization transfer (qMT) method that provides estimates of parameters related to myelin content in white matter, namely the macromolecular pool-size-ratio (PSR) and the spin-lattice relaxation rate of the free pool (R1f), without the need for independent estimates of ∆B0, B1+, and T1. Although the feasibility of performing SIR in the human brain has been demonstrated, the scan times reported previously were too long for whole-brain applications. In this work, we combined optimized, short-TR acquisitions, SENSE/partial-Fourier accelerations, and efficient 3D readouts (turbo spin-echo, SIR-TSE; echo-planar imaging, SIR-EPI; and turbo field echo, SIR-TFE) to obtain whole-brain data in 18, 10, and 7 min for SIR-TSE, SIR-EPI, SIR-TFE, respectively. Based on numerical simulations, all schemes provided accurate parameter estimates in large, homogenous regions; however, the shorter SIR-TFE scans underestimated focal changes in smaller lesions due to blurring. Experimental studies in healthy subjects (n = 8) yielded parameters that were consistent with literature values and repeatable across scans (coefficient of variation: PSR = 2.2-6.4%, R1f = 0.6-1.4%) for all readouts. Overall, SIR-TFE parameters exhibited the lowest variability, while SIR-EPI parameters were adversely affected by susceptibility-related image distortions. In patients with relapsing remitting multiple sclerosis (n = 2), focal changes in SIR parameters were observed in lesions using all three readouts; however, contrast was reduced in smaller lesions for SIR-TFE, which was consistent with the numerical simulations. Together, these findings demonstrate that efficient, accurate, and repeatable whole-brain SIR can be performed using 3D TFE, EPI, or TSE readouts; however, the appropriate readout should be tailored to the application.
Collapse
Affiliation(s)
- Matthew J Cronin
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America
| | - Junzhong Xu
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Physics and Astronomy, Nashville, TN, United States of America
| | - Francesca Bagnato
- Vanderbilt University Medical Center, Department of Neurology, Neuro-Immunology Division/Neuro-Imaging Unit, Nashville, TN, United States of America
| | - Daniel F Gochberg
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Physics and Astronomy, Nashville, TN, United States of America
| | - John C Gore
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Physics and Astronomy, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America
| | - Richard D Dortch
- Vanderbilt University Medical Center, Department Radiology and Radiological Sciences, Nashville, TN, United States of America; Vanderbilt University Medical Center, Institute of Imaging Science, Nashville, TN, United States of America; Vanderbilt University, Department of Biomedical Engineering, Nashville, TN, United States of America.
| |
Collapse
|
16
|
van Gelderen P, Duyn JH. Background suppressed magnetization transfer MRI. Magn Reson Med 2020; 83:883-891. [PMID: 31502706 PMCID: PMC11492287 DOI: 10.1002/mrm.27978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/26/2019] [Accepted: 08/08/2019] [Indexed: 11/07/2022]
Abstract
PURPOSE Up to 30% of the hydrogen atoms in brain tissue are part of molecules ("semisolids") other than water. In MRI, their magnetization is typically not observed directly, but can influence the water magnetization through magnetization transfer (MT). Comparison of MRI scans differentially sensitized to MT allows estimation of the semisolid fraction and potential changes with disease. Here, we present an approach designed to improve this estimate by measuring the size of the MT effect in a single scan. METHODS A stimulated echo sequence was used to generate a spatial pattern in the longitudinal water magnetization, which was then given time to exchange with semisolids. After saturating the remaining water magnetization, reverse exchange was allowed to partly re-establish the original water magnetization pattern. The third excitation pulse then formed a stimulated echo out of this pattern. RESULTS MT data were obtained on 10 human subjects at 7 T with varying exchange times. The images showed the expected time dependence of signal associated with the forward and reverse exchange processes. Excellent suppression of non-exchanging background signal was achieved. As expected, this suppression came at the price of a substantial reduction in exchange-related signal (by ~75% compared to the signal in saturation recovery MT), in part because of the reliance on a 2-step exchange process. CONCLUSION The results demonstrate an MT signal can be observed in a single acquisition without subtraction. This may be advantageous for MT measurements when signal instabilities related to motion and physiological variations exceed thermal noise sources.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
17
|
Smith AK, Ray KJ, Larkin JR, Craig M, Smith SA, Chappell MA. Does the magnetization transfer effect bias chemical exchange saturation transfer effects? Quantifying chemical exchange saturation transfer in the presence of magnetization transfer. Magn Reson Med 2020; 84:1359-1375. [PMID: 32072677 PMCID: PMC7317383 DOI: 10.1002/mrm.28212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/16/2020] [Accepted: 01/20/2020] [Indexed: 12/13/2022]
Abstract
Purpose Chemical exchange saturation transfer (CEST) is an MRI technique sensitive to the presence of low‐concentration solute protons exchanging with water. However, magnetization transfer (MT) effects also arise when large semisolid molecules interact with water, which biases CEST parameter estimates if quantitative models do not account for macromolecular effects. This study establishes under what conditions this bias is significant and demonstrates how using an appropriate model provides more accurate quantitative CEST measurements. Methods CEST and MT data were acquired in phantoms containing bovine serum albumin and agarose. Several quantitative CEST and MT models were used with the phantom data to demonstrate how underfitting can influence estimates of the CEST effect. CEST and MT data were acquired in healthy volunteers, and a two‐pool model was fit in vivo and in vitro, whereas removing increasing amounts of CEST data to show biases in the CEST analysis also corrupts MT parameter estimates. Results When all significant CEST/MT effects were included, the derived parameter estimates for each CEST/MT pool significantly correlated (P < .05) with bovine serum albumin/agarose concentration; minimal or negative correlations were found with underfitted data. Additionally, a bootstrap analysis demonstrated that significant biases occur in MT parameter estimates (P < .001) when unmodeled CEST data are included in the analysis. Conclusions These results indicate that current practices of simultaneously fitting both CEST and MT effects in model‐based analyses can lead to significant bias in all parameter estimates unless a sufficiently detailed model is utilized. Therefore, care must be taken when quantifying CEST and MT effects in vivo by properly modeling data to minimize these biases.
Collapse
Affiliation(s)
- Alex K Smith
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Kevin J Ray
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - James R Larkin
- Cancer Research UK and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| | - Martin Craig
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Michael A Chappell
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom.,Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Yarnykh VL, Kisel AA, Khodanovich MY. Scan-Rescan Repeatability and Impact of B 0 and B 1 Field Nonuniformity Corrections in Single-Point Whole-Brain Macromolecular Proton Fraction Mapping. J Magn Reson Imaging 2019; 51:1789-1798. [PMID: 31737961 DOI: 10.1002/jmri.26998] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 10/26/2019] [Accepted: 10/26/2019] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Single-point macromolecular proton fraction (MPF) mapping is a recent quantitative MRI method for fast assessment of brain myelination. Information about reproducibility and sensitivity of MPF mapping to magnetic field nonuniformity is important for clinical applications. PURPOSE To assess scan-rescan repeatability and a value of B0 and B1 field inhomogeneity corrections in single-point synthetic-reference MPF mapping. STUDY TYPE Prospective. POPULATION Eight healthy adult volunteers underwent two scans with 11.5 ± 2.3 months interval. FIELD STRENGTH/SEQUENCE 3T; whole-brain 3D MPF mapping protocol included three spoiled gradient-echo sequences providing T1 , proton density, and magnetization transfer contrasts with 1.25 × 1.25 × 1.25 mm3 resolution and B0 and B1 mapping sequences. ASSESSMENT MPF maps were reconstructed with B0 and B1 field nonuniformity correction, B0 - and B1 -only corrections, and without corrections. Mean MPF values were measured in automatically segmented white matter (WM) and gray matter (GM). STATISTICAL TESTS Within-subject coefficient of variation (CV), intraclass correlation coefficient (ICC), Bland-Altman plots, and paired t-tests to assess scan-rescan repeatability. Repeated-measures analysis of variance (ANOVA) to compare field corrections. RESULTS Maximal relative local MPF errors without correction in the areas of largest field nonuniformities were about 5% and 27% for B0 and B1 , respectively. The effect of B0 correction was insignificant for whole-brain WM (P > 0.25) and GM (P > 0.98) MPF. The absence of B1 correction caused a positive relative bias of 4-5% (P < 0.001) in both tissues. Scan-rescan agreement was similar for all field correction options with ICCs 0.80-0.81 for WM and 0.89-0.92 for GM. CVs were 1.6-1.7% for WM and 0.7-1.0% for GM. DATA CONCLUSION The single-point method enables high repeatability of MPF maps obtained with the same equipment. Correction of B0 inhomogeneity may be disregarded to shorten the examination time. B1 nonuniformity correction improves accuracy of MPF measurements at 3T. Reliability of whole-brain MPF measurements in WM and GM is not affected by B0 and B1 field corrections. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2020;51:1789-1798.
