1
|
Vagni D, Tartarisco G, Campisi S, Cerbara L, Dedola M, Pedranghelu A, Castello A, Gorini F, Failla C, Liuzza MT, Tintori A, Pioggia G, Ferrazzoli M, Cerasa A. Psychophysiological correlates of science communicators. PLoS One 2025; 20:e0320160. [PMID: 40138298 PMCID: PMC11940683 DOI: 10.1371/journal.pone.0320160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/13/2025] [Indexed: 03/29/2025] Open
Abstract
We conducted a study in an ecological setting to evaluate the heart rate variability (HRV) of expert communicators during a live national primetime video interview. The study involved 32 expert science communicators, all with mid- to long-term experience in public speaking and outreach work, who were evaluated by an external jury to assess their communication skills. Prior to the experiment, participants completed an online survey to gather socio-demographic data, work-related information, and psychological profiles. The six indices of communication abilities assessed by jury were: Interest, Agreement, Engagement, Authoritativeness learning, and Clarity. HRV acquisitions were divided into three phases: baseline pre-interview, during the interview, and another baseline recording after the interview. Science communicators were characterized by high levels of self-esteem and prosociality, which were positively correlated with communication indices and inversely correlated with age. Evaluation of physiological responses showed that the total power and low-frequency components of HRV were significantly higher in the post-interview phase compared to both the interview and pre-interview phases. However, when we divided the entire group according to high and low Authoritativeness and Clarity indices, significant interactive effects were detected. Indeed, for the low Authoritativeness and Clarity subgroups, significant differences among all phases were observed, with total power decreasing from the pre-interview to the interview phase and increasing in the post-interview phase. This indicates a clear pattern of stress response and recovery. In contrast, the high Authoritativeness and Clarity subgroup showed less variation across phases, suggesting better stress regulation or less perceived stress during the interview. We provided the psychophysiological basis of science communication expertise that can affect the control of stress regulation during public speaking.
Collapse
Affiliation(s)
- David Vagni
- Institute for biomedical research and innovation, National Research Council, IRIB-CNR, Messina, Italy
| | - Gennaro Tartarisco
- Institute for biomedical research and innovation, National Research Council, IRIB-CNR, Messina, Italy
| | - Simona Campisi
- Institute for biomedical research and innovation, National Research Council, IRIB-CNR, Messina, Italy
| | - Loredana Cerbara
- Institute for Research on Population and Social Policies, National Research Council of Italy, Rome, Italy
| | | | | | | | | | - Chiara Failla
- Institute for biomedical research and innovation, National Research Council, IRIB-CNR, Messina, Italy
| | - Marco Tullio Liuzza
- Department of Developmental Psychology and Socialization, Università di Padova, Padua, Italy
| | - Antonio Tintori
- Institute for Research on Population and Social Policies, National Research Council of Italy, Rome, Italy
| | - Giovanni Pioggia
- Institute for biomedical research and innovation, National Research Council, IRIB-CNR, Messina, Italy
| | - Marco Ferrazzoli
- National Research Council Piazzale Aldo Moro, Rome, Italy
- Tor Vergata University, Rome, Italy
| | - Antonio Cerasa
- S. Anna Institute, Crotone, Italy
- Institute of BioImaging and Complex Biological Systems (IBSBC-CNR), Catanzaro, Italy
| |
Collapse
|
2
|
Campagna M, Chamberlain R. How material sensory properties and individual differences influence the haptic aesthetic appeal of visually presented stimuli. Sci Rep 2024; 14:13690. [PMID: 38871744 DOI: 10.1038/s41598-024-63925-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 05/31/2024] [Indexed: 06/15/2024] Open
Abstract
Touch plays a crucial role for humans. Despite its centrality in sensory experiences, the field of haptic aesthetics is underexplored. So far, existing research has revealed that preferences in the haptic domain are related to stimulus properties and the Gestalt laws of grouping. Additionally, haptic aesthetics is influenced by top-down processes, e.g., stimulus familiarity, and is likely to be modulated by personality and expertise. To further our understanding of these influences on haptic aesthetic appraisal, the current study investigated the imagined haptic aesthetic appeal of visually presented material surfaces, considering the role of haptic expertise, Need for touch, personality traits. The results revealed a positive influence of familiarity, simplicity, smoothness, warmth, lightness, dryness, slipperiness and a negative influence of complexity on individuals' aesthetic responses. While the study failed to support the predicted influence of Need for touch and haptic expertise on aesthetic responses, results did reveal an influence of openness to experience, conscientiousness and neuroticism. Despite the limitations related to the indirect stimuli presentation (vision only), the findings contribute to the relatively unexplored role of bottom-up and top-down features in haptic aesthetics that might be incorporated into the design of consumers' products to better meet their preferences.
Collapse
Affiliation(s)
- Marella Campagna
- Department of General Psychology and Methodology, University of Bamberg, Bamberg, Bavaria, Germany.
| | - Rebecca Chamberlain
- Department of Psychology of the Arts, Neuroaesthetics and Creativity, Goldsmiths University of London, London, UK
| |
Collapse
|
3
|
Carreiras M, Quiñones I, Chen HA, Vázquez‐Araujo L, Small D, Frost R. Sniffing out meaning: Chemosensory and semantic neural network changes in sommeliers. Hum Brain Mapp 2024; 45:e26564. [PMID: 38339911 PMCID: PMC10823763 DOI: 10.1002/hbm.26564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 10/03/2023] [Accepted: 12/02/2023] [Indexed: 02/12/2024] Open
Abstract
Wine tasting is a very complex process that integrates a combination of sensation, language, and memory. Taste and smell provide perceptual information that, together with the semantic narrative that converts flavor into words, seem to be processed differently between sommeliers and naïve wine consumers. We investigate whether sommeliers' wine experience shapes only chemosensory processing, as has been previously demonstrated, or if it also modulates the way in which the taste and olfactory circuits interact with the semantic network. Combining diffusion-weighted images and fMRI (activation and connectivity) we investigated whether brain response to tasting wine differs between sommeliers and nonexperts (1) in the sensory neural circuits representing flavor and/or (2) in the neural circuits for language and memory. We demonstrate that training in wine tasting shapes the microstructure of the left and right superior longitudinal fasciculus. Using mediation analysis, we showed that the experience modulates the relationship between fractional anisotropy and behavior: the higher the fractional anisotropy the higher the capacity to recognize wine complexity. In addition, we found functional differences between sommeliers and naïve consumers affecting the flavor sensory circuit, but also regions involved in semantic operations. The former reflects a capacity for differential sensory processing, while the latter reflects sommeliers' ability to attend to relevant sensory inputs and translate them into complex verbal descriptions. The enhanced synchronization between these apparently independent circuits suggests that sommeliers integrated these descriptions with previous semantic knowledge to optimize their capacity to distinguish between subtle differences in the qualitative character of the wine.
Collapse
Affiliation(s)
- Manuel Carreiras
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Department of Basque Language and CommunicationUniversity of the Basque Country EHU/UPVBilbaoSpain
| | - Ileana Quiñones
- IKERBASQUE, Basque Foundation for ScienceBilbaoSpain
- Biodonostia Health Research InstituteDonostia‐San SebastianSpain
| | - H. Alexander Chen
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | | | - Dana Small
- Yale School of MedicineNew HavenConnecticutUSA
- The Modern Diet and Physiology Research CenterNew HavenConnecticutUSA
| | - Ram Frost
- BCBL, Basque center of Cognition, Brain and LanguageDonostia‐San SebastianSpain
- The Hebrew UniversityJerusalemIsrael
- Haskins LaboratoriesNew HavenConnecticutUSA
| |
Collapse
|
4
|
Santoyo-Zedillo M, Andriot I, Lucchi G, Pacheco-Lopez G, Escalona-Buendía H, Thomas-Danguin T, Sinding C. Dedicated odor-taste stimulation design for fMRI flavor studies. J Neurosci Methods 2023; 393:109881. [PMID: 37172913 DOI: 10.1016/j.jneumeth.2023.109881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Flavor is a mental representation that results from the brain's integration of at least odor and taste, and fMRI can highlight brain-related areas. However, delivering stimuli during fMRI can be challenging especially when administrating liquid stimuli in supine position. It remains unclear how and when odorants are released in the nose and how to improve odorant release. NEW METHOD We used a proton transfer reaction mass spectrometer (PTR-MS) to monitor the in vivo release of odorants via the retronasal pathway during retronasal odor-taste stimulation in a supine position. We tested techniques to improve odorant release, including avoiding or delaying swallowing and velum open training (VOT). RESULTS Odorant release was observed during retronasal stimulation, before swallowing, and in a supine position. VOT did not improve odorant release. Odorant release during stimulation had a latency more optimal for fitting with BOLD timing than after swallowing. COMPARISON WITH EXISTING METHOD(S) Previous in vivo measurements of odorant release under fMRI-like conditions showed that odorant release occurred only after swallowing. On the contrary, a second study found that aroma release could occur before swallowing, but participants were sitting. CONCLUSION Our method shows optimal odorant release during the stimulation phase, meeting the criteria for high-quality brain imaging of flavor processing without swallowing-related motion artifacts. These findings provide an important advancement in understanding the mechanisms underlying flavor processing in the brain.
