1
|
Li Y, Pan Y, Zhao D. Understanding the neurobiology and computational mechanisms of social conformity: implications for psychiatric disorders. Biol Psychiatry 2025:S0006-3223(25)01195-3. [PMID: 40409524 DOI: 10.1016/j.biopsych.2025.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/25/2025]
Abstract
Social conformity and psychiatric disorders share overlapping brain regions and neural pathways, arousing our interest in uncovering their potentially shared underlying neural and computational mechanisms. Critically, the dynamics of group behavior may either mitigate or exacerbate mental health conditions, highlighting the need to bridge social neuroscience and psychiatry. Our work examines how aberrant neurobiological circuits and computations influence social conformity. We propose a hierarchical computational framework, based on dynamical systems and active inference, to facilitate the interpretation of the multi-layered interplay among processes that drive social conformity. We underscore the significant implications of this hierarchical computational framework for guiding future research on psychiatry, particularly with respect to the clinical translation of interventions such as targeted pharmacotherapy and neurostimulation techniques. The interdisciplinary efforts hold the potential to propel the fields of social and clinical neuroscience forward, fostering the emergence of more efficacious and individualized therapeutic approaches tailored to psychiatric disorders characterized by aberrant social behaviors.
Collapse
Affiliation(s)
- Yutong Li
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China
| | - Yafeng Pan
- Department of Psychology and Behavioral Sciences, Zhejiang University, Hangzhou, China; The State Key Lab of Brain-Machine Intelligence, Zhejiang University, Hangzhou, China.
| | - Di Zhao
- Shanghai Key Laboratory of Psychotic Disorders, Brain Health Institute, National Center for Mental Disorders, Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Psychology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
2
|
Lima Santos JP, Versace A, Arora M, Bertocci MA, Chase HW, Skeba A, Graur S, Bonar L, Maffei C, Yendiki A, Rasmussen SA, Haber SN, Phillips ML. Examining relationships among NODDI indices of white matter structure in prefrontal cortical-thalamic-striatal circuitry and OCD symptomatology. Transl Psychiatry 2024; 14:410. [PMID: 39358342 PMCID: PMC11447092 DOI: 10.1038/s41398-024-03101-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/16/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024] Open
Abstract
Obsessive-compulsive disorder is a psychiatric disorder characterized by intrusive thoughts and repetitive behaviors. There are two prominent features: Harm Avoidance (HA) and Incompleteness (INC). Previous resting-state studies reported abnormally elevated connectivity between prefrontal cortical (PFC) and subcortical regions (thalamus, striatum) in OCD participants. Yet, little is known about the white matter (WM) structural abnormalities in these connections. Using brain parcellation and segmentation, whole brain tractography, and Neurite Orientation Dispersion and Density Imaging (NODDI), we aimed to characterize WM structural abnormalities in OCD vs. healthy controls and determine the extent to which NODDI indices of these connections were associated with subthreshold-threshold HA, INC and overall OCD symptom severity across all participants. Four PFC regions were segmented: ventral medial (vmPFC), ventrolateral (vlPFC), dorsomedial (dmPFC), and dorsolateral (dlPFC). NODDI Neurite Density (NDI) and Orientation Dispersion (ODI) indices of WM structure were extracted from connections between these PFC regions and the thalamus (42 OCD, 44 healthy controls, mean age[SD] = 23.65[4.25]y, 63.9% female) and striatum (38 OCD, 41 healthy controls, mean age[SD] = 23.59[4.27]y, 64.5% female). Multivariate analyses of covariance revealed no between-group differences in these indices. Multivariate regression models revealed that greater NDI in vmPFC-thalamus, greater NDI and ODI in vmPFC-striatum, and greater NDI in dmPFC-thalamus connections were associated with greater INC severity (Q ≤ 0.032). These findings highlight the utility of NODDI in the examination of WM structure in OCD, provide valuable insights into specific WM alterations underlying dimensional INC, and can facilitate the development of customized treatments for OCD individuals with treatment-resistant symptoms.
Collapse
Affiliation(s)
| | - Amelia Versace
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Magnetic Resonance Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manan Arora
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Henry W Chase
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alex Skeba
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Chiara Maffei
- Department of Radiology, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Anastasia Yendiki
- Department of Radiology, McLean Hospital, Harvard Medical School, Boston, MA, USA
| | - Steven A Rasmussen
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Suzanne N Haber
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Boston, MA, USA
- School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY, USA
| | - Mary L Phillips
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
3
|
Spiliotis K, Köhling R, Just W, Starke J. Data-driven and equation-free methods for neurological disorders: analysis and control of the striatum network. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1399347. [PMID: 39171120 PMCID: PMC11335688 DOI: 10.3389/fnetp.2024.1399347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024]
Abstract
The striatum as part of the basal ganglia is central to both motor, and cognitive functions. Here, we propose a large-scale biophysical network for this part of the brain, using modified Hodgkin-Huxley dynamics to model neurons, and a connectivity informed by a detailed human atlas. The model shows different spatio-temporal activity patterns corresponding to lower (presumably normal) and increased cortico-striatal activation (as found in, e.g., obsessive-compulsive disorder), depending on the intensity of the cortical inputs. By applying equation-free methods, we are able to perform a macroscopic network analysis directly from microscale simulations. We identify the mean synaptic activity as the macroscopic variable of the system, which shows similarity with local field potentials. The equation-free approach results in a numerical bifurcation and stability analysis of the macroscopic dynamics of the striatal network. The different macroscopic states can be assigned to normal/healthy and pathological conditions, as known from neurological disorders. Finally, guided by the equation-free bifurcation analysis, we propose a therapeutic close loop control scheme for the striatal network.
Collapse
Affiliation(s)
- Konstantinos Spiliotis
- Institute of Mathematics, University of Rostock, Rostock, Germany
- Laboratory of Mathematics and Informatics (ISCE), Department of Civil Engineering, Democritus University of Thrace, Xanthi, Greece
| | - Rüdiger Köhling
- Oscar-Langendorff-Institute of Physiology, Rostock University Medical Center, Rostock, Germany
| | - Wolfram Just
- Institute of Mathematics, University of Rostock, Rostock, Germany
| | - Jens Starke
- Institute of Mathematics, University of Rostock, Rostock, Germany
| |
Collapse
|
4
|
Borrelli DF, Tonna M, Dar R. An investigation of the experience of control through the sense of agency in people with obsessive-compulsive disorder: a review and meta-analysis. CNS Spectr 2024; 29:224-232. [PMID: 38523534 DOI: 10.1017/s1092852924000117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
The construct of sense of agency (SoA) has proven useful for understanding mechanisms underlying obsessive-compulsive disorder (OCD) phenomenology, especially in explaining the apparent dissociation in OCD between actual and perceived control over one's actions. Paradoxically, people with OCD appear to experience both diminished SoA (feeling unable to control their actions) and inflated SoA (having "magical" control over events). The present review investigated the extent to which the SoA is distorted in OCD, in terms of both implicit (ie, inferred from correlates and outcomes of voluntary actions) and explicit (ie, subjective judgment of one's control over an outcome) measures of SoA. Our search resulted in 15 studies that met the criteria for inclusion in a meta-analysis, where we also examined the potential moderating effects of the type of measure (explicit versus implicit) and of the actual control participants had over the outcome. We found that participants with OCD or with high levels of OCD symptoms show lower implicit measures of SoA and at the same time tend to overestimate their control in situations where they do not actually have it. Together, these findings support the hypothesized dissociation in OCD between actual and perceived control over one's actions.
Collapse
Affiliation(s)
| | - Matteo Tonna
- Department of Medicine and Surgery, Psychiatry Unit, University of Parma, Parma, Italy
- Department of Mental Health, Local Health Service, Parma, Italy
| | - Reuven Dar
- School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Di Luzio M, Bellantoni D, Bellantoni AL, Villani V, Di Vincenzo C, Zanna V, Vicari S, Pontillo M. Similarities and differences between eating disorders and obsessive-compulsive disorder in childhood and adolescence: a systematic review. Front Psychiatry 2024; 15:1407872. [PMID: 38895032 PMCID: PMC11183500 DOI: 10.3389/fpsyt.2024.1407872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024] Open
Abstract
Background The developmental age, comprising childhood and adolescence, constitutes an extremely important phase of neurodevelopment during which various psychiatric disorders can emerge. Obsessive-Compulsive Disorder (OCD) and Eating Disorders (ED) often manifest during this critical developmental period sharing similarities but also differences in psychopathology, neurobiology, and etiopathogenesis. The aim of this study is to focus on clinical, genetic and neurobiological similarities and differences in OCD and ED. Methods This study is based on a PubMed/MEDLINE and Cochrane Central Register for Controlled Trial (CENTRAL). The research adhered to the guidelines outlined in the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Results The aforementioned search yielded an initial collection of 335 articles, published from 1968 to September 2023. Through the application of inclusion and exclusion criteria, a total of 324 articles were excluded, culminating in a final selection of 10 articles. Conclusions Our findings showed both differences and similarities between OCD and ED. Obsessive-compulsive (OC) symptoms are more prevalent in ED characterized by a binge/purge profile than in those with a restrictive profile during developmental age. OC symptomatology appears to be a common dimension in both OCD and ED. When presents, OC symptomatology, exhibits transversal characteristic alterations in the anterior cingulate cortex and poorer cognitive flexibility. These correlations could be highlighted by genetic overlaps between disorders. A comprehensive definition, integrating psychopathological and neurobiological aspects could significantly aid treatment selection and thereby influence the prognosis of these patients.
Collapse
Affiliation(s)
- Michelangelo Di Luzio
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Domenica Bellantoni
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Valeria Villani
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Cristina Di Vincenzo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Valeria Zanna
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Stefano Vicari
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
- Life Sciences and Public Health Department, Catholic University, Rome, Italy
| | - Maria Pontillo
- Child and Adolescent Neuropsychiatry Unit, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
6
|
Irak M, Topçuoğlu V, Duman TN, Akyurt S, Yılmaz İ, Pala İY. Investigating Retrospective and Prospective Metamemory Judgments During Episodic Memory in Patients With Obsessive-Compulsive Disorders. Behav Ther 2024; 55:277-291. [PMID: 38418040 DOI: 10.1016/j.beth.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/25/2023] [Accepted: 07/03/2023] [Indexed: 03/01/2024]
Abstract
It is clear evidence that individuals diagnosed with obsessive-compulsive disorder (OCD) lack confidence in their memory and have low metamemory performance (judgment and accuracy). However, it is still unclear whether low metamemory performance is specific to first, domain general or domain specific, and second, to stimulus domain. To address these issues, we compared individuals diagnosed with OCD and healthy controls (HCs) on recognition, retrospective (judgments of learning [JOL]) and prospective (feeling of knowing [FOK]) metamemory judgments and under three different episodic memory tasks, which consisted of symptom-free, familiar and unfamiliar stimuli (word, scene, and face photo). OCD patients showed lower recognition performance, JOL and FOK judgments, and accuracy in all tasks than HCs. Also, OCD patients were slower than HCs during all cognitive performances. In both groups, metamemory performances were lower in familiar items than unfamiliar items. However, recognition performances were not affected by stimulus type. Our results support the idea of general episodic memory and a metamemory deficit in OCD. Moreover, metamemory deficits in OCD are domain general.
Collapse
|
7
|
Bracco L, Dusi N, Moltrasio C, Brambilla P, Delvecchio G. Structural and functional brain imaging after treatment with selective-serotonin reuptake-inhibitors in obsessive-compulsive disorder: A mini review. J Affect Disord 2024; 345:141-148. [PMID: 37820957 DOI: 10.1016/j.jad.2023.10.034] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 10/02/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is a psychiatric disorder whose etiopathogenesis, according to various neuroimaging studies, seems to be linked to selective dysfunctions in regions within the cortico-striatal-thalamo-cortical circuit. Selective Serotonin Reuptake Inhibitors (SSRIs) are the first-line therapy for OCD but their neurobiological effects on the brain is only partially understood. Therefore, the aim of this review is to highlight structural and functional brain imaging modifications induced by SSRIs treatment. METHODS A literature search on PubMed, Psych-Info and Embase database was performed. Studies including patients with OCD that analyzed the effect of SSRIs through structural and functional Magnetic Resonance Imaging were selected. Seven relevant studies were considered eligible for the present review. RESULTS Overall, the results of the reviewed studies showed that SSRIs treatment seems to normalize structural, in terms of the white matter and gray matter volumes, and functional activity alterations observed in OCD patients, especially in regions within the prefrontal cortex and striatum. LIMITATIONS The poor design of the studies, the small and heterogeneous samples, differences in age, gender, illness course, comorbidities, treatment protocols and the different magnetic fields used make it difficult to generalize the results. CONCLUSIONS From the available evidence it emerged that SSRIs treatment has proven to be effective in normalizing brain structural and functional alterations observed in OCD patients. However, future neuroimaging investigations should focus on long-term effects of drugs on brain structure and function in OCD patients through longitudinal approaches in order to identify more effective treatments for these patients.
