1
|
Bower AE, Chung JW, Burciu RG. Mapping the aging brain: Insights into microstructural changes from free water-corrected fractional anisotropy. Neurosci Lett 2025; 849:138120. [PMID: 39862921 PMCID: PMC11851011 DOI: 10.1016/j.neulet.2025.138120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/23/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025]
Abstract
Aging has a significant impact on brain structure, demonstrated by numerous MRI studies using diffusion tensor imaging (DTI). While these studies reveal changes in fractional anisotropy (FA) across different brain regions, they tend to focus on white matter tracts and cognitive regions, often overlooking gray matter and motor areas. Additionally, traditional DTI metrics can be affected by partial volume effects. To address these limitations and gain a better understanding of microstructural changes across the whole brain, we utilized free water-corrected fractional anisotropy (FAt) to examine aging-related microstructural changes in a group of 20 young adults (YA) and 24 older adults (OA). A voxel-wise analysis revealed that YA had higher FAt values predominantly in white matter tracts associated with both motor and non-motor functions. In contrast, OA showed higher levels of FAt primarily in gray matter regions, including both subcortical and cortical motor areas, and occipital and temporal cortices. Complementing these cross-sectional results, correlation analyses within the OA group showed that many of these changes are further exacerbated with increasing age, underscoring the progressive nature of these microstructural alterations. In summary, the distinct patterns of FAt changes in gray versus white matter with aging suggest different underlying mechanisms. While white matter FAt values decrease, likely due to axonal degeneration, the increase in gray matter FAt could reflect either compensatory processes or pathological changes. Including behavioral data in future studies will be crucial for understanding the functional implications of these microstructural gray matter changes and their effects on cognitive and motor functions.
Collapse
Affiliation(s)
- Abigail E Bower
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
| | - Jae Woo Chung
- Department of Neurology, University of Minnesota Medical School, Minneapolis, MN, USA
| | - Roxana G Burciu
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA.
| |
Collapse
|
2
|
Delvenne JF, Malloy E. Functional implications of age-related atrophy of the corpus callosum. Neurosci Biobehav Rev 2025; 169:105982. [PMID: 39701505 DOI: 10.1016/j.neubiorev.2024.105982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/08/2024] [Accepted: 12/15/2024] [Indexed: 12/21/2024]
Abstract
The corpus callosum plays a critical role in inter-hemispheric communication by coordinating the transfer of sensory, motor, cognitive, and emotional information between the two hemispheres. However, as part of the normal aging process, the corpus callosum undergoes significant structural changes, including reductions in both its size and microstructural integrity. These age-related alterations can profoundly impact the brain's ability to coordinate functions across hemispheres, leading to a decline in various aspects of sensory processing, motor coordination, cognitive functioning, and emotional regulation. This review aims to synthesize current research on age-related changes in the corpus callosum, examining the regional differences in atrophy, its underlying causes, and its functional implications. By exploring these aspects, we seek to emphasize the clinical significance of corpus callosum degeneration and its impact on the quality of life in older adults, as well as the potential for early detection and targeted interventions to preserve brain health during aging. Finally, the review calls for further research into the mechanisms underlying corpus callosum atrophy and its broader implications for aging.
Collapse
Affiliation(s)
| | - Ella Malloy
- School of Psychology, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
3
|
Song JY, Fleysher R, Ye K, Kim M, Zimmerman ME, Lipton RB, Lipton ML. Characterizing the microstructural transition at the gray matter-white matter interface: Implementation and demonstration of age-associated differences. Neuroimage 2025; 306:121019. [PMID: 39809374 DOI: 10.1016/j.neuroimage.2025.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND The cortical gray matter-white matter interface (GWI) is a natural transition zone where the composition of brain tissue abruptly changes and is a location for pathologic change in brain disorders. While diffusion magnetic resonance imaging (dMRI) is a reliable and well-established technique to characterize brain microstructure, the GWI is difficult to assess with dMRI due to partial volume effects and is normally excluded from such studies. METHODS In this study, we introduce an approach to characterize the dMRI microstructural profile across the GWI and to assess the sharpness of the microstructural transition from cortical gray matter (GM) to white matter (WM). This analysis includes cross-sectional data from a total of 146 participants (18-91 years; mean age: 52.4 (SD 21.4); 83 (57 %) female) enrolled in two normative lifespan cohorts at Albert Einstein College of Medicine from 2019 to 2023. We compute the aggregate GWI slope for each parameter, across each of 6 brain regions (cingulate, frontal, occipital, orbitofrontal, parietal, and temporal) for each participant. The association of GWI slope in each region with age was assessed using a linear model, with biological sex as a covariate. RESULTS We demonstrate this method captures an inherent change in fractional anisotropy (FA), axial diffusivity (AD), orientation dispersion index (ODI) and intracellular volume fraction (ICVF) across the GWI that is characterized by small variance. We identified statistically significant associations of FA slope with age in all regions (p < 0.002 for all analyses), with FA slope magnitude inversely associated with higher age. Similar statistically significant age-related associations were found for AD slope in cingulate, occipital, and temporal regions, for ODI slope in parietal and occipital regions, and for ICVF slope in frontal, orbitofrontal, parietal, and temporal regions. CONCLUSION The inverse association of slope magnitude with age indicates loss of the sharp GWI transition in aging, which is consistent with processes such as dendritic pruning, axonal degeneration, and inflammation. This method overcomes techniques issues related to interrogating the GWI. Beyond characterizing normal aging, it could be applied to explore pathological effects at this crucial, yet under-researched region.
Collapse
Affiliation(s)
- Joan Y Song
- Dominick P Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Roman Fleysher
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States
| | - Kenny Ye
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Mimi Kim
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Molly E Zimmerman
- Department of Psychology, Fordham University, Bronx, NY, United States
| | - Richard B Lipton
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, United States; Saul R. Korey Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, United States
| | - Michael L Lipton
- Department of Radiology, Columbia University Irving Medical Center, New York, NY, United States; Department of Biomedical Engineering, Columbia University, New York, NY, United States.
| |
Collapse
|
4
|
Hoagey DA, Pongpipat EE, Rodrigue KM, Kennedy KM. Coupled aging of cyto- and myeloarchitectonic atlas-informed gray and white matter structural properties. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.25.625295. [PMID: 39651116 PMCID: PMC11623663 DOI: 10.1101/2024.11.25.625295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
A key aspect of brain aging that remains poorly understood is its high regional heterogeneity and heterochronicity. A better understanding of how the structural organization of the brain shapes aging trajectories is needed. Neuroimaging tissue "types" are often collected and analyzed as separate acquisitions, an approach that cannot provide a holistic view of age-related change of the related portions of the neurons (cell bodies and axons). Because neuroimaging can only assess indirect features at the gross macrostructural level, incorporating post-mortem histological information may aid in better understanding of structural aging gradients. Longitudinal design, coupling of gray and white matter (GM, WM) properties, and a biologically informed approach to organizing neural properties are needed. Thus, we tested aging of the regional coupling between GM (cortical thickness, surface area, volume) and WM (fractional anisotropy, mean, axial, and radial diffusivities) structural metrics using linear mixed effects modeling in 102 healthy adults aged 20-94 years old, scanned on two occasions over a four-year period. The association between age-related within-person change in GM morphometry and the diffusion properties of the directly neighboring portion of white matter were assessed, capturing both aspects of neuronal health in one model. Additionally, we parcellated the brain utilizing the histological-staining informed von Economo-Koskinas atlas to consider regional cyto- and myelo-architecture. Results demonstrate several gradients of coupled association in the age-related decline of neighboring white and gray matter. Most notably, gradients of coupling along the heteromodal association to sensory axis were found for several areas (e.g., anterior frontal and lateral temporal cortices, vs pre- and post-central gyrus, occipital, and limbic areas), in line with heterochronicity and retrogenesis theories of aging. Further effort to bridge across data and measurement scales will enhance understanding of the mechanisms of the aging brain.
Collapse
|
5
|
Guo Y, Liu Y, Zhang T, Ruan J, Liu S, Ren Z. Intrinsic disruption of white matter microarchitecture in major depressive disorder: A voxel-based meta analysis of diffusion tensor imaging. J Affect Disord 2024; 363:161-173. [PMID: 39032713 DOI: 10.1016/j.jad.2024.07.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/17/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024]
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent and disabling mood disorder, thought to be linked with brain white matter (WM) alterations. Prior diffusion tensor imaging (DTI) studies have reported inconsistent changes in fractional anisotropy (FA) across different brain regions in MDD patients. However, none of these studies utilized raw t-map data for WM meta-analysis in MDD. Our study aims to address this gap by conducting a whole-brain-based meta-analysis of FA in MDD using Seed-based d mapping via permutation of subject images (SDM-PSI), combining reported peak coordinates and raw statistical parametric maps. OBJECTIVES Following PRISMA guidelines, we performed a systematic search and meta-analysis to compare FA in MDD patients with healthy controls (HC). Our goal was to identify WM abnormalities in MDD, using SDM, which could shed light on the disorder's pathogenesis. RESULTS The meta-analysis included 39 studies with 3696 participants (2094 with MDD, 1602HC). It revealed that MDD patients, in comparison to HC, have lower FA in the corpus callosum (CC) and anterior thalamic projections (ATP). Subgroup analyses indicated that the CC is a more stable pathogenic factor in MDD. Meta-regression analyses showed no linear correlation between the mean age, percentage of female patients, duration of depression, and FA abnormalities. This suggests that WM impairments in interhemispheric connections and anterior thalamocortical circuits are significant in the pathogenesis of MDD.