Collapse
Affiliation(s)
- Vasily L Yarnykh
- Department of Radiology, University of Washington, Seattle, Washington, USA.,Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Alena A Kisel
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Marina Y Khodanovich
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| |
Collapse
|
19
|
Trujillo P, Petersen KJ, Cronin MJ, Lin YC, Kang H, Donahue MJ, Smith SA, Claassen DO. Quantitative magnetization transfer imaging of the human locus coeruleus. Neuroimage 2019; 200:191-198. [PMID: 31233908 PMCID: PMC6934172 DOI: 10.1016/j.neuroimage.2019.06.049] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/17/2019] [Accepted: 06/19/2019] [Indexed: 12/14/2022] Open
Abstract
The locus coeruleus (LC) is the major origin of norepinephrine in the central nervous system, and is subject to age-related and neurodegenerative changes, especially in disorders such as Parkinson's disease and Alzheimer's disease. Previous studies have shown that neuromelanin (NM)-sensitive MRI can be used to visualize the LC, and it is hypothesized that magnetization transfer (MT) effects are the primary source of LC contrast. The aim of this study was to characterize the MT effects in LC imaging by applying high spatial resolution quantitative MT (qMT) imaging to create parametric maps of the macromolecular content of the LC and surrounding tissues. Healthy volunteers (n = 26; sex = 17 F/9M; age = 41.0 ± 19.1 years) underwent brain MRI on a 3.0 T scanner. qMT data were acquired using a 3D MT-prepared spoiled gradient echo sequence. A traditional NM scan consisting of a T1-weighted turbo spin echo sequence with MT preparation was also acquired. The pool-size ratio (PSR) was estimated for each voxel using a single-point qMT approach. The LC was semi-automatically segmented on the MT-weighted images. The MT-weighted images provided higher contrast-ratio between the LC and surrounding pontine tegmentum (PT) (0.215 ± 0.031) than the reference images without MT-preparation (-0.005 ± 0.026) and the traditional NM images (0.138 ± 0.044). The PSR maps showed significant differences between the LC (0.090 ± 0.009) and PT (0.188 ± 0.025). The largest difference between the PSR values in the LC and PT was observed in the central slices, which also correspond to those with the highest contrast-ratio. These results highlight the role of MT in generating NM-related contrast in the LC, and should serve as a foundation for future studies aiming to quantify pathological changes in the LC and surrounding structures in vivo.
Collapse
Affiliation(s)
- Paula Trujillo
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Kalen J Petersen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Matthew J Cronin
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ya-Chen Lin
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus J Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Seth A Smith
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Daniel O Claassen
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Automated gradient-based electrical properties tomography in the human brain using 7 Tesla MRI. Magn Reson Imaging 2019; 63:258-266. [PMID: 31425805 DOI: 10.1016/j.mri.2019.08.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/01/2019] [Accepted: 08/15/2019] [Indexed: 12/18/2022]
Abstract
Electrical properties of the brain tissues may yield useful biomarkers for neurological disorders and diseases, as well as contribute to safety assurance of ultra-high-field MRI. It has been reported that using B1 maps from a multi-channel RF coil, the spatial variation of the electrical properties can be robustly retrieved. The absolute electrical property values can then be obtained by spatial integration, given that an integration seed point is assigned. In this study, we propose to exploit automatically detected seed points based on tissue piece-wise homogeneity (Helmholtz equation) for spatial integration. Numerical simulations of a numerical brain model and experiments involving 12 healthy volunteers were performed to demonstrate its feasibility and robustness in various noisy conditions and head positions. For in vivo imaging, we consistently observed higher conductivity and permittivity values in the white and gray matter compared to tabulated ex vivo probe measurement results found in the literature, a discrepancy that may be attributed to ex vivo experimental constraints. Our results suggest that the proposed technique produces consistent brain electrical properties in vivo that may contribute to improving diagnostic and therapeutic decisions.
Collapse
|
21
|
Spatiotemporal trajectories of quantitative magnetization transfer measurements in injured spinal cord using simplified acquisitions. NEUROIMAGE-CLINICAL 2019; 23:101921. [PMID: 31491830 PMCID: PMC6639592 DOI: 10.1016/j.nicl.2019.101921] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 06/04/2019] [Accepted: 06/30/2019] [Indexed: 12/19/2022]
Abstract
Purpose This study aims to systematically evaluate the accuracy and precision of pool size ratio (PSR) measurements from quantitative magnetization transfer (qMT) acquisitions using simplified models in the context of assessing injury-associated spatiotemporal changes in spinal cords of non-human primates. This study also aims to characterize changes in the spinal tissue pathology in individual subjects, both regionally and longitudinally, in order to demonstrate the relationship between regional tissue compositional changes and sensorimotor behavioral recovery after cervical spinal cord injury (SCI). Methods MRI scans were recorded on anesthetized monkeys at 9.4 T, before and serially after a unilateral section of the dorsal column tract. Images were acquired following saturating RF pulses at different offset frequencies. Models incorporating two pools of protons but with differing numbers of variable parameters were used to fit the data to derive qMT parameters. The results using different amounts of measured data and assuming different numbers of variable model parameters were compared. Behavioral impairments and recovery were assessed by a food grasping-retrieving task. Histological sections were obtained post mortem for validation of the injury. Results QMT fitting provided maps of pool size ratio (PSR), the relative amounts of immobilized protons exchanging magnetization compared to the “free” water. All the selected modeling approaches detected a lesion/cyst at the site of injury as significant reductions in PSR values. The regional contrasts in the PSR maps obtained using the different fittings varied, but the 2-parameter fitting results showed strong positive correlations with results from 5-parameter modeling. 2-parameter fitting results with modest (>3) RF offsets showed comparable sensitivity for detecting demyelination in white matter and loss of macromolecules in gray matter around lesion sites compared to 5-parameter fitting with fully-sampled data acquisitions. Histology confirmed that decreases of PSR corresponded to regional demyelination around lesion sites, especially when demyelination occurred along the dorsal column on the injury side. Longitudinally, PSR values of injured dorsal column tract and gray matter horns exhibited remarkable recovery that associated with behavioral improvement. Conclusion Simplified qMT modeling approaches provide efficient and sensitive means to detect and characterize injury-associated demyelination in white matter tracts and loss of macromolecules in gray matter and to monitor its recovery over time. Simplified 2-parameter and fully sampled 5-parameter qMT modeling achieved comparable accuracy and precision of PSR values. Successfully tracked and differentiated myelination states of specific WM tracts and macromolecular changes in GM horns. Recovery of WM and GM pathology assessed by qMT correlated with improvements in hand uses after injury. High translational potential for clinical studies of human patients with spinal cord injury.
Collapse
|
22
|
Boto J, Askin NC, Regnaud A, Kober T, Gkinis G, Lazeyras F, Lövblad KO, Vargas MI. Cerebral Gray and White Matter Involvement in Anorexia Nervosa Evaluated by T1, T2, and T2* Mapping. J Neuroimaging 2019; 29:598-604. [PMID: 31259451 DOI: 10.1111/jon.12647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/29/2019] [Accepted: 06/14/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Changes in the brain composition of anorexics could potentially be expected, opening the door to new imaging approaches where quantitative and qualitative MRI have a role. Our purpose was to investigate anorexia-related brain dehydration and myelin depletion by analyzing T1, T2, and T2* relaxation times of different brain structures in anorexics and controls. METHODS Thirty-eight anorexic female patients (mean age, 26.2 years; age range, 16.2-48.7 years; mean BMI, 14.5 kg/m2 ; BMI range, 10.0-18.4 kg/m2 ) underwent brain MRI between August 2014 and August 2018. Controls were 16 healthy females (mean age, 28.0 years; age range, 22.3-34.7 years; mean BMI, 20.9 kg/m2 ; BMI range, 18.4-26.6 kg/m2 ). T1, T2, and T2* relaxation times were obtained for different brain structures in anorexics and controls as part of this retrospective case-control study. RESULTS The T1 relaxation times of gray and white matter were significantly lower in anorexics (P = .009), whereas the T2 relaxation times of gray matter were higher (P < .001). There were no statistically significant differences in gray matter T2* relaxation times or in white matter T2 and T2* relaxation times between anorexics and controls. Occipital lobe gray matter showed the shortest T1, T2, and T2* relaxation times of all brain regions (P < .05). CONCLUSIONS T1 shortening in anorexics suggests both dehydration and myelin loss, whereas T2 prolongation points toward myelin loss (myelin water has lower T2), which seems to be less discernible in white matter. Shorter overall relaxation times in the most posterior regions of the brain suggest higher iron content.