Collapse
Affiliation(s)
- L Bracco
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - N Dusi
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| | - C Moltrasio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - P Brambilla
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - G Delvecchio
- Department of Neurosciences and Mental Health, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
8
|
Li Z, Tong G, Wang Y, Ruan H, Zheng Z, Cheng J, Wang Z. Task fMRI studies investigating inhibitory control in patients with obsessive-compulsive disorder and eating disorders: A comparative meta-analysis. World J Biol Psychiatry 2024; 25:26-42. [PMID: 37640027 DOI: 10.1080/15622975.2023.2251057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 08/04/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) and eating disorders (EDs) share similarities in terms of clinical characteristics and deficits in inhibitory control. OBJECTIVE To investigate whether inhibitory control could serve as a common behavioural phenotype between OCD and EDs and whether it might be underpinned by shared and/or distinct neural signatures. METHOD We performed a quantitative meta-analysis of brain function abnormalities during the inhibitory control task-based functional Magnetic Resonance Imaging (fMRI) scan across patients with OCD and EDs using seed-based d mapping (SDM). RESULTS The meta-analysis included sixteen OCD fMRI studies and ten EDs fMRI studies. And findings revealed that patients with OCD showed hypoactivation relative to healthy controls and patients with EDs in the anterior cingulate cortex, while compared to healthy controls and patients with OCD, patients with EDs showed hypoactivation in the right insula. CONCLUSIONS Patients with OCD and EDs are inclined to exhibit impaired inhibitory control, which may be attributed to different abnormal patterns of neural activation.
Collapse
Affiliation(s)
- Zheqin Li
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Geya Tong
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yang Wang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanyang Ruan
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zifeng Zheng
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiayue Cheng
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Zhen Wang
- Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Pan X, Wang Z. Cortical and subcortical contributions to non-motor inhibitory control: an fMRI study. Cereb Cortex 2023; 33:10909-10917. [PMID: 37724423 DOI: 10.1093/cercor/bhad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/20/2023] Open
Abstract
Inhibition is a core executive cognitive function. However, the neural correlates of non-motor inhibitory control are not well understood. We investigated this question using functional Magnetic Resonance Imaging (fMRI) and a simple Count Go/NoGo task (n = 23), and further explored the causal relationships between activated brain regions. We found that the Count NoGo task activated a distinct pattern in the subcortical basal ganglia, including bilateral ventral anterior/lateral nucleus of thalamus (VA/VL), globus pallidus/putamen (GP/putamen), and subthalamic nucleus (STN). Stepwise regressions and mediation analyses revealed that activations in these region(s) were modulated differently by only 3 cortical regions i.e. the right inferior frontal gyrus/insula (rIFG/insula), along with left IFG/insula, and anterior cingulate cortex/supplementary motor area (ACC/SMA). The activations of bilateral VA/VL were modulated by both rSTN and rIFG/insula (with rGP/putamen as a mediator) independently, and the activation of rGP/putamen was modulated by ACC/SMA, with rIFG/insula as a mediator. Our findings provide the neural correlates of inhibitory control of counting and causal relationships between them, and strongly suggest that both indirect and hyperdirect pathways of the basal ganglia are involved in the Count NoGo condition.
Collapse
Affiliation(s)
- Xin Pan
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Psychological Counseling Center, Shanghai University, Shanghai, China
| | - Zhaoxin Wang
- Key Laboratory of Brain Functional Genomics (Ministry of Education and Shanghai), Institute of Cognitive Neuroscience, School of Psychology and Cognitive Science, East China Normal University, Shanghai, China
- Shanghai Changning Mental Health Center, Shanghai, China
| |
Collapse
|
10
|
Wang J, Hua G, Wang S, Guo G, Quan D, Yao S, Zheng H. Glutamatergic neurotransmission is affected by low-frequency repetitive transcranial magnetic stimulation over the supplemental motor cortex of patients with obsessive-compulsive disorder. J Affect Disord 2023; 325:762-769. [PMID: 36681305 DOI: 10.1016/j.jad.2023.01.064] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/09/2023] [Accepted: 01/16/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE In obsessive-compulsive disorder (OCD), glutamatergic neurotransmission dysfunction played key roles in pathophysiology. The current research assessed changes of neurometabolites in the bilateral striatum of OCD patients receiving low-frequency repetitive transcranial magnetic stimulation (rTMS) using 1H proton magnetic resonance spectroscopy (1H-MRS). METHODS 52 OCD patients were divided into rTMS treatment group (29) and the control group (medication only) (22). The levels of neurometabolites in the bilateral striatum of patients with OCD were measured using MRS before and after treatment. All participants were taking medication prior to the treatment and the process. RESULTS Following rTMS treatment, Yale-Brown Obsessive-Compulsive Scale (YBOCS) score was significantly decreased in the rTMS group compared with the control group. Glutamate (Glu) and glutamate and glutamine complexes (Glx) in the bilateral striatum of the rTMS treatment response group increased significantly with the improvement of OCD. Glu in the bilateral striatum and Glx in the right striatum were positively correlated with compulsion after the treatment. CONCLUSIONS The physiopathological mechanism of OCD may be related to the glutamatergic dysfunction, and the low-frequency repetitive transcranial magnetic stimulation applied to the supplementary motor area can improve OCD symptoms by modulating glutamatergic levels in the bilateral striatum of patients with OCD.
Collapse
Affiliation(s)
- Jian Wang
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guanmin Hua
- Guangzhou Yuexiu District Hospital of Chinese Medicine, Guangzhou, China
| | - Shibin Wang
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Guangquan Guo
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Dongming Quan
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Siyu Yao
- Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Huirong Zheng
- School of Medicine, South China University of Technology, Guangzhou, China; Guangdong Mental Health Center, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China; Shantou University Medical College, Shantou, China.
| |
Collapse
|
11
|
Becker HC, Norman LJ, Yang H, Monk CS, Phan KL, Taylor SF, Liu Y, Mannella K, Fitzgerald KD. Disorder-specific cingulo-opercular network hyperconnectivity in pediatric OCD relative to pediatric anxiety. Psychol Med 2023; 53:1468-1478. [PMID: 37010220 PMCID: PMC10009399 DOI: 10.1017/s0033291721003044] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/17/2021] [Accepted: 07/13/2021] [Indexed: 11/05/2022]
Abstract
BACKGROUND Prior investigation of adult patients with obsessive compulsive disorder (OCD) has found greater functional connectivity within orbitofrontal-striatal-thalamic (OST) circuitry, as well as altered connectivity within and between large-scale brain networks such as the cingulo-opercular network (CON) and default mode network (DMN), relative to controls. However, as adult OCD patients often have high rates of co-morbid anxiety and long durations of illness, little is known about the functional connectivity of these networks in relation to OCD specifically, or in young patients near illness onset. METHODS In this study, unmedicated female patients with OCD (ages 8-21 years, n = 23) were compared to age-matched female patients with anxiety disorders (n = 26), and healthy female youth (n = 44). Resting-state functional connectivity was used to determine the strength of functional connectivity within and between OST, CON, and DMN. RESULTS Functional connectivity within the CON was significantly greater in the OCD group as compared to the anxiety and healthy control groups. Additionally, the OCD group displayed greater functional connectivity between OST and CON compared to the other two groups, which did not differ significantly from each other. CONCLUSIONS Our findings indicate that previously noted network connectivity differences in pediatric patients with OCD were likely not attributable to co-morbid anxiety disorders. Moreover, these results suggest that specific patterns of hyperconnectivity within CON and between CON and OST circuitry may characterize OCD relative to non-OCD anxiety disorders in youth. This study improves understanding of network dysfunction underlying pediatric OCD as compared to pediatric anxiety.
Collapse
Affiliation(s)
- Hannah C. Becker
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Luke J. Norman
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Huan Yang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - K. Luan Phan
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
| | - Stephan F. Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Yanni Liu
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kristin Mannella
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - Kate D. Fitzgerald
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
12
|
Fornaro S, Vallesi A. Functional connectivity abnormalities of brain networks in obsessive–compulsive disorder: a systematic review. CURRENT PSYCHOLOGY 2023. [DOI: 10.1007/s12144-023-04312-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Abstract
Obsessive-compulsive disorder (OCD) is characterized by cognitive abnormalities encompassing several executive processes. Neuroimaging studies highlight functional abnormalities of executive fronto-parietal network (FPN) and default-mode network (DMN) in OCD patients, as well as of the prefrontal cortex (PFC) more specifically. We aim at assessing the presence of functional connectivity (FC) abnormalities of intrinsic brain networks and PFC in OCD, possibly underlying specific computational impairments and clinical manifestations. A systematic review of resting-state fMRI studies investigating FC was conducted in unmedicated OCD patients by querying three scientific databases (PubMed, Scopus, PsycInfo) up to July 2022 (search terms: “obsessive–compulsive disorder” AND “resting state” AND “fMRI” AND “function* *connect*” AND “task-positive” OR “executive” OR “central executive” OR “executive control” OR “executive-control” OR “cognitive control” OR “attenti*” OR “dorsal attention” OR “ventral attention” OR “frontoparietal” OR “fronto-parietal” OR “default mode” AND “network*” OR “system*”). Collectively, 20 studies were included. A predominantly reduced FC of DMN – often related to increased symptom severity – emerged. Additionally, intra-network FC of FPN was predominantly increased and often positively related to clinical scores. Concerning PFC, a predominant hyper-connectivity of right-sided prefrontal links emerged. Finally, FC of lateral prefrontal areas correlated with specific symptom dimensions. Several sources of heterogeneity in methodology might have affected results in unpredictable ways and were discussed. Such findings might represent endophenotypes of OCD manifestations, possibly reflecting computational impairments and difficulties in engaging in self-referential processes or in disengaging from cognitive control and monitoring processes.
Collapse
|
13
|
Wu X, Yang Q, Xu C, Huo H, Seger CA, Peng Z, Chen Q. Connectome-based predictive modeling of compulsion in obsessive-compulsive disorder. Cereb Cortex 2023; 33:1412-1425. [PMID: 35443038 DOI: 10.1093/cercor/bhac145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Compulsion is one of core symptoms of obsessive-compulsive disorder (OCD). Although many studies have investigated the neural mechanism of compulsion, no study has used brain-based measures to predict compulsion. Here, we used connectome-based predictive modeling (CPM) to identify networks that could predict the levels of compulsion based on whole-brain functional connectivity in 57 OCD patients. We then applied a computational lesion version of CPM to examine the importance of specific brain areas. We also compared the predictive network strength in OCD with unaffected first-degree relatives (UFDR) of patients and healthy controls. CPM successfully predicted individual level of compulsion and identified networks positively (primarily subcortical areas of the striatum and limbic regions of the hippocampus) and negatively (primarily frontoparietal regions) correlated with compulsion. The prediction power of the negative model significantly decreased when simulating lesions to the prefrontal cortex and cerebellum, supporting the importance of these regions for compulsion prediction. We found a similar pattern of network strength in the negative predictive network for OCD patients and their UFDR, demonstrating the potential of CPM to identify vulnerability markers for psychopathology.
Collapse
Affiliation(s)
- Xiangshu Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Qiong Yang
- Affiliated Brain Hospital of Guangzhou Medical University, 510370 Guangzhou, China
| | - Chuanyong Xu
- Department of Child Psychiatry and Rehabilitation, Institute of Maternity and Child Medical Research, Affiliated Shenzhen Maternity & Child Healthcare Hospital, Southern Medical University, Shenzhen 518047, China
| | - Hangfeng Huo
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| | - Carol A Seger
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Psychology, Colorado State University, Fort Collins, CO 80523, United States
| | - Ziwen Peng
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China.,Department of Child Psychiatry, Shenzhen Kangning Hospital, Shenzhen University School of Medicine, Shenzhen 518061, China
| | - Qi Chen
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, 510631, China.,School of Psychology, Center for Studies of Psychological Application, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
14
|
Masharipov R, Korotkov A, Knyazeva I, Cherednichenko D, Kireev M. Impaired Non-Selective Response Inhibition in Obsessive-Compulsive Disorder. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1171. [PMID: 36673927 PMCID: PMC9859350 DOI: 10.3390/ijerph20021171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/17/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Two prominent features of obsessive-compulsive disorder (OCD) are the inability to inhibit intrusive thoughts and behaviors and pathological doubt or intolerance of uncertainty. Previous study showed that uncertain context modeled by equiprobable presentation of excitatory (Go) and inhibitory (NoGo) stimuli requires non-selective response inhibition in healthy subjects. In other words, it requires transient global inhibition triggered not only by excitatory stimuli but also by inhibitory stimuli. Meanwhile, it is unknown whether OCD patients show abnormal brain activity of the non-selective response inhibition system. In order to test this assumption, we performed an fMRI study with an equiprobable Go/NoGo task involving fourteen patients with OCD and compared them with 34 healthy controls. Patients with OCD showed pathological slowness in the Go/NoGo task. The non-selective response inhibition system in OCD included all brain areas seen in healthy controls and, in addition, involved the right anterior cingulate cortex (ACC) and the anterior insula/frontal operculum (AIFO). Moreover, a between-group comparison revealed hypoactivation of brain regions within cingulo-opercular and cortico-striato-thalamo-cortical (CSTC) circuits in OCD. Among hypoactivated areas, the right ACC and the right dorsolateral prefrontal cortex (DLPFC) were associated with non-selective inhibition. Furthermore, regression analysis showed that OCD slowness was associated with decreased activation in cingulate regions and two brain areas related to non-selective inhibition: the right DLPFC and the right inferior parietal lobule (IPL). These results suggest that non-selective response inhibition is impaired in OCD, which could be a potential explanation for a relationship between inhibitory deficits and the other remarkable characteristic of OCD known as intolerance of uncertainty.