Collapse
Affiliation(s)
- Marianela Santoyo-Zedillo
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; Doctorado en Ciencias Biológicas y de la Salud - Universidad Autónoma Metropolitana (UAM); Health Sciences Department Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | - Isabelle Andriot
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; ChemoSens, CNRS, INRAE, PROBE research infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Géraldine Lucchi
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France; ChemoSens, CNRS, INRAE, PROBE research infrastructure, ChemoSens facility, F-21000 Dijon, France
| | - Gustavo Pacheco-Lopez
- Health Sciences Department Metropolitan Autonomous University (UAM), Campus Lerma, Mexico
| | - Héctor Escalona-Buendía
- Biotechnology Department Metropolitan Autonomous University (UAM), Campus Iztapalapa, Mexico
| | - Thierry Thomas-Danguin
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Charlotte Sinding
- Centre des Sciences du Goût et de l'Alimentation, INRAE, CNRS, Institut Agro, Université de Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
5
|
Oyinseye P, Suárez A, Saldaña E, Fernández-Zurbano P, Valentin D, Sáenz-Navajas MP. Multidimensional representation of wine drinking experience: Effects of the level of consumers’ expertise and involvement. Food Qual Prefer 2022. [DOI: 10.1016/j.foodqual.2022.104536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
6
|
Hinojosa-Aguayo I, Garcia-Burgos D, Catena A, González F. Implicit and explicit measures of the sensory and hedonic analysis of beer: The role of tasting expertise. Food Res Int 2022; 152:110873. [DOI: 10.1016/j.foodres.2021.110873] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 11/29/2022]
|
7
|
Suen JLK, Yeung AWK, Wu EX, Leung WK, Tanabe HC, Goto TK. Effective Connectivity in the Human Brain for Sour Taste, Retronasal Smell, and Combined Flavour. Foods 2021; 10:foods10092034. [PMID: 34574144 PMCID: PMC8466623 DOI: 10.3390/foods10092034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/14/2021] [Accepted: 08/23/2021] [Indexed: 01/01/2023] Open
Abstract
The anterior insula and rolandic operculum are key regions for flavour perception in the human brain; however, it is unclear how taste and congruent retronasal smell are perceived as flavours. The multisensory integration required for sour flavour perception has rarely been studied; therefore, we investigated the brain responses to taste and smell in the sour flavour-processing network in 35 young healthy adults. We aimed to characterise the brain response to three stimulations applied in the oral cavity—sour taste, retronasal smell of mango, and combined flavour of both—using functional magnetic resonance imaging. Effective connectivity of the flavour-processing network and modulatory effect from taste and smell were analysed. Flavour stimulation activated middle insula and olfactory tubercle (primary taste and olfactory cortices, respectively); anterior insula and rolandic operculum, which are associated with multisensory integration; and ventrolateral prefrontal cortex, a secondary cortex for flavour perception. Dynamic causal modelling demonstrated that neural taste and smell signals were integrated at anterior insula and rolandic operculum. These findings elucidated how neural signals triggered by sour taste and smell presented in liquid form interact in the brain, which may underpin the neurobiology of food appreciation. Our study thus demonstrated the integration and synergy of taste and smell.
Collapse
Affiliation(s)
- Justin Long Kiu Suen
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
| | - Andy Wai Kan Yeung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Ed X. Wu
- Department of Electrical and Electronic Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China;
| | - Wai Keung Leung
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
| | - Hiroki C. Tanabe
- Department of Cognitive and Psychological Sciences, Graduate School of Informatics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan;
| | - Tazuko K. Goto
- Faculty of Dentistry, The University of Hong Kong, Hong Kong, China; (J.L.K.S.); (A.W.K.Y.); (W.K.L.)
- Department of Oral and Maxillofacial Radiology, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Tokyo Dental College Research Branding Project, Tokyo Dental College, 2-9-18, Kanda-Misakicho, Chiyoda-ku, Tokyo 101-0061, Japan
- Correspondence:
| |
Collapse
|
8
|
Coppin G, Audrin C, Monseau C, Deneulin P. Is knowledge emotion? The subjective emotional responses to wines depend on level of self-reported expertise and sensitivity to key information about the wine. Food Res Int 2021; 142:110192. [PMID: 33773668 DOI: 10.1016/j.foodres.2021.110192] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 01/11/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Many factors influence emotional responses evoked by wines. Here we assessed how self-reported wine expertise, tasting condition (blind vs. informed) as well as sensitivity to key information about wines (e.g., reputation, price, grape variety) impact the subjective affective responses they evoked. We measured subjective affective responses of high and low in self-reported wine expertise consumers to 8 different wines in a blind tasting and in a tasting when information about the wines was known. After their first tasting session, we asked participants the extent to which they considered specific information when they intended to purchase wine (e.g., reputation, etc.). The more wine consumers high in self-reported expertise paid attention to the wine's reputation, the less they used feelings when tasting wines. In contrast, the more the wine tasters low in self-reported expertise paid attention to the wine's reputation, the more feelings they reported. Moreover, when considering positive and negative feelings separately, it appears that the more participants paid attention to the label, the lower the number of positive terms they tended to mention. Additionally, wine tasters low in self-reported expertise were more inclined to report positive feelings towards the wines in the informed condition and if they were sensitive to wine's reputation. In contrast, wine tasters high in self-reported expertise were less inclined to report positive feelings towards the wines in the informed condition and if they were sensitive to wine's reputation. These results hint at the importance of considering psychological theories of emotion while studying wine-elicited emotions, in particular appraisal theories of emotion.
Collapse
Affiliation(s)
- Géraldine Coppin
- Fondation UniDistance, Suisse (UniDistance, Suisse), Swiss Center for Affective Sciences, and Laboratory for the Study of Emotion Elicitation and Expression, Department of Psychology, University of Geneva, Switzerland.
| | - Catherine Audrin
- University of Teacher Education, Lausanne, Switzerland, Swiss Center for Affective Sciences, and Laboratory for the Study of Emotion Elicitation and Expression, Department of Psychology, University of Geneva, Switzerland
| | - Claire Monseau
- Changins, Viticulture and Oenology, HES-SO University of Applied Sciences and Arts, Western Switzerland, Nyon, Switzerland
| | - Pascale Deneulin
- Changins, Viticulture and Oenology, HES-SO University of Applied Sciences and Arts, Western Switzerland, Nyon, Switzerland.
| |
Collapse
|
9
|
NeuroDante: Poetry Mentally Engages More Experts but Moves More Non-Experts, and for Both the Cerebral Approach Tendency Goes Hand in Hand with the Cerebral Effort. Brain Sci 2021; 11:brainsci11030281. [PMID: 33668815 PMCID: PMC7996310 DOI: 10.3390/brainsci11030281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/17/2021] [Accepted: 02/18/2021] [Indexed: 11/17/2022] Open
Abstract
Neuroaesthetics, the science studying the biological underpinnings of aesthetic experience, recently extended its area of investigation to literary art; this was the humus where neurocognitive poetics blossomed. Divina Commedia represents one of the most important, famous and studied poems worldwide. Poetry stimuli are characterized by elements (meter and rhyme) promoting the processing fluency, a core aspect of neuroaesthetics theories. In addition, given the evidence of different neurophysiological reactions between experts and non-experts in response to artistic stimuli, the aim of the present study was to investigate, in poetry, a different neurophysiological cognitive and emotional reaction between Literature (L) and Non-Literature (NL) students. A further aim was to investigate whether neurophysiological underpinnings would support explanation of behavioral data. Investigation methods employed: self-report assessments (recognition, appreciation, content recall) and neurophysiological indexes (approach/withdrawal (AW), cerebral effort (CE) and galvanic skin response (GSR)). The main behavioral results, according to fluency theories in aesthetics, suggested in the NL but not in the L group that the appreciation/liking went hand by hand with the self-declared recognition and with the content recall. The main neurophysiological results were: (i) higher galvanic skin response in NL, whilst higher CE values in L; (ii) a positive correlation between AW and CE indexes in both groups. The present results extended previous evidence relative to figurative art also to auditory poetry stimuli, suggesting an emotional attenuation “expertise-specific” showed by experts, but increased cognitive processing in response to the stimuli.