Collapse
Affiliation(s)
- José Boto
- Division of Neuroradiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Nurten Ceren Askin
- Division of Radiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Alice Regnaud
- Division of Neuroradiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Tobias Kober
- Advanced Clinical Imaging Technology, Siemens Healthcare HC CEMEA SUI DI BM PI, Siemens ACIT, Lausanne, Switzerland.,Department of Radiology, University Hospital (CHUV), Lausanne, Switzerland.,LTS5, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - François Lazeyras
- Division of Radiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Karl-Olof Lövblad
- Division of Neuroradiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| | - Maria Isabel Vargas
- Division of Neuroradiology, Geneva University Hospital and Faculty of Medicine of Geneva, Geneva, Switzerland
| |
Collapse
|
23
|
Takemura H, Ogawa S, Mezer AA, Horiguchi H, Miyazaki A, Matsumoto K, Shikishima K, Nakano T, Masuda Y. Diffusivity and quantitative T1 profile of human visual white matter tracts after retinal ganglion cell damage. NEUROIMAGE-CLINICAL 2019; 23:101826. [PMID: 31026624 PMCID: PMC6482365 DOI: 10.1016/j.nicl.2019.101826] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 03/27/2019] [Accepted: 04/13/2019] [Indexed: 02/04/2023]
Abstract
In patients with retinal ganglion cell diseases, recent diffusion tensor imaging (DTI) studies have revealed structural abnormalities in visual white matter tracts such as the optic tract, and optic radiation. However, the microstructural origin of these diffusivity changes is unknown as DTI metrics involve multiple biological factors and do not correlate directly with specific microstructural properties. In contrast, recent quantitative T1 (qT1) mapping methods provide tissue property measurements relatively specific to myelin volume fractions in white matter. This study aims to improve our understanding of microstructural changes in visual white matter tracts following retinal ganglion cell damage in Leber's hereditary optic neuropathy (LHON) patients by combining DTI and qT1 measurements. We collected these measurements from seven LHON patients and twenty age-matched control subjects. For all individuals, we identified the optic tract and the optic radiation using probabilistic tractography, and evaluated diffusivity and qT1 profiles along them. Both diffusivity and qT1 measurements in the optic tract differed significantly between LHON patients and controls. In the optic radiation, these changes were observed in diffusivity but were not evident in qT1 measurements. This suggests that myelin loss may not explain trans-synaptic diffusivity changes in the optic radiation as a consequence of retinal ganglion cell disease. Retinal ganglion cell damage affects diffusivity and T1 along visual pathways. DTI metric identified white matter change in both optic tract and optic radiation. T1 measurement in optic radiation did not exhibit abnormality, unlike DTI metric. Myelin loss may not be a major cause of diffusivity change along optic radiation.
Collapse
Affiliation(s)
- Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Shumpei Ogawa
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan; Department of Ophthalmology, Atsugi city hospital, Atsugi, Japan.
| | - Aviv A Mezer
- The Edmond and Lily Safra Center for Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hiroshi Horiguchi
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Kenji Matsumoto
- Brain Science Institute, Tamagawa University, Machida, Japan
| | - Keigo Shikishima
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadashi Nakano
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yoichiro Masuda
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo, Japan
| |
Collapse
|
24
|
van Gelderen P, Duyn JH. White matter intercompartmental water exchange rates determined from detailed modeling of the myelin sheath. Magn Reson Med 2018; 81:628-638. [PMID: 30230605 DOI: 10.1002/mrm.27398] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 04/24/2018] [Accepted: 05/19/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE Magnetization exchange (ME) between hydrogen protons of water and large molecules (semisolids [SS]) in lipid bilayers is an important factor in MRI signal generation and can be exploited to study white matter pathology. Current models used to quantify ME in white matter generally consider water to reside in 1 or 2 distinct compartments, ignoring the complexities of the myelin sheath's multicompartment structure of alternating myelin SS and myelin water (MW) layers. Here, we investigated the effect of this by fitting ME data obtained from human brain at 7 T with a multilayer model of myelin. METHODS A multi-echo acquisition for a T2 * -based separation of MW from other water signals was combined with various preparation pulses to change the (relative) state of the SS and water pools and analyzed by fitting with a multilayer exchange model. RESULTS The estimated lifetime within a single MW layer was 260 µs, corresponding to a lipid bilayer permeability of 6.7 µm/s. The magnetization lifetime of the aggregate of all MW was estimated at 13 ms, shorter than previously reported values in the range of 40 to 140 ms. CONCLUSION Contrary to expectations and previous reports, ME between protons in myelin SS and water is not limited by the myelin sheath but rather by the exchange between SS and water protons. The analysis of ME contrast should account for the relatively short MW lifetime and affects the interpretation of tissue compartmentalization from MRI contrasts such as T1 - and diffusion-weighting.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institute of Neurological, Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
25
|
Yarnykh VL, Prihod'ko IY, Savelov AA, Korostyshevskaya AM. Quantitative Assessment of Normal Fetal Brain Myelination Using Fast Macromolecular Proton Fraction Mapping. AJNR Am J Neuroradiol 2018; 39:1341-1348. [PMID: 29748201 DOI: 10.3174/ajnr.a5668] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/23/2018] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE Fast macromolecular proton fraction mapping is a recently emerged MRI method for quantitative myelin imaging. Our aim was to develop a clinically targeted technique for macromolecular proton fraction mapping of the fetal brain and test its capability to characterize normal prenatal myelination. MATERIALS AND METHODS This prospective study included 41 pregnant women (gestational age range, 18-38 weeks) without abnormal findings on fetal brain MR imaging performed for clinical indications. A fast fetal brain macromolecular proton fraction mapping protocol was implemented on a clinical 1.5T MR imaging scanner without software modifications and was performed after a clinical examination with an additional scan time of <5 minutes. 3D macromolecular proton fraction maps were reconstructed from magnetization transfer-weighted, T1-weighted, and proton density-weighted images by the single-point method. Mean macromolecular proton fraction in the brain stem, cerebellum, and thalamus and frontal, temporal, and occipital WM was compared between structures and pregnancy trimesters using analysis of variance. Gestational age dependence of the macromolecular proton fraction was assessed using the Pearson correlation coefficient (r). RESULTS The mean macromolecular proton fraction in the fetal brain structures varied between 2.3% and 4.3%, being 5-fold lower than macromolecular proton fraction in adult WM. The macromolecular proton fraction in the third trimester was higher compared with the second trimester in the brain stem, cerebellum, and thalamus. The highest macromolecular proton fraction was observed in the brain stem, followed by the thalamus, cerebellum, and cerebral WM. The macromolecular proton fraction in the brain stem, cerebellum, and thalamus strongly correlated with gestational age (r = 0.88, 0.80, and 0.73; P < .001). No significant correlations were found for cerebral WM regions. CONCLUSIONS Myelin is the main factor determining macromolecular proton fraction in brain tissues. Macromolecular proton fraction mapping is sensitive to the earliest stages of the fetal brain myelination and can be implemented in a clinical setting.
Collapse
Affiliation(s)
- V L Yarnykh
- From the Department of Radiology (V.L.Y.), University of Washington, Seattle, Washington .,Research Institute of Biology and Biophysics (V.L.Y.), Tomsk State University, Tomsk, Russian Federation
| | - I Y Prihod'ko
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| | - A A Savelov
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| | - A M Korostyshevskaya
- Institute "International Tomography Center" of the Siberian Branch of the Russian Academy of Sciences (I.Y.P., A.A.S., A.M.K.), Novosibirsk, Russian Federation
| |
Collapse
|
26
|
Dortch RD, Bagnato F, Gochberg DF, Gore JC, Smith SA. Optimization of selective inversion recovery magnetization transfer imaging for macromolecular content mapping in the human brain. Magn Reson Med 2018; 80:1824-1835. [PMID: 29573356 DOI: 10.1002/mrm.27174] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/01/2018] [Accepted: 02/17/2018] [Indexed: 11/11/2022]
Abstract
PURPOSE To optimize a selective inversion recovery (SIR) sequence for macromolecular content mapping in the human brain at 3.0T. THEORY AND METHODS SIR is a quantitative method for measuring magnetization transfer (qMT) that uses a low-power, on-resonance inversion pulse. This results in a biexponential recovery of free water signal that can be sampled at various inversion/predelay times (tI/ tD ) to estimate a subset of qMT parameters, including the macromolecular-to-free pool-size-ratio (PSR), the R1 of free water (R1f ), and the rate of MT exchange (kmf ). The adoption of SIR has been limited by long acquisition times (≈4 min/slice). Here, we use Cramér-Rao lower bound theory and data reduction strategies to select optimal tI /tD combinations to reduce imaging times. The schemes were experimentally validated in phantoms, and tested in healthy volunteers (N = 4) and a multiple sclerosis patient. RESULTS Two optimal sampling schemes were determined: (i) a 5-point scheme (kmf estimated) and (ii) a 4-point scheme (kmf assumed). In phantoms, the 5/4-point schemes yielded parameter estimates with similar SNRs as our previous 16-point scheme, but with 4.1/6.1-fold shorter scan times. Pair-wise comparisons between schemes did not detect significant differences for any scheme/parameter. In humans, parameter values were consistent with published values, and similar levels of precision were obtained from all schemes. Furthermore, fixing kmf reduced the sensitivity of PSR to partial-volume averaging, yielding more consistent estimates throughout the brain. CONCLUSIONS qMT parameters can be robustly estimated in ≤1 min/slice (without independent measures of ΔB0 , B1+, and T1 ) when optimized tI -tD combinations are selected.