Collapse
Affiliation(s)
- Ruslan Masharipov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Alexander Korotkov
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Irina Knyazeva
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Denis Cherednichenko
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
| | - Maxim Kireev
- N.P. Bechtereva Institute of the Human Brain, Russian Academy of Sciences, Academika Pavlova Street 9, Saint Petersburg 197376, Russia
- Institute for Cognitive Studies, Saint Petersburg State University, Saint Petersburg 197376, Russia
| |
Collapse
|
15
|
De Nadai AS, Fitzgerald KD, Norman LJ, Russman Block SR, Mannella KA, Himle JA, Taylor SF. Defining brain-based OCD patient profiles using task-based fMRI and unsupervised machine learning. Neuropsychopharmacology 2023; 48:402-409. [PMID: 35681047 PMCID: PMC9751092 DOI: 10.1038/s41386-022-01353-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 12/26/2022]
Abstract
While much research has highlighted phenotypic heterogeneity in obsessive compulsive disorder (OCD), less work has focused on heterogeneity in neural activity. Conventional neuroimaging approaches rely on group averages that assume homogenous patient populations. If subgroups are present, these approaches can increase variability and can lead to discrepancies in the literature. They can also obscure differences between various subgroups. To address this issue, we used unsupervised machine learning to identify subgroup clusters of patients with OCD who were assessed by task-based fMRI. We predominantly focused on activation of cognitive control and performance monitoring neurocircuits, including three large-scale brain networks that have been implicated in OCD (the frontoparietal network, cingulo-opercular network, and default mode network). Participants were patients with OCD (n = 128) that included both adults (ages 24-45) and adolescents (ages 12-17), as well as unaffected controls (n = 64). Neural assessments included tests of cognitive interference and error processing. We found three patient clusters, reflecting a "normative" cluster that shared a brain activation pattern with unaffected controls (65.9% of clinical participants), as well as an "interference hyperactivity" cluster (15.2% of clinical participants) and an "error hyperactivity" cluster (18.9% of clinical participants). We also related these clusters to demographic and clinical correlates. After post-hoc correction for false discovery rates, the interference hyperactivity cluster showed significantly longer reaction times than the other patient clusters, but no other between-cluster differences in covariates were detected. These findings increase precision in patient characterization, reframe prior neurobehavioral research in OCD, and provide a starting point for neuroimaging-guided treatment selection.
Collapse
Affiliation(s)
| | - Kate D Fitzgerald
- Department of Psychiatry, Columbia University, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - Luke J Norman
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | | | | | - Joseph A Himle
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- School of Social Work, University of Michigan, Ann Arbor, MI, USA
| | - Stephan F Taylor
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
16
|
Mai JK, Majtanik M. Myeloarchitectonic maps of the human cerebral cortex registered to surface and sections of a standard atlas brain. Transl Neurosci 2023; 14:20220325. [PMID: 38152094 PMCID: PMC10751573 DOI: 10.1515/tnsci-2022-0325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/22/2023] [Indexed: 12/29/2023] Open
Abstract
C. and O. Vogt had set up a research program with the aim of establishing a detailed cartography of the medullary fiber distribution of the human brain. As part of this program, around 200 cortical fields were differentiated based on their myeloarchitectural characteristics and mapped with regard to their exact location in the isocortex. The typical features were graphically documented and classified by a sophisticated linguistic coding. Their results have only recently received adequate attention and applications. The reasons for the revival of this spectrum of their research include interest in the myeloarchitecture of the cortex as a differentiating feature of the cortex architecture and function, as well as the importance for advanced imaging methodologies, particularly tractography and molecular imaging. Here, we describe our approach to exploit the original work of the Vogts and their co-workers to construct a myeloarchitectonic map that is referenced to the Atlas of the Human Brain (AHB) in standard space. We developed a semi-automatic pipeline for processing and integrating the various original maps into a single coherent map. To optimize the precision of the registration between the published maps and the AHB, we augmented the maps with topographic landmarks of the brains that were originally analyzed. Registration of all maps into the AHB opened several possibilities. First, for the majority of the fields, multiple maps from different authors are available, which allows for sophisticated statistical integration, for example, unification with a label-fusion technique. Second, each field in the myeloarchitectonic surface map can be visualized on the myelin-stained cross-section of the AHB at the best possible correspondence. The features of each field can be correlated with the fiber-stained cross-sections in the AHB and with the extensive published materials from the Vogt school and, if necessary, corrected. Third, mapping to the AHB allows the relationship between fiber characteristics of the cortex and the subcortex to be examined. Fourth, the cytoarchitectonic maps from Brodmann and von Economo and Koskinas, which are also registered to the AHB, can be compared. This option allows the study of the correspondence between cyto- and myeloarchitecture in each field. Finally, by using our "stripe" technology - where any other feature registered to the same space can be directly compared owing to the linear and parallel representation of the correlated cortex segments - this map becomes part of a multidimensional co-registration platform.
Collapse
Affiliation(s)
- Juergen K. Mai
- Department of Neuroanatomy, Heinrich Heine University Duesseldorf, DuesseldorfD-40225, Germany
| | - Milan Majtanik
- Department of Informatics, Heinrich Heine University Duesseldorf, DuesseldorfD-40225, Germany
- MRX-Brain GmbH Duesseldorf, DuesseldorfD-40225, Germany
| |
Collapse
|
17
|
Poli A, Pozza A, Orrù G, Conversano C, Ciacchini R, Pugi D, Angelo NL, Angeletti LL, Miccoli M, Gemignani A. Neurobiological outcomes of cognitive behavioral therapy for obsessive-compulsive disorder: A systematic review. Front Psychiatry 2022; 13:1063116. [PMID: 36569616 PMCID: PMC9780289 DOI: 10.3389/fpsyt.2022.1063116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Obsessive-compulsive disorder (OCD) is characterized by recurrent distressing thoughts and repetitive behaviors, or mental rituals performed to reduce anxiety. Recent neurobiological techniques have been particularly convincing in suggesting that cortico-striatal-thalamic-cortico (CSTC) circuits, including orbitofrontal cortex (OFC) and striatum regions (caudate nucleus and putamen), are responsible for mediation of OCD symptoms. However, it is still unclear how these regions are affected by OCD treatments in adult patients. To address this yet open question, we conducted a systematic review of all studies examining neurobiological changes before and after first-line psychological OCD treatment, i.e., cognitive-behavioral therapy (CBT). Methods Studies were included if they were conducted in adults with OCD and they assessed the neurobiological effects of CBT before and after treatment. Two databases were searched: PsycINFO and PubMed for the time frame up to May 2022. Results We obtained 26 pre-post CBT treatment studies performed using different neurobiological techniques, namely functional magnetic resonance imaging (fMRI), Positron emission tomography (PET), regional cerebral blood flow (rCBF), 5-HT concentration, magnetic resonance imaging (MRI), magnetic resonance spectroscopy (MRS), Electroencephalography (EEG). Neurobiological data show the following after CBT intervention: (i) reduced activations in OFC across fMRI, EEG, and rCBF; (ii) decreased activity in striatum regions across fMRI, rCBF, PET, and MRI; (iii) increased activations in cerebellum (CER) across fMRI and MRI; (iv) enhanced neurochemical concentrations in MRS studies in OFC, anterior cingulate cortex (ACC) and striatum regions. Most of these neurobiological changes are also accompanied by an improvement in symptom severity as assessed by a reduction in the Y-BOCS scores. Conclusion Cognitive-behavioral therapy seems to be able to restructure, modify, and transform the neurobiological component of OCD, in addition to the clinical symptoms. Nevertheless, further studies are necessary to frame the OCD spectrum in a dimensional way.
Collapse
Affiliation(s)
- Andrea Poli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Andrea Pozza
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Graziella Orrù
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Ciro Conversano
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Rebecca Ciacchini
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| | - Daniele Pugi
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | - Nicole Loren Angelo
- Department of Medical Sciences, Surgery, and Neurosciences, University of Siena, Siena, Italy
| | | | - Mario Miccoli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Angelo Gemignani
- Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
18
|
Chu M, Xu T, Wang Y, Wang P, Gu Q, Liu Q, Cheung EFC, Chan RCK, Wang Z. The impact of childhood trauma on thalamic functional connectivity in patients with obsessive-compulsive disorder. Psychol Med 2022; 52:2471-2480. [PMID: 33213536 DOI: 10.1017/s0033291720004328] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Childhood trauma is a vulnerability factor for the development of obsessive-compulsive disorder (OCD). Empirical findings suggest that trauma-related alterations in brain networks, especially in thalamus-related regions, have been observed in OCD patients. However, the relationship between childhood trauma and thalamic connectivity in patients with OCD remains unclear. The present study aimed to examine the impact of childhood trauma on thalamic functional connectivity in OCD patients. METHODS Magnetic resonance imaging resting-state scans were acquired in 79 patients with OCD, including 22 patients with a high level of childhood trauma (OCD_HCT), 57 patients with a low level of childhood trauma (OCD_LCT) and 47 healthy controls. Seven thalamic subdivisions were chosen as regions of interest (ROIs) to examine the group difference in thalamic ROIs and whole-brain resting-state functional connectivity (rsFC). RESULTS We found significantly decreased caudate-thalamic rsFC in OCD patients as a whole group and also in OCD_LCT patients, compared with healthy controls. However, OCD_HCT patients exhibited increased thalamic rsFC with the prefrontal cortex when compared with both OCD_LCT patients and healthy controls. CONCLUSIONS Taken together, OCD patients with high and low levels of childhood trauma exhibit different pathological alterations in thalamic rsFC, suggesting that childhood trauma may be a predisposing factor for some OCD patients.
Collapse
Affiliation(s)
- Minyi Chu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tingting Xu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Wang
- Neuropsychology and Applied Cognitive Neuroscience, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Pei Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiumeng Gu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiang Liu
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Eric F C Cheung
- Castle Peak Hospital, Hong Kong Special Administration Region, China
| | - Raymond C K Chan
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Neuropsychology and Applied Cognitive Neuroscience, CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Zhen Wang
- Shanghai Mental Health Centre, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Institute of Psychological and Behavioral Science, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
19
|
Du H, Xia J, Fan J, Gao F, Wang X, Han Y, Tan C, Zhu X. Spontaneous neural activity in the right fusiform gyrus and putamen is associated with consummatory anhedonia in obsessive compulsive disorder. Brain Imaging Behav 2022; 16:1708-1720. [DOI: 10.1007/s11682-021-00619-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/09/2021] [Indexed: 11/28/2022]
|
20
|
The sense of agency for brain disorders: A comprehensive review and proposed framework. Neurosci Biobehav Rev 2022; 139:104759. [PMID: 35780975 DOI: 10.1016/j.neubiorev.2022.104759] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/24/2022] [Accepted: 06/26/2022] [Indexed: 11/21/2022]
Abstract
Sense of Agency (SoA) refers to the feeling of control over voluntary actions and the outcomes of those actions. Several brain disorders are characterized by an abnormal SoA. To date, there is no robust treatment for aberrant agency across disorders; this is, in large part, due to gaps in our understanding of the cognitive mechanisms and neural correlates of the SoA. This apparent gap stems from a lack of synthesis in established findings. As such, the current review reconciles previously established findings into a novel neurocognitive framework for future investigations of the SoA in brain disorders, which we term the Agency in Brain Disorders Framework (ABDF). In doing so, we highlight key top-down and bottom-up cues that contribute to agency prospectively (i.e., prior to action execution) and retrospectively (i.e., after action execution). We then examine brain disorders, including schizophrenia, autism spectrum disorders (ASD), obsessive-compulsive disorders (OCD), and cortico-basal syndrome (CBS), within the ABDF, to demonstrate its potential utility in investigating neurocognitive mechanisms underlying phenotypically variable presentations of the SoA in brain disorders.