Collapse
|
10
|
Wang QJ, Fernandes HM, Fjaeldstad AW. Is perceptual learning generalisable in the chemical senses? A longitudinal pilot study based on a naturalistic blind wine tasting training scenario. CHEMOSENS PERCEPT 2021. [DOI: 10.1007/s12078-020-09284-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
11
|
Representational and sensory cues as drivers of individual differences in expert quality assessment of red wines. Food Qual Prefer 2021. [DOI: 10.1016/j.foodqual.2020.104032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
12
|
Abstract
Basic cognitive research can help to explain our response to wine, and the myriad factors that affect it. Wine is a complex, culture-laden, multisensory stimulus, and our perception/experience of its properties is influenced by everything from the packaging in which it is presented through the glassware in which it is served and evaluated. A growing body of experiential wine research now demonstrates that a number of contextual factors, including everything from the colour of the ambient lighting through to background music can exert a profound, and in some cases predictable, influence over the tasting experience. Sonic seasoning - that is, the matching of music or soundscapes with specific wines in order to accentuate or draw attention to certain qualities/attributes in the wine, such as sweetness, length, or body, also represents a rapidly growing area of empirical study. While such multisensory, experiential wine research undoubtedly has a number of practical applications, it also provides insights concerning multisensory perception that are relevant to basic scientists. Furthermore, the findings of the wine research are also often relevant to those marketers interested in understanding how the consumers' perception of any other food or beverage product can potentially be modified.
Collapse
Affiliation(s)
- Charles Spence
- Department of Experimental Psychology, Crossmodal Research Laboratory, Anna Watts Building, University of Oxford, Oxford, OX2 6GG, UK.
| |
Collapse
|
13
|
Perceptual learning in the chemical senses: A review. Food Res Int 2019; 123:746-761. [DOI: 10.1016/j.foodres.2019.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/22/2019] [Accepted: 06/03/2019] [Indexed: 01/21/2023]
|
14
|
|
15
|
Honoré-Chedozeau C, Desmas M, Ballester J, Parr WV, Chollet S. Representation of wine and beer: influence of expertise. Curr Opin Food Sci 2019. [DOI: 10.1016/j.cofs.2019.07.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
16
|
|
17
|
Al Aïn S, Poupon D, Hétu S, Mercier N, Steffener J, Frasnelli J. Smell training improves olfactory function and alters brain structure. Neuroimage 2019; 189:45-54. [PMID: 30630079 DOI: 10.1016/j.neuroimage.2019.01.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/10/2018] [Accepted: 01/04/2019] [Indexed: 11/25/2022] Open
Abstract
Training and repeated exposure to odorants leads to enhanced olfactory sensitivity. So far, the efficacy of intensive olfactory training on olfactory function in a healthy population and its underlying neurobiological basis remain poorly known. This study investigated the effects of a 6-week intensive and well-controlled olfactory training on olfactory function and brain structure/neuroplasticity. Thirty-six healthy young individuals were recruited and randomly distributed in three groups: (1) 12 participants underwent daily intensive olfactory training of at least 20 min that included an (a) odor intensity classification task, an (b) odor quality classification task and an (c) target odor detection task, (2) 12 participants underwent an equivalent visual control training, and (3) 12 control individuals did not participate in any training. Before and after the training period, all participants performed a series of olfactory tests and those from groups 1 and 2 underwent structural magnetic resonance (MR) imaging, from which we obtained measures such as cortical thickness and tissue density. Participants improved in the respectively trained tasks throughout the 6-weeks training period. Those who underwent olfactory training improved general olfactory function compared to control participants, especially in odor identification, thus showing intramodal transfer. Further, MR imaging analysis revealed that olfactory training led to increased cortical thickness in the right inferior frontal gyrus, the bilateral fusiform gyrus and the right entorhinal cortex. This research shows that intensive olfactory training can generally improve olfactory function and that this improvement is associated with changes in the structure of olfactory processing areas of the brain.
Collapse
Affiliation(s)
- Syrina Al Aïn
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | - Daphnée Poupon
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Noémie Mercier
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada
| | | | - Johannes Frasnelli
- Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC, Canada; Research Center, Sacré-Cœur Hospital, Montréal, QC, Canada.
| |
Collapse
|
18
|
Jeon HA, Friederici AD. What Does "Being an Expert" Mean to the Brain? Functional Specificity and Connectivity in Expertise. Cereb Cortex 2018; 27:5603-5615. [PMID: 27797834 DOI: 10.1093/cercor/bhw329] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Indexed: 12/15/2022] Open
Abstract
To what extent is varying cognitive expertise reflected in the brain's functional specificity and connectivity? We addressed this question by examining expertise in mathematics based on the fact that mathematical skills are one of the most critical cognitive abilities known to be a good predictor of academic achievement. We investigated processing of hierarchical structures, which is a fundamental process for building complex cognitive architecture. Experts and nonexperts in mathematics participated in processing hierarchical structures using algebraic expressions. Results showed that a modulating effect depending on expertise was observed specifically in nonexperts in the left inferior frontal gyrus around pars triangularis and frontal sulcus, the left intraparietal sulcus, and the right inferior parietal lobule. This expertise-dependent pattern of activation led to a crucial dissociation within the left prefrontal cortex. More interestingly, task-related functional networks were also modulated differently in the frontoparietal network for relatively good performance and in the frontostriatal network for poor performance. The present study indicates that a high level of expertise is evident in a small number of specific brain regions, whereas a low level of expertise is reflected by broadly distributed brain areas, along with divergent functional connectivity between experts and nonexperts.
Collapse
Affiliation(s)
- Hyeon-Ae Jeon
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu 42988, Korea.,Partner Group of the Max Planck Institute for Human Cognitive and Brain Sciences at the Department for Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103Leipzig, Germany
| |
Collapse
|
19
|
Pitzalis S, Strappini F, Bultrini A, Di Russo F. Detailed spatiotemporal brain mapping of chromatic vision combining high-resolution VEP with fMRI and retinotopy. Hum Brain Mapp 2018. [PMID: 29536594 DOI: 10.1002/hbm.24046] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Neuroimaging studies have identified so far, several color-sensitive visual areas in the human brain, and the temporal dynamics of these activities have been separately investigated using the visual-evoked potentials (VEPs). In the present study, we combined electrophysiological and neuroimaging methods to determine a detailed spatiotemporal profile of chromatic VEP and to localize its neural generators. The accuracy of the present co-registration study was obtained by combining standard fMRI data with retinotopic and motion mapping data at the individual level. We found a sequence of occipito activities more complex than that typically reported for chromatic VEPs, including feed-forward and reentrant feedback. Results showed that chromatic human perception arises by the combined activity of at the least five parieto-occipital areas including V1, LOC, V8/VO, and the motion-sensitive dorsal region MT+. However, the contribution of V1 and V8/VO seems dominant because the re-entrant activity in these areas was present more than once (twice in V8/VO and thrice in V1). This feedforward and feedback chromatic processing appears delayed compared with the luminance processing. Associating VEPs and neuroimaging measures, we showed for the first time a complex spatiotemporal pattern of activity, confirming that chromatic stimuli produce intricate interactions of many different brain dorsal and ventral areas.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy.,Santa Lucia Foundation, IRCCS, Rome, Italy
| | | | - Alessandro Bultrini
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy
| | - Francesco Di Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico,", Rome, Italy.,Santa Lucia Foundation, IRCCS, Rome, Italy
| |
Collapse
|
20
|
Martinec Nováková L, Fialová J, Havlíček J. Effects of diversity in olfactory environment on children's sense of smell. Sci Rep 2018; 8:2937. [PMID: 29440654 PMCID: PMC5811485 DOI: 10.1038/s41598-018-20236-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/12/2018] [Indexed: 11/17/2022] Open
Abstract
Diversity in children's everyday olfactory environment may affect the development of their olfactory abilities and odor awareness. To test this, we collected data on olfactory abilities using the Sniffin' Sticks and odor awareness with Children's Olfactory Behaviors in Everyday Life Questionnaire in 153 preschool children and retested them one and a half year later. Parents completed an inventory on children's exposure to a variety of odors and on their own odor awareness using the Odor Awareness Scale. We controlled for the effects of age and verbal fluency on the children's performance. We found that the children's odor identification and discrimination scores differed as a function of parental odor awareness. Although these effects were rather small, they were commensurate in size with those of gender and age. To the best of our knowledge, this study is the first to present evidence that diversity in children's olfactory environment affects variation in their olfactory abilities and odor awareness. We suggest that future studies consider the long-term impact of perceptual learning out of the laboratory and its consequences for olfactory development.