Collapse
Affiliation(s)
- Richard D Dortch
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Francesca Bagnato
- Department of Neurology/Neuroimmunology Division/Neuroimaging Unit, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Daniel F Gochberg
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - John C Gore
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Seth A Smith
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee.,Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
27
|
Sled JG. Modelling and interpretation of magnetization transfer imaging in the brain. Neuroimage 2017; 182:128-135. [PMID: 29208570 DOI: 10.1016/j.neuroimage.2017.11.065] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/19/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Magnetization transfer contrast has yielded insight into brain tissue microstructure changes across the lifespan and in a range of disorders. This progress has been aided by the development of quantitative magnetization transfer imaging techniques able to extract intrinsic properties of the tissue that are independent of the specifics of the data acquisition. While the tissue properties extracted by these techniques do not map directly onto specific cellular structures or pathological processes, a growing body of work from animal models and histopathological correlations aids the in vivo interpretation of magnetization transfer properties of tissue. This review examines the biophysical models that have been developed to describe magnetization transfer contrast in tissue as well as the experimental evidence for the biological interpretation of magnetization transfer data in health and disease.
Collapse
Affiliation(s)
- John G Sled
- Hospital for Sick Children, Mouse Imaging Centre, Toronto, Ontario, Canada; Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
28
|
Pool size ratio of the substantia nigra in Parkinson's disease derived from two different quantitative magnetization transfer approaches. Neuroradiology 2017; 59:1251-1263. [PMID: 28986653 DOI: 10.1007/s00234-017-1911-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/22/2017] [Indexed: 12/27/2022]
Abstract
PURPOSE We sought to measure quantitative magnetization transfer (qMT) properties of the substantia nigra pars compacta (SNc) in patients with Parkinson's disease (PD) and healthy controls (HCs) using a full qMT analysis and determine whether a rapid single-point measurement yields equivalent results for pool size ratio (PSR). METHODS Sixteen different MT-prepared MRI scans were obtained at 3 T from 16 PD patients and eight HCs, along with B1, B0, and relaxation time maps. Maps of PSR, free and macromolecular pool transverse relaxation times ([Formula: see text], [Formula: see text]) and rate of MT exchange between pools (k mf ) were generated using a full qMT model. PSR maps were also generated using a single-point qMT model requiring just two MT-prepared images. qMT parameter values of the SNc, red nucleus, cerebral crus, and gray matter were compared between groups and methods. RESULTS PSR of the SNc was the only qMT parameter to differ significantly between groups (p < 0.05). PSR measured via single-point analysis was less variable than with the full MT model, provided slightly better differentiation of PD patients from HCs (area under curve 0.77 vs. 0.75) with sensitivity of 0.75 and specificity of 0.87, and was better than transverse relaxation time in distinguishing PD patients from HCs (area under curve 0.71, sensitivity 0.87, and specificity 0.50). CONCLUSION The increased PSR observed in the SNc of PD patients may provide a novel biomarker of PD, possibly associated with an increased macromolecular content. Single-point PSR mapping with reduced variability and shorter scan times relative to the full qMT model appears clinically feasible.
Collapse
|
29
|
Battiston M, Grussu F, Ianus A, Schneider T, Prados F, Fairney J, Ourselin S, Alexander DC, Cercignani M, Gandini Wheeler-Kingshott CAM, Samson RS. An optimized framework for quantitative magnetization transfer imaging of the cervical spinal cord in vivo. Magn Reson Med 2017; 79:2576-2588. [PMID: 28921614 PMCID: PMC5836910 DOI: 10.1002/mrm.26909] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 11/06/2022]
Abstract
PURPOSE To develop a framework to fully characterize quantitative magnetization transfer indices in the human cervical cord in vivo within a clinically feasible time. METHODS A dedicated spinal cord imaging protocol for quantitative magnetization transfer was developed using a reduced field-of-view approach with echo planar imaging (EPI) readout. Sequence parameters were optimized based in the Cramer-Rao-lower bound. Quantitative model parameters (i.e., bound pool fraction, free and bound pool transverse relaxation times [ T2F, T2B], and forward exchange rate [kFB ]) were estimated implementing a numerical model capable of dealing with the novelties of the sequence adopted. The framework was tested on five healthy subjects. RESULTS Cramer-Rao-lower bound minimization produces optimal sampling schemes without requiring the establishment of a steady-state MT effect. The proposed framework allows quantitative voxel-wise estimation of model parameters at the resolution typically used for spinal cord imaging (i.e. 0.75 × 0.75 × 5 mm3 ), with a protocol duration of ∼35 min. Quantitative magnetization transfer parametric maps agree with literature values. Whole-cord mean values are: bound pool fraction = 0.11(±0.01), T2F = 46.5(±1.6) ms, T2B = 11.0(±0.2) µs, and kFB = 1.95(±0.06) Hz. Protocol optimization has a beneficial effect on reproducibility, especially for T2B and kFB . CONCLUSION The framework developed enables robust characterization of spinal cord microstructure in vivo using qMT. Magn Reson Med 79:2576-2588, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Collapse
Affiliation(s)
- Marco Battiston
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Francesco Grussu
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| | - Andrada Ianus
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom.,Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Ferran Prados
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - James Fairney
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,UCL Department of Medical Physics and Bioengineering, University College London, London, United Kingdom
| | - Sebastien Ourselin
- Translational Imaging Group, Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Daniel C Alexander
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom
| | - Mara Cercignani
- CISC, Department of Neuroscience, Brighton & Sussex Medical School, Brighton, Sussex, United Kingdom
| | - Claudia A M Gandini Wheeler-Kingshott
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy.,Brain MRI 3T Mondino Research Center, C. Mondino National Neurological Institute, Pavia, Italy
| | - Rebecca S Samson
- Queen Square MS Centre, UCL Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
30
|
Smith AK, By S, Lyttle BD, Dortch RD, Box BA, Mckeithan LJ, Thukral S, Bagnato F, Pawate S, Smith SA. Evaluating single-point quantitative magnetization transfer in the cervical spinal cord: Application to multiple sclerosis. Neuroimage Clin 2017; 16:58-65. [PMID: 28761809 PMCID: PMC5521031 DOI: 10.1016/j.nicl.2017.07.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 07/03/2017] [Accepted: 07/12/2017] [Indexed: 11/19/2022]
Abstract
Spinal cord (SC) damage is linked to clinical deficits in patients with multiple sclerosis (MS), however, conventional MRI methods are not specific to the underlying macromolecular tissue changes that may precede overt lesion detection. Single-point quantitative magnetization transfer (qMT) is a method that can provide high-resolution indices sensitive to underlying macromolecular composition in a clinically feasible scan time by reducing the number of MT-weighted acquisitions and utilizing a two-pool model constrained by empirically determined constants. As the single-point qMT method relies on a priori constraints, it has not been employed extensively in patients, where these constraints may vary, and thus, the biases inherent in this model have not been evaluated in a patient cohort. We, therefore, addressed the potential biases in the single point qMT model by acquiring qMT measurements in the cervical SC in patient and control cohorts and evaluated the differences between the control and patient-derived qMT constraints (kmf, T2fR1f, and T2m) for the single point model. We determined that the macromolecular to free pool size ratio (PSR) differences between the control and patient-derived constraints are not significant (p > 0.149 in all cases). Additionally, the derived PSR for each cohort was compared, and we reported that the white matter PSR in healthy volunteers is significantly different from lesions (p < 0.005) and normal appearing white matter (p < 0.02) in all cases. The single point qMT method is thus a valuable method to quantitatively estimate white matter pathology in MS in a clinically feasible scan time.