Collapse
Affiliation(s)
- Yunxiao Guo
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Yinong Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Tao Zhang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Jun Ruan
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Sijun Liu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China
| | - Zhihong Ren
- Key Laboratory of Adolescent Cyberpsychology and Behavior (Ministry of Education), School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, National Intelligent Society Governance Experiment Base (Education), School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
6
|
Xu L, Gao Y, Li M, Lawless R, Zhao Y, Schilling KG, Rogers BP, Anderson AW, Ding Z, Landman BA, Gore JC. Functional correlation tensors in brain white matter and the effects of normal aging. Brain Imaging Behav 2024; 18:1197-1214. [PMID: 39235695 PMCID: PMC11582213 DOI: 10.1007/s11682-024-00914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/06/2024]
Abstract
Resting state correlations between blood oxygenation level dependent (BOLD) MRI signals from voxels in white matter (WM) are demonstrably anisotropic, so that functional correlation tensors (FCT) may be used to quantify the underlying microstructure of BOLD effects in WM tracts. However, the overall spatial distribution of FCTs and their metrics in specific populations has not yet been established, and the factors that affect their precise arrangements remain unclear. Changes in WM occur with normal aging, and these may be expected to affect FCTs. We hypothesized that FCTs exhibit a characteristic spatial pattern and may show systematic changes with aging or other factors. Here we report our analyses of the FCT characteristics of fMRI images of a large cohort of 461 cognitively normal subjects (190 females, 271 males) sourced from the Open Access Series of Imaging Studies (OASIS), with age distributions of 42 y/o - 95 y/o. Group averages and statistics of FCT indices, including axial functional correlations, radial functional correlations, mean functional correlations and fractional anisotropy, were quantified in WM bundles defined by the JHU ICBM-DTI-81 WM atlas. In addition, their variations with normal aging were examined. The results revealed a dimorphic distribution of changes in FCT metrics with age, with decreases of the functional correlations in some regions and increases in others. Supplementary analysis revealed that females exhibited significant age effects on a greater number of WM areas, but the interaction between age and sex was not significant. The findings demonstrate the reproducibility of the spatial distribution of FCT metrics and reveal subtle regional changes with age.
Collapse
Affiliation(s)
- Lyuan Xu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yurui Gao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Richard Lawless
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
| | - Yu Zhao
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Zhaohua Ding
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, 1161 21st Ave. S, Medical Center North, Nashville, TN, AA-1105, 37232-2310, USA.
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
7
|
Wróbel PP, Braaß H, Frey BM, Bönstrup M, Guder S, Frontzkowski LK, Feldheim JF, Cheng B, Rathi Y, Pasternak O, Thomalla G, Koerte IK, Shenton ME, Gerloff C, Quandt F, Higgen FL, Schulz R. Cortical microstructure and hemispheric specialization-A diffusion-imaging analysis in younger and older adults. Eur J Neurosci 2024; 60:5718-5730. [PMID: 39205547 DOI: 10.1111/ejn.16518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/12/2024] [Indexed: 09/04/2024]
Abstract
Characterizing cortical plasticity becomes increasingly important for identifying compensatory mechanisms and structural reserve in the ageing population. While cortical thickness (CT) largely contributed to systems neuroscience, it incompletely informs about the underlying neuroplastic pathophysiology. In turn, microstructural characteristics may correspond to atrophy mechanisms in a more sensitive way. Fractional anisotropy, a diffusion tensor imaging (DTI) measure, is inversely related to cortical histologic complexity. Axial diffusivity and radial diffusivity are assumed to be linked to the density of structures oriented perpendicular and parallel to the cortical surface, respectively. We hypothesized (1) that cortical DTI will reveal microstructural correlates for hemispheric specialization, particularly in the language and motor systems, and (2) that lateralization of cortical DTI parameters will show an age effect, paralleling age-related changes in activation, especially in the prefrontal cortex. We analysed data from healthy younger and older adult participants (N = 91). DTI and CT data were extracted from regions of the Destrieux atlas. Diffusion measures showed lateralization in specialized motor, language, visual, auditory and inferior parietal cortices. Age-dependent increased lateralization for DTI measures was observed in the prefrontal, angular, superior temporal and lateral occipital cortex. CT did not show any age-dependent alterations in lateralization. Our observations argue that cortical DTI can capture microstructural properties associated with functional specialization, resembling findings from histology. Age effects on diffusion measures in the integrative prefrontal and parietal areas may shed novel light on the atrophy-related plasticity in healthy ageing.
Collapse
Affiliation(s)
- Paweł P Wróbel
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hanna Braaß
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benedikt M Frey
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marlene Bönstrup
- Department of Neurology, University Medical Center, Leipzig, Germany
| | - Stephanie Guder
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas K Frontzkowski
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan F Feldheim
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Bastian Cheng
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yogesh Rathi
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ofer Pasternak
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Götz Thomalla
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- cBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Ludwig-Maximilians-Universität, Munich, Germany
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Martha E Shenton
- Psychiatry Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Christian Gerloff
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fanny Quandt
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Focko L Higgen
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Robert Schulz
- Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
8
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
9
|
Pan Z, Ma X, Dai E, Auerbach EJ, Guo H, Uğurbil K, Wu X. Reconstruction for 7T high-resolution whole-brain diffusion MRI using two-stage N/2 ghost correction and L1-SPIRiT without single-band reference. Magn Reson Med 2023; 89:1915-1930. [PMID: 36594439 PMCID: PMC9992311 DOI: 10.1002/mrm.29573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/28/2022] [Accepted: 12/19/2022] [Indexed: 01/04/2023]
Abstract
PURPOSE To combine a new two-stage N/2 ghost correction and an adapted L1-SPIRiT method for reconstruction of 7T highly accelerated whole-brain diffusion MRI (dMRI) using only autocalibration scans (ACS) without the need of additional single-band reference (SBref) scans. METHODS The proposed ghost correction consisted of a 3-line reference approach in stage 1 and the reference-free entropy method in stage 2. The adapted L1-SPIRiT method was formulated within the 3D k-space framework. Its efficacy was examined by acquiring two dMRI data sets at 1.05-mm isotropic resolutions with a total acceleration of 6 or 9 (i.e., 2-fold or 3-fold slice and 3-fold in-plane acceleration). Diffusion analysis was performed to derive DTI metrics and estimate fiber orientation distribution functions (fODFs). The results were compared with those of 3D k-space GRAPPA using only ACS, all in reference to 3D k-space GRAPPA using both ACS and SBref (serving as a reference). RESULTS The proposed ghost correction eliminated artifacts more robustly than conventional approaches. Our adapted L1-SPIRiT method outperformed 3D k-space GRAPPA when using only ACS, improving image quality to what was achievable with 3D k-space GRAPPA using both ACS and SBref scans. The improvement in image quality further resulted in an improvement in estimation performances for DTI and fODFs. CONCLUSION The combination of our new ghost correction and adapted L1-SPIRiT method can reliably reconstruct 7T highly accelerated whole-brain dMRI without the need of SBref scans, increasing acquisition efficiency and reducing motion sensitivity.
Collapse
Affiliation(s)
- Ziyi Pan
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Xiaodong Ma
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, United States
| | - Edward J. Auerbach
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, China
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| | - Xiaoping Wu
- Center for Magnetic Resonance Research, Radiology, Medical School, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
10
|
Baeuchl C, Glöckner F, Koch C, Petzold J, Schuck NW, Smolka MN, Li SC. Dopamine differentially modulates medial temporal lobe activity and behavior during spatial navigation in young and older adults. Neuroimage 2023; 273:120099. [PMID: 37037380 DOI: 10.1016/j.neuroimage.2023.120099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/13/2023] [Accepted: 04/07/2023] [Indexed: 04/12/2023] Open
Abstract
Aging is associated with changes in spatial navigation behavior. In addition to an overall performance decline, older adults tend to rely more on proximal location cue information than on environmental boundary information during spatial navigation compared to young adults. The fact that older adults are more susceptible to errors during spatial navigation might be partly attributed to deficient dopaminergic modulation of hippocampal and striatal functioning. Hence, elevating dopamine levels might differentially modulate spatial navigation and memory performance in young and older adults. In this work, we administered levodopa (L-DOPA) in a double-blind within-subject, placebo-controlled design and recorded functional neuroimaging while young and older adults performed a 3D spatial navigation task in which boundary geometry or the position of a location cue were systematically manipulated. An age by intervention interaction on the neural level revealed an upregulation of brain responses in older adults and a downregulation of responses in young adults within the medial temporal lobe (including hippocampus and parahippocampus) and brainstem, during memory retrieval. Behaviorally, L-DOPA had no effect on older adults' overall memory performance; however, older adults whose spatial memory improved under L-DOPA also showed a shift towards more boundary processing under L-DOPA. In young adults, L-DOPA induced a decline in spatial memory performance in task-naïve participants. These results are consistent with the inverted-U-shaped hypothesis of dopamine signaling and cognitive function and suggest that increasing dopamine availability improves hippocampus-dependent place learning in some older adults.
Collapse
Affiliation(s)
- Christian Baeuchl
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Franka Glöckner
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Christoph Koch
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; International Max Planck Research School on the Life Course (LIFE), Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany
| | - Johannes Petzold
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Nicolas W Schuck
- Max Planck Research Group NeuroCode, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Aging Research, Berlin, Germany; Institute of Psychology, Universität Hamburg, Hamburg, German
| | - Michael N Smolka
- Department of Psychiatry, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
11
|
Cheung MC, Lee TL, Sze SL, Chan AS. Photobiomodulation improves frontal lobe cognitive functions and mental health of older adults with non-amnestic mild cognitive impairment: Case studies. Front Psychol 2023; 13:1095111. [PMID: 36704674 PMCID: PMC9871821 DOI: 10.3389/fpsyg.2022.1095111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction This study investigated the effects of transcranial photobiomodulation (tPBM) on improving the frontal lobe cognitive functions and mental health of older adults. Methods Three older adults with mild cognitive impairment (MCI) of the non-amnestic type received 18-session tPBM stimulation for 9 weeks and were assessed with neuropsychological tests of memory and executive functions and standardized questionnaires on depressive and anxiety symptoms, global cognitive functions, and daily functioning abilities before and after tPBM stimulation. Results At baseline, their intrusion and/or perseveration errors in a verbal memory test and a fluency test, as measures of the frontal lobe cognitive functions, were in the borderline to severely impaired range at baseline. After tPBM stimulation, the three older adults showed various levels of improvement in their frontal lobe cognitive functions. One older adult's intrusion and perseveration errors improved from the <1st-2nd percentile (moderately to severely impaired range) to the 41st-69th percentile (average range), another older adult's intrusion errors improved from the 11th percentile to the 83rd percentile, and the third older adult's intrusion errors improved from the 5th percentile to the 56th percentile. Moreover, improvements in their anxiety and/or depressive symptoms were also observed. One older adult's depressive and anxiety symptoms improved from the severe range at baseline to the mild range after the intervention. The other two older adults' depressive symptoms improved from the mild range at baseline to the normal range after the intervention. Discussion These findings provide preliminary support for the potential of tPBM to improve the frontal lobe cognitive functions and mental health of older adults with MCI. Given the small sample size of only three older adults and the absence of a placebo control group, larger randomized controlled studies are needed to confirm its potential.