Collapse
Affiliation(s)
- Lenka Martinec Nováková
- Department of Anthropology, Faculty of Humanities, Charles University, U Kříže 8, 158 00, Prague 5 - Jinonice, Czech Republic.
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic.
| | - Jitka Fialová
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| | - Jan Havlíček
- National Institute of Mental Health, Topolová 748, 250 67, Klecany, Czech Republic
- Department of Zoology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
| |
Collapse
|
21
|
de-la-Fuente-Blanco A, Fernández-Zurbano P, Valentin D, Ferreira V, Sáenz-Navajas MP. Cross-modal interactions and effects of the level of expertise on the perception of bitterness and astringency of red wines. Food Qual Prefer 2017. [DOI: 10.1016/j.foodqual.2017.07.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
22
|
Wang QJ, Spence C. Assessing the influence of music on wine perception among wine professionals. Food Sci Nutr 2017; 6:295-301. [PMID: 29564095 PMCID: PMC5849903 DOI: 10.1002/fsn3.554] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/26/2017] [Accepted: 10/31/2017] [Indexed: 11/23/2022] Open
Abstract
Several recent studies have demonstrated that music can significantly influence the eating/drinking experience. It is not clear, however, whether this influence would be moderated by the expertise of the taster. In the experiments reported here, we tested a large group (N = 154) of very experienced wine tasters—the majority of whom were professionals working in the wine business—at a winemaking conference. The first study assessed the impact of putatively “sweet” and “sour” soundtracks on taste evaluation, whereas the second study assessed more subtle wine‐specific terminology such as length, balance, and body. The results revealed that the effect of music on wine perception can indeed be demonstrated in wine experts. Moreover, the amount of wine tasting experience, as measured in years, did not moderate the influence of music on sensory and hedonic wine evaluation. This result suggests that the aforementioned auditory modulation of drinking experience is not influenced by the increased analytical abilities afforded by traditional wine tasting expertise.
Collapse
Affiliation(s)
- Qian Janice Wang
- Crossmodal Research Laboratory Department of Experimental Psychology Oxford University Oxford UK
| | - Charles Spence
- Crossmodal Research Laboratory Department of Experimental Psychology Oxford University Oxford UK
| |
Collapse
|
23
|
Kishi M, Sadachi H, Nakamura J, Tonoike M. Functional magnetic resonance imaging investigation of brain regions associated with astringency. Neurosci Res 2017; 122:9-16. [DOI: 10.1016/j.neures.2017.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 03/14/2017] [Accepted: 03/29/2017] [Indexed: 11/30/2022]
|
24
|
Sreenivasan K, Zhuang X, Banks SJ, Mishra V, Yang Z, Deshpande G, Cordes D. Olfactory Network Differences in Master Sommeliers: Connectivity Analysis Using Granger Causality and Graph Theoretical Approach. Brain Connect 2017; 7:123-136. [PMID: 28125912 DOI: 10.1089/brain.2016.0458] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previous studies investigating the differences in olfactory processing and judgments between trained sommeliers and controls have shown increased activations in brain regions involving higher level cognitive processes in sommeliers. However, there is little information about the influence of expertise on causal connectivity and topological properties of the connectivity networks between these regions. Therefore, the current study focuses on addressing these questions in a functional magnetic resonance imaging (fMRI) study of olfactory perception in Master Sommeliers. fMRI data were acquired from Master Sommeliers and control participants during different olfactory and nonolfactory tasks. Mean time series were extracted from 90 different regions of interest (ROIs; based on Automated Anatomical Labeling atlas). The underlying neuronal variables were extracted using blind hemodynamic deconvolution and then input into a dynamic multivariate autoregressive model to obtain connectivity between every pair of ROIs as a function of time. These connectivity values were then statistically compared to obtain paths that were significantly different between the two groups. The obtained connectivity matrices were further studied using graph theoretical methods. In sommeliers, significantly greater connectivity was observed in connections involving the precuneus, caudate, putamen, and several frontal and temporal regions. The controls showed increased connectivity from the left hippocampus to the frontal regions. Furthermore, the sommeliers exhibited significantly higher small-world topology than the controls. These findings are significant, given that learning about neuroplasticity in adulthood in these regions may then have added clinical importance in diseases such as Alzheimer's and Parkinson's where early neurodegeneration is isolated to regions important in smell.
Collapse
Affiliation(s)
| | - Xiaowei Zhuang
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Sarah J Banks
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Virendra Mishra
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Zhengshi Yang
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
| | - Gopikrishna Deshpande
- 2 Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University , Auburn, Alabama
- 3 Department of Psychology, Auburn University , Auburn, Alabama
- 4 Alabama Advanced Imaging Consortium, Auburn University and University of Alabama Birmingham , Birmingham, Alabama
| | - Dietmar Cordes
- 1 Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas, Nevada
- 5 Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado
| |
Collapse
|
25
|
Fjaeldstad A, Sundbøll J, Niklassen A, Ovesen T. Odor Familiarity and Identification Abilities in Adolescents. Chem Senses 2017; 42:239-246. [PMID: 28064213 DOI: 10.1093/chemse/bjw125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Olfactory identification abilities in adolescents have been reported inferior compared with adults. Though this seems to be the case when comparing identification abilities using tests validated on-and for-adults, odor familiarity has been hypothesized to affect identification abilities in younger participants. However, this has never been thoroughly tested. The aims of this study were to investigate patterns in odor familiarity differences between adolescents and adults, and to investigate if an adolescent familiarity-based modification of an identification test could lead to similar identification scores in adolescents and adults. In total, 411 adolescent participants and 320 adult participants were included in the study. Odor familiarity ratings were obtained for 125 odors. A modified version of the "Sniffin' Sticks" identification test was created and validated on 72 adolescents based on adolescent familiarity scores. This test was applied to 82 normosmic adults and 167 normosmic adolescents. Results show a lower familiarity for spices and environmental odors, and a higher familiarity for candy odors in adolescents. The identification abilities in adults and adolescents were equal after familiarity-based modification. We conclude that changes in odor familiarity from adolescence to adulthood do not develop evenly for all odors, but are dependent on odor-object category.