Collapse
|
21
|
Zhou S, Fang Y. Efficacy of Non-Invasive Brain Stimulation for Refractory Obsessive-Compulsive Disorder: A Meta-Analysis of Randomized Controlled Trials. Brain Sci 2022; 12:943. [PMID: 35884749 PMCID: PMC9313124 DOI: 10.3390/brainsci12070943] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/25/2022] [Accepted: 07/12/2022] [Indexed: 02/01/2023] Open
Abstract
Obsessive-compulsive disorder (OCD) is a neuropsychiatric disorder, with 30−40% of OCD patients being unresponsive to adequate trials of anti-OCD drugs and cognitive behavior therapy. The aim of this paper is to investigate the efficacy of non-invasive brain stimulation (NIBS) on treating refractory OCD. With PubMed, Embase, PsycInfo, and Cochrane Library used on 15 February 2022, 24 randomized controlled trials involving 663 patients were included. According to this analysis, NIBS including repetitive transcranial magnetic stimulation (rTMS), theta-burst stimulation (TBS), and transcranial direct current stimulation (tDCS), had a moderate effect on the reduction of Yale-Brown Obsessive Compulsive Scale (Y-BOCS) scores (SMD = 0.54, 95% CI: 0.26−0.81; p < 0.01). In the subgroup analysis, rTMS seemed to produce a better therapeutic effect (SMD = 0.73, 95% CI: 0.38−1.08; p < 0.01). Moreover, excitatory (SMD = 1.13, 95% CI: 0.24−2.01; p = 0.01) and inhibitory (SMD = 0.81, 95% CI: 0.26−1.36; p < 0.01) stimulation of the dorsolateral prefrontal cortex (DLPFC) both alleviated OCD symptoms. In the secondary outcome of clinical response rates, NIBS treatment led to an increase in response rates (RR = 2.26, 95% CI: 1.57−3.25; p < 0.01).
Collapse
Affiliation(s)
- Shu Zhou
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yan Fang
- Department of Physiology, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
22
|
Thomas KS, Birch RE, Jones CRG, Vanderwert RE. Neural Correlates of Executive Functioning in Anorexia Nervosa and Obsessive-Compulsive Disorder. Front Hum Neurosci 2022; 16:841633. [PMID: 35693540 PMCID: PMC9179647 DOI: 10.3389/fnhum.2022.841633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Anorexia nervosa (AN) and obsessive-compulsive disorder (OCD) are commonly reported to co-occur and present with overlapping symptomatology. Executive functioning difficulties have been implicated in both mental health conditions. However, studies directly comparing these functions in AN and OCD are extremely limited. This review provides a synthesis of behavioral and neuroimaging research examining executive functioning in AN and OCD to bridge this gap in knowledge. We outline the similarities and differences in behavioral and neuroimaging findings between AN and OCD, focusing on set shifting, working memory, response inhibition, and response monitoring. This review aims to facilitate understanding of transdiagnostic correlates of executive functioning and highlights important considerations for future research. We also discuss the importance of examining both behavioral and neural markers when studying transdiagnostic correlates of executive functions.
Collapse
Affiliation(s)
- Kai S. Thomas
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | | | - Catherine R. G. Jones
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
| | - Ross E. Vanderwert
- School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Centre for Human Developmental Science, School of Psychology, Cardiff University, Cardiff, United Kingdom
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
23
|
Longitudinal changes in neurometabolite concentrations in the dorsal anterior cingulate cortex after concentrated exposure therapy for obsessive-compulsive disorder. J Affect Disord 2022; 299:344-352. [PMID: 34920037 DOI: 10.1016/j.jad.2021.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The dorsal anterior cingulate cortex (dACC) plays an important role in the pathophysiology of obsessive-compulsive disorder (OCD) due to its role in error processing, cognitive control and emotion regulation. OCD patients have shown altered concentrations in neurometabolites in the dACC, particularly Glx (glutamate+glutamine) and tNAA (N-acetylaspartate+N-acetyl-aspartyl-glutamate). We investigated the immediate and prolonged effects of exposure and response prevention (ERP) on these neurometabolites. METHODS Glx and tNAA concentrations were measured using magnetic resonance spectroscopy (1H-MRS) in 24 OCD patients and 23 healthy controls at baseline. Patients received concentrated ERP over four days. A subset was re-scanned after one week and three months. RESULTS No Glx and tNAA abnormalities were observed in OCD patients compared to healthy controls before treatment or over time. Patients with childhood or adult onset differed in the change over time in tNAA (F(2,40) = 7.24, ɳ2p= 0.27, p = 0.004): concentrations increased between one week after treatment and follow-up in the childhood onset group (t(39) = -2.43, d = -0.86, p = 0.020), whereas tNAA concentrations decreased between baseline and follow-up in patients with an adult onset (t(42) = 2.78, d = 1.07, p = 0.008). In OCD patients with versus without comorbid mood disorders, lower Glx concentrations were detected at baseline (t(38) = -2.28, d = -1.00, p = 0.028). Glx increased after one week of treatment within OCD patients with comorbid mood disorders (t(30) = -3.09, d = -1.21, p = 0.004). LIMITATIONS Our OCD sample size allowed the detection of moderate to large effect sizes only. CONCLUSION ERP induced changes in neurometabolites in OCD seem to be dependent on mood disorder comorbidity and disease stage rather than OCD itself.
Collapse
|
24
|
Error-Related Brain Activity in Patients With Obsessive-Compulsive Disorder and Unaffected First-Degree Relatives: Evidence for Protective Patterns. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2022; 2:79-87. [PMID: 36324601 PMCID: PMC9616249 DOI: 10.1016/j.bpsgos.2021.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 11/25/2022] Open
Abstract
Background Indicators of increased error monitoring are associated with obsessive-compulsive disorder (OCD), as shown in electroencephalography and functional magnetic resonance imaging studies. As most studies used strictly controlled samples (excluding comorbidity and medication), it remains open whether these findings extend to naturalistic settings. Thus, we assessed error-related brain activity in a large, naturalistic OCD sample. We also explored which activity patterns might qualify as vulnerability endophenotypes or protective factors for the disorder. To this aim, a sample of unaffected first-degree relatives of patients with OCD was also included. Methods Participants (84 patients with OCD, 99 healthy control participants, and 37 unaffected first-degree relatives of patients with OCD) completed a flanker task while blood oxygen level–dependent responses were measured with functional magnetic resonance imaging. Aberrant error-related brain activity in patients and relatives was identified. Results Patients with OCD showed increased error-related activity in the supplementary motor area and within the default mode network, specifically in the precuneus and postcentral gyrus. Unaffected first-degree relatives showed increased error-related activity in the bilateral inferior frontal gyrus. Conclusions Increased supplementary motor area and default mode network activity in patients with OCD replicates previous studies and might indicate excessive error signals and increased self-referential error processing. Increased activity of the inferior frontal gyrus in relatives may reflect increased inhibition. Impaired response inhibition in OCD has been demonstrated in several studies and might contribute to impairments in suppressing compulsive actions. Thus, increased inferior frontal gyrus activity in the unaffected relatives of patients with OCD may have contributed to protection from symptom development.
Collapse
|
25
|
Li N, Hollunder B, Baldermann JC, Kibleur A, Treu S, Akram H, Al-Fatly B, Strange BA, Barcia JA, Zrinzo L, Joyce EM, Chabardes S, Visser-Vandewalle V, Polosan M, Kuhn J, Kühn AA, Horn A. A Unified Functional Network Target for Deep Brain Stimulation in Obsessive-Compulsive Disorder. Biol Psychiatry 2021; 90:701-713. [PMID: 34134839 DOI: 10.1016/j.biopsych.2021.04.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 03/26/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Multiple deep brain stimulation (DBS) targets have been proposed for treating intractable obsessive-compulsive disorder (OCD). Here, we investigated whether stimulation effects of different target sites would be mediated by one common or several segregated functional brain networks. METHODS First, seeding from active electrodes of 4 OCD patient cohorts (N = 50) receiving DBS to anterior limb of the internal capsule or subthalamic nucleus zones, optimal functional connectivity profiles for maximal Yale-Brown Obsessive Compulsive Scale improvements were calculated and cross-validated in leave-one-cohort-out and leave-one-patient-out designs. Second, we derived optimal target-specific connectivity patterns to determine brain regions mutually predictive of clinical outcome for both targets and others predictive for either target alone. Functional connectivity was defined using resting-state functional magnetic resonance imaging data acquired in 1000 healthy participants. RESULTS While optimal functional connectivity profiles showed both commonalities and differences between target sites, robust cross-predictions of clinical improvements across OCD cohorts and targets suggested a shared network. Connectivity to the anterior cingulate cortex, insula, and precuneus, among other regions, was predictive regardless of stimulation target. Regions with maximal connectivity to these commonly predictive areas included the insula, superior frontal gyrus, anterior cingulate cortex, and anterior thalamus, as well as the original stereotactic targets. CONCLUSIONS Pinpointing the network modulated by DBS for OCD from different target sites identified a set of brain regions to which DBS electrodes associated with optimal outcomes were functionally connected-regardless of target choice. On these grounds, we establish potential brain areas that could prospectively inform additional or alternative neuromodulation targets for obsessive-compulsive disorder.
Collapse
Affiliation(s)
- Ningfei Li
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany.
| | - Barbara Hollunder
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Juan Carlos Baldermann
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne; Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Astrid Kibleur
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France; OpenMind Innovation, Paris, France
| | - Svenja Treu
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Harith Akram
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Bassam Al-Fatly
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany
| | - Bryan A Strange
- Laboratory for Clinical Neuroscience, Centre for Biomedical Technology, Universidad Politécnica de Madrid, Madrid, Spain
| | - Juan A Barcia
- Neurosurgery Department, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Madrid, Spain
| | - Ludvic Zrinzo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Eileen M Joyce
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom; National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Trust (UCLH), London, United Kingdom
| | - Stephan Chabardes
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | | | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut des Neurosciences (AK, SC, MP), Grenoble; and OpenMind Innovation (AK), Paris, France
| | - Jens Kuhn
- Department of Psychiatry and Psychotherapy, Faculty of Medicine and University Hospital Cologne, Cologne, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Johanniter Hospital Oberhausen, Evangelisches Klinikum Niederrhein, Oberhausen, Germany
| | - Andrea A Kühn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany; Berlin School of Mind and Brain, Faculty of Philosophy, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Andreas Horn
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Movement Disorders and Neuromodulation Unit, Department of Neurology, Berlin, Germany; Charité - Universitätsmedizin Berlin, Einstein Center for Neurosciences Berlin, Berlin, Germany
| |
Collapse
|
26
|
Michelet T, Badets A. The anterior midcingulate cortex might be a neuronal substrate for the ideomotor mechanism. Exp Brain Res 2021; 239:2345-2355. [PMID: 34185100 DOI: 10.1007/s00221-021-06159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 06/20/2021] [Indexed: 10/21/2022]
Abstract
The way the brain controls voluntary movements for normal and pathological subject remains puzzling. In this selective review, we provide unreported harmonies between the anterior midcingulate cortex (aMCC) activities and the ideomotor mechanism postulating that voluntary movements are controlled by the anticipation of the expected perceptual consequences of an action, critically involving bidirectional interplay of a given motor activity and corresponding sensory feedback. Among other evidence, we found that the required asymmetry in the bidirectional interplay between a given motor command and its expected sensory effect could rely on the specific activity of aMCC neurons when observing errors and successes. We confirm this hypothesis by presenting a pathological perspective, studying obsessive-compulsive and other related disorders in which hyperactivated and uniform aMCC activities should lead to a circular-reflex process that results in persistent ideas and repeated actions. By evaluating normal and pathological data, we propose considering the aMCC at a central position within the cerebral network involved in the ideomotor mechanism.
Collapse
Affiliation(s)
- T Michelet
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, 33000, Bordeaux, France.
| | - A Badets
- CNRS, EPHE, INCIA, UMR 5287, University of Bordeaux, 33000, Bordeaux, France
| |
Collapse
|
27
|
Klugah-Brown B, Jiang C, Agoalikum E, Zhou X, Zou L, Yu Q, Becker B, Biswal B. Common abnormality of gray matter integrity in substance use disorder and obsessive-compulsive disorder: A comparative voxel-based meta-analysis. Hum Brain Mapp 2021; 42:3871-3886. [PMID: 34105832 PMCID: PMC8288096 DOI: 10.1002/hbm.25471] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/21/2021] [Accepted: 04/27/2021] [Indexed: 12/28/2022] Open
Abstract
The objective of the current study is to determine robust transdiagnostic brain structural markers for compulsivity by capitalizing on the increasing number of case‐control studies examining gray matter volume (GMV) alterations in substance use disorders (SUD) and obsessive‐compulsive disorder (OCD). Voxel‐based meta‐analysis within the individual disorders and conjunction analysis were employed to reveal common GMV alterations between SUDs and OCD. Meta‐analytic coordinates and signed brain volumetric maps determining directed (reduced/increased) GMV alterations between the disorder groups and controls served as the primary outcome. The separate meta‐analysis demonstrated that SUD and OCD patients exhibited widespread GMV reductions in frontocortical regions including prefrontal, cingulate, and insular. Conjunction analysis revealed that the left inferior frontal gyrus (IFG) consistently exhibited decreased GMV across all disorders. Functional characterization suggests that the IFG represents a core hub in the cognitive control network and exhibits bidirectional (Granger) causal interactions with the striatum. Only OCD showed increased GMV in the dorsal striatum with higher changes being associated with more severe OCD symptomatology. Together the findings demonstrate robustly decreased GMV across the disorders in the left IFG, suggesting a transdiagnostic brain structural marker. The functional characterization as a key hub in the cognitive control network and casual interactions with the striatum suggest that deficits in inhibitory control mechanisms may promote compulsivity and loss of control that characterize both disorders.