Collapse
Affiliation(s)
- Mei-Chun Cheung
- Department of Social Work, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Tsz-Lok Lee
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Sophia L. Sze
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China
| | - Agnes S. Chan
- Research Center for Neuropsychological Well-Being, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China,*Correspondence: Agnes S. Chan, ✉
| |
Collapse
|
12
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
13
|
Alzaid H, Ethofer T, Kardatzki B, Erb M, Scheffler K, Berg D, Maetzler W, Hobert MA. Gait decline while dual-tasking is an early sign of white matter deterioration in middle-aged and older adults. Front Aging Neurosci 2022; 14:934241. [PMID: 36247983 PMCID: PMC9558904 DOI: 10.3389/fnagi.2022.934241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Loss of white matter integrity (WMI) is associated with gait deficits in middle-aged and older adults. However, these deficits are often only apparent under cognitively demanding situations, such as walking and simultaneously performing a secondary cognitive task. Moreover, evidence suggests that declining executive functions (EF) are linked to gait decline, and their co-occurrence may point to a common underlying pathology, i.e., degeneration of shared brain regions. In this study, we applied diffusion tensor imaging (DTI) and a standardized gait assessment under single- and dual-tasking (DT) conditions (walking and subtracting) in 74 middle-aged and older adults without any significant gait or cognitive impairments to detect subtle WM alterations associated with gait decline under DT conditions. Additionally, the Trail Making Test (TMT) was used to assess EF, classify participants into three groups based on their performance, and examine a possible interaction between gait, EF, and WMI. Gait speed and subtracting speed while dual-tasking correlated significantly with the fractional anisotropy (FA) in the bilateral anterior corona radiata (highest r = 0.51/p < 0.0125 FWE-corrected). Dual-task costs (DTC) of gait speed correlated significantly with FA in widespread pathways, including the corpus callosum, bilateral anterior and superior corona radiata, as well as the left superior longitudinal fasciculus (highest r = −0.47/p < 0.0125 FWE-corrected). EF performance was associated with FA in the left anterior corona radiata (p < 0.05); however, EF did not significantly mediate the effects of WMI on DTC of gait speed. There were no significant correlations between TMT and DTC of gait and subtracting speed, respectively. Our findings indicate that gait decline under DT conditions is associated with widespread WM deterioration even in middle-aged and older adults without any significant gait or cognitive impairments. However, this relationship was not mediated by EF.
Collapse
Affiliation(s)
- Haidar Alzaid
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Haidar Alzaid,
| | - Thomas Ethofer
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, Tübingen University Hospital, Tübingen, Germany
| | - Bernd Kardatzki
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Michael Erb
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Klaus Scheffler
- Department of Biomedical Magnetic Resonance, Tübingen University Hospital, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| | - Walter Maetzler
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| | - Markus A. Hobert
- Department of Neurology, Kiel University Hospital, Kiel, Germany
| |
Collapse
|
14
|
Merenstein JL, Bennett IJ. Bridging patterns of neurocognitive aging across the older adult lifespan. Neurosci Biobehav Rev 2022; 135:104594. [PMID: 35227712 PMCID: PMC9888009 DOI: 10.1016/j.neubiorev.2022.104594] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/27/2022] [Accepted: 02/23/2022] [Indexed: 02/02/2023]
Abstract
Magnetic resonance imaging (MRI) studies of brain and neurocognitive aging rarely include oldest-old adults (ages 80 +). But predictions of neurocognitive aging theories derived from MRI findings in younger-old adults (ages ~55-80) may not generalize into advanced age, particularly given the increased prevalence of cognitive impairment/dementia in the oldest-old. Here, we reviewed the MRI literature in oldest-old adults and interpreted findings within the context of regional variation, compensation, brain maintenance, and reserve theories. Structural MRI studies revealed regional variation in brain aging as larger age effects on medial temporal and posterior regions for oldest-old than younger-old adults. They also revealed that brain maintenance explained preserved cognitive functioning into the tenth decade of life. Very few functional MRI studies examined compensatory activity in oldest-old adults who perform as well as younger groups, although there was evidence that higher brain reserve in oldest-old adults may mediate effects of brain aging on cognition. Despite some continuity, different cognitive and neural profiles across the older adult lifespan should be addressed in modern neurocognitive aging theories.
Collapse
|
15
|
Dickinson A, Jeste S, Milne E. Electrophysiological signatures of brain aging in autism spectrum disorder. Cortex 2022; 148:139-151. [PMID: 35176551 PMCID: PMC11813168 DOI: 10.1016/j.cortex.2021.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/19/2021] [Accepted: 09/06/2021] [Indexed: 11/22/2022]
Abstract
Recent evidence suggests that structural and functional brain aging is atypical in adults with autism spectrum disorder (ASD). However, it remains unclear if oscillatory slowing, a key marker of neurophysiological aging, follows an atypical trajectory in this population. This study examines patterns of age-related oscillatory slowing in adults with ASD, captured by reductions in the brain's peak alpha frequency (PAF). Resting-state electroencephalography (EEG) data from adults (18-70 years) with ASD (N = 93) and non-ASD controls (N = 87) were pooled from three independent datasets. A robust curve-fitting procedure quantified the peak frequency of alpha oscillations (7-13 Hz) across all brain regions. Associations between PAF and age were assessed and compared between groups. Consistent with characteristic patterns of oscillatory slowing, PAF was negatively associated with age across the entire sample (p < .0001). A significant group-by-age interaction revealed that this relationship was more pronounced in adults with ASD (p < .01). These findings invite further longitudinal investigations of PAF in adults with ASD to confirm if age-related oscillatory slowing is accelerated.
Collapse
Affiliation(s)
- Abigail Dickinson
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Shafali Jeste
- Semel Institute of Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Elizabeth Milne
- Department of Psychology, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
16
|
Yeske B, Hou J, Adluru N, Nair VA, Prabhakaran V. Differences in Diffusion Tensor Imaging White Matter Integrity Related to Verbal Fluency Between Young and Old Adults. Front Aging Neurosci 2021; 13:750621. [PMID: 34880746 PMCID: PMC8647802 DOI: 10.3389/fnagi.2021.750621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/14/2021] [Indexed: 12/14/2022] Open
Abstract
Throughout adulthood, the brain undergoes an array of structural and functional changes during the typical aging process. These changes involve decreased brain volume, reduced synaptic density, and alterations in white matter (WM). Although there have been some previous neuroimaging studies that have measured the ability of adult language production and its correlations to brain function, structural gray matter volume, and functional differences between young and old adults, the structural role of WM in adult language production in individuals across the life span remains to be thoroughly elucidated. This study selected 38 young adults and 35 old adults for diffusion tensor imaging (DTI) and performed the Controlled Oral Word Association Test to assess verbal fluency (VF). Tract-Based Spatial Statistics were employed to evaluate the voxel-based group differences of diffusion metrics for the values of fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), radial diffusivity (RD), and local diffusion homogeneity (LDH) in 12 WM regions of interest associated with language production. To investigate group differences on each DTI metric, an analysis of covariance (ANCOVA) controlling for sex and education level was performed, and the statistical threshold was considered at p < 0.00083 (0.05/60 labels) after Bonferroni correction for multiple comparisons. Significant differences in DTI metrics identified in the ANCOVA were used to perform correlation analyses with VF scores. Compared to the old adults, the young adults had significantly (1) increased FA values on the bilateral anterior corona radiata (ACR); (2) decreased MD values on the right ACR, but increased MD on the left uncinate fasciculus (UF); and (3) decreased RD on the bilateral ACR. There were no significant differences between the groups for AD or LDH. Moreover, the old adults had only a significant correlation between the VF score and the MD on the left UF. There were no significant correlations between VF score and DTI metrics in the young adults. This study adds to the growing body of research that WM areas involved in language production are sensitive to aging.
Collapse
Affiliation(s)
- Benjamin Yeske
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Jiancheng Hou
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Center for Cross-Strait Cultural Development, Fujian Normal University, Fuzhou, China
| | - Nagesh Adluru
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Waisman Center, University of Wisconsin–Madison, Madison, WI, United States
| | - Veena A. Nair
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
| | - Vivek Prabhakaran
- Department of Radiology, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, United States
- Department of Psychology, Department of Psychiatry, University of Wisconsin–Madison, Madison, WI, United States
- Neuroscience Training Program, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
17
|
From aMCI to AD: The Role of Visuo-Spatial Memory Span and Executive Functions in Egocentric and Allocentric Spatial Impairments. Brain Sci 2021; 11:brainsci11111536. [PMID: 34827534 PMCID: PMC8615504 DOI: 10.3390/brainsci11111536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/17/2021] [Accepted: 11/17/2021] [Indexed: 11/29/2022] Open
Abstract
A difficulty in encoding spatial information in an egocentric (i.e., body-to-object) and especially allocentric (i.e., object-to-object) manner, and impairments in executive function (EF) are typical in amnestic mild cognitive impairment (aMCI) and Alzheimer’s disease (AD). Since executive functions are involved in spatial encodings, it is important to understand the extent of their reciprocal or selective impairment. To this end, AD patients, aMCI and healthy elderly people had to provide egocentric (What object was closest to you?) and allocentric (What object was closest to object X?) judgments about memorized objects. Participants’ frontal functions, attentional resources and visual-spatial memory were assessed with the Frontal Assessment Battery (FAB), the Trail Making Test (TMT) and the Corsi Block Tapping Test (forward/backward). Results showed that ADs performed worse than all others in all tasks but did not differ from aMCIs in allocentric judgments and Corsi forward. Regression analyses showed, although to different degrees in the three groups, a link between attentional resources, visuo-spatial memory and egocentric performance, and between frontal resources and allocentric performance. Therefore, visuo-spatial memory, especially when it involves allocentric frames and requires demanding active processing, should be carefully assessed to reveal early signs of conversion from aMCI to AD.