Collapse
Affiliation(s)
- Alex K. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Functional MRI of the Brain Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Samantha By
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey D. Lyttle
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Richard D. Dortch
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bailey A. Box
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Lydia J. Mckeithan
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
| | - Saakshi Thukral
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Francesca Bagnato
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University, Nashville, TN, USA
| | - Siddharama Pawate
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Merrol Hyde Magnet School, Hendersonville, TN, USA
| | - Seth A. Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Vanderbilt University Institute of Imaging Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
31
|
Trujillo P, Summers PE, Ferrari E, Zucca FA, Sturini M, Mainardi LT, Cerutti S, Smith AK, Smith SA, Zecca L, Costa A. Contrast mechanisms associated with neuromelanin-MRI. Magn Reson Med 2016; 78:1790-1800. [DOI: 10.1002/mrm.26584] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 10/28/2016] [Accepted: 11/23/2016] [Indexed: 01/03/2023]
Affiliation(s)
- Paula Trujillo
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Paul E. Summers
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| | - Emanuele Ferrari
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Fabio A. Zucca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | | | - Luca T. Mainardi
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Sergio Cerutti
- Department of Electronics; Information and Bioengineering, Politecnico di Milano; Milan Italy
| | - Alex K. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
| | - Seth A. Smith
- Vanderbilt University Institute of Imaging Science; Vanderbilt University; Nashville Tennessee USA
- Department of Biomedical Engineering; Vanderbilt University; Nashville Tennessee USA
- Department of Radiology and Radiological Sciences; Vanderbilt University; Nashville Tennessee USA
| | - Luigi Zecca
- Institute of Biomedical Technologies; National Research Council of Italy; Segrate Italy
| | - Antonella Costa
- Department of Neuroradiology; Fondazione IRCCS Ca' Granda - Ospedale Maggiore Policlinico; Milan Italy
| |
Collapse
|
32
|
Arlinghaus LR, Dortch RD, Whisenant JG, Kang H, Abramson RG, Yankeelov TE. Quantitative Magnetization Transfer Imaging of the Breast at 3.0 T: Reproducibility in Healthy Volunteers. ACTA ACUST UNITED AC 2016; 2:260-266. [PMID: 28090588 PMCID: PMC5228602 DOI: 10.18383/j.tom.2016.00142] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quantitative magnetization transfer magnetic resonance imaging provides a means for indirectly detecting changes in the macromolecular content of tissue noninvasively. A potential application is the diagnosis and assessment of treatment response in breast cancer; however, before quantitative magnetization transfer imaging can be reliably used in such settings, the technique's reproducibility in healthy breast tissue must be established. Thus, this study aims to establish the reproducibility of the measurement of the macromolecular-to-free water proton pool size ratio (PSR) in healthy fibroglandular (FG) breast tissue. Thirteen women with no history of breast disease were scanned twice within a single scanning session, with repositioning between scans. Eleven women had appreciable FG tissue for test–retest measurements. Mean PSR values for the FG tissue ranged from 9.5% to 16.7%. The absolute value of the difference between 2 mean PSR measurements for each volunteer ranged from 0.1% to 2.1%. The 95% confidence interval for the mean difference was ±0.75%, and the repeatability value was 2.39%. These results indicate that the expected measurement variability would be ±0.75% for a cohort of a similar size and would be ±2.39% for an individual, suggesting that future studies of change in PSR in patients with breast cancer are feasible.
Collapse
Affiliation(s)
- Lori R Arlinghaus
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard D Dortch
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jennifer G Whisenant
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee; Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Richard G Abramson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee; Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee; Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Thomas E Yankeelov
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas; Department of Internal Medicine, The University of Texas at Austin, Austin, Texas; Institute for Computational and Engineering Sciences, The University of Texas at Austin, Austin, Texas; Livestrong Cancer Institutes, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
33
|
Wood TC, Simmons C, Hurley SA, Vernon AC, Torres J, Dell’Acqua F, Williams SC, Cash D. Whole-brain ex-vivo quantitative MRI of the cuprizone mouse model. PeerJ 2016; 4:e2632. [PMID: 27833805 PMCID: PMC5101606 DOI: 10.7717/peerj.2632] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 09/29/2016] [Indexed: 11/20/2022] Open
Abstract
Myelin is a critical component of the nervous system and a major contributor to contrast in Magnetic Resonance (MR) images. However, the precise contribution of myelination to multiple MR modalities is still under debate. The cuprizone mouse is a well-established model of demyelination that has been used in several MR studies, but these have often imaged only a single slice and analysed a small region of interest in the corpus callosum. We imaged and analyzed the whole brain of the cuprizone mouse ex-vivo using high-resolution quantitative MR methods (multi-component relaxometry, Diffusion Tensor Imaging (DTI) and morphometry) and found changes in multiple regions, including the corpus callosum, cerebellum, thalamus and hippocampus. The presence of inflammation, confirmed with histology, presents difficulties in isolating the sensitivity and specificity of these MR methods to demyelination using this model.
Collapse
Affiliation(s)
- Tobias C. Wood
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Camilla Simmons
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Samuel A. Hurley
- FMRIB Centre, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
- Synaptive Medical, Toronto, ON, Canada
| | - Anthony C. Vernon
- Cells and Behaviour Unit, Department of Basic and Clinical Neuroscience, IOPPN, King’s College London, London, United Kingdom
| | - Joel Torres
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Flavio Dell’Acqua
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
- NatBrainLab, Department of Basic and Clinical Neuroscience, IOPPN, King’s College London, London, United Kingdom
| | - Steve C.R. Williams
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| | - Diana Cash
- Department of Neuroimaging, IOPPN, King’s College London, London, United Kingdom
| |
Collapse
|
34
|
Naumova AV, Akulov AE, Khodanovich MY, Yarnykh VL. High-resolution three-dimensional macromolecular proton fraction mapping for quantitative neuroanatomical imaging of the rodent brain in ultra-high magnetic fields. Neuroimage 2016; 147:985-993. [PMID: 27646128 DOI: 10.1016/j.neuroimage.2016.09.036] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 09/14/2016] [Accepted: 09/16/2016] [Indexed: 11/24/2022] Open
Abstract
A well-known problem in ultra-high-field MRI is generation of high-resolution three-dimensional images for detailed characterization of white and gray matter anatomical structures. T1-weighted imaging traditionally used for this purpose suffers from the loss of contrast between white and gray matter with an increase of magnetic field strength. Macromolecular proton fraction (MPF) mapping is a new method potentially capable to mitigate this problem due to strong myelin-based contrast and independence of this parameter of field strength. MPF is a key parameter determining the magnetization transfer effect in tissues and defined within the two-pool model as a relative amount of macromolecular protons involved into magnetization exchange with water protons. The objectives of this study were to characterize the two-pool model parameters in brain tissues in ultra-high magnetic fields and introduce fast high-field 3D MPF mapping as both anatomical and quantitative neuroimaging modality for small animal applications. In vivo imaging data were obtained from four adult male rats using an 11.7T animal MRI scanner. Comprehensive comparison of brain tissue contrast was performed for standard R1 and T2 maps and reconstructed from Z-spectroscopic images two-pool model parameter maps including MPF, cross-relaxation rate constant, and T2 of pools. Additionally, high-resolution whole-brain 3D MPF maps were obtained with isotropic 170µm voxel size using the single-point synthetic-reference method. MPF maps showed 3-6-fold increase in contrast between white and gray matter compared to other parameters. MPF measurements by the single-point synthetic reference method were in excellent agreement with the Z-spectroscopic method. MPF values in rat brain structures at 11.7T were similar to those at lower field strengths, thus confirming field independence of MPF. 3D MPF mapping provides a useful tool for neuroimaging in ultra-high magnetic fields enabling both quantitative tissue characterization based on the myelin content and high-resolution neuroanatomical visualization with high contrast between white and gray matter.
Collapse
Affiliation(s)
- Anna V Naumova
- University of Washington, Department of Radiology, 850 Republican Street, Seattle, WA, USA; National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia
| | - Andrey E Akulov
- Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Sciences, 10 Lavrentyeva Avenue, Novosibirsk, Russia
| | - Marina Yu Khodanovich
- National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia
| | - Vasily L Yarnykh
- University of Washington, Department of Radiology, 850 Republican Street, Seattle, WA, USA; National Research Tomsk State University, Research Institute of Biology and Biophysics, 36 Lenina Avenue, Tomsk, Russia.