Collapse
Affiliation(s)
- Benjamin Klugah-Brown
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Chenyang Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Elijah Agoalikum
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xinqi Zhou
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Liye Zou
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Qian Yu
- Exercise & Mental Health Laboratory, School of Psychology, Shenzhen University, Shenzhen, China
| | - Benjamin Becker
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Bharat Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
28
|
Bowen Z, Changlian T, Qian L, Wanrong P, Huihui Y, Zhaoxia L, Feng L, Jinyu L, Xiongzhao Z, Mingtian Z. Gray Matter Abnormalities of Orbitofrontal Cortex and Striatum in Drug-Naïve Adult Patients With Obsessive-Compulsive Disorder. Front Psychiatry 2021; 12:674568. [PMID: 34168582 PMCID: PMC8217443 DOI: 10.3389/fpsyt.2021.674568] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/14/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: This study examined whether obsessive-compulsive disorder (OCD) patients have gray matter abnormalities in regions related to executive function, and whether such abnormalities are associated with impaired executive function. Methods: Multiple scales were administered to 27 first-episode drug-naïve OCD patients and 29 healthy controls. Comprehensive brain morphometric indicators of orbitofrontal cortex (OFC) and three striatum areas (caudate, putamen, and pallidum) were determined. Hemisphere lateralization index was calculated for each region of interest. Correlations between lateralization index and psychological variables were examined in OCD group. Results: The OCD group had greater local gyrification index for the right OFC and greater gray matter volumes of the bilateral putamen and left pallidum than healthy controls. They also had weaker left hemisphere superiority for local gyrification index of the OFC and gray matter volume of the putamen, but stronger left hemisphere superiority for gray matter volume of the pallidum. Patients' lateralization index for local gyrification index of the OFC correlated negatively with Yale-Brown Obsessive Compulsive Scale and Dysexecutive Questionnaire scores, respectively. Conclusion: Structural abnormalities of the bilateral putamen, left pallidum, and right OFC may underlie OCD pathology. Abnormal lateralization in OCD may contribute to the onset of obsessive-compulsive symptoms and impaired executive function.
Collapse
Affiliation(s)
- Zhang Bowen
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Tan Changlian
- Department of Radiology, Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Qian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Peng Wanrong
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yang Huihui
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Liu Zhaoxia
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Li Feng
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Liu Jinyu
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| | - Zhu Xiongzhao
- Medical Psychological Center, The Second Xiangya Hospital, Central South University, Changsha, China
- Medical Psychological Institute, Central South University, Changsha, China
| | - Zhong Mingtian
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou, China
| |
Collapse
|
29
|
Rangaprakash D, Tadayonnejad R, Deshpande G, O'Neill J, Feusner JD. FMRI hemodynamic response function (HRF) as a novel marker of brain function: applications for understanding obsessive-compulsive disorder pathology and treatment response. Brain Imaging Behav 2021; 15:1622-1640. [PMID: 32761566 PMCID: PMC7865013 DOI: 10.1007/s11682-020-00358-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hemodynamic response function (HRF) represents the transfer function linking neural activity with the functional MRI (fMRI) signal, modeling neurovascular coupling. Since HRF is influenced by non-neural factors, to date it has largely been considered as a confound or has been ignored in many analyses. However, underlying biophysics suggests that the HRF may contain meaningful correlates of neural activity, which might be unavailable through conventional fMRI metrics. Here, we estimated the HRF by performing deconvolution on resting-state fMRI data from a longitudinal sample of 25 healthy controls scanned twice and 44 adults with obsessive-compulsive disorder (OCD) before and after 4-weeks of intensive cognitive-behavioral therapy (CBT). HRF response height, time-to-peak and full-width at half-maximum (FWHM) in OCD were abnormal before treatment and normalized after treatment in regions including the caudate. Pre-treatment HRF predicted treatment outcome (OCD symptom reduction) with 86.4% accuracy, using machine learning. Pre-treatment HRF response height in the caudate head and time-to-peak in the caudate tail were top-predictors of treatment response. Time-to-peak in the caudate tail, a region not typically identified in OCD studies using conventional fMRI activation or connectivity measures, may carry novel importance. Additionally, pre-treatment response height in caudate head predicted post-treatment OCD severity (R = -0.48, P = 0.001), and was associated with treatment-related OCD severity changes (R = -0.44, P = 0.0028), underscoring its relevance. With HRF being a reliable marker sensitive to brain function, OCD pathology, and intervention-related changes, these results could guide future studies towards novel discoveries not possible through conventional fMRI approaches like standard BOLD activation or connectivity.
Collapse
Affiliation(s)
- D Rangaprakash
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School and Harvard-MIT Health Sciences and Technology, Cambridge, MA, 02129, USA
| | - Reza Tadayonnejad
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Division of the Humanities and Social Sciences, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Gopikrishna Deshpande
- AU MRI Research Center, Department of Electrical and Computer Engineering, Auburn University, Auburn, AL, 36849, USA
- Department of Psychological Sciences, Auburn University, Auburn, AL, 36849, USA
- Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham, Auburn, AL, USA
- Center for Health Ecology and Equity Research, Auburn University, Auburn, AL, USA
- Center for Neuroscience, Auburn University, Auburn, AL, USA
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory for Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Joseph O'Neill
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Jamie D Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
30
|
Fregni F, El-Hagrassy MM, Pacheco-Barrios K, Carvalho S, Leite J, Simis M, Brunelin J, Nakamura-Palacios EM, Marangolo P, Venkatasubramanian G, San-Juan D, Caumo W, Bikson M, Brunoni AR. Evidence-Based Guidelines and Secondary Meta-Analysis for the Use of Transcranial Direct Current Stimulation in Neurological and Psychiatric Disorders. Int J Neuropsychopharmacol 2021; 24:256-313. [PMID: 32710772 PMCID: PMC8059493 DOI: 10.1093/ijnp/pyaa051] [Citation(s) in RCA: 320] [Impact Index Per Article: 80.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 07/21/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Transcranial direct current stimulation has shown promising clinical results, leading to increased demand for an evidence-based review on its clinical effects. OBJECTIVE We convened a team of transcranial direct current stimulation experts to conduct a systematic review of clinical trials with more than 1 session of stimulation testing: pain, Parkinson's disease motor function and cognition, stroke motor function and language, epilepsy, major depressive disorder, obsessive compulsive disorder, Tourette syndrome, schizophrenia, and drug addiction. METHODS Experts were asked to conduct this systematic review according to the search methodology from PRISMA guidelines. Recommendations on efficacy were categorized into Levels A (definitely effective), B (probably effective), C (possibly effective), or no recommendation. We assessed risk of bias for all included studies to confirm whether results were driven by potentially biased studies. RESULTS Although most of the clinical trials have been designed as proof-of-concept trials, some of the indications analyzed in this review can be considered as definitely effective (Level A), such as depression, and probably effective (Level B), such as neuropathic pain, fibromyalgia, migraine, post-operative patient-controlled analgesia and pain, Parkinson's disease (motor and cognition), stroke (motor), epilepsy, schizophrenia, and alcohol addiction. Assessment of bias showed that most of the studies had low risk of biases, and sensitivity analysis for bias did not change these results. Effect sizes vary from 0.01 to 0.70 and were significant in about 8 conditions, with the largest effect size being in postoperative acute pain and smaller in stroke motor recovery (nonsignificant when combined with robotic therapy). CONCLUSION All recommendations listed here are based on current published PubMed-indexed data. Despite high levels of evidence in some conditions, it must be underscored that effect sizes and duration of effects are often limited; thus, real clinical impact needs to be further determined with different study designs.
Collapse
Affiliation(s)
- Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Mirret M El-Hagrassy
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Boston, Massachusetts
- Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Sandra Carvalho
- Neurotherapeutics and experimental Psychopathology Group (NEP), Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, Braga, Portugal
| | - Jorge Leite
- I2P-Portucalense Institute for Psychology, Universidade Portucalense, Porto, Portugal
| | - Marcel Simis
- Physical and Rehabilitation Medicine Institute of the University of Sao Paulo Medical School General Hospital, Sao Paulo, Brazil
| | - Jerome Brunelin
- CH Le Vinatier, PSYR2 team, Lyon Neuroscience Research Center, UCB Lyon 1, Bron, France
| | - Ester Miyuki Nakamura-Palacios
- Laboratory of Cognitive Sciences and Neuropsychopharmacology, Department of Physiological Sciences, Federal University of Espírito Santo, Espírito Santo, Brasil (Dr Nakamura-Palacios)
| | - Paola Marangolo
- Dipartimento di Studi Umanistici, Università Federico II, Naples, Italy
- IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Ganesan Venkatasubramanian
- Translational Psychiatry Laboratory, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Daniel San-Juan
- Neurophysiology Department, National Institute of Neurology and Neurosurgery Manuel Velasco Suárez, Mexico City, Mexico
| | - Wolnei Caumo
- Post-Graduate Program in Medical Sciences, School of Medicine, Universidade Federal do Rio Grande do Sul (UFRGS) Surgery Department, School of Medicine, UFRGS; Pain and Palliative Care Service at Hospital de Clínicas de Porto Alegre (HCPA) Laboratory of Pain and Neuromodulation at HCPA, Porto Alegre, Brazil
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York of CUNY, New York, New York
| | - André R Brunoni
- Service of Interdisciplinary Neuromodulation, Laboratory of Neurosciences (LIM-27), Department and Institute of Psychiatry & Department of Internal Medicine, Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
31
|
Cervin M, Perrin S, Olsson E, Claesdotter-Knutsson E, Lindvall M. Involvement of fear, incompleteness, and disgust during symptoms of pediatric obsessive-compulsive disorder. Eur Child Adolesc Psychiatry 2021; 30:271-281. [PMID: 32211970 PMCID: PMC7932948 DOI: 10.1007/s00787-020-01514-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 03/16/2020] [Indexed: 12/24/2022]
Abstract
Fear has been assigned a central role in models of obsessive-compulsive disorder (OCD), but empirical investigations into the emotions that underpin OCD symptoms are few, especially in pediatric samples. Using validated, clinician-led structured interviews, 124 youth with OCD reported on the presence and severity of symptoms across the main symptom dimensions of OCD (aggressive, symmetry, contamination) and the degree to which fear, incompleteness, and disgust accompanied these symptoms. For comparison purposes, the degree of fear, incompleteness, and disgust during symptoms was obtained also from youth with social anxiety disorder (SAD; n = 27) and generalized anxiety disorder (GAD; n = 28). Participants with OCD reported that all three emotions were involved in their symptoms; however, fear was most strongly linked to aggressive symptoms, incompleteness to symmetry symptoms, and disgust to contamination symptoms. Incompleteness differentiated youth with OCD from those with SAD and GAD. No differences for these emotions were found for youth with OCD with versus without the tic-disorder subtype or comorbid autism. A positive association between incompleteness and self-reported hoarding emerged among youth with OCD. Further studies of the emotional architecture of pediatric OCD, and its relationship to etiology and treatment, are warranted.
Collapse
Affiliation(s)
- Matti Cervin
- Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Faculty of Medicine, Lund University, Sofiavägen 2D, 22241, Lund, Sweden.