Collapse
|
18
|
MacDonald ME, Pike GB. MRI of healthy brain aging: A review. NMR IN BIOMEDICINE 2021; 34:e4564. [PMID: 34096114 DOI: 10.1002/nbm.4564] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
We present a review of the characterization of healthy brain aging using MRI with an emphasis on morphology, lesions, and quantitative MR parameters. A scope review found 6612 articles encompassing the keywords "Brain Aging" and "Magnetic Resonance"; papers involving functional MRI or not involving imaging of healthy human brain aging were discarded, leaving 2246 articles. We first consider some of the biogerontological mechanisms of aging, and the consequences of aging in terms of cognition and onset of disease. Morphological changes with aging are reviewed for the whole brain, cerebral cortex, white matter, subcortical gray matter, and other individual structures. In general, volume and cortical thickness decline with age, beginning in mid-life. Prevalent silent lesions such as white matter hyperintensities, microbleeds, and lacunar infarcts are also observed with increasing frequency. The literature regarding quantitative MR parameter changes includes T1 , T2 , T2 *, magnetic susceptibility, spectroscopy, magnetization transfer, diffusion, and blood flow. We summarize the findings on how each of these parameters varies with aging. Finally, we examine how the aforementioned techniques have been used for age prediction. While relatively large in scope, we present a comprehensive review that should provide the reader with sound understanding of what MRI has been able to tell us about how the healthy brain ages.
Collapse
Affiliation(s)
- M Ethan MacDonald
- Department of Electrical and Software Engineering, University of Calgary, Calgary, Alberta, Canada
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - G Bruce Pike
- Departments of Radiology and Clinical Neuroscience, University of Calgary, Calgary, Alberta, Canada
- Healthy Brain Aging Laboratory, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
19
|
Kelley S, Plass J, Bender AR, Polk TA. Age-Related Differences in White Matter: Understanding Tensor-Based Results Using Fixel-Based Analysis. Cereb Cortex 2021; 31:3881-3898. [PMID: 33791797 DOI: 10.1093/cercor/bhab056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 01/19/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Aging is associated with widespread alterations in cerebral white matter (WM). Most prior studies of age differences in WM have used diffusion tensor imaging (DTI), but typical DTI metrics (e.g., fractional anisotropy; FA) can reflect multiple neurobiological features, making interpretation challenging. Here, we used fixel-based analysis (FBA) to investigate age-related WM differences observed using DTI in a sample of 45 older and 25 younger healthy adults. Age-related FA differences were widespread but were strongly associated with differences in multi-fiber complexity (CX), suggesting that they reflected differences in crossing fibers in addition to structural differences in individual fiber segments. FBA also revealed a frontolimbic locus of age-related effects and provided insights into distinct microstructural changes underlying them. Specifically, age differences in fiber density were prominent in fornix, bilateral anterior internal capsule, forceps minor, body of the corpus callosum, and corticospinal tract, while age differences in fiber cross section were largest in cingulum bundle and forceps minor. These results provide novel insights into specific structural differences underlying major WM differences associated with aging.
Collapse
Affiliation(s)
- Shannon Kelley
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - John Plass
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew R Bender
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Thad A Polk
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
20
|
Che Mohd Nassir CMN, Mohamad Ghazali M, Ahmad Safri A, Jaffer U, Abdullah WZ, Idris NS, Muzaimi M. Elevated Circulating Microparticle Subpopulations in Incidental Cerebral White Matter Hyperintensities: A Multimodal Study. Brain Sci 2021; 11:133. [PMID: 33498429 PMCID: PMC7909442 DOI: 10.3390/brainsci11020133] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/13/2021] [Accepted: 01/19/2021] [Indexed: 01/02/2023] Open
Abstract
Asymptomatic (or "silent") manifestations of cerebral small vessel disease (CSVD) are widely recognized through incidental findings of white matter hyperintensities (WMHs) as a result of magnetic resonance imaging (MRI). This study aims to examine the potential associations of surrogate markers for the evaluation of white matter integrity in CSVD among asymptomatic individuals through a battery of profiling involving QRISK2 cardiocerebrovascular risk prediction, neuroimaging, neurocognitive evaluation, and microparticles (MPs) titers. Sixty asymptomatic subjects (mean age: 39.83 ± 11.50 years) with low to moderate QRISK2 scores were recruited and underwent neurocognitive evaluation for memory and cognitive performance, peripheral venous blood collection for enumeration of selected MPs subpopulations, and 3T MRI brain scan with specific diffusion MRI (dMRI) sequences inclusive of diffusion tensor imaging (DTI). WMHs were detected in 20 subjects (33%). Older subjects (mean age: 46.00 ± 12.00 years) had higher WMHs prevalence, associated with higher QRISK2 score and reduced processing speed. They also had significantly higher mean percentage of platelet (CD62P)- and leukocyte (CD62L)-derived MPs. No association was found between reduced white matter integrity-especially at the left superior longitudinal fasciculus (LSLF)-with age and neurocognitive function; however, LSLF was associated with higher QRISK2 score, total MPs, and CD62L- and endothelial cell-derived MPs (CD146). Therefore, this study establishes these multimodal associations as potential surrogate markers for "silent" CSVD manifestations in the well-characterized cardiocerebrovascular demographic of relatively young, neurologically asymptomatic adults. Furthermore, to the best of our knowledge, this study is the first to exhibit elevated MP counts in asymptomatic CSVD (i.e., CD62P and CD62L), which warrants further delineation.
Collapse
Affiliation(s)
- Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Mazira Mohamad Ghazali
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Amanina Ahmad Safri
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Usman Jaffer
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
| | - Wan Zaidah Abdullah
- Department of Haematology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia;
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
| | - Nur Suhaila Idris
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
- Department of Family Medicine, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia
| | - Mustapha Muzaimi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia; (C.M.N.C.M.N.); (M.M.G.); (A.A.S.); (U.J.)
- Hospital Universiti Sains Malaysia, Jalan Raja Perempuan Zainab II, Kubang Kerian 16150, Kelantan, Malaysia;
| |
Collapse
|
21
|
Delvenne JF, Scally B, Bunce D, Burke MR. Splenium tracts of the corpus callosum degrade in old age. Neurosci Lett 2021; 742:135549. [PMID: 33285249 DOI: 10.1016/j.neulet.2020.135549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
It is well established that the posterior region of the corpus callosum, known as the splenium, is relatively preserved during the course of normal ageing. However, the effect of age on its distinct interhemispheric tract bundles that project to bilateral occipital, parietal and temporal areas of the cortex, is largely unknown. In the present study, diffusion tensor imaging was used to directly examine the integrity of these distinct segregations and their diffusion metrics were compared between groups of young adults (n = 20, mean age = 30.75) and older adults (n = 19, mean age = 80.21). Results revealed that while occipital tracts were preserved in older adults, parietal and temporal segments were particularly impaired. These findings are the first to indicate the existence of selective alterations in the posterior region of the corpus callosum in older age.
Collapse
Affiliation(s)
- Jean-Francois Delvenne
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Brian Scally
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David Bunce
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Melanie Rose Burke
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
22
|
Levin O, Netz Y, Ziv G. Behavioral and Neurophysiological Aspects of Inhibition-The Effects of Acute Cardiovascular Exercise. J Clin Med 2021; 10:E282. [PMID: 33466667 PMCID: PMC7828827 DOI: 10.3390/jcm10020282] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/28/2022] Open
Abstract
This review summarizes behavioral and neurophysiological aspects of inhibitory control affected by a single bout of cardiovascular exercise. The review also examines the effect of a single bout of cardiovascular exercise on these processes in young adults with a focus on the functioning of prefrontal pathways (including the left dorsolateral prefrontal cortex (DLPFC) and elements of the prefrontal-basal ganglia pathways). Finally, the review offers an overview on the potential effects of cardiovascular exercise on GABA-ergic and glutamatergic neurotransmission in the adult brain and propose mechanisms or processes that may mediate these effects. The main findings show that a single bout of cardiovascular exercise can enhance inhibitory control. In addition, acute exercise appears to facilitate activation of prefrontal brain regions that regulate excitatory and inhibitory pathways (specifically but not exclusively the prefrontal-basal-ganglia pathways) which appear to be impaired in older age. Based on the reviewed studies, we suggest that future work examine the beneficial effects of exercise on the inhibitory networks in the aging brain.
Collapse
Affiliation(s)
- Oron Levin
- Movement Control and Neuroplasticity Research Group, Department of Kinesiology, KU Leuven, 3001 Heverlee, Belgium;
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University, LT-44221 Kaunas, Lithuania
| | - Yael Netz
- The Academic College at Wingate, Netanya 4290200, Israel;
| | - Gal Ziv
- The Academic College at Wingate, Netanya 4290200, Israel;
| |
Collapse
|
23
|
Coupling of cerebral blood flow and functional connectivity is decreased in healthy aging. Brain Imaging Behav 2021; 14:436-450. [PMID: 31250268 DOI: 10.1007/s11682-019-00157-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aging leads to cerebral perfusion and functional connectivity changes that have been assessed using various neuroimaging techniques. In addition, a link between these two parameters has been demonstrated in healthy young adults. In this work, we employed arterial spin labeling (ASL) fMRI to measure global and voxel-wise differences in cerebral blood flow (CBF) and intrinsic connectivity contrast (ICC) in the resting state in a group of cognitively normal elderly subjects and a group of cognitively normal young subjects, in order to assess the effects of aging on CBF-ICC coupling, which had not been previously evaluated. Our results showed age-related global and regional CBF decreases in prefrontal mesial areas, lateral frontal regions, insular cortex, lateral parietal areas, precuneus and occipital regions. Subcortically, perfusion was reduced in the medial thalamus and caudate nucleus. ICC was also found reduced with age in prefrontal cortical areas and insular cortex, affecting key nodes of the default mode and salience networks. Areas of ICC and CBF decrease partially overlapped, however, the CBF reduction was more extensive and encompassed more areas. This dissociation was accompanied by a decrease in CBF-ICC coupling. These results suggest that aging leads to a disruption in the relationship between CBF and intrinsic functional connectivity that could be due to neurovascular dysregulation.