Collapse
Affiliation(s)
- Alexander Fjaeldstad
- Flavour Institute, Aarhus University, Noerrebrogade 44, 10G, 8000 Aarhus, Denmark
- Department of Psychiatry, University of Oxford OX3 7JX, Oxford, UK
- Department of Otorhinolaryngology, Regional Hospital Unit West Jutland Laegaardsvej 12, 7500, Holstebro, Denmark
- Center of Functionally Integrative Neuroscience, Aarhus University, Noerrebrogade 44, 10G, 8000, Aarhus, Denmark and
| | - Jens Sundbøll
- Department of Clinical Epidemiology, Aarhus University Hospital, Olof Palmes Allé 43-45, 8200, Aarhus, Denmark
| | - Andreas Niklassen
- Flavour Institute, Aarhus University, Noerrebrogade 44, 10G, 8000 Aarhus, Denmark
| | - Therese Ovesen
- Flavour Institute, Aarhus University, Noerrebrogade 44, 10G, 8000 Aarhus, Denmark
- Department of Otorhinolaryngology, Regional Hospital Unit West Jutland Laegaardsvej 12, 7500, Holstebro, Denmark
| |
Collapse
|
26
|
Banks SJ, Sreenivasan KR, Weintraub DM, Baldock D, Noback M, Pierce ME, Frasnelli J, James J, Beall E, Zhuang X, Cordes D, Leger GC. Structural and Functional MRI Differences in Master Sommeliers: A Pilot Study on Expertise in the Brain. Front Hum Neurosci 2016; 10:414. [PMID: 27597821 PMCID: PMC4992723 DOI: 10.3389/fnhum.2016.00414] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 08/04/2016] [Indexed: 02/02/2023] Open
Abstract
Our experiences, even as adults, shape our brains. Regional differences have been found in experts, with the regions associated with their particular skill-set. Functional differences have also been noted in brain activation patterns in some experts. This study uses multimodal techniques to assess structural and functional patterns that differ between experts and non-experts. Sommeliers are experts in wine and thus in olfaction. We assessed differences in Master Sommeliers’ brains, compared with controls, in structure and also in functional response to olfactory and visual judgment tasks. MRI data were analyzed using voxel-based morphometry as well as automated parcellation to assess structural properties, and group differences between tasks were calculated. Results indicate enhanced volume in the right insula and entorhinal cortex, with the cortical thickness of the entorhinal correlating with experience. There were regional activation differences in a large area involving the right olfactory and memory regions, with heightened activation specifically for sommeliers during an olfactory task. Our results indicate that sommeliers’ brains show specialization in the expected regions of the olfactory and memory networks, and also in regions important in integration of internal sensory stimuli and external cues. Overall, these differences suggest that specialized expertise and training might result in enhancements in the brain well into adulthood. This is particularly important given the regions involved, which are the first to be impacted by many neurodegenerative diseases.
Collapse
Affiliation(s)
- Sarah J Banks
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | | | - David M Weintraub
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Deanna Baldock
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Michael Noback
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Meghan E Pierce
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | | | | | - Erik Beall
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las VegasNV, USA; Cleveland Clinic Radiology, ClevelandOH, USA
| | - Xiaowei Zhuang
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Dietmar Cordes
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| | - Gabriel C Leger
- Cleveland Clinic Lou Ruvo Center for Brain Health, Las Vegas NV, USA
| |
Collapse
|
27
|
|
28
|
Neumann N, Lotze M, Eickhoff SB. Cognitive Expertise: An ALE Meta-Analysis. Hum Brain Mapp 2015; 37:262-72. [PMID: 26467981 DOI: 10.1002/hbm.23028] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/02/2015] [Accepted: 10/05/2015] [Indexed: 12/17/2022] Open
Abstract
Expert performance constitutes the endpoint of skill acquisition and is accompanied by widespread neuroplastic changes. To reveal common mechanisms of reorganization associated with long-term expertise in a cognitive domain (mental calculation, chess, language, memory, music without motor involvement), we used activation likelihood estimation meta-analysis and compared brain activation of experts to nonexperts. Twenty-six studies matched inclusion criteria, most of which reported an increase and not a decrease of activation foci in experts. Increased activation occurred in the left rolandic operculum (OP 4) and left primary auditory cortex and in bilateral premotor cortex in studies that used auditory stimulation. In studies with visual stimulation, experts showed enhanced activation in the right inferior parietal cortex (area PGp) and the right lingual gyrus. Experts' brain activation patterns seem to be characterized by enhanced or additional activity in domain-specific primary, association, and motor structures, confirming that learning is localized and very specialized.
Collapse
Affiliation(s)
- Nicola Neumann
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Martin Lotze
- Institute of Diagnostic Radiology and Neuroradiology, Functional Imaging Unit, Ernst-Moritz-Arndt-University of Greifswald, Greifswald, Germany
| | - Simon B Eickhoff
- Cognitive Neuroscience Group, Institute of Clinical Neuroscience and Medical Psychology, Heinrich-Heine University, Düsseldorf, Germany.,Brain Network Modeling Group, Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| |
Collapse
|
29
|
Mascioli G, Berlucchi G, Pierpaoli C, Salvolini U, Barbaresi P, Fabri M, Polonara G. Functional MRI cortical activations from unilateral tactile-taste stimulations of the tongue. Physiol Behav 2015. [PMID: 26220466 DOI: 10.1016/j.physbeh.2015.07.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Functional magnetic resonance imaging (fMRI) was used for revealing activations in the human brain by lateralized tactile-gustatory stimulations of the tongue. Salt, a basic taste stimulus, and water, now recognized as an independent taste modality, were applied to either hemitongues with pads similar to the taste strips test for the clinical psychophysical evaluation of taste. With both stimuli, the observed cortical patterns of activations could be attributed to a combined somatosensory and gustatory stimulation of the tongue, with no significant differences between salt and water. Stimulation of each hemitongue evoked a bilateral activation of the anterior insula-frontal operculum, ascribable to the gustatory component of the stimulation, and a bilateral activation of the inferior part of the postcentral gyrus, ascribable to the tactile component of the stimulation. The results are in line with the notion that the representation of the tongue in the cerebral hemispheres in both the touch and the taste modalities is bilateral. Clinical and brain stimulation findings indicate that this bilaterality depends primarily on a partial crossing of the afferent pathways, perhaps with a predominance of the crossed pathway in the touch modality and the uncrossed pathway in the taste modality. Previous evidence suggests that the corpus callosum is not indispensible for this bilateral representation, but can contribute to it by interhemispheric transfer of information in both modalities.
Collapse
Affiliation(s)
- Giulia Mascioli
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Giovanni Berlucchi
- Dipartimento di Scienze Neurologiche e del Movimento, Università degli Studi di Verona, Italy; National Institute of Neuroscience, Italy
| | - Chiara Pierpaoli
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Ugo Salvolini
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| | - Paolo Barbaresi
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy
| | - Mara Fabri
- Dipartmento di Medicina Sperimentale e Clinica, Università Politecnica delle Marche, Ancona, Italy.
| | - Gabriele Polonara
- Dipartimento di Scienze Cliniche e Odontostomatologiche, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
30
|
Neural correlates of taste perception in congenital blindness. Neuropsychologia 2015; 70:227-34. [PMID: 25708174 DOI: 10.1016/j.neuropsychologia.2015.02.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 02/13/2015] [Accepted: 02/19/2015] [Indexed: 11/22/2022]
Abstract
Sight is undoubtedly important for the perception and the assessment of the palatability of tastants. Although many studies have addressed the consequences of visual impairment on food selection, feeding behavior, eating habits and taste perception, nothing is known about the neural correlates of gustation in blindness. In the current study we examined brain responses during gustation using functional magnetic resonance imaging (fMRI). We scanned nine congenitally blind and 14 age- and sex-matched blindfolded sighted control subjects, matched in age, gender and body mass index (BMI), while they made judgments of either the intensity or the (un)pleasantness of different tastes (sweet, bitter) or artificial saliva that were delivered intra-orally. The fMRI data indicated that during gustation, congenitally blind individuals activate less strongly the primary taste cortex (right posterior insula and overlying Rolandic operculum) and the hypothalamus. In sharp contrast with results of multiple other sensory processing studies in congenitally blind subjects, including touch, audition and smell, the occipital cortex was not recruited during taste processing, suggesting the absence of taste-related compensatory crossmodal responses in the occipital cortex. These results underscore our earlier behavioral demonstration that congenitally blind subjects have a lower gustatory sensitivity compared to normal sighted individuals. We hypothesize that due to an underexposure to a variety of tastants, training-induced crossmodal sensory plasticity to gustatory stimulation does not occur in blind subjects.
Collapse
|
31
|
Pazart L, Comte A, Magnin E, Millot JL, Moulin T. An fMRI study on the influence of sommeliers' expertise on the integration of flavor. Front Behav Neurosci 2014; 8:358. [PMID: 25360093 PMCID: PMC4199283 DOI: 10.3389/fnbeh.2014.00358] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 09/26/2014] [Indexed: 11/13/2022] Open
Abstract
Flavors guide consumers' choice of foodstuffs, preferring those that they like and meet their needs, and dismissing those for which they have a conditioned aversion. Flavor affects the learning and consumption of foods and drinks; what is already well-known is favored and what is new is apprehended. The flavor of foodstuffs is also crucial in explaining some eating behaviors such as overconsumption. The "blind" taste test of wine is a good model for assessing the ability of people to convert mouth feelings into flavor. To determine the relative importance of memory and sensory capabilities, we present the results of an fMRI neuro-imaging study involving 10 experts and 10 matched control subjects using wine as a stimulus in a blind taste test, focusing primarily on the assessment of flavor integration. The results revealed activations in the brain areas involved in sensory integration, both in experts and control subjects (insula, frontal operculum, orbitofrontal cortex, amygdala). However, experts were mainly characterized by a more immediate and targeted sensory reaction to wine stimulation with an economic mechanism reducing effort than control subjects. Wine experts showed brainstem and left-hemispheric activations in the hippocampal and parahippocampal formations and the temporal pole, whereas control subjects showed activations in different associative cortices, predominantly in the right hemisphere. These results also confirm that wine experts work simultaneously on sensory quality assessment and on label recognition of wine.