- Skåne Child and Adolescent Psychiatry, Lund, Sweden.
| | - Sean Perrin
- Department of Psychology, Lund University, Lund, Sweden
| | - Elin Olsson
- Skåne Child and Adolescent Psychiatry, Lund, Sweden
| | - Emma Claesdotter-Knutsson
- Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Faculty of Medicine, Lund University, Sofiavägen 2D, 22241, Lund, Sweden
- Skåne Child and Adolescent Psychiatry, Lund, Sweden
| | - Magnus Lindvall
- Department of Clinical Sciences Lund, Child and Adolescent Psychiatry, Faculty of Medicine, Lund University, Sofiavägen 2D, 22241, Lund, Sweden
- Skåne Child and Adolescent Psychiatry, Lund, Sweden
| |
Collapse
|
32
|
Resting-state functional connectivity in drug-naive pediatric patients with Tourette syndrome and obsessive-compulsive disorder. J Psychiatr Res 2020; 129:129-140. [PMID: 32912593 DOI: 10.1016/j.jpsychires.2020.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/11/2020] [Accepted: 06/24/2020] [Indexed: 12/16/2022]
Abstract
Previous studies in cohorts of Tourette syndrome (TS) or obsessive-compulsive disorder (OCD) patients have not clarified whether these two disorders represent two clinical conditions or they are distinct clinical phenotypes of a common disease spectrum. The study aimed to compare functional connectivity (FC) patterns in a pediatric drug-naive cohort of 16 TS patients without any comorbidity (TS), 14 TS patients with OCD (TS + OCD), and 10 pure OCD patients as well as 11 matched controls that underwent resting state fMRI. Via independent component analysis, we examined FC in the basal ganglia (BGN), sensorimotor (SMN), cerebellum (CBN), frontoparietal (FPN), default-mode (DMN), orbitofrontal (OBFN), and salience (SAN) networks among the above cohorts and their association with clinical measures. Compared to controls, TS and TS + OCD patients showed higher FC in the BGN, SMN, CBN and DMN and lower FC in the FPN and SAN. The TS and TS + OCD groups showed comparable FC in all networks. In contrast to controls, OCD patients exhibited increased FC in the BGN, SMN, CBN, DMN, FPN, and SAN. OCD patients also showed higher FC in CBN and FPN when compared with TS and TS + OCD patients both separately and as one group. Tic severity negatively correlated with FC in CBN and FPN in the TS group, while the compulsiveness scores positively correlated with the same two networks in OCD patients. Our findings suggest common FC changes in TS and TS + OCD patients. In contrast, OCD is characterized by a distinctive pattern of FC changes prominently involving the CBN and FPN.
Collapse
|
33
|
Ota M, Kanie A, Kobayashi Y, Nakajima A, Sato N, Horikoshi M. Pseudo-continuous arterial spin labeling MRI study of patients with obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2020; 303:111124. [PMID: 32563075 DOI: 10.1016/j.pscychresns.2020.111124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 05/18/2020] [Accepted: 06/11/2020] [Indexed: 10/24/2022]
Abstract
Arterial spin labeling (ASL) magnetic resonance imaging is a novel technique that can measure regional cerebral blood flow (rCBF). Here we used pseudo-continuous ASL (pCASL) to examine the structural and functional imaging data in patients with obsessive-compulsive disorder (OCD). We estimated the gray matter volume imaging and pCASL imaging data by means of a voxel-by-voxel statistical analysis. We evaluated the differences of rCBF and gray matter volume between the OCD patients and healthy subjects. We detected a significant rCBF reduction in OCD patients in the right posterior cingulate extending to the lingual gyrus, thalamus, and hippocampus, and a significant increase in the left temporal gyrus and left frontal white matter region, compared with healthy subjects. We also observed a significant reduction in gray matter volume of OCD patients in the right hippocampus. We also estimated the correlation between the clinical severity of OCD and the rCBF and gray matter volumes, and found significant negative correlations between the severity of illness and the regional gray matter volume in the bilateral anterior cingulate corti. Our study demonstrated significant changes of rCBF in the cortico-striato-thalamo-cortical pathway around the hippocampus in OCD patients. These findings may help to elucidate the pathogenesis of OCD.
Collapse
Affiliation(s)
- Miho Ota
- Department of Mental Disorder Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan; Department of Neuropsychiatry, University of Tsukuba, 1-1-1, Tennodai, Tsukuba, Ibaraki, 305-8576, Japan.
| | - Ayako Kanie
- National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Yuki Kobayashi
- National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Aiichiro Nakajima
- National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Noriko Sato
- Department of Radiology, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| | - Masaru Horikoshi
- National Center for Cognitive Behavior Therapy and Research, National Center of Neurology and Psychiatry, 4-1-1, Ogawa-Higashi, Kodaira, Tokyo 187-8502, Japan
| |
Collapse
|
34
|
Huggins AA, Harvey AM, Miskovich TA, Lee HJ, Larson CL. Resting-State Functional Connectivity of Supplementary Motor Area Associated with Skin-Picking Symptom Severity. J Obsessive Compuls Relat Disord 2020; 26:100551. [PMID: 34650904 PMCID: PMC8513746 DOI: 10.1016/j.jocrd.2020.100551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Pathological skin picking (excoriation) is a relatively common disorder. Although it has been hypothesized to share a similar pathophysiological basis as other obsessive-compulsive (OC) spectrum disorders, to date, little work has specifically examined the precise neurobiological mechanisms involved in excoriation. Disruption in functional circuits involving the right inferior frontal gyrus (rIFG) and supplementary motor area (SMA) may be particularly relevant to skin-picking pathology as these regions have been implicated in other OC-spectrum disorders for their roles in response inhibition and voluntary motor action, respectively. To this end, the present study examined the associations between skin-picking symptom severity and resting-state functional connectivity of the rIFG and bilateral SMA. Participants endorsing elevated symptoms of excoriation completed a self-report measure of symptom severity and resting-state functional magnetic resonance imaging scan. Results indicated that symptom severity was associated with weaker connectivity between the SMA and clusters within the orbitofrontal cortex and angular gyrus. Contrary to hypotheses, there were no effects of symptom severity on functional connectivity of the rIFG. Overall, these findings suggest that skin-picking symptom severity may be associated with disruption in higher-order motor networks contributing to deficits in top-down regulation of motor behavior.
Collapse
Affiliation(s)
- Ashley A. Huggins
- University of Wisconsin-Milwaukee, Department of Psychology, PO Box 413, Milwaukee, WI 53201, USA
| | - Ashleigh M. Harvey
- University of Wisconsin-Milwaukee, Department of Psychology, PO Box 413, Milwaukee, WI 53201, USA
| | | | - Han-Joo Lee
- University of Wisconsin-Milwaukee, Department of Psychology, PO Box 413, Milwaukee, WI 53201, USA
| | - Christine L. Larson
- University of Wisconsin-Milwaukee, Department of Psychology, PO Box 413, Milwaukee, WI 53201, USA
| |
Collapse
|
35
|
Sha Z, Versace A, Edmiston EK, Fournier J, Graur S, Greenberg T, Santos JPL, Chase HW, Stiffler RS, Bonar L, Hudak R, Yendiki A, Greenberg BD, Rasmussen S, Liu H, Quirk G, Haber S, Phillips ML. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2020; 300:111081. [PMID: 32344156 PMCID: PMC7266720 DOI: 10.1016/j.pscychresns.2020.111081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors. While a cortico-striatal-limbic network has been implicated in the pathophysiology of OCD, the neural correlates of this network in OCD are not well understood. In this study, we examined resting state functional connectivity among regions within the cortico-striatal-limbic OCD neural network, including the rostral anterior cingulate cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, thalamus and caudate, in 44 OCD and 43 healthy participants. We then examined relationships between OCD neural network connectivity and OCD symptom severity in OCD participants. OCD relative to healthy participants showed significantly greater connectivity between the left caudate and bilateral dorsolateral prefrontal cortex. We also found a positive correlation between left caudate-bilateral dorsolateral prefrontal cortex connectivity and depression scores in OCD participants, such that greater positive connectivity was associated with more severe symptoms. This study makes a significant contribution to our understanding of functional networks and their relationship with depression in OCD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Fournier
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tsafrir Greenberg
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henry W Chase
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Hudak
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Steven Rasmussen
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | - Suzanne Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
36
|
Chen PS, Jamil A, Liu LC, Wei SY, Tseng HH, Nitsche MA, Kuo MF. Nonlinear Effects of Dopamine D1 Receptor Activation on Visuomotor Coordination Task Performance. Cereb Cortex 2020; 30:5346-5355. [DOI: 10.1093/cercor/bhaa116] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 02/06/2023] Open
Abstract
Abstract
Dopamine plays an important role in the modulation of neuroplasticity, which serves as the physiological basis of cognition. The physiological effects of dopamine depend on receptor subtypes, and the D1 receptor is critically involved in learning and memory formation. Evidence from both animal and human studies shows a dose-dependent impact of D1 activity on performance. However, the direct association between physiology and behavior in humans remains unclear. In this study, four groups of healthy participants were recruited, and each group received placebo or medication inducing a low, medium, or high amount of D1 activation via the combination of levodopa and a D2 antagonist. After medication, fMRI was conducted during a visuomotor learning task. The behavioral results revealed an inverted U-shaped effect of D1 activation on task performance, where medium-dose D1 activation led to superior learning effects, as compared to placebo as well as low- and high-dose groups. A respective dose-dependent D1 modulation was also observed for cortical activity revealed by fMRI. Further analysis demonstrated a positive correlation between task performance and cortical activation at the left primary motor cortex. Our results indicate a nonlinear curve of D1 modulation on motor learning in humans and the respective physiological correlates in corresponding brain areas.
Collapse
Affiliation(s)
- Po See Chen
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Asif Jamil
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Lin-Cho Liu
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| | - Shyh-Yuh Wei
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Huai-Hsuan Tseng
- Department of Psychiatry, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
- Institute of Behavioral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
- Department of Neurology, University Medical Hospital Bergmannsheil, Ruhr University Bochum, Bochum 44789, Germany
| | - Min-Fang Kuo
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund 44139, Germany
| |
Collapse
|
37
|
Endophenotypes of executive functions in obsessive compulsive disorder? A meta-analysis in unaffected relatives. Psychiatr Genet 2020; 29:211-219. [PMID: 31625982 DOI: 10.1097/ypg.0000000000000241] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Endophenotypes are mediator traits between genetic influences and clinical phenotypes. Meta-analyses have consistently shown modest impairments of executive functioning in obsessive compulsive disorder (OCD) patients compared to healthy controls. Similar deficits have also been reported in unaffected relatives of OCD patients, but have not been quantified. We conducted the first meta-analysis combining all studies investigating executive functioning in unaffected relatives of individuals with OCD to quantify any deficits. A search of Pubmed, Medline and PsychInfo databases identified 21 suitable papers comprising 707 unaffected relatives of OCD patients and 842 healthy controls. Effect sizes were calculated using random effects models. Unaffected relatives displayed a significant impairment in global executive functioning. Analyses of specific executive functioning subdomains revealed impairments in: planning, visuospatial working memory and verbal fluency. Deficits in executive functioning are promising endophenotypes for OCD. To identify further biomarkers of disease risk/resilience in OCD, we suggest examining specific executive functioning domains.
Collapse
|
38
|
Khurshid KA. High frequency repetitive transcranial magnetic stimulation of supplementary motor cortex for obsessive compulsive disorder. Med Hypotheses 2020; 137:109529. [DOI: 10.1016/j.mehy.2019.109529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 12/07/2019] [Accepted: 12/11/2019] [Indexed: 11/15/2022]
|
39
|
Suñol M, Martínez-Zalacaín I, Picó-Pérez M, López-Solà C, Real E, Fullana MÀ, Pujol J, Cardoner N, Menchón JM, Alonso P, Soriano-Mas C. Differential patterns of brain activation between hoarding disorder and obsessive-compulsive disorder during executive performance. Psychol Med 2020; 50:666-673. [PMID: 30907337 DOI: 10.1017/s0033291719000515] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Preliminary evidence suggests that hoarding disorder (HD) and obsessive-compulsive disorder (OCD) may show distinct patterns of brain activation during executive performance, although results have been inconclusive regarding the specific neural correlates of their differential executive dysfunction. In the current study, we aim to evaluate differences in brain activation between patients with HD, OCD and healthy controls (HCs) during response inhibition, response switching and error processing. METHODS We assessed 17 patients with HD, 18 patients with OCD and 19 HCs. Executive processing was assessed inside a magnetic resonance scanner by means of two variants of a cognitive control protocol (i.e. stop- and switch-signal tasks), which allowed for the assessment of the aforementioned executive domains. RESULTS OCD patients performed similar to the HCs, differing only in the number of successful go trials in the switch-signal task. However, they showed an anomalous hyperactivation of the right rostral anterior cingulate cortex during error processing in the switch-signal task. Conversely, HD patients performed worse than OCD and HC participants in both tasks, showing an impulsive-like pattern of response (i.e. shorter reaction time and more commission errors). They also exhibited hyperactivation of the right lateral orbitofrontal cortex during successful response switching and abnormal deactivation of frontal regions during error processing in both tasks. CONCLUSIONS Our results support that patients with HD and OCD present dissimilar cognitive profiles, supported by distinct neural mechanisms. Specifically, while alterations in HD resemble an impulsive pattern of response, patients with OCD present increased error processing during response conflict protocols.