Collapse
|
24
|
Morand A, Segobin S, Lecouvey G, Gonneaud J, Eustache F, Rauchs G, Desgranges B. Brain Substrates of Time-Based Prospective Memory Decline in Aging: A Voxel-Based Morphometry and Diffusion Tensor Imaging Study. Cereb Cortex 2021; 31:396-409. [PMID: 32935836 DOI: 10.1093/cercor/bhaa232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/29/2020] [Accepted: 07/28/2020] [Indexed: 11/14/2022] Open
Abstract
Time-based prospective memory (TBPM) allows us to remember to perform intended actions at a specific time in the future. TBPM is sensitive to the effects of age, but the neural substrates of this decline are still poorly understood. The aim of the present study was thus to better characterize the brain substrates of the age-related decline in TBPM, focusing on macrostructural gray matter and microstructural white matter integrity. We administered a TBPM task to 22 healthy young (26 ± 5.2 years) and 23 older (63 ± 5.9 years) participants, who also underwent volumetric magnetic resonance imaging and diffusion tensor imaging scans. Neuroimaging analyses revealed lower gray matter volumes in several brain areas in older participants, but these did not correlate with TBPM performance. By contrast, an age-related decline in fractional anisotropy in several white-matter tracts connecting frontal and occipital regions did correlate with TBPM performance, whereas there was no significant correlation in healthy young subjects. According to the literature, these tracts are connected to the anterior prefrontal cortex and the thalamus, 2 structures involved in TBPM. These results confirm the view that a disconnection process occurs in aging and contributes to cognitive decline.
Collapse
Affiliation(s)
| | | | - Grégory Lecouvey
- Normandie Université, UNICAEN, PSL Université Paris, 14000 Caen, France
| | - Julie Gonneaud
- Normandie Université, UNICAEN, PSL Université Paris, 14000 Caen, France
| | - Francis Eustache
- Normandie Université, UNICAEN, PSL Université Paris, 14000 Caen, France
| | - Géraldine Rauchs
- Normandie Université, UNICAEN, PSL Université Paris, 14000 Caen, France
| | | |
Collapse
|
25
|
Frontoparietal microstructural damage mediates age-dependent working memory decline in face and body information processing: Evidence for dichotomic hemispheric bias mechanisms. Neuropsychologia 2020; 151:107726. [PMID: 33321120 DOI: 10.1016/j.neuropsychologia.2020.107726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 11/28/2020] [Accepted: 12/09/2020] [Indexed: 11/24/2022]
Abstract
Age-associated damage in the microstructure of frontally-based connections (e.g. genu of the corpus callosum and superior longitudinal fasciculus) is believed to lead to impairments in processing speed and executive function. Using mediation analysis, we tested the potential contribution of callosal and frontoparietal association tracts to age-dependent effects on cognition/executive function as measured with 1-back working memory tasks for visual stimulus categories (i.e. faces and non-emotional bodies) in a group of 55 healthy adults (age range 23-79 years). Constrained spherical deconvolution-based tractography was employed to reconstruct the genu/prefrontal section of the corpus callosum (GCC) and the central/second branch of the superior longitudinal fasciculus (CB-SLF). Age was associated with (i) reductions in fractional anisotropy (FA) in the GCC and in the right and left CB-SLF and (iii) decline in visual object category processing. Mediation analysis revealed that microstructural damage in right hemispheric CB-SLF is associated with age-dependent decline in face processing likely reflecting the stimulus-specific/holistic nature of face processing within dedicated/specialized frontoparietal routes. By contrast, microstructural damage in left hemispheric CB-SLF associated with age-dependent decline in non-emotional body processing, consistent with the more abstract nature of non-emotional body categories. In sum, our findings suggest that frontoparietal microstructural damage mediates age-dependent decline in face and body information processing in a manner that reflects the hemispheric bias of holistic vs. abstract nature of face and non-emotional body category processing.
Collapse
|
26
|
Zayed A, Iturria-Medina Y, Villringer A, Sehm B, Steele CJ. Rapid Quantification of White Matter Disconnection in the Human Brain. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1701-1704. [PMID: 33018324 DOI: 10.1109/embc44109.2020.9176229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
With an estimated five million new stroke survivors every year and a rapidly aging population suffering from hyperintensities and diseases of presumed vascular origin that affect white matter and contribute to cognitive decline, it is critical that we understand the impact of white matter damage on brain structure and behavior. Current techniques for assessing the impact of lesions consider only location, type, and extent, while ignoring how the affected region was connected to the rest of the brain. Regional brain function is a product of both local structure and its connectivity. Therefore, obtaining a map of white matter disconnection is a crucial step that could help us predict the behavioral deficits that patients exhibit. In the present work, we introduce a new practical method for computing lesion-based white matter disconnection maps that require only moderate computational resources. We achieve this by creating diffusion tractography models of the brains of healthy adults and assessing the connectivity between small regions. We then interrupt these connectivity models by projecting patients' lesions into them to compute predicted white matter disconnection. A quantified disconnection map can be computed for an individual patient in approximately 35 seconds using a single core CPU-based computation. In comparison, a similar quantification performed with other tools provided by MRtrix3 takes 5.47 minutes.
Collapse
|
27
|
Lockwood CT, Duffy CJ. Hyperexcitability in Aging Is Lost in Alzheimer's: What Is All the Excitement About? Cereb Cortex 2020; 30:5874-5884. [PMID: 32548625 DOI: 10.1093/cercor/bhaa163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neuronal hyperexcitability has emerged as a potential biomarker of late-onset early-stage Alzheimer's disease (LEAD). We hypothesize that the aging-related posterior cortical hyperexcitability anticipates the loss of excitability with the emergence of impairment in LEAD. To test this hypothesis, we compared the behavioral and neurophysiological responses of young and older (ON) normal adults, and LEAD patients during a visuospatial attentional control task. ONs show frontal cortical signal incoherence and posterior cortical hyper-responsiveness with preserved attentional control. LEADs lose the posterior hyper-responsiveness and fail in the attentional task. Our findings suggest that signal incoherence and cortical hyper-responsiveness in aging may contribute to the development of functional impairment in LEAD.
Collapse
Affiliation(s)
- Colin T Lockwood
- Departments of Neurology and Brain and Cognitive Sciences, University of Rochester Medical Center, Rochester 14642, NY, USA
| | - Charles J Duffy
- Departments of Neurology and Brain and Cognitive Sciences, University of Rochester Medical Center, Rochester 14642, NY, USA
| |
Collapse
|
28
|
Boness CL, Korucuoglu O, Ellingson JM, Merrill AM, McDowell YE, Trela CJ, Sher KJ, Piasecki TM, Kerns JG. Twenty-first birthday drinking: Extreme-drinking episodes and white matter microstructural changes in the fornix and corpus callosum. Exp Clin Psychopharmacol 2020; 28:553-566. [PMID: 31789553 PMCID: PMC7263958 DOI: 10.1037/pha0000336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The 21st birthday celebration is characterized by extreme alcohol consumption. Accumulating evidence suggests that high-dose bingeing is related to structural brain changes and cognitive deficits. This is particularly problematic in the transition from adolescence to adulthood when the brain is still maturing, elevating the brain's sensitivity to the acute effects of alcohol intoxication. Heavy drinking is associated with reduced structural integrity in the hippocampus and corpus callosum and is accompanied by cognitive deficits. However, there is little research examining changes in the human brain related to discrete heavy-drinking episodes. The present study investigated whether alcohol exposure during a 21st birthday celebration would result in changes to white matter microstructure by utilizing diffusion tensor imaging measures and a quasi-experimental design. By examining structural changes in the brain from pre- to postcelebration within subjects (N = 49) prospectively, we were able to more directly observe brain changes following an extreme-drinking episode. Region of interest analyses demonstrated increased fractional anisotropy in the posterior fornix (p < .0001) and in the body of the corpus callosum (p = .0029) from pre- to postbirthday celebration. These results suggest acute white matter damage to the fornix and corpus callosum following an extreme-drinking episode, which is especially problematic during continued neurodevelopment. Therefore, 21st birthday drinking may be considered an important target event for preventing acute brain injury in young adults. (PsycInfo Database Record (c) 2020 APA, all rights reserved).
Collapse
Affiliation(s)
| | - Ozlem Korucuoglu
- Department of Psychiatry, Washington University School of Medicine
| | | | | | | | | | - Kenneth J Sher
- Department of Psychological Sciences, University of Missouri
| | | | - John G Kerns
- Department of Psychological Sciences, University of Missouri
| |
Collapse
|
29
|
Stephen R, Solomon A, Ngandu T, Levälahti E, Rinne JO, Kemppainen N, Parkkola R, Antikainen R, Strandberg T, Kivipelto M, Soininen H, Liu Y. White Matter Changes on Diffusion Tensor Imaging in the FINGER Randomized Controlled Trial. J Alzheimers Dis 2020; 78:75-86. [PMID: 32925045 PMCID: PMC7683078 DOI: 10.3233/jad-200423] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Background: Early pathological changes in white matter microstructure can be studied using the diffusion tensor imaging (DTI). It is not only important to study these subtle pathological changes leading to cognitive decline, but also to ascertain how an intervention would impact the white matter microstructure and cognition in persons at-risk of dementia. Objectives: To study the impact of a multidomain lifestyle intervention on white matter and cognitive changes during the 2-year Finnish Geriatric Intervention Study to prevent Cognitive Impairment and Disability (FINGER), a randomized controlled trial in at-risk older individuals (age 60–77 years) from the general population. Methods: This exploratory study consisted of a subsample of 60 FINGER participants. Participants were randomized to either a multidomain intervention (diet, exercise, cognitive training, and vascular risk management, n = 34) or control group (general health advice, n = 26). All underwent baseline and 2-year brain DTI. Changes in fractional anisotropy (FA), diffusivity along domain (F1) and non-domain (F2) diffusion orientations, mean diffusivity (MD), axial diffusivity (AxD), radial diffusivity (RD), and their correlations with cognitive changes during the 2-year multidomain intervention were analyzed. Results: FA decreased, and cognition improved more in the intervention group compared to the control group (p < 0.05), with no significant intergroup differences for changes in F1, F2, MD, AxD, or RD. The cognitive changes were significantly positively related to FA change, and negatively related to RD change in the control group, but not in the intervention group. Conclusion: The 2-year multidomain FINGER intervention may modulate white matter microstructural alterations.