Collapse
Affiliation(s)
- Lionel Pazart
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France
| | - Alexandre Comte
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France ; Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| | - Eloi Magnin
- Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| | - Jean-Louis Millot
- Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France
| | - Thierry Moulin
- Inserm Clinical Investigation Centre 1431, Clinical Investigation Centre, Besançon University Hospital Besancon, France ; Laboratoire de Neurosciences, (EA-481), University of Franche-Comté Besancon, France ; Département de Recherche en Imagerie Fonctionnelle, Besançon University Hospital Besancon, France
| |
Collapse
|
32
|
Royet JP, Plailly J, Saive AL, Veyrac A, Delon-Martin C. The impact of expertise in olfaction. Front Psychol 2013; 4:928. [PMID: 24379793 PMCID: PMC3861696 DOI: 10.3389/fpsyg.2013.00928] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Accepted: 11/23/2013] [Indexed: 11/21/2022] Open
Abstract
Olfactory expertise remains poorly understood, most likely because experts in odor, such as perfumers, sommeliers, and oenologists, are much rarer than experts in other modalities, such as musicians or sportsmen. In this review, we address the specificities of odor expertise in both odor experts and in a priori untrained individuals who have undergone specific olfactory training in the frame of an experiment, such as repeated exposure to odors or associative learning. Until the 21st century, only the behavioral effects of olfactory training of untrained control individuals had been reported, revealing an improvement of olfactory performance in terms of sensitivity, discrimination, memory, and identification. Behavioral studies of odor experts have been scarce, with inconsistent or inconclusive results. Recently, the development of cerebral imaging techniques has enabled the identification of brain areas and neural networks involved in odor processing, revealing functional and structural modifications as a function of experience. The behavioral approach to odor expertise has also evolved. Researchers have particularly focused on odor mental imagery, which is characteristic of odor experts, because this ability is absent in the average person but is part of a perfumer’s professional practice. This review summarizes behavioral, functional, and structural findings on odor expertise. These data are compared with those obtained using animals subjected to prolonged olfactory exposure or to olfactory-enriched environments and are discussed in the context of functional and structural plasticity.
Collapse
Affiliation(s)
- Jean-Pierre Royet
- Olfaction: From Coding to Memory Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| | - Jane Plailly
- Olfaction: From Coding to Memory Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| | - Anne-Lise Saive
- Olfaction: From Coding to Memory Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| | - Alexandra Veyrac
- Olfaction: From Coding to Memory Team, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1 Lyon, France
| | - Chantal Delon-Martin
- INSERM, U836, NeuroImagerie Fonctionnelle et Perfusion Cerebrale Grenoble, France ; Université Joseph Fourier, Grenoble Institut des Neurosciences Grenoble, France
| |
Collapse
|
33
|
Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Tosoni A, Galletti C. The human homologue of macaque area V6A. Neuroimage 2013; 82:517-30. [PMID: 23770406 DOI: 10.1016/j.neuroimage.2013.06.026] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 06/03/2013] [Accepted: 06/09/2013] [Indexed: 10/26/2022] Open
Abstract
In macaque monkeys, V6A is a visuomotor area located in the anterior bank of the POs, dorsal and anterior to retinotopically-organized extrastriate area V6 (Galletti et al., 1996). Unlike V6, V6A represents both contra- and ipsilateral visual fields and is broadly retinotopically organized (Galletti et al., 1999b). The contralateral lower visual field is over-represented in V6A. The central 20°-30° of the visual field is mainly represented dorsally (V6Ad) and the periphery ventrally (V6Av), at the border with V6. Both sectors of area V6A contain arm movement-related cells, active during spatially-directed reaching movements (Gamberini et al., 2011). In humans, we previously mapped the retinotopic organization of area V6 (Pitzalis et al., 2006). Here, using phase-encoded fMRI, cortical surface-based analysis and wide-field retinotopic mapping, we define a new cortical region that borders V6 anteriorly and shows a clear over-representation of the contralateral lower visual field and the periphery. As with macaque V6A, the eccentricity increases moving ventrally within the area. The new region contains a non-mirror-image representation of the visual field. Functional mapping reveals that, as in macaque V6A, the new region, but not the nearby area V6, responds during finger pointing and reaching movements. Based on similarity in position, retinotopic properties, functional organization and relationship with the neighboring extrastriate visual areas, we propose that the new cortical region is the human homologue of macaque area V6A.
Collapse
Affiliation(s)
- S Pitzalis
- Department of Education in Sport and Human Movement, University of Rome "Foro Italico", Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
34
|
Pitzalis S, Sdoia S, Bultrini A, Committeri G, Di Russo F, Fattori P, Galletti C, Galati G. Selectivity to translational egomotion in human brain motion areas. PLoS One 2013; 8:e60241. [PMID: 23577096 PMCID: PMC3618224 DOI: 10.1371/journal.pone.0060241] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/23/2013] [Indexed: 11/18/2022] Open
Abstract
The optic flow generated when a person moves through the environment can be locally decomposed into several basic components, including radial, circular, translational and spiral motion. Since their analysis plays an important part in the visual perception and control of locomotion and posture it is likely that some brain regions in the primate dorsal visual pathway are specialized to distinguish among them. The aim of this study is to explore the sensitivity to different types of egomotion-compatible visual stimulations in the human motion-sensitive regions of the brain. Event-related fMRI experiments, 3D motion and wide-field stimulation, functional localizers and brain mapping methods were used to study the sensitivity of six distinct motion areas (V6, MT, MST+, V3A, CSv and an Intra-Parietal Sulcus motion [IPSmot] region) to different types of optic flow stimuli. Results show that only areas V6, MST+ and IPSmot are specialized in distinguishing among the various types of flow patterns, with a high response for the translational flow which was maximum in V6 and IPSmot and less marked in MST+. Given that during egomotion the translational optic flow conveys differential information about the near and far external objects, areas V6 and IPSmot likely process visual egomotion signals to extract information about the relative distance of objects with respect to the observer. Since area V6 is also involved in distinguishing object-motion from self-motion, it could provide information about location in space of moving and static objects during self-motion, particularly in a dynamically unstable environment.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Motor, Human and Health Sciences, University of Rome Foro Italico, Rome, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Pitzalis S, Bozzacchi C, Bultrini A, Fattori P, Galletti C, Di Russo F. Parallel motion signals to the medial and lateral motion areas V6 and MT+. Neuroimage 2012. [PMID: 23186916 DOI: 10.1016/j.neuroimage.2012.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
MT+ and V6 are key motion areas of the dorsal visual stream in both macaque and human brains. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to find the electrophysiological correlates of V6 and to define its temporal relationship with the activity observed in MT+. We also determined the spatio-temporal profile of the motion coherency effect on visual evoked potentials (VEPs), and localized its neural generators. We found that area V6 participates in the very early phase of the coherent motion processing and that its electroencephalographic activity is almost simultaneous with that of MT+. We also found a late second activity in V6 that we interpret as a re-entrant feedback from extrastriate visual areas (e.g. area V3A). Three main cortical sources were differently modulated by the motion coherence: while V6 and MT+ showed a preference for the coherent motion, area V3A preferred the random condition. The response timing of these cortical sources indicates that motion signals flow in parallel from the occipital pole to the medial and lateral motion areas V6 and MT+, suggesting the view of a differential functional role.