Collapse
Affiliation(s)
- Maria Suñol
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Ignacio Martínez-Zalacaín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Maria Picó-Pérez
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Clara López-Solà
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Mental Health, Corporació Sanitaria Parc Taulí-i3PT, Sabadell, Spain
| | - Eva Real
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
| | - Miquel Àngel Fullana
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Psychiatry, Hospital Clínic-Institute of Neurosciences, Barcelona, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jesús Pujol
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- MRI Research Unit, Radiology Department, Hospital del Mar, Barcelona, Spain
| | - Narcís Cardoner
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Mental Health, Corporació Sanitaria Parc Taulí-i3PT, Sabadell, Spain
- Department of Psychiatry and Legal Medicine, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Manuel Menchón
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Pino Alonso
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Clinical Sciences, School of Medicine, University of Barcelona, Barcelona, Spain
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute - IDIBELL, Barcelona, Spain
- Carlos III Health Institute, Centro de Investigación Biomedica en Red de Salud Mental - CIBERSAM, Barcelona, Spain
- Department of Psychobiology and Methodology of Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
40
|
Wolmarans DW, Stein DJ, Harvey BH. A Psycho-Behavioral Perspective on Modelling Obsessive-Compulsive Disorder (OCD) in Animals: The Role of Context. Curr Med Chem 2019; 25:5662-5689. [PMID: 28545371 DOI: 10.2174/0929867324666170523125256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 04/18/2017] [Accepted: 05/29/2017] [Indexed: 01/24/2023]
Abstract
Obsessive-compulsive disorder is a heterogeneous and debilitating condition, characterized by intrusive thoughts and compulsive repetition. Animal models of OCD are important tools that have the potential to contribute significantly to our understanding of the condition. Although there is consensus that pre-clinical models are valuable in elucidating the underlying neurobiology in psychiatric disorders, the current paper attempts to prompt ideas on how interpretation of animal behavior can be expanded upon to more effectively converge with the human disorder. Successful outcomes in psychopharmacology involve rational design and synthesis of novel compounds and their testing in well-designed animal models. As part of a special journal issue on OCD, this paper will 1) review the psychobehavioral aspects of OCD that are of importance on how the above ideas can be articulated, 2) briefly elaborate on general issues that are important for the development of animal models of OCD, with a particular focus on the role and importance of context, 3) propose why translational progress may often be less than ideal, 4) highlight some of the significant contributions afforded by animal models to advance understanding, and 5) conclude by identifying novel behavioral constructs for future investigations that may contribute to the face, predictive and construct validity of OCD animal models. We base these targets on an integrative approach to face and construct validity, and note that the issue of treatment-resistance in the clinical context should receive attention in current animal models of OCD.
Collapse
Affiliation(s)
- De Wet Wolmarans
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa
| | - Dan J Stein
- MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa.,Department of Psychiatry and Mental Health, MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Brian H Harvey
- Division of Pharmacology, Center of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North West-University, Potchefstroom, South Africa.,MRC Unit on Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
41
|
Kang JI, Kim DY, Lee CI, Kim CH, Kim SJ. Changes of motor cortical excitability and response inhibition in patients with obsessive–compulsive disorder. J Psychiatry Neurosci 2019; 44:261-268. [PMID: 30758161 PMCID: PMC6606423 DOI: 10.1503/jpn.180064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Deficits in cortical inhibitory processes have been suggested as underlying pathophysiological mechanisms of obsessive–compulsive disorder (OCD). We examined whether patients with OCD have altered cortical excitability using paired-pulse transcranial magnetic stimulation (TMS). We also tested associations between TMS indices and OCD-related characteristics, including age of onset and response inhibition in the go/no-go paradigm, to examine whether altered cortical excitability contributes to symptom formation and behavioural inhibition deficit in patients with OCD. METHODS We assessed motor cortex excitability using paired-pulse TMS in 51 patients with OCD and 39 age-matched healthy controls. We also assessed clinical symptoms and response inhibition in the go/nogo task. All patients were undergoing treatment with serotonin reuptake inhibitors. We performed repeated-measures multivariate analysis of covariance to compare TMS indices between patients with OCD and controls. RESULTS Compared to controls, patients with OCD showed a shorter cortical silent period and decreased intracortical facilitation. However, we found no significant difference between groups for resting motor threshold or short-interval intracortical inhibition. In the OCD group, the shortened cortical silent period was associated with a prompt reaction time in the go/no-go task and with early onset of OCD. LIMITATIONS We could not exclude the influence of medications on motor cortex excitability. CONCLUSION These findings suggest abnormal cortical excitability in patients with OCD. The associations between cortical silent period and response inhibition and age of onset further indicate that altered cortical excitability may play an important role in the development of OCD.
Collapse
Affiliation(s)
- Jee In Kang
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, C. Kim, S.J. Kim); the Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y. Kim); and the Yonsei Phil Neuropsychiatric Clinic, Seoul, South Korea (Lee)
| | - Deog Young Kim
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, C. Kim, S.J. Kim); the Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y. Kim); and the Yonsei Phil Neuropsychiatric Clinic, Seoul, South Korea (Lee)
| | - Chang-il Lee
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, C. Kim, S.J. Kim); the Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y. Kim); and the Yonsei Phil Neuropsychiatric Clinic, Seoul, South Korea (Lee)
| | - Chan-Hyung Kim
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, C. Kim, S.J. Kim); the Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y. Kim); and the Yonsei Phil Neuropsychiatric Clinic, Seoul, South Korea (Lee)
| | - Se Joo Kim
- From the Department of Psychiatry and Institute of Behavioral Science in Medicine, Yonsei University College of Medicine, Seoul, South Korea (Kang, C. Kim, S.J. Kim); the Department and Research Institute of Rehabilitation Medicine, Yonsei University College of Medicine, Seoul, South Korea (D.Y. Kim); and the Yonsei Phil Neuropsychiatric Clinic, Seoul, South Korea (Lee)
| |
Collapse
|
42
|
Norman LJ, Taylor SF, Liu Y, Radua J, Chye Y, De Wit SJ, Huyser C, Karahanoglu FI, Luks T, Manoach D, Mathews C, Rubia K, Suo C, van den Heuvel OA, Yücel M, Fitzgerald K. Error Processing and Inhibitory Control in Obsessive-Compulsive Disorder: A Meta-analysis Using Statistical Parametric Maps. Biol Psychiatry 2019; 85:713-725. [PMID: 30595231 PMCID: PMC6474799 DOI: 10.1016/j.biopsych.2018.11.010] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/26/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND Error processing and inhibitory control enable the adjustment of behaviors to meet task demands. Functional magnetic resonance imaging studies report brain activation abnormalities in patients with obsessive-compulsive disorder (OCD) during both processes. However, conclusions are limited by inconsistencies in the literature and small sample sizes. Therefore, the aim here was to perform a meta-analysis of the existing literature using unthresholded statistical maps from previous studies. METHODS A voxelwise seed-based d mapping meta-analysis was performed using t-maps from studies comparing patients with OCD and healthy control subjects (HCs) during error processing and inhibitory control. For the error processing analysis, 239 patients with OCD (120 male; 79 medicated) and 229 HCs (129 male) were included, while the inhibitory control analysis included 245 patients with OCD (120 male; 91 medicated) and 239 HCs (135 male). RESULTS Patients with OCD, relative to HCs, showed longer inhibitory control reaction time (standardized mean difference = 0.20, p = .03, 95% confidence interval = 0.016, 0.393) and more inhibitory control errors (standardized mean difference = 0.22, p = .02, 95% confidence interval = 0.039, 0.399). In the brain, patients showed hyperactivation in the bilateral dorsal anterior cingulate cortex, supplementary motor area, and pre-supplementary motor area as well as right anterior insula/frontal operculum and anterior lateral prefrontal cortex during error processing but showed hypoactivation during inhibitory control in the rostral and ventral anterior cingulate cortices and bilateral thalamus/caudate, as well as the right anterior insula/frontal operculum, supramarginal gyrus, and medial orbitofrontal cortex (all seed-based d mapping z value >2, p < .001). CONCLUSIONS A hyperactive error processing mechanism in conjunction with impairments in implementing inhibitory control may underlie deficits in stopping unwanted compulsive behaviors in the disorder.
Collapse
Affiliation(s)
- Luke J. Norman
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA,Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Stephan F. Taylor
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| | - Yanni Liu
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| | - Joaquim Radua
- Institut d’Investigacions Biomediques August Pi i Sunyer (IDIBAPS), Mental Health Research Networking Center (CIBERSAM), Barcelona, Spain,Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK,Centre for Psychiatric Research and Education, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yann Chye
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Stella J. De Wit
- Amsterdam University Medical Centers, Vrije Universiteit, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands,GGZ inGeest Specialized Mental Health Care, Amsterdam, The Netherlands
| | - Chaim Huyser
- Bascule, Academic Centre for Children and Adolescent Psychiatry, Amsterdam, Netherlands
| | - F. Isik Karahanoglu
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Tracy Luks
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, USA
| | - Dara Manoach
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, USA,Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, USA
| | - Carol Mathews
- Department of Psychiatry and Center for OCD, Anxiety and Related Disorders, University of Florida, Gainesville, Florida, USA
| | - Katya Rubia
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Chao Suo
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Odile A. van den Heuvel
- Amsterdam University Medical Centers, Vrije Universiteit, Department of Psychiatry, Department of Anatomy & Neurosciences, Amsterdam Neuroscience, Amsterdam, The Netherlands,OCD-Team, Haukeland University Hospital, Bergen, Norway
| | - Murat Yücel
- Brain and Mental Health Research Hub, Monash Institute of Cognitive and Clinical Neurosciences, School of Psychological Sciences, Monash University, Melbourne, Australia,Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, Australia
| | - Kate Fitzgerald
- Department of Psychiatry, Medical School, University of Michigan, Ann Arbor, USA
| |
Collapse
|
43
|
Burchi E, Makris N, Lee MR, Pallanti S, Hollander E. Compulsivity in Alcohol Use Disorder and Obsessive Compulsive Disorder: Implications for Neuromodulation. Front Behav Neurosci 2019; 13:70. [PMID: 31139059 PMCID: PMC6470293 DOI: 10.3389/fnbeh.2019.00070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 03/22/2019] [Indexed: 01/22/2023] Open
Abstract
Alcohol use Disorder (AUD) is one of the leading causes of morbidity and mortality worldwide. The progression of the disorder is associated with the development of compulsive alcohol use, which in turn contributes to the high relapse rate and poor longer term functioning reported in most patients, even with treatment. While the Diagnostic and Statistical Manual of Mental Disorders (DSM-5) defines AUD by a cluster of symptoms, parsing its heterogeneous phenotype by domains of behavior such as compulsivity may be a critical step to improve outcomes of this condition. Still, neurobiological underpinnings of compulsivity need to be fully elucidated in AUD in order to better design targeted treatment strategies. In this manuscript, we review and discuss findings supporting common mechanisms between AUD and OCD, dissecting the construct of compulsivity and focusing specifically on characteristic disruptions in habit learning and cognitive control in the two disorders. Finally, neuromodulatory interventions are proposed as a probe to test compulsivity as key pathophysiologic feature of AUD, and as a potential therapy for the subgroup of individuals with compulsive alcohol use, i.e., the more resistant stage of the disorder. This transdiagnostic approach may help to destigmatize the disorder, and suggest potential treatment targets across different conditions.
Collapse
Affiliation(s)
- Elisabetta Burchi
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States.,Department of Health Sciences, University of Florence, Florence, Italy
| | - Nikolaos Makris
- Center for Morphometric Analysis, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.,Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Mary R Lee
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism and National Institute on Drug Abuse, Bethesda, MD, United States
| | - Stefano Pallanti
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, CA, United States
| | - Eric Hollander
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, NY, United States
| |
Collapse
|
44
|
Corbit VL, Manning EE, Gittis AH, Ahmari SE. Strengthened Inputs from Secondary Motor Cortex to Striatum in a Mouse Model of Compulsive Behavior. J Neurosci 2019; 39:2965-2975. [PMID: 30737313 PMCID: PMC6462450 DOI: 10.1523/jneurosci.1728-18.2018] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/19/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
Hyperactivity in striatum is associated with compulsive behaviors in obsessive-compulsive disorder (OCD) and related illnesses, but it is unclear whether this hyperactivity is due to intrinsic striatal dysfunction or abnormalities in corticostriatal inputs. Understanding the cellular and circuit properties underlying striatal hyperactivity could help inform the optimization of targeted stimulation treatments for compulsive behavior disorders. To investigate the cellular and synaptic abnormalities that may underlie corticostriatal dysfunction relevant to OCD, we used the Sapap3 knock-out (Sapap3-KO) mouse model of compulsive behaviors, which also exhibits hyperactivity in central striatum. Ex vivo electrophysiology in double-transgenic mice was used to assess intrinsic excitability and functional synaptic input in spiny projection neurons (SPNs) and fast-spiking interneurons (FSIs) in central striatum of Sapap3-KOs and wild-type (WT) littermates. While we found no differences in intrinsic excitability of SPNs or FSIs between Sapap3-KOs and WTs, excitatory drive to FSIs was significantly increased in KOs. Contrary to predictions, lateral orbitofrontal cortex-striatal synapses were not responsible for this increased drive; optogenetic stimulation revealed that lateral orbitofrontal cortex input to SPNs was reduced in KOs (∼3-fold) and unchanged in FSIs. However, secondary motor area (M2) postsynaptic responses in central striatum were significantly increased (∼6-fold) in strength and reliability in KOs relative to WTs. These results suggest that increased M2-striatal drive may contribute to both in vivo striatal hyperactivity and compulsive behaviors, and support a potential role for presupplementary/supplementary motor cortical regions in the pathology and treatment of compulsive behavior disorders.SIGNIFICANCE STATEMENT These findings highlight an unexpected contribution of M2 projections to striatal dysfunction in the Sapap3-KO obsessive-compulsive disorder (OCD)-relevant mouse model, with M2 inputs strengthened by at least sixfold onto both spiny projection neurons and fast-spiking interneurons in central striatum. Because M2 is thought to be homologous to presupplementary/supplementary motor areas (pre-SMA/SMA) in humans, regions important for movement preparation and behavioral sequencing, these data are consistent with a model in which increased drive from M2 leads to excessive selection of sequenced motor patterns. Together with observations of hyperactivity in pre-SMA/SMA in both OCD and Tourette syndrome, and evidence that pre-SMA is a potential target for repetitive transcranial magnetic stimulation treatment in OCD, these results support further dissection of the role of M2 in compulsivity.