Collapse
Affiliation(s)
- Ruth Stephen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland
| | - Alina Solomon
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden
| | - Tiia Ngandu
- Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Esko Levälahti
- Public Health Promotion Unit, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Juha O Rinne
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Nina Kemppainen
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland.,Turku PET Centre, University of Turku, Turku, Finland
| | - Riitta Parkkola
- Division of Clinical Neurosciences, Turku University Hospital, Turku, Finland
| | - Riitta Antikainen
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Medical Research Center Oulu, Oulu University Hospital and Oulu City Hospital, Oulu, Finland
| | - Timo Strandberg
- Center for Life Course Health Research/Geriatrics, University of Oulu, Oulu, Finland.,Department of Medicine, Geriatric Clinic, University of Helsinki, Helsinki University Central Hospital, Helsinki, Finland
| | - Miia Kivipelto
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Division of Clinical Geriatrics, Center for Alzheimer Research, NVS, Karolinska Institutet, Stockholm, Sweden.,Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland.,Ageing Epidemiology (AGE) Research Unit, School of Public Health, Imperial College London, London, United Kingdom
| | - Hilkka Soininen
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Neurocenter, Neurology, Kuopio University Hospital, Kuopio, Finland
| | - Yawu Liu
- Institute of Clinical Medicine/Neurology, University of Eastern Finland, Kuopio, Finland.,Department of Clinical Radiology, Kuopio University Hospital, Kuopio, Finland
| | | |
Collapse
|
30
|
Avelar-Pereira B, Bäckman L, Wåhlin A, Nyberg L, Salami A. Increased functional homotopy of the prefrontal cortex is associated with corpus callosum degeneration and working memory decline. Neurobiol Aging 2020; 96:68-78. [PMID: 32949903 DOI: 10.1016/j.neurobiolaging.2020.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 06/29/2020] [Accepted: 08/10/2020] [Indexed: 11/18/2022]
Abstract
Functional homotopy reflects the link between spontaneous activity in a voxel and its counterpart in the opposite hemisphere. Alterations in homotopic functional connectivity (FC) are seen in normal aging, with highest and lowest homotopy being present in sensory-motor and higher-order regions, respectively. Homotopic FC relates to underlying structural connections, but its neurobiological underpinnings remain unclear. The genu of the corpus callosum joins symmetrical parts of the prefrontal cortex (PFC) and is susceptible to age-related degeneration, suggesting that PFC homotopic connectivity is linked to changes in white-matter integrity. We investigated homotopic connectivity changes and whether these were associated with white-matter integrity in 338 individuals. In addition, we examined whether PFC homotopic FC was related to changes in the genu over 10 years and working memory over 5 years. There were increases and decreases in functional homotopy, with the former being prevalent in subcortical and frontal regions. Increased PFC homotopic FC was partially driven by structural degeneration and negatively associated with working memory, suggesting that it reflects detrimental age-related changes.
Collapse
Affiliation(s)
- Bárbara Avelar-Pereira
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden.
| | - Lars Bäckman
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Anders Wåhlin
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden
| | - Lars Nyberg
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Aging Research Center, Karolinska Institutet and Stockholm University, Stockholm, Sweden; Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden; Department of Radiation Sciences, Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden; Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
31
|
Siline L, Stasiulis A, Stasiule L. Better Executive Function Is Associated With Faster On-Transition Aerobic Metabolism Among Older Adults. Percept Mot Skills 2020; 127:823-840. [PMID: 32635798 DOI: 10.1177/0031512520941384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The present study aimed to examine relationships between executive function (EF) and variables of aerobic fitness. Participants were 32 healthy older adults (M age = 65.1, SD = 6.6 years). We measured the first ventilatory threshold (VeT1) and the kinetics of oxygen uptake (V˙O2), heart rate (HR), and muscle deoxygenation [HHb] during treadmill walking of either constant, moderate intensity, or increasing intensity. We assessed EF with a computerized Stroop test and Stroop measures of correct answers, reaction time, and percent interference. We found the Stroop interference score to be negatively associated with the VeT1 (r = -0.387, p = 0.031) and positively associated with the on-transition aerobic metabolism time constant (τ) of HR (r = 0.519, p = 0.003), V˙O2 (r = 0.454; p = 0.010), and [HHb] (r = 0.644, p = 0.001). Correct responses were negatively related with τHR (r = -0.372, p = 0.039) and τV˙O2 (r = -0.500, p = 0.004). The Stroop average reaction time, congruent reaction time and incongruent reaction time were positively related to τ[HHb] (r = 0.507, p = 0.010; r = 0.437, p = 0.029; r = 0.558, p = 0.004, respectively). Better EF was associated with faster on-transition aerobic metabolism and higher aerobic fitness among older adults.
Collapse
Affiliation(s)
- Ligita Siline
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University
| | - Arvydas Stasiulis
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University
| | - Loreta Stasiule
- Department of Health Promotion and Rehabilitation, Lithuanian Sports University
| |
Collapse
|
32
|
Weerasekera A, Levin O, Clauwaert A, Heise KF, Hermans L, Peeters R, Mantini D, Cuypers K, Leunissen I, Himmelreich U, Swinnen SP. Neurometabolic Correlates of Reactive and Proactive Motor Inhibition in Young and Older Adults: Evidence from Multiple Regional 1H-MR Spectroscopy. Cereb Cortex Commun 2020; 1:tgaa028. [PMID: 34296102 PMCID: PMC8152832 DOI: 10.1093/texcom/tgaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/13/2022] Open
Abstract
Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.
Collapse
Affiliation(s)
- Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Amanda Clauwaert
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Lize Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals KU Leuven, 3000, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Inge Leunissen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| |
Collapse
|
33
|
Cognitive and brain reserve in bilinguals: field overview and explanatory mechanisms. JOURNAL OF CULTURAL COGNITIVE SCIENCE 2020. [DOI: 10.1007/s41809-020-00058-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
34
|
Zivari Adab H, Chalavi S, Monteiro TS, Gooijers J, Dhollander T, Mantini D, Swinnen SP. Fiber-specific variations in anterior transcallosal white matter structure contribute to age-related differences in motor performance. Neuroimage 2020; 209:116530. [PMID: 31931154 DOI: 10.1016/j.neuroimage.2020.116530] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 12/11/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
Age-related differences in bimanual motor performance have been extensively documented, but their underlying neural mechanisms remain less clear. Studies applying diffusion MRI in the aging population have revealed evidence for age-related white matter variations in the corpus callosum (CC) which are related to bimanual motor performance. However, the diffusion tensor model used in those studies is confounded by partial volume effects in voxels with complex fiber geometries which are present in up to 90% of white matter voxels, including the bilateral projections of the CC. A recently developed whole-brain analysis framework, known as fixel-based analysis (FBA), enables comprehensive statistical analyses of white matter quantitative measures in the presence of such complex fiber geometries. To investigate the contribution of age-related fiber-specific white matter variations to age-related differences in bimanual performance, a cross-sectional lifespan sample of healthy human adults (N = 95; 20-75 years of age) performed a bimanual tracking task. Furthermore, diffusion MRI data were acquired and the FBA metrics associated with fiber density, cross-section, and combined fiber density and cross-section were estimated. Whole-brain FBA revealed significant negative associations between age and fiber density, cross-section, and combined metrics of multiple white matter tracts, including the bilateral projections of the CC, indicative of white matter micro- and macrostructural degradation with age. More importantly, mediation analyses demonstrated that age-related variations in the combined (fiber density and cross-section) metric of the genu, but not splenium, of the CC contributed to the observed age-related differences in bimanual coordination performance. These findings highlight the contribution of variations in interhemispheric communication between prefrontal (non-motor) cortices to age-related differences in motor performance.
Collapse
Affiliation(s)
- Hamed Zivari Adab
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium.
| | - Sima Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thiago S Monteiro
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Jolien Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Thijs Dhollander
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; The Florey Department of Neuroscience and Mental Health, University of Melbourne, Melbourne, Australia
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, Leuven, Belgium; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
35
|
Chen BT, Ye N, Wong CW, Patel SK, Jin T, Sun CL, Rockne RC, Kim H, Root JC, Saykin AJ, Ahles TA, Holodny AI, Prakash N, Mortimer J, Sedrak MS, Waisman J, Yuan Y, Li D, Vazquez J, Katheria V, Dale W. Effects of chemotherapy on aging white matter microstructure: A longitudinal diffusion tensor imaging study. J Geriatr Oncol 2019; 11:290-296. [PMID: 31685415 DOI: 10.1016/j.jgo.2019.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 08/20/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022]
Abstract
OBJECTIVE We aimed to use diffusion tensor imaging (DTI) to detect alterations in white matter microstructure in older patients with breast cancer receiving chemotherapy. METHODS We recruited women age ≥60 years with stage I-III breast cancer (chemotherapy [CT] group; n = 19) to undergo two study assessments: at baseline and within one month after chemotherapy. Each assessment consisted of a brain magnetic resonance imaging scan with DTI and neuropsychological (NP) testing using the National Institutes of Health (NIH) Toolbox Cognition Battery. An age- and sex-matched group of healthy controls (HC, n = 14) underwent the same assessments at matched intervals. Four DTI parameters (fractional anisotropy [FA], mean diffusivity [MD], axial diffusivity [AD], and radial diffusivity [RD]) were calculated and correlated with NP testing scores. RESULTS For CT group but not HCs, we detected statistically significant increases in MD and RD in the genu of the corpus callosum from time point 1 to time point 2 at p < 0.01, effect size:0.3655 and 0.3173, and 95% confidence interval: from 0.1490 to 0.5821, and from 0.1554 to 0.4792, for MD and RD respectively. AD values increased for the CT group and decreased for the HC group over time, resulting in significant between-group differences (p = 0.0056, effect size:1.0215, 95% confidence interval: from 0.2773 to 1.7657). There were no significant correlations between DTI parameters and NP scores (p > 0.05). CONCLUSIONS We identified alterations in white matter microstructures in older women with breast cancer undergoing chemotherapy. These findings may potentially serve as neuroimaging biomarkers for identifying cognitive impairment in older adults with cancer.