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Dept. of Education for Motor Activity and Sport, University of Roma Foro Italico, Roma, Italy
| | | | | | | | | | | |
Collapse
|
36
|
Small DM. Flavor is in the brain. Physiol Behav 2012; 107:540-52. [PMID: 22542991 DOI: 10.1016/j.physbeh.2012.04.011] [Citation(s) in RCA: 171] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2012] [Revised: 04/10/2012] [Accepted: 04/12/2012] [Indexed: 11/25/2022]
|
37
|
Pitzalis S, Strappini F, De Gasperis M, Bultrini A, Di Russo F. Spatio-temporal brain mapping of motion-onset VEPs combined with fMRI and retinotopic maps. PLoS One 2012; 7:e35771. [PMID: 22558222 PMCID: PMC3338463 DOI: 10.1371/journal.pone.0035771] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 03/26/2012] [Indexed: 11/23/2022] Open
Abstract
Neuroimaging studies have identified several motion-sensitive visual areas in the human brain, but the time course of their activation cannot be measured with these techniques. In the present study, we combined electrophysiological and neuroimaging methods (including retinotopic brain mapping) to determine the spatio-temporal profile of motion-onset visual evoked potentials for slow and fast motion stimuli and to localize its neural generators. We found that cortical activity initiates in the primary visual area (V1) for slow stimuli, peaking 100 ms after the onset of motion. Subsequently, activity in the mid-temporal motion-sensitive areas, MT+, peaked at 120 ms, followed by peaks in activity in the more dorsal area, V3A, at 160 ms and the lateral occipital complex at 180 ms. Approximately 250 ms after stimulus onset, activity fast motion stimuli was predominant in area V6 along the parieto-occipital sulcus. Finally, at 350 ms (100 ms after the motion offset) brain activity was visible again in area V1. For fast motion stimuli, the spatio-temporal brain pattern was similar, except that the first activity was detected at 70 ms in area MT+. Comparing functional magnetic resonance data for slow vs. fast motion, we found signs of slow-fast motion stimulus topography along the posterior brain in at least three cortical regions (MT+, V3A and LOR).
Collapse
Affiliation(s)
- Sabrina Pitzalis
- Department of Education Sciences for Motor Activity and Sport, University of Rome “Foro Italico”, Rome, Italy
- Neuropsychology Center, Santa Lucia Foundation, IRCCS, Rome, Italy
| | | | - Marco De Gasperis
- Department of Education Sciences for Motor Activity and Sport, University of Rome “Foro Italico”, Rome, Italy
| | - Alessandro Bultrini
- Department of Education Sciences for Motor Activity and Sport, University of Rome “Foro Italico”, Rome, Italy
| | - Francesco Di Russo
- Department of Education Sciences for Motor Activity and Sport, University of Rome “Foro Italico”, Rome, Italy
- Neuropsychology Center, Santa Lucia Foundation, IRCCS, Rome, Italy
- * E-mail:
| |
Collapse
|
38
|
Han DH, Lyoo IK, Renshaw PF. Differential regional gray matter volumes in patients with on-line game addiction and professional gamers. J Psychiatr Res 2012; 46:507-15. [PMID: 22277302 PMCID: PMC4632992 DOI: 10.1016/j.jpsychires.2012.01.004] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/05/2012] [Accepted: 01/05/2012] [Indexed: 12/24/2022]
Abstract
Patients with on-line game addiction (POGA) and professional video game players play video games for extended periods of time, but experience very different consequences for their on-line game play. Brain regions consisting of anterior cingulate, thalamus and occpito-temporal areas may increase the likelihood of becoming a pro-gamer or POGA. Twenty POGA, seventeen pro-gamers, and eighteen healthy comparison subjects (HC) were recruited. All magnetic resonance imaging (MRI) was performed on a 1.5 Tesla Espree MRI scanner (SIEMENS, Erlangen, Germany). Voxel-wise comparisons of gray matter volume were performed between the groups using the two-sample t-test with statistical parametric mapping (SPM5). Compared to HC, the POGA group showed increased impulsiveness and perseverative errors, and volume in left thalamus gray matter, but decreased gray matter volume in both inferior temporal gyri, right middle occipital gyrus, and left inferior occipital gyrus, compared with HC. Pro-gamers showed increased gray matter volume in left cingulate gyrus, but decreased gray matter volume in left middle occipital gyrus and right inferior temporal gyrus compared with HC. Additionally, the pro-gamer group showed increased gray matter volume in left cingulate gyrus and decreased left thalamus gray matter volume compared with the POGA group. The current study suggests that increased gray matter volumes of the left cingulate gyrus in pro-gamers and of the left thalamus in POGA may contribute to the different clinical characteristics of pro-gamers and POGA.
Collapse
Affiliation(s)
- Doug Hyun Han
- Department of Psychiatry, Chung Ang University, College of Medicine, Seoul, South Korea
| | - In Kyoon Lyoo
- Department of Psychiatry, Seoul National University Hospital, Seoul, South Korea
| | - Perry F. Renshaw
- Brain Institute, University of Utah, Salt Lake City, USA,Corresponding author. Tel.: +1 801 587 1216; fax: +1 801 585 5375. (P.F. Renshaw)
| |
Collapse
|
39
|
Galati G, Committeri G, Pitzalis S, Pelle G, Patria F, Fattori P, Galletti C. Intentional signals during saccadic and reaching delays in the human posterior parietal cortex. Eur J Neurosci 2011; 34:1871-85. [PMID: 22017280 DOI: 10.1111/j.1460-9568.2011.07885.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the monkey posterior parietal cortex (PPC), there is clear evidence of anatomically segregated neuronal populations specialized for planning saccades and arm-reaching movements. However, functional neuroimaging studies in humans have yielded controversial results. Here we show that the human PPC contains distinct subregions responsive to salient visual cues, some of which combine spatial and action-related signals into 'intentional' signals. Participants underwent event-related functional magnetic resonance imaging while performing delayed saccades and long-range arm reaches instructed by visual cues. We focused on activity in the time period following the cue and preceding the actual movement. The use of individual cortical surface reconstructions with detailed sulcal labeling allowed the definition of six responsive regions with distinctive anatomical locations in the PPC. Each region exhibited a distinctive combination of transient and sustained signals during the delay, modulated by either the cue spatial location (contralateral vs. ipsilateral), the instructed action (saccades vs. reaching) or both. Importantly, a lateral and a medial dorsal parietal region showed sustained responses during the delay preferentially for contralateral saccadic and reaching trials, respectively. In the lateral region, preference for saccades was evident only as a more sustained response during saccadic vs. reaching delays, whereas the medial region also showed a higher transient response to cues signaling reaching vs. saccadic actions. These response profiles closely match the behavior of neurons in the macaque lateral and medial intraparietal area, respectively, and suggest that these corresponding human regions are encoding spatially directed action plans or 'intentions'.
Collapse
Affiliation(s)
- Gaspare Galati
- Department of Psychology, Sapienza University of Rome, Rome, Italy.
| | | | | | | | | | | | | |
Collapse
|
40
|
Plailly J, Delon-Martin C, Royet JP. Experience induces functional reorganization in brain regions involved in odor imagery in perfumers. Hum Brain Mapp 2011; 33:224-34. [PMID: 21391264 DOI: 10.1002/hbm.21207] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 10/07/2010] [Accepted: 10/20/2010] [Indexed: 12/19/2022] Open
Abstract
Areas of expertise that cultivate specific sensory domains reveal the brain's ability to adapt to environmental change. Perfumers are a small population who claim to have a unique ability to generate olfactory mental images. To evaluate the impact of this expertise on the brain regions involved in odor processing, we measured brain activity in novice and experienced (student and professional) perfumers while they smelled or imagined odors. We demonstrate that olfactory imagery activates the primary olfactory (piriform) cortex (PC) in all perfumers, demonstrating that similar neural substrates were activated in odor perception and imagination. In professional perfumers, extensive olfactory practice influences the posterior PC, the orbitofrontal cortex, and the hippocampus; during the creation of mental images of odors, the activity in these areas was negatively correlated with experience. Thus, the perfumers' expertise is associated with a functional reorganization of key olfactory and memory brain regions, explaining their extraordinary ability to imagine odors and create fragrances.