| |
Collapse
|
35
|
Clark DJ, Smith AK, Dortch RD, Knopp MV, Smith SA. Investigating hydroxyl chemical exchange using a variable saturation power chemical exchange saturation transfer (vCEST) method at 3 T. Magn Reson Med 2016; 76:826-37. [PMID: 26414937 PMCID: PMC4809798 DOI: 10.1002/mrm.25987] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/21/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
PURPOSE To develop a chemical exchange saturation transfer (CEST) scheme sensitive to hydroxyl protons at 3 T. Clinical imaging of hydroxyl moieties can have an impact on osteoarthritis, neuropsychiatric disorders, and cancer. THEORY By varying saturation amplitude linearly with frequency offset, the direct water saturation component of the Z-spectrum is flattened and can be subtracted to produce a magnetization transfer ratio difference spectrum (MTRdiff ) that isolates solute resonances. Variable saturation power allows for near optimization of hydroxyl and amine/amide moieties in one Z-spectrum. METHODS Phantom studies were used to test vCEST performance in two environments: (1) aqueous single-solute (glycogen, glucose); (2) aqueous multiple solute (glycogen with bovine serum albumin). In vivo vCEST imaging of glycosaminoglycan content in patellar-femoral cartilage was performed in a subject with history of cartilage transplant. RESULTS In solutions with overlapping resonances, vCEST resolves separate hydroxyl and amine/amide peaks. CEST hydroxyl signal in cartilage is negligible, but with vCEST, hydroxyl signal ranged from 2 to 5% ppm and showed distinct contrast between lesions and normal appearing cartilage. CONCLUSION Introduced a variable saturation amplitude CEST (vCEST) scheme to improve sensitivity to exchangeable hydroxyl moieties at 3 T resulting in detection of hydroxyl in the presence of multiple solutes with overlapping resonances. Magn Reson Med 76:826-837, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Daniel James Clark
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
- Wright Center of Innovation, The Ohio State University, Columbus, Ohio, USA
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio, USA
| | - Alex K Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard D Dortch
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Michael V Knopp
- Department of Radiology, The Ohio State University, Columbus, Ohio, USA
- Wright Center of Innovation, The Ohio State University, Columbus, Ohio, USA
| | - Seth A Smith
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
36
|
Abstract
Malignant tumors shed DNA into the circulation. The transient half-life of circulating tumor DNA (ctDNA) may afford the opportunity to diagnose, monitor recurrence, and evaluate response to therapy solely through a non-invasive blood draw. However, detecting ctDNA against the normally occurring background of cell-free DNA derived from healthy cells has proven challenging, particularly in non-metastatic solid tumors. In this study, distinct differences in fragment length size between ctDNAs and normal cell-free DNA are defined. Human ctDNA in rat plasma derived from human glioblastoma multiforme stem-like cells in the rat brain and human hepatocellular carcinoma in the rat flank were found to have a shorter principal fragment length than the background rat cell-free DNA (134–144 bp vs. 167 bp, respectively). Subsequently, a similar shift in the fragment length of ctDNA in humans with melanoma and lung cancer was identified compared to healthy controls. Comparison of fragment lengths from cell-free DNA between a melanoma patient and healthy controls found that the BRAF V600E mutant allele occurred more commonly at a shorter fragment length than the fragment length of the wild-type allele (132–145 bp vs. 165 bp, respectively). Moreover, size-selecting for shorter cell-free DNA fragment lengths substantially increased the EGFR T790M mutant allele frequency in human lung cancer. These findings provide compelling evidence that experimental or bioinformatic isolation of a specific subset of fragment lengths from cell-free DNA may improve detection of ctDNA. During cell death, DNA that is not contained within a membrane (i.e., cell-free DNA) enters the circulation. Detecting cell-free DNA originating from solid tumors (i.e., circulating tumor DNA, ctDNA), particularly solid tumors that have not metastasized, has proven challenging due to the relatively abundant background of normally occurring cell-free DNA derived from healthy cells. Our study defines the subtle but distinct differences in fragment length between normal cell-free DNA and ctDNA from a variety of solid tumors. Specifically, ctDNA was overall consistently shorter than the fragment length of normal cell-free DNA. Subsequently, we showed that a size-selection for shorter cell-free DNA fragments increased the proportion of ctDNA within a sample. These results provide compelling evidence that development of techniques to isolate a subset of cell-free DNA consistent with the ctDNA fragment lengths described in our study may substantially improve detection of non-metastatic solid tumors. As such, our findings may have a direct impact on the clinical utility of ctDNA for the non-invasive detection and diagnosis of solid tumors (i.e., the “liquid biopsy”), monitoring tumor recurrence, and evaluating tumor response to therapy.
Collapse
|
37
|
van Gelderen P, Jiang X, Duyn JH. Rapid measurement of brain macromolecular proton fraction with transient saturation transfer MRI. Magn Reson Med 2016; 77:2174-2185. [PMID: 27342121 DOI: 10.1002/mrm.26304] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 04/18/2016] [Accepted: 05/19/2016] [Indexed: 01/08/2023]
Abstract
PURPOSE To develop an efficient MRI approach to estimate the nonwater proton fraction (f) in human brain. METHODS We implement a brief, efficient magnetization transfer (MT) pulse that selectively saturates the magnetization of the (semi-) solid protons, and monitor the transfer of this saturation to the water protons as a function of delay after saturation. RESULTS Analysis of the transient MT effect with two-pool model allowed robust extraction of f at both 3 and 7 T. This required estimating the longitudinal relaxation rate constant (R1,MP and R1,WP ) for both proton pools, which was achieved with the assumption of uniform R1,MP and R1,WP across brain tissues. Resulting values of f were approximately 50% higher than reported previously, which is partly attributed to MT-pulse efficiency and R1,MP being higher than assumed previously. CONCLUSION Experiments performed on human brain in vivo at 3 and 7 T demonstrate the ability of the method to robustly determine f in a scan time of approximately 5 min. Magn Reson Med 77:2174-2185, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Pasternak O, Kubicki M, Shenton ME. In vivo imaging of neuroinflammation in schizophrenia. Schizophr Res 2016; 173:200-212. [PMID: 26048294 PMCID: PMC4668243 DOI: 10.1016/j.schres.2015.05.034] [Citation(s) in RCA: 105] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 05/18/2015] [Accepted: 05/20/2015] [Indexed: 12/18/2022]
Abstract
In recent years evidence has accumulated to suggest that neuroinflammation might be an early pathology of schizophrenia that later leads to neurodegeneration, yet the exact role in the etiology, as well as the source of neuroinflammation, are still not known. The hypothesis of neuroinflammation involvement in schizophrenia is quickly gaining popularity, and thus it is imperative that we have reliable and reproducible tools and measures that are both sensitive, and, most importantly, specific to neuroinflammation. The development and use of appropriate human in vivo imaging methods can help in our understanding of the location and extent of neuroinflammation in different stages of the disorder, its natural time-course, and its relation to neurodegeneration. Thus far, there is little in vivo evidence derived from neuroimaging methods. This is likely the case because the methods that are specific and sensitive to neuroinflammation are relatively new or only just being developed. This paper provides a methodological review of both existing and emerging positron emission tomography and magnetic resonance imaging techniques that identify and characterize neuroinflammation. We describe \how these methods have been used in schizophrenia research. We also outline the shortcomings of existing methods, and we highlight promising future techniques that will likely improve state-of-the-art neuroimaging as a more refined approach for investigating neuroinflammation in schizophrenia.
Collapse
Affiliation(s)
- Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Applied Mathematics, Tel Aviv University, Tel Aviv 69978, Israel.
| | - Marek Kubicki
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Martha E Shenton
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA; VA Boston Healthcare System, Brockton, MA, USA
| |
Collapse
|
39
|
Age-effects in white matter using associated diffusion tensor imaging and magnetization transfer ratio during late childhood and early adolescence. Magn Reson Imaging 2016; 34:529-34. [DOI: 10.1016/j.mri.2015.12.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 12/14/2015] [Indexed: 11/21/2022]
|
40
|
Smith AK, Dortch RD, Dethrage LM, Lyttle BD, Kang H, Welch EB, Smith SA. Incorporating dixon multi-echo fat water separation for novel quantitative magnetization transfer of the human optic nerve in vivo. Magn Reson Med 2016; 77:707-716. [PMID: 27037720 DOI: 10.1002/mrm.26164] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 01/08/2016] [Accepted: 01/23/2016] [Indexed: 12/21/2022]
Abstract
PURPOSE The optic nerve (ON) represents the sole pathway between the eyes and brain; consequently, diseases of the ON can have dramatic effects on vision. However, quantitative magnetization transfer (qMT) applications in the ON have been limited to ex vivo studies, in part because of the fatty connective tissue that surrounds the ON, confounding the magnetization transfer (MT) experiment. Therefore, the aim of this study was to implement a multi-echo Dixon fat-water separation approach to remove the fat component from MT images. METHODS MT measurements were taken in a single slice of the ON and frontal lobe using a three-echo Dixon readout, and the water and out-of-phase images were applied to a two-pool model in ON tissue and brain white matter to evaluate the effectiveness of using Dixon fat-water separation to remove fatty tissue from MT images. RESULTS White matter data showed no significant differences between image types; however, there was a significant increase (p < 0.05) in variation in the out-of-phase images in the ON relative to the water images. CONCLUSIONS The results of this study demonstrate that Dixon fat-water separation can be robustly used for accurate MT quantification of anatomies susceptible to partial volume effects resulting from fat. Magn Reson Med 77:707-716, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Alex K Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Richard D Dortch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Lindsey M Dethrage
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Bailey D Lyttle
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Hakmook Kang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biostatistics, Vanderbilt University, Nashville, Tennessee, USA.,Center for Quantitative Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - E Brian Welch
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Seth A Smith
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Ophthalmology and Visual Sciences, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
41
|
Liu F, Block WF, Kijowski R, Samsonov A. Rapid multicomponent relaxometry in steady state with correction of magnetization transfer effects. Magn Reson Med 2016; 75:1423-33. [PMID: 25959974 PMCID: PMC4637271 DOI: 10.1002/mrm.25672] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 01/26/2015] [Accepted: 02/06/2015] [Indexed: 11/07/2022]
Abstract
PURPOSE To study the effects of magnetization transfer (MT) on multicomponent T2 parameters obtained using mcDESPOT in macromolecule-rich tissues and to propose a new method called mcRISE to correct MT-induced biases. METHODS The two-pool mcDESPOT model was modified by the addition of an exchanging macromolecule proton pool to model the MT effect in cartilage. The mcRISE acquisition scheme was developed to provide sensitivity to all pools. An incremental fitting was applied to estimate MT and relaxometry parameters with minimized coupling. The interaction between MT and relaxometry parameters, efficacy of MT correction, and feasibility of mcRISE in vivo were investigated in simulations and in healthy volunteers. RESULTS The MT effect caused significant errors in multicomponent T1/T2 values and in fast-relaxing water fraction fF , which is consistent with previous experimental observations. fF increased significantly with macromolecule content if MT was ignored. mcRISE resulted in a multifold reduction of MT biases and yielded decoupled multicomponent T1/T2 relaxometry and quantitative MT parameters. CONCLUSION mcRISE is an efficient approach for correcting MT biases in multicomponent relaxometry based on steady state sequences. Improved specificity of mcRISE may help to elucidate the sources of the previously described high sensitivity of noncorrected mcDESPOT parameters to disease-related changes in cartilage and the brain.