Collapse
Affiliation(s)
- Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States; Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Ningrong Ye
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Chi Wah Wong
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Sunita K Patel
- Department of Population Science, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Taihao Jin
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Can-Lan Sun
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Russell C Rockne
- Division of Mathematical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Heeyoung Kim
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - James C Root
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Andrew J Saykin
- Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, United States.
| | - Tim A Ahles
- Neurocognitive Research Lab, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| | - Andrei I Holodny
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, New York, NY, United States.
| | - Neal Prakash
- Division of Neurology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Joanne Mortimer
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Mina S Sedrak
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - James Waisman
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Yuan Yuan
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Daneng Li
- Department of Medical Oncology, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Jessica Vazquez
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - Vani Katheria
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States.
| | - William Dale
- Center for Cancer and Aging, City of Hope National Medical Center, Duarte, CA 91010, United States; Department of Supportive Care Medicine, City of Hope National Medical Center, Duarte, CA 91010, United States.
| |
Collapse
|
36
|
Castro-Chavira SA, Vangberg TR, Gorecka MM, Vasylenko O, Waterloo K, Rodríguez-Aranda C. White matter correlates of gait perturbations resulting from spontaneous and lateralized attention in healthy older adults: A dual-task study. Exp Gerontol 2019; 128:110744. [PMID: 31634543 DOI: 10.1016/j.exger.2019.110744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
Abstract
To date the neural mechanisms behind gait perturbations caused by dual-task paradigms are still unknown. Therefore, the present study examined white matter correlates of gait perturbations caused by a dichotic listening task where spontaneous (free focus of attention) and lateralized attentional control (voluntary attention directed to right or left-ear) were tested. Fifty-nine right-handed, healthy older adults (59-88 years) were evaluated during single-task walking and three dual-task conditions. Dual-task costs were calculated for mean (DTCM) and coefficients of variation (DTCCoV) in gait speed, step length, stride length and step width. Volume, fractional anisotropy and mean diffusivity were estimated using global probabilistic tractography for the 18 major brain tracts and correlated with the DTCs. Data demonstrated that DTCs on gait speed and step length significantly correlated with white matter integrity and volume in various tracts. Perturbations on gait speed caused by spontaneous attention were related to frontal circuitry integrity including corpus callosum, while perturbations on gait speed and step length produced by voluntary lateralized attention were associated to tracts subserving visuomotor integration and frontal function.
Collapse
Affiliation(s)
- Susana A Castro-Chavira
- Faculty of Health Sciences, Department of Psychology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Torgil R Vangberg
- Department of Radiology and Nuclear Medicine, University Hospital of North Norway, Tromsø, Norway
| | - Marta M Gorecka
- Faculty of Health Sciences, Department of Psychology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Olena Vasylenko
- Faculty of Health Sciences, Department of Psychology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway
| | - Knut Waterloo
- Faculty of Health Sciences, Department of Psychology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway; Department of Neurology, University Hospital of North Norway, Tromsø, Norway
| | - Claudia Rodríguez-Aranda
- Faculty of Health Sciences, Department of Psychology, University of Tromsø, The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
37
|
Rogojin A, Gorbet DJ, Hawkins KM, Sergio LE. Cognitive-Motor Integration Performance Is Affected by Sex, APOE Status, and Family History of Dementia. J Alzheimers Dis 2019; 71:685-701. [DOI: 10.3233/jad-190403] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Alica Rogojin
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Diana J. Gorbet
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| | - Kara M. Hawkins
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
| | - Lauren E. Sergio
- School of Kinesiology and Health Science, York University, Toronto, Ontario, Canada
- Centre for Vision Research, York University, Toronto, Ontario, Canada
| |
Collapse
|
38
|
Higher Cardiorespiratory Fitness Is Associated With Better Verbal Generativity in Community-Dwelling Older Adults. J Aging Phys Act 2019; 27:703-710. [PMID: 30747562 DOI: 10.1123/japa.2018-0382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Objectives: To examine the associations between physical activity duration and intensity, cardiorespiratory fitness, and executive function in older adults. Methods: Data from 99 cognitively normal adults (age = 69.10 ± 5.1 years; n = 54 females) were used in the current study. Physical activity (intensity and duration) was measured with the International Physical Activity Questionnaire, and fitness was measured by analysis of maximal aerobic capacity, VO2peak. Executive function was measured comprehensively, including measures of Shifting, Updating, Inhibition, Generativity, and Nonverbal Reasoning. Results: Higher levels of cardiorespiratory fitness were associated with better performance on Generativity (B = .55; 95% confidence interval [.15, .97]). No significant associations were found between self-reported physical activity intensity/duration and executive functions. Discussion: To our knowledge, this study is the first to identify an association between fitness and Generativity. Associations between physical activity duration and intensity and executive function requires further study, using objective physical activity measures and longitudinal observations.
Collapse
|
39
|
Hoagey DA, Rieck JR, Rodrigue KM, Kennedy KM. Joint contributions of cortical morphometry and white matter microstructure in healthy brain aging: A partial least squares correlation analysis. Hum Brain Mapp 2019; 40:5315-5329. [PMID: 31452304 PMCID: PMC6864896 DOI: 10.1002/hbm.24774] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/30/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023] Open
Abstract
Cortical atrophy and degraded axonal health have been shown to coincide during normal aging; however, few studies have examined these measures together. To lend insight into both the regional specificity and the relative timecourse of structural degradation of these tissue compartments across the adult lifespan, we analyzed gray matter (GM) morphometry (cortical thickness, surface area, volume) and estimates of white matter (WM) microstructure (fractional anisotropy, mean diffusivity) using traditional univariate and more robust multivariate techniques to examine age associations in 186 healthy adults aged 20–94 years old. Univariate analysis of each tissue type revealed that negative age associations were largest in frontal GM and WM tissue and weaker in temporal, cingulate, and occipital regions, representative of not only an anterior‐to‐posterior gradient, but also a medial‐to‐lateral gradient. Multivariate partial least squares correlation (PLSC) found the greatest covariance between GM and WM was driven by the relationship between WM metrics in the anterior corpus callosum and projections of the genu, anterior cingulum, and fornix; and with GM thickness in parietal and frontal regions. Surface area was far less susceptible to age effects and displayed less covariance with WM metrics, while regional volume covariance patterns largely mirrored those of cortical thickness. Results support a retrogenesis‐like model of aging, revealing a coupled relationship between frontal and parietal GM and the underlying WM, which evidence the most protracted development and the most vulnerability during healthy aging.
Collapse
Affiliation(s)
- David A Hoagey
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| | - Jenny R Rieck
- Rotman Research Institute, Baycrest Health Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Karen M Rodrigue
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| | - Kristen M Kennedy
- Center for Vital Longevity, The University of Texas at Dallas, School of Behavioral and Brain Sciences, Dallas, Texas
| |
Collapse
|
40
|
Fan YT, Fang YW, Chen YP, Leshikar ED, Lin CP, Tzeng OJL, Huang HW, Huang CM. Aging, cognition, and the brain: effects of age-related variation in white matter integrity on neuropsychological function. Aging Ment Health 2019; 23:831-839. [PMID: 29634290 DOI: 10.1080/13607863.2018.1455804] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Alterations in brain structure are viewed as neurobiological indicators which are closely tied to cognitive changes in healthy human aging. The current study used diffusion tensor imaging (DTI) tractography to investigate the relationship between age, brain variation in white matter (WM) integrity, and cognitive function. Sixteen younger adults (aged 20-28 years) and 18 healthy older adults (aged 60-75 years) underwent DTI scanning and a standardized battery of neuropsychological measures. Behaviorally, older adults exhibited poorer performance on multiple cognitive measures compared to younger adults. At the neural level, the effects of aging on theWM integrity were evident within interhemispheric (the anterior portion of corpus callosum) and transverse (the right uncinate fasciculus) fibers of the frontal regions, and the cingulum-angular fibers. Our correlation results showed that age-related WM differentially influenced cognitive function, with increased fractional anisotropy values in both the anterior corpus callosum and the right cingulum/angular fibers positively correlated with performance on the visuospatial task in older adults. Moreover, mediation analysis further revealed that the WM tract integrity of the frontal interhemspheric fibers was a significant mediator of age-visuospatial performance relation in older adults, but not in younger adults. These findings support the vulnerability of the frontal WM fibers to normal aging and push forward our understanding of cognitive aging by providing a more integrative view of the neural basis of linkages among aging, cognition, and brain.
Collapse
Affiliation(s)
- Yang-Teng Fan
- a Department of Biological Science and Technology , National Chiao Tung University , Taiwan.,b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan
| | - Ya-Wen Fang
- a Department of Biological Science and Technology , National Chiao Tung University , Taiwan.,b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan
| | - Ya-Ping Chen
- b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan
| | - Eric D Leshikar
- c Department of Psychology , University of Illinois at Chicago , IL , USA
| | - Ching-Po Lin
- d Institute of Neuroscience , National Yang Ming University , Taiwan
| | - Ovid J L Tzeng
- a Department of Biological Science and Technology , National Chiao Tung University , Taiwan.,b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan.,e College of Humanities and Social Sciences , Taipei Medical University , Taiwan.,f Department of Educational Psychology and Counseling , National Taiwan Normal University , Taiwan
| | - Hsu-Wen Huang
- b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan.,g Department of Linguistics and Translation , City University of Hong Kong , Hong Kong
| | - Chih-Mao Huang
- a Department of Biological Science and Technology , National Chiao Tung University , Taiwan.,b Cognitive Neuroscience Laboratory , Institute of Linguistics , Academia Sinica , Taiwan
| |
Collapse
|
41
|
Revealing the Hippocampal Connectome through Super-Resolution 1150-Direction Diffusion MRI. Sci Rep 2019; 9:2418. [PMID: 30787303 PMCID: PMC6382767 DOI: 10.1038/s41598-018-37905-9] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/15/2018] [Indexed: 12/21/2022] Open
Abstract
The hippocampus is a key component of emotional and memory circuits and is broadly connected throughout the brain. We tracked the whole-brain connections of white matter fibres from the hippocampus using ultra-high angular resolution diffusion MRI in both a single 1150-direction dataset and a large normal cohort (n = 94; 391-directions). Using a connectomic approach, we identified six dominant pathways in terms of strength, length and anatomy, and characterised them by their age and gender variation. The strongest individual connection was to the ipsilateral thalamus. There was a strong age dependence of hippocampal connectivity to medial occipital regions. Overall, our results concur with preclinical and ex-vivo data, confirming that meaningful in vivo characterisation of hippocampal connections is possible in an individual. Our findings extend the collective knowledge of hippocampal anatomy, highlighting the importance of the spinal-limbic pathway and the striking lack of hippocampal connectivity with motor and sensory cortices.