Collapse
Affiliation(s)
- Jane Plailly
- Neurosciences Sensorielles, Comportement, Cognition, UMR 5020 CNRS-Université Claude Bernard Lyon 1, Institut Fédératif des Neurosciences de Lyon, Lyon, France.
| | | | | |
Collapse
|
41
|
Neuroscience of learning arithmetic--evidence from brain imaging studies. Neurosci Biobehav Rev 2009; 33:909-25. [PMID: 19428500 DOI: 10.1016/j.neubiorev.2009.03.005] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2008] [Revised: 03/05/2009] [Accepted: 03/11/2009] [Indexed: 11/23/2022]
Abstract
It is widely accepted that the human brain is remarkably adaptive not only in child development, but also during adulthood. Aim of this work is to offer an overview and a systematic analysis of neuroimaging studies on the acquisition of arithmetic expertise. In normally developing children and adults, the gain of arithmetic competence is reflected by a shift of activation from frontal brain areas to parietal areas relevant for arithmetic processing. A shift of activation is also observed within the parietal lobe from the intraparietal sulci to the left angular gyrus. Increases in angular gyrus activation with gaining of expertise have also been documented in other cognitive domains. It appears that the left angular gyrus activation is modulated by inter-individual differences in arithmetic performance. The comparison of normal individuals with exceptionally performing individuals (e.g., calculating prodigies) suggests that the experts' arithmetic proficiency relies on a more extended activation network than the network found in non-experts. In expert individuals with long-lasting, extensive mathematical training, specific structural brain modifications are also evident.
Collapse
|
42
|
Fujii N, Abla D, Kudo N, Hihara S, Okanoya K, Iriki A. Prefrontal activity during koh-do incense discrimination. Neurosci Res 2007; 59:257-64. [PMID: 17720267 DOI: 10.1016/j.neures.2007.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 06/21/2007] [Accepted: 07/09/2007] [Indexed: 10/23/2022]
Abstract
Whenever we make reasoned decisions we must refer to relevant knowledge obtained through past experience. Our brains test multiple premises and select whichever conclusion serves as the best explanation of the current conditions. In the present study we examined the prefrontal activity of koh-do experts with near infrared spectroscopy while they reasoned about odours during an incense discrimination task. These practitioners of the Japanese incense ceremony have been trained to form and manipulate abstract images of complex olfactory stimuli represented in a multidimensional symbolic space in the mind. In koh-do experts, the right PFC showed a consistent stimulus-non-selective response during discrimination and the left PFC showed phasic stimulus-selective responses modulated by the internal subjective state of the reasoning process. These two dissociated functions appeared to cooperate with each other during reasoning. In contrast, koh-do beginners did not show the organized response pattern found in experts. The results suggest that both PFCs contribute to abductive reasoning, but do so differently through different stages of the process.
Collapse
Affiliation(s)
- Naotaka Fujii
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | | | | | | | | | | |
Collapse
|
43
|
Elsaesser R, Paysan J. The sense of smell, its signalling pathways, and the dichotomy of cilia and microvilli in olfactory sensory cells. BMC Neurosci 2007; 8 Suppl 3:S1. [PMID: 17903277 PMCID: PMC1995455 DOI: 10.1186/1471-2202-8-s3-s1] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Smell is often regarded as an ancillary perception in primates, who seem so dominated by their sense of vision. In this paper, we will portray some aspects of the significance of olfaction to human life and speculate on what evolutionary factors contribute to keeping it alive. We then outline the functional architecture of olfactory sensory neurons and their signal transduction pathways, which are the primary detectors that render olfactory perception possible. Throughout the phylogenetic tree, olfactory neurons, at their apical tip, are either decorated with cilia or with microvilli. The significance of this dichotomy is unknown. It is generally assumed that mammalian olfactory neurons are of the ciliary type only. The existence of so-called olfactory microvillar cells in mammals, however, is well documented, but their nature remains unclear and their function orphaned. This paper discusses the possibility, that in the main olfactory epithelium of mammals ciliated and microvillar sensory cells exist concurrently. We review evidence related to this hypothesis and ask, what function olfactory microvillar cells might have and what signalling mechanisms they use.
Collapse
Affiliation(s)
- Rebecca Elsaesser
- Johns Hopkins University School of Medicine, 725 N. Wolfe St., 408 WBSB, Baltimore, MD 21205, USA
| | - Jacques Paysan
- Technical University of Darmstadt, Institute of Zoology, Schnittspahnstrasse 3, D-64287 Darmstadt, Germany
| |
Collapse
|
44
|
Hummel C, Frasnelli J, Gerber J, Hummel T. Cerebral processing of gustatory stimuli in patients with taste loss. Behav Brain Res 2007; 185:59-64. [PMID: 17714799 DOI: 10.1016/j.bbr.2007.07.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2007] [Revised: 06/26/2007] [Accepted: 07/09/2007] [Indexed: 11/24/2022]
Abstract
Aim was to investigate differences in the central-nervous processing of gustatory stimuli between normogeusic subjects and patients with taste disorders. Twelve subjects with normal gustatory function and eight patients suffering from hypo- to ageusia underwent one fMRI run each in a 1.5 T scanner where they received liquid gustatory stimuli. fMRI analyses were performed by means of SPM2. Across all participants clusters of activated voxels were mainly found in orbitofrontal and insular regions of interest. Even those patients who did not perceive any stimuli showed some activation of gustatory centers. Group comparisons revealed higher activation of the insular and orbitofrontal cortices in patients compared to the group of healthy subjects. While further studies are needed, this finding may be interpreted in terms of enhanced neuronal recruitment due to functional impairment in patients with gustatory loss. It may ultimately prove useful in terms of the prognostic evaluation of individual patients.
Collapse
Affiliation(s)
- C Hummel
- Smell & Taste Clinic, Department of Otorhinolaryngology, University of Dresden Medical School, Fetscherstr. 74, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
45
|
Wada Y, Tsuzuki D, Kobayashi N, Hayakawa F, Kohyama K. Visual illusion in mass estimation of cut food. Appetite 2007; 49:183-90. [PMID: 17368640 DOI: 10.1016/j.appet.2007.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2006] [Revised: 12/31/2006] [Accepted: 01/24/2007] [Indexed: 11/28/2022]
Abstract
We investigated the effect of the appearance of cut food on visual mass estimation. In this experiment, we manipulated the shape (e.g., a block, fine strips, or small cubes) of food samples of various masses, and presented them on a CRT display as stimuli. Eleven subjects participated in tasks to choose the picture of the food sample which they felt indicated a target mass. We used raw carrots and surimi (ground fish) gel as hard and soft samples, respectively. The results clearly confirm an existence of an illusion, and this indicates that the appearance of food interferes with visual mass estimation. Specifically, participants often overestimated the mass of finely cut food, especially fine strips, whereas they could accurately estimate the mass of block samples, regardless of the physical characteristics of the foods. The overestimation of the mass of cut food increased with the food's actual mass, and was particularly obvious with increases of apparent volume when cut into fine strips. These results suggest that the apparent volume of a food sample effects the visual estimation of its mass. Hence we can conclude that there are illusions associated with the visual presentation of food that may influence various food impressions, including satisfaction and eating behaviour.
Collapse
Affiliation(s)
- Yuji Wada
- National Food Research Institute, 2-1-12, Kannondai, Tsukuba, Ibaraki 305-8642, Japan
| | | | | | | | | |
Collapse
|
46
|
Okamoto M, Dan H, Singh AK, Hayakawa F, Jurcak V, Suzuki T, Kohyama K, Dan I. Prefrontal activity during flavor difference test: Application of functional near-infrared spectroscopy to sensory evaluation studies. Appetite 2006; 47:220-32. [PMID: 16797780 DOI: 10.1016/j.appet.2006.04.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 04/04/2006] [Accepted: 04/14/2006] [Indexed: 11/16/2022]
Abstract
Sensory evaluation (SE) of food attributes involves various levels of cognitive functions, yet not much has been studied about its neural basis. Using multi-channel functional near-infrared spectroscopy (fNIRS), we examined the activation of the anterior portion of the lateral prefrontal cortex (LPFC) of 12 healthy volunteers during the SE of tea samples. The experimental task used corresponded to the early phase of the same-different test, and required subjects to attentively taste tea samples and memorize their flavors. To isolate activation associated with the cognitive functions involved in the task, we contrasted the results with those achieved by a control (Ctl) task during which subjects held familiar tea samples in their mouths without actively evaluating their flavor. We probabilistically registered the fNIRS data to the Montreal Neurological Institute standard brain space to examine the results as they correspond with other published neuroimaging studies. We found significant activation in the left LPFC and in the right inferior frontal gyrus. The activation pattern was consistent with earlier studies on encoding of other sensory stimuli, with cortical regions supposed to be involved in semantic and perceptual processing. This research makes a start on characterizing the cognitive process employed during SE from the neuroimaging perspective.
Collapse
Affiliation(s)
- Masako Okamoto
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba 305-8642, Japan
| | | | | | | | | | | | | | | |
Collapse
|
47
|
|