Collapse
Affiliation(s)
- Fang Liu
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Walter F Block
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Richard Kijowski
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Alexey Samsonov
- Department of Medical Physics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| |
Collapse
|
42
|
Sukstanskii AL, Wen J, Cross AH, Yablonskiy DA. Simultaneous multi-angular relaxometry of tissue with MRI (SMART MRI): Theoretical background and proof of concept. Magn Reson Med 2016; 77:1296-1306. [PMID: 26991525 DOI: 10.1002/mrm.26176] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/29/2016] [Accepted: 01/31/2016] [Indexed: 01/09/2023]
Abstract
PURPOSE Accurate measurement of tissue-specific relaxation parameters is an ultimate goal of quantitative MRI. The objective of this study is to introduce a new technique, simultaneous multiangular relaxometry of tissue with MRI (SMART MRI), which provides naturally coregistered quantitative spin density, longitudinal and transverse relaxation rate constant maps along with parameters characterizing magnetization transfer (MT) effects. THEORY AND METHODS SMART MRI is based on a gradient-recalled echo MRI sequence with multiple flip angles and multiple gradient echoes and a derived theoretical expression for the MR signal generated in this experimental conditions. The theory, based on Bloch-McConnell equations, takes into consideration cross-relaxation between two water pools: "free" and "bound" to macromolecules. It describes the role of cross-relaxation effects in formation of longitudinal and transverse relaxation of "free" water signal, thus providing background for measurements of these effects without using MT pulses. Bayesian analysis is used to optimize SMART MRI sequence parameters. RESULTS Data obtained on three participants demonstrate feasibility of the proposed approach. CONCLUSION SMART MRI provides quantitative measurements of longitudinal and transverse relaxation rate constants of "free" water signal affected by cross-relaxation effects. It also provides information on some essential MT parameters without requiring off-resonance MT pulses. Magn Reson Med 77:1296-1306, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
| | - Jie Wen
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | - Anne H Cross
- Department of Radiology, Washington University, St. Louis, Missouri, USA
| | | |
Collapse
|
43
|
Foster RJ, Damion RA, Baboolal TG, Smye SW, Ries ME. A nuclear magnetic resonance study of water in aggrecan solutions. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150705. [PMID: 27069663 PMCID: PMC4821274 DOI: 10.1098/rsos.150705] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Accepted: 02/12/2016] [Indexed: 06/05/2023]
Abstract
Aggrecan, a highly charged macromolecule found in articular cartilage, was investigated in aqueous salt solutions with proton nuclear magnetic resonance. The longitudinal and transverse relaxation rates were determined at two different field strengths, 9.4 T and 0.5 T, for a range of temperatures and aggrecan concentrations. The diffusion coefficients of the water molecules were also measured as a function of temperature and aggrecan concentration, using a pulsed field gradient technique at 9.4 T. Assuming an Arrhenius relationship, the activation energies for the various relaxation processes and the translational motion of the water molecules were determined from temperature dependencies as a function of aggrecan concentration in the range 0-5.3% w/w. The longitudinal relaxation rate and inverse diffusion coefficient were approximately equally dependent on concentration and only increased by upto 20% from that of the salt solution. The transverse relaxation rate at high field demonstrated greatest concentration dependence, changing by an order of magnitude across the concentration range examined. We attribute this primarily to chemical exchange. Activation energies appeared to be approximately independent of aggrecan concentration, except for that of the low-field transverse relaxation rate, which decreased with concentration.
Collapse
Affiliation(s)
- Richard J. Foster
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Robin A. Damion
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - Thomas G. Baboolal
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, St James's University Hospital, Leeds LS9 7TF, UK
| | - Stephen W. Smye
- Academic Division of Medical Physics, University of Leeds, Leeds LS2 9JT, UK
- National Institute for Health Research, Leeds Musculoskeletal Biomedical Research Unit, Chapel Allerton Hospital, University of Leeds, Leeds LS2 9LN, UK
| | - Michael E. Ries
- School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
44
|
Prevost VH, Girard OM, Varma G, Alsop DC, Duhamel G. Minimizing the effects of magnetization transfer asymmetry on inhomogeneous magnetization transfer (ihMT) at ultra-high magnetic field (11.75 T). MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2016; 29:699-709. [PMID: 26762244 DOI: 10.1007/s10334-015-0523-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/29/2015] [Accepted: 12/30/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVES The recently reported inhomogeneous magnetization transfer technique (ihMT) has been proposed for specific imaging of inhomogeneously broadened lines, and has shown great promise for characterizing myelinated tissues. The ihMT contrast is obtained by subtracting magnetization transfer images obtained with simultaneous saturation at positive and negative frequency offsets (dual frequency saturation experiment, MT (+/-)) from those obtained with single frequency saturation (MT (+)) at the same total power. Hence, ihMT may be biased by MT-asymmetry, especially at ultra-high magnetic field. Use of the average of single positive and negative frequency offset saturation MT images, i.e., (MT (+)+MT (-)) has been proposed to correct the ihMT signal from MT-asymmetry signal. MATERIALS AND METHODS The efficiency of this correction method was experimentally assessed in this study, performed at 11.75 T on mice. Quantitative corrected ihMT and MT-asymmetry ratios (ihMTR and MTRasym) were measured in mouse brain structures for several MT-asymmetry magnitudes and different saturation parameter sets. RESULTS Our results indicated a "safe" range of magnitudes (/MTRasym/<4 %) for which MT-asymmetry signal did not bias the corrected ihMT signal. Moreover, experimental evidence of the different natures of both MT-asymmetry and inhomogeneous MT contrasts were provided. In particular, non-zero ihMT ratios were obtained at zero MTRasym values. CONCLUSION MTRasym is not a confounding factor for ihMT quantification, even at ultra-high field, as long as MTRasym is restricted to ±4 %.
Collapse
Affiliation(s)
- Valentin H Prevost
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339, CNRS, Faculté de Médecine, Aix-Marseille Université (AMU), 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Olivier M Girard
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339, CNRS, Faculté de Médecine, Aix-Marseille Université (AMU), 27 Boulevard Jean Moulin, 13005, Marseille, France
| | - Gopal Varma
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David C Alsop
- Department of Radiology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Guillaume Duhamel
- Centre de Résonance Magnétique Biologique et Médicale, CRMBM-CEMEREM, UMR 7339, CNRS, Faculté de Médecine, Aix-Marseille Université (AMU), 27 Boulevard Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
45
|
van Gelderen P, Jiang X, Duyn JH. Effects of magnetization transfer on T1 contrast in human brain white matter. Neuroimage 2015; 128:85-95. [PMID: 26724780 DOI: 10.1016/j.neuroimage.2015.12.032] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 12/17/2015] [Accepted: 12/20/2015] [Indexed: 11/17/2022] Open
Abstract
MRI based on T1 relaxation contrast is increasingly being used to study brain morphology and myelination. Although it provides for excellent distinction between the major tissue types of gray matter, white matter, and CSF, reproducible quantification of T1 relaxation rates is difficult due to the complexity of the contrast mechanism and dependence on experimental details. In this work, we perform simulations and inversion-recovery MRI measurements at 3T and 7T to show that substantial measurement variability results from unintended and uncontrolled perturbation of the magnetization of MRI-invisible (1)H protons of lipids and macromolecules. This results in bi-exponential relaxation, with a fast component whose relative contribution under practical conditions can reach 20%. This phenomenon can strongly affect apparent relaxation rates, affect contrast between tissue types, and result in contrast variations over the brain. Based on this novel understanding, ways are proposed to minimize this experimental variability and its effect on T1 contrast, quantification accuracy and reproducibility.