Collapse
Affiliation(s)
- Victoria L Corbit
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Elizabeth E Manning
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| | - Aryn H Gittis
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, and
| | - Susanne E Ahmari
- Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213,
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
- Translational Neuroscience Program, Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania 15219
| |
Collapse
|
45
|
Early cognitive processes in OCD: An ERP study. J Affect Disord 2019; 246:429-436. [PMID: 30599365 DOI: 10.1016/j.jad.2018.12.109] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 12/11/2018] [Accepted: 12/24/2018] [Indexed: 11/21/2022]
Abstract
BACKGROUND Obsessive-compulsive disorder (OCD) is characterized by persistent, intrusive, and distressing obsessions and/or compulsions and is associated with marked impairments in quality of life. The goal of the present study was to examine initial stages of information processing, specifically, perceptual and attention orientation phases that precede response preparation in OCD. METHODS The P3 event-related potential (ERP) component was used as a measure of early cognitive processes of visual stimulus perception. ERPs were recorded while 38 participants diagnosed with OCD and 38 healthy controls performed a passive visual oddball task with neutral and angry schematic faces. RESULTS OCD participants demonstrated significantly enhanced P3 amplitude over bilateral parietal areas in response to neutral stimuli that activate basic primary perceptual processes. Emotional valence reduced this effect such that OCD patients did not differ from healthy controls in P3 amplitude under the angry stimuli condition. LIMITATIONS Patients in this study were noncomorbid and unmedicated partially limiting the generalizability of the results. CONCLUSIONS Our hypothesis of altered early perceptual processes in OCD was supported. These alterations, specific to OCD and not anxiety and depression symptoms, may represent distracted primary cognitive processes in OCD, possibly serving as a basic source for compulsion initiation.
Collapse
|
46
|
Tan B, Liu Q, Wan C, Jin Z, Yang Y, Li L. Altered Functional Connectivity of Alpha Rhythm in Obsessive-Compulsive Disorder During Rest. Clin EEG Neurosci 2019; 50:88-99. [PMID: 30280595 DOI: 10.1177/1550059418804378] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Obsessive-compulsive disorder (OCD) is a common inheritable psychiatric disorder characteristic of repetitive thinking, imagination (obsession), and stereotyped behaviors (compulsive). To explore whether there is an alteration of brain functional connectivity (BFC) in patients with OCD during rest, electroencephalogram (EEG) data of healthy controls (HCs) and patients with OCD were collected during rest in both eyes-closed and eyes-open states. Synchronization likelihood and graph theory were applied to construct and analyze brain functional networks of patients with OCD and HCs. Patients with OCD showed abnormal graph-theoretic parameters and impaired small world features in the alpha and beta bands. In addition, the topological analysis consistently showed that the long-range BFC of alpha rhythm was significantly reduced in the bilateral posterior areas in patients with OCD in comparison with HCs, while the BFC in the beta rhythm was significantly increased only in the eyes-open state. The findings suggest that the BFC of patients with OCD show abnormal small-world features and altered topological structure during rest, mainly in alpha and beta bands, which may provide a new insight for the diagnosis and treatment of OCD.
Collapse
Affiliation(s)
- Bo Tan
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Qingxiao Liu
- Hospital of Chengdu University of TCM, Chengdu, China
| | - Chaoyang Wan
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenlan Jin
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Yanchun Yang
- Mental Health Center, West China Hospital of Sichuan University, Chengdu, China
| | - Ling Li
- Key Laboratory for NeuroInformation of Ministry of Education, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in BioMedicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
47
|
Theiss JD, McHugo M, Zhao M, Zald DH, Olatunji BO. Neural correlates of resolving conflict from emotional and nonemotional distracters in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2019; 284:29-36. [PMID: 30641435 DOI: 10.1016/j.pscychresns.2019.01.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 01/06/2019] [Accepted: 01/06/2019] [Indexed: 11/23/2022]
Abstract
Obsessive compulsive disorder (OCD) is associated with altered processing in brain regions involved in conflict resolution. However, limited research has examined the extent to which conflict from emotional distracters characterizes OCD such that responsiveness to task-irrelevant emotional stimuli is altered compared to controls. In the present study, 16 patients with OCD and 15 healthy controls underwent functional magnetic resonance imaging (fMRI) during resolution of conflict from emotional or nonemotional distracters. Results in healthy controls demonstrated that rostral anterior cingulate cortex (rACC), middle frontal gyrus (MFG), and medial superior frontal gyrus (MSFG) showed greater activation for high conflict versus low conflict. Responses in these regions differed between the emotional and nonemotional distracter tasks, with rACC and MSFG having greater activation for conflict from nonemotional distracters and anterior MFG showing greater activation for conflict from emotional distracters. Furthermore, between-group differences revealed a region in right posterior MFG in which controls similarly exhibited greater activation during high conflict versus low conflict with emotional distracters; however, OCD patients showed the opposite pattern with greater activation during low conflict compared to high conflict. These findings suggest that activity of right posterior MFG may be relevant in better understanding inefficient responding during emotional conflict in OCD.
Collapse
Affiliation(s)
- Justin D Theiss
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Mimi Zhao
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
| | - David H Zald
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bunmi O Olatunji
- Department of Psychology, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
48
|
Gowda SM, Narayanaswamy JC, Hazari N, Bose A, Chhabra H, Balachander S, Bhaskarapillai B, Shivakumar V, Venkatasubramanian G, Reddy YCJ. Efficacy of pre-supplementary motor area transcranial direct current stimulation for treatment resistant obsessive compulsive disorder: A randomized, double blinded, sham controlled trial. Brain Stimul 2019; 12:922-929. [PMID: 30808612 DOI: 10.1016/j.brs.2019.02.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 01/28/2019] [Accepted: 02/10/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND A significant proportion of obsessive compulsive disorder (OCD) patients do not respond to specific serotonin reuptake inhibitors (SSRIs). There is a need to evaluate novel treatment options for OCD. OBJECTIVE In this double blinded, randomized, sham controlled study, we investigated the efficacy of add-on transcranial direct current stimulation (tDCS) in reducing the symptoms in SSRI-resistant OCD patients by employing anodal pre-supplementary motor area (pre-SMA) stimulation. METHOD Twenty-five patients with DSM-IV OCD having persistent symptoms despite adequate and stable treatment with at least one SSRI were randomly allocated to receive 20 min of verum (active) 2-mA tDCS or sham stimulation twice daily on 5 consecutive days [anode over Pre-SMA; cathode over right supra-orbital area]. Response to treatment was defined as at least 35% reduction in the Yale-Brown Obsessive-Compulsive Scale (YBOCS) total score along with a Clinical Global Impression - Improvement (CGI-I) score of 1 (very much improved) or 2 (much improved). RESULTS The response rate was significantly greater in the verum tDCS(4 out of 12) compared to sham-tDCS (0 out of 13) [Fisher's exact test, p = 0.04]. Repeated measures analysis of variance with tDCS type (verum vs. sham) as between subjects factor showed that there was a significant tDCS-type X time-point interaction with significantly greater reduction of YBOCS total score [F (1,22) = 4.95,p = 0.04,partial-η2 = 0.18] in verum-tDCS group. CONCLUSIONS The results of this RCT suggest that tDCS may be effective in treating SSRI-resistant OCD. Future studies should examine the efficacy in larger samples of OCD and explore other potential target regions using randomized sham-controlled designs, in addition to examining the sustainability of the beneficial effects. TRIAL REGISTRATION Clinical Trials Registry India (http://ctri.nic.in/Clinicaltrials/login.php): Registration Number- CTRI/2016/04/006837).
Collapse
Affiliation(s)
- Shayanth M Gowda
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Janardhanan C Narayanaswamy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India.
| | - Nandita Hazari
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Anushree Bose
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Harleen Chhabra
- Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Srinivas Balachander
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Binukumar Bhaskarapillai
- Department of Biostatistics, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Venkataram Shivakumar
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Ganesan Venkatasubramanian
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India; Translational Psychiatry Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| | - Y C Janardhan Reddy
- Obsessive Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), 560029, India
| |
Collapse
|
49
|
Narayanaswamy JC, Jose D, Agarwal SM, Kalmady SV, Baruah U, Shivakumar V, Prasad C, Viswanath B, Rao NP, Venkatasubramanian G, Janardhan Reddy YC. Neuro-hemodynamic endophenotypes of emotional interference in OCD: fMRI study using emotion counting stroop task. Asian J Psychiatr 2019; 39:35-41. [PMID: 30528906 DOI: 10.1016/j.ajp.2018.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 11/14/2018] [Accepted: 11/24/2018] [Indexed: 11/29/2022]
Abstract
BACKGROUND We sought to examine the endophenotype pattern of neuro-hemodynamic substrates of emotion counting Stroop (ecStroop) paradigm in patients with OCD, their unaffected siblings [first degree relatives-FDR] and healthy controls (HC). METHODS OCD patients (medication naïve)[N = 16], their unaffected siblings(FDR)[N = 16] and HC [N = 24] were compared using an established ecStroop paradigm in a 3-Tesla fMRI. The relative BOLD signals corresponding to the three types of conditions (neural words-N, words with negative emotional salience-E and words with salience for OCD-O) were examined in the apriori hypothesized brain regions. RESULTS Both in O minus N contrast and O minus E contrast, the groups demonstrated significant differential activation of right insula (BA 13). The post-hoc analyses showed in patients and FDRs relative to HC the following: significant hyperactivation of insula in O minus E contrast; significant hyperactivation of right insula and right DLPFC (BA 9) in O minus N contrast. CONCLUSIONS The neuro-hemodynamic responses corresponding to the obsessive words in insula and DLPFC could be potential endophenotypes. "Threat relatedness" might thus have a vulnerability meaning in the pathogenesis and neurobiological basis of OCD.
Collapse
Affiliation(s)
- Janardhanan C Narayanaswamy
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India.
| | - Dania Jose
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | | | - Sunil V Kalmady
- Department of Psychiatry, University of Alberta, Edmonton, Alberta, Canada
| | - Upasana Baruah
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Venkataram Shivakumar
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Chandrajit Prasad
- Department of Neuroimaging & Interventional Radiology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Biju Viswanath
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Naren P Rao
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Ganesan Venkatasubramanian
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Y C Janardhan Reddy
- Obsessive-Compulsive Disorder Clinic, Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India; Translational Psychiatry Laboratory, Neurobiology Research Centre, National Institute of Mental Health and Neurosciences, Bangalore, India
| |
Collapse
|
50
|
Transcranial direct current stimulation for the treatment of obsessive-compulsive disorder? A qualitative review of safety and efficacy. Psychiatry Res 2019; 271:259-264. [PMID: 30508669 DOI: 10.1016/j.psychres.2018.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 10/09/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022]
Abstract
Obsessive-compulsive disorder (OCD) is a highly disabling psychiatric disorder characterized by recurrent obsessions and compulsions. It has a lifetime prevalence of 1-3% in the general population and commonly has a chronic course. First-line treatments consist of selective serotonin reuptake inhibitors and cognitive-behavioral therapy but up to 60% of patients respond partially or not at all to these treatments. This paper reviewed the literature on the safety and efficacy of transcranial direct current stimulation (tDCS) for the treatment of obsessive-compulsive disorder and discussed future directions for research and clinical application. Criteria for inclusion were open or controlled studies on tDCS and OCD that used validated rating scales along with well-described stimulus parameters. In the majority of the limited number of published studies, most patients with treatment-resistant obsessive-compulsive disorder had either moderate or marked benefit with this technique different stimulation targets, sometimes sustained for many months. This technique might be efficacious in the treatment of obsessive-compulsive disorder, although it is difficult to draw definitive conclusions about its efficacy, future well-designed sham-controlled studies are needed to confirm the safety and efficacy of tDCS for the treatment of this condition.
Collapse
|