Collapse
Affiliation(s)
- Peter van Gelderen
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xu Jiang
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeff H Duyn
- Advanced MRI Section, Laboratory of Functional and Molecular Imaging, National Institutes of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
46
|
Yarnykh VL, Tartaglione EV, Ioannou GN. Fast macromolecular proton fraction mapping of the human liver in vivo for quantitative assessment of hepatic fibrosis. NMR IN BIOMEDICINE 2015; 28:1716-1725. [PMID: 26503401 PMCID: PMC4715674 DOI: 10.1002/nbm.3437] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/28/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The macromolecular proton fraction (MPF) is a quantitative MRI parameter determining the magnetization transfer (MT) effect in tissues, and is defined as the relative amount of immobile macromolecular protons involved in magnetization exchange with mobile water protons. MPF has the potential to provide a quantitative assessment of fibrous tissue because of the intrinsically high MPF specific for collagen. The goal of this study was to investigate the relationship between histologically determined fibrosis stage and MPF in the liver parenchyma measured using a recently developed fast single-point clinically targeted MPF mapping method. Optimal saturation parameters for single-point liver MPF measurements were determined from the analysis of liver Z spectra in vivo based on the error propagation model. Sixteen patients with chronic hepatitis C viral infection underwent 3-T MRI using an optimized liver MPF mapping protocol. Fourteen patients had prior liver biopsy with histologically staged fibrosis (METAVIR scores F0-F3) and two patients had clinically diagnosed cirrhosis (score F4 was assigned). The protocol included four breath-hold three-dimensional scans with 2 × 3 × 6-mm(3) resolution and 10 transverse sections: dynamic acquisition of MT-weighted and reference images; dynamic acquisition of three images for variable flip angle T1 mapping; dual-echo B0 map; and actual flip angle imaging B1 map. The average liver MPF was determined as the mode of the MPF histograms. MPF was significantly increased in patients with clinically significant fibrosis (scores F2-F4, n = 6) relative to patients with no or mild fibrosis (scores F0-F1, n = 10): 6.49 ± 0.36% versus 5.94 ± 0.26%, p < 0.01 (Mann-Whitney test). MPF and fibrosis scores were strongly positively correlated, with a Spearman's rank correlation coefficient of 0.80 (p < 0.001). This study demonstrates the feasibility of fast MPF mapping of the human liver in vivo and confirms the hypothesis that MPF is increased in hepatic fibrosis and associated with fibrosis stage. MPF may be useful as a non-invasive imaging biomarker of hepatic fibrosis.
Collapse
Affiliation(s)
- Vasily L. Yarnykh
- Department of Radiology, University of Washington, Seattle, WA, USA
- Research Institute of Biology and Biophysics, Tomsk State University, Tomsk, Russian Federation
| | - Erica V. Tartaglione
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - George N. Ioannou
- Research and Development, Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
- Division of Gastroenterology, Department of Medicine, Veterans Affairs Puget Sound Health Care System and University of Washington, Seattle, WA, USA
| |
Collapse
|
47
|
Mossahebi P, Yarnykh VL, Samsonov A. Analysis and correction of biases in cross-relaxation MRI due to biexponential longitudinal relaxation. Magn Reson Med 2015; 71:830-8. [PMID: 23440870 DOI: 10.1002/mrm.24677] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE Cross-relaxation imaging (CRI) is a family of quantitative magnetization transfer techniques that utilize images obtained with off-resonance saturation and longitudinal relaxation rate (R1) maps reconstructed by the variable flip angle (VFA) method. It was demonstrated recently that a significant bias in an apparent VFA R1 estimation occurs in macromolecule-rich tissues due to magnetization transfer (MT)-induced biexponential behavior of longitudinal relaxation of water protons. The purpose of this article is to characterize theoretically and experimentally the resulting bias in the CRI maps and propose methods to correct it. THEORY The modified CRI algorithm is proposed, which corrects for such biases and yields accurate parametric bound pool fraction f, cross-relaxation rate k, and R1 maps. Additionally, an analytical correction procedure is introduced to recalculate previously obtained parameter values. RESULTS The systematic errors due to unaccounted MT-induced biexponential relaxation can be characterized as an overestimation of R1, f, and k, with a relative bias comparable with the magnitude of f. The phantom and human in vivo experiments demonstrate that both proposed modified CRI and analytical correction approaches significantly improve the accuracy of the CRI method. CONCLUSION The accuracy of the CRI method can be considerably improved by taking into account the contribution of MT-induced biexponential longitudinal relaxation into variable flip angle R1 measurements.
Collapse
Affiliation(s)
- Pouria Mossahebi
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | | | | |
Collapse
|
48
|
Pampel A, Müller DK, Anwander A, Marschner H, Möller HE. Orientation dependence of magnetization transfer parameters in human white matter. Neuroimage 2015; 114:136-46. [DOI: 10.1016/j.neuroimage.2015.03.068] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 03/16/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022] Open
|
49
|
Underhill HR, Golden-Grant K, Garrett LT, Uhrich S, Zielinski BA, Scott CR. Detecting the effects of Fabry disease in the adult human brain with diffusion tensor imaging and fast bound-pool fraction imaging. J Magn Reson Imaging 2015; 42:1611-22. [PMID: 26018987 DOI: 10.1002/jmri.24952] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/01/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To identify quantitative MRI parameters associated with diffusion tensor imaging (DTI) and fast bound-pool fraction imaging (FBFI) that may detect alterations in gray matter and/or white matter in adults with Fabry disease, a lysosomal storage disorder. MATERIALS AND METHODS Twelve healthy controls (mean age ± standard deviation: 48.0 ± 12.4 years) and 10 participants with Fabry disease (46.7 ± 12.9 years) were imaged at 3.0 Tesla. Whole-brain parametric maps of diffusion tensor metrics (apparent diffusion coefficient [ADC] and fractional anisotropy [FA]) and the bound-pool fraction (f) were acquired. Mean voxel values of parametric maps from regions-of-interest within gray and white matter structures were compared between cases and controls using the independent t-test. Spearman's rho was used to identify associations between parametric maps and age. RESULTS Compared with controls, the left thalamus of Fabry participants had an increase in FA (0.29 ± 0.02 versus 0.33 ± 0.05, respectively; P = 0.030) and a trend toward an increase in ADC (0.73 ± 00.02 versus 0.76 ± 0.03 μm(2) /s, respectively; P = 0.082). The left posterior white matter demonstrated a reduction in f (10.45 ± 0.37 versus 9.00 ± 1.84%, respectively; P = 0.035), an increase in ADC (0.78 ± 0.04 versus 0.94 ± 0.19 μm(2) /s, respectively; P = 0.024), and a trend toward a reduction in FA (0.42 ± 0.07 versus 0.36 ± 0.08, respectively; P = 0.052). Among all parameters, only f measured in the left posterior white matter was significantly associated with age in Fabry participants (rho = -0.71; P = 0.022). CONCLUSION Parameters derived from DTI and FBFI detect Fabry-related changes in the adult human brain, particularly in the posterior white matter where reductions in myelin density as measured by FBFI appear age related.
Collapse
Affiliation(s)
- Hunter R Underhill
- Departments of Neurological Surgery and Medicine, Division of Medical Genetics, University of Washington, Seattle, Washington, USA.,Department of Pediatrics, Division of Medical Genetics, University of Utah, Salt Lake City, Utah, USA
| | - Katie Golden-Grant
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Lauren T Garrett
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Stefanie Uhrich
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| | - Brandon A Zielinski
- Departments of Pediatrics and Neurology, University of Utah, Salt Lake City, Utah, USA
| | - C Ronald Scott
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
| |
Collapse
|
50
|
Harkins KD, Xu J, Dula AN, Li K, Valentine WM, Gochberg DF, Gore JC, Does MD. The microstructural correlates of T1 in white matter. Magn Reson Med 2015; 75:1341-5. [PMID: 25920491 DOI: 10.1002/mrm.25709] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 02/11/2015] [Accepted: 03/05/2015] [Indexed: 12/14/2022]
Abstract
PURPOSE Several studies have shown strong correlations between myelin content and T1 within the brain, and have even suggested that T1 can be used to estimate myelin content. However, other micro-anatomical features such as compartment size are known to affect longitudinal relaxation rates, similar to compartment size effects in porous media. METHODS T1 measurements were compared with measured or otherwise published axon size measurements in white matter tracts of the rat spinal cord, rat brain, and human brain. RESULTS In both ex vivo and in vivo studies, correlations were present between the relaxation rate 1/T1 and axon size across regions of rat spinal cord with nearly equal myelin content. CONCLUSION While myelination is likely the dominant determinant of T1 in white matter, variations in white matter microstructure, independent of myelin volume fraction, may also be reflected in T1 differences between regions or subjects.
Collapse
Affiliation(s)
- Kevin D Harkins
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | - Junzhong Xu
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Adrienne N Dula
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Ke Li
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA
| | | | - Daniel F Gochberg
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA
| | - John C Gore
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee, USA
| | - Mark D Does
- Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA.,Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|