Collapse
|
42
|
Fan Q, Tian Q, Ohringer NA, Nummenmaa A, Witzel T, Tobyne SM, Klawiter EC, Mekkaoui C, Rosen BR, Wald LL, Salat DH, Huang SY. Age-related alterations in axonal microstructure in the corpus callosum measured by high-gradient diffusion MRI. Neuroimage 2019; 191:325-336. [PMID: 30790671 DOI: 10.1016/j.neuroimage.2019.02.036] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/26/2019] [Accepted: 02/14/2019] [Indexed: 12/14/2022] Open
Abstract
Cerebral white matter exhibits age-related degenerative changes during the course of normal aging, including decreases in axon density and alterations in axonal structure. Noninvasive approaches to measure these microstructural alterations throughout the lifespan would be invaluable for understanding the substrate and regional variability of age-related white matter degeneration. Recent advances in diffusion magnetic resonance imaging (MRI) have leveraged high gradient strengths to increase sensitivity toward axonal size and density in the living human brain. Here, we examined the relationship between age and indices of axon diameter and packing density using high-gradient strength diffusion MRI in 36 healthy adults (aged 22-72) in well-defined central white matter tracts in the brain. A recently validated method for inferring the effective axonal compartment size and packing density from diffusion MRI measurements acquired with 300 mT/m maximum gradient strength was applied to the in vivo human brain to obtain indices of axon diameter and density in the corpus callosum, its sub-regions, and adjacent anterior and posterior fibers in the forceps minor and forceps major. The relationships between the axonal metrics, corpus callosum area and regional gray matter volume were also explored. Results revealed a significant increase in axon diameter index with advancing age in the whole corpus callosum. Similar analyses in sub-regions of the corpus callosum showed that age-related alterations in axon diameter index and axon density were most pronounced in the genu of the corpus callosum and relatively absent in the splenium, in keeping with findings from previous histological studies. The significance of these correlations was mirrored in the forceps minor and forceps major, consistent with previously reported decreases in FA in the forceps minor but not in the forceps major with age. Alterations in the axonal imaging metrics paralleled decreases in corpus callosum area and regional gray matter volume with age. Among older adults, results from cognitive testing suggested an association between larger effective compartment size in the corpus callosum, particularly within the genu of the corpus callosum, and lower scores on the Montreal Cognitive Assessment, largely driven by deficits in short-term memory. The current study suggests that high-gradient diffusion MRI may be sensitive to the axonal substrate of age-related white matter degeneration reflected in traditional DTI metrics and provides further evidence for regionally selective alterations in white matter microstructure with advancing age.
Collapse
Affiliation(s)
- Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Sean M Tobyne
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Eric C Klawiter
- Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Choukri Mekkaoui
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
43
|
Gonzalez-Escamilla G, Muthuraman M, Chirumamilla VC, Vogt J, Groppa S. Brain Networks Reorganization During Maturation and Healthy Aging-Emphases for Resilience. Front Psychiatry 2018; 9:601. [PMID: 30519196 PMCID: PMC6258799 DOI: 10.3389/fpsyt.2018.00601] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/29/2018] [Indexed: 12/31/2022] Open
Abstract
Maturation and aging are important life periods that are linked to drastic brain reorganization processes which are essential for mental health. However, the development of generalized theories for delimiting physiological and pathological brain remodeling through life periods linked to healthy states and resilience on one side or mental dysfunction on the other remains a challenge. Furthermore, important processes of preservation and compensation of brain function occur continuously in the cerebral brain networks and drive physiological responses to life events. Here, we review research on brain reorganization processes across the lifespan, demonstrating brain circuits remodeling at the structural and functional level that support mental health and are parallelized by physiological trajectories during maturation and healthy aging. We show evidence that aberrations leading to mental disorders result from the specific alterations of cerebral networks and their pathological dynamics leading to distinct excitability patterns. We discuss how these series of large-scale responses of brain circuits can be viewed as protective or malfunctioning mechanisms for the maintenance of mental health and resilience.
Collapse
Affiliation(s)
| | - Muthuraman Muthuraman
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Venkata C. Chirumamilla
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Department of Neurology, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
44
|
Chad JA, Pasternak O, Salat DH, Chen JJ. Re-examining age-related differences in white matter microstructure with free-water corrected diffusion tensor imaging. Neurobiol Aging 2018; 71:161-170. [PMID: 30145396 PMCID: PMC6179151 DOI: 10.1016/j.neurobiolaging.2018.07.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/22/2018] [Accepted: 07/25/2018] [Indexed: 01/11/2023]
Abstract
Diffusion tensor imaging (DTI) has been used extensively to investigate white matter (WM) microstructural changes during healthy adult aging. However, WM fibers are known to shrink throughout the lifespan, leading to larger interstitial spaces with age. This could allow more extracellular free water molecules to bias DTI metrics, which are relied upon to provide WM microstructural information. Using a cohort of 212 participants, we demonstrate that WM microstructural changes in aging are potentially less pronounced than previously reported once the free water compartment is eliminated. After free water elimination, DTI parameters show age-related differences that match histological evidence of myelin degradation and debris accumulation. The fraction of free water is further shown to associate better with age than any of the conventional DTI parameters. Our findings suggest that DTI analyses involving free water are likely to yield novel insight into retrospective re-analysis of data and to answer new questions in ongoing DTI studies of brain aging.
Collapse
Affiliation(s)
- Jordan A Chad
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.
| | - Ofer Pasternak
- Departments of Psychiatry and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - David H Salat
- MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Neuroimaging Research for Veterans Center, Boston VA, VA Healthcare System, Boston, MA, USA
| | - J Jean Chen
- Rotman Research Institute, Baycrest Health Sciences, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
45
|
Attia H, Taha M, Abdellatif A. Effects of aging on the myelination of the optic nerve in rats. Int J Neurosci 2018; 129:320-324. [PMID: 30260726 DOI: 10.1080/00207454.2018.1529670] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
AIM OF THE STUDY Cognitive decline due to aging is most probably the result of changes in the white matter in the central nervous system (CNS) and/or demyelination. MATERIAL AND METHODS We used electron microscopic analysis of the morphological changes in aging rats' optic nerves as an easily accessible part of the CNS. RESULTS Several age changes were observed in aging rats (36 months) vs. young adult rats (6 months), namely degeneration of axons, decreased packing density and morphological alterations of myelination, including the ballooning of some myelin sheaths, separation of myelin lamellae and degenerative changes in the oligodendrocytes population. CONCLUSION Cognitive decline related to aging may occur in part due to the disturbed myelination of axons in CNS white matter.
Collapse
Affiliation(s)
- Hamdino Attia
- a Department of Anatomy, Faculty of Medicine , Al-Azhar University , Damietta , Egypt and Faculty of Physical Therapy, Horus University, Damietta, Egypt
| | - Medhat Taha
- b Department of Anatomy , College of Medicine , Mansoura , Egypt
| | - Ahmed Abdellatif
- c Department of Biology, School of Sciences & Engineering , American University in Cairo , New Cairo , Egypt
| |
Collapse
|
46
|
Faizy TD, Kumar D, Broocks G, Thaler C, Flottmann F, Leischner H, Kutzner D, Hewera S, Dotzauer D, Stellmann JP, Reddy R, Fiehler J, Sedlacik J, Gellißen S. Age-Related Measurements of the Myelin Water Fraction derived from 3D multi-echo GRASE reflect Myelin Content of the Cerebral White Matter. Sci Rep 2018; 8:14991. [PMID: 30301904 PMCID: PMC6177453 DOI: 10.1038/s41598-018-33112-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
Myelin Water Fraction (MWF) measurements derived from quantitative Myelin Water Imaging (MWI) may detect demyelinating changes of the cerebral white matter (WM) microstructure. Here, we investigated age-related alterations of the MWF in normal aging brains of healthy volunteers utilizing two fast and clinically feasible 3D gradient and spin echo (GRASE) MWI sequences with 3 mm and 5 mm isotropic voxel size. In 45 healthy subjects (age range: 18–79 years), distinct regions of interest (ROI) were defined in the cerebral WM including corticospinal tracts. For the 3 mm sequence, significant correlations of the mean MWF with age were found for most ROIs (r < −0.8 for WM ROIs; r = −0.55 for splenium of corpus callosum; r = −0.75 for genu of corpus callosum; p < 0.001 for all ROIs). Similar correlations with age were found for the ROIs of the 5 mm sequence. No significant correlations were found for the corticospinal tract and the occipital WM (p > 0.05). Mean MWF values obtained from the 3 mm and 5 mm sequences were strongly comparable. The applied 3D GRASE MWI sequences were found to be sensitive for age-dependent myelin changes of the cerebral WM microstructure. The reported MWF values might be of substantial use as reference for further investigations in patient studies.
Collapse
Affiliation(s)
- Tobias D Faizy
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Dushyant Kumar
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gabriel Broocks
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christian Thaler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Fabian Flottmann
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Hannes Leischner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Daniel Kutzner
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simon Hewera
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Dominik Dotzauer
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Patrick Stellmann
- Institute of Neuroimmunology und Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.,Department of Neurology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ravinder Reddy
- Department of Radiology, University of Pennsylvania, Philadelphia, USA
| | - Jens Fiehler
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Sedlacik
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Gellißen
- Department of Diagnostic and Interventional Neuroradiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
47
|
McNamara RK, Asch RH, Lindquist DM, Krikorian R. Role of polyunsaturated fatty acids in human brain structure and function across the lifespan: An update on neuroimaging findings. Prostaglandins Leukot Essent Fatty Acids 2018; 136:23-34. [PMID: 28529008 PMCID: PMC5680156 DOI: 10.1016/j.plefa.2017.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/14/2017] [Accepted: 05/08/2017] [Indexed: 01/07/2023]
Abstract
There is a substantial body of evidence from animal studies implicating polyunsaturated fatty acids (PUFA) in neuroinflammatory, neurotrophic, and neuroprotective processes in brain. However, direct evidence for a role of PUFA in human brain structure and function has been lacking. Over the last decade there has been a notable increase in neuroimaging studies that have investigated the impact of PUFA intake and/or blood levels (i.e., biostatus) on brain structure, function, and pathology in human subjects. The majority of these studies specifically evaluated associations between omega-3 PUFA intake and/or biostatus and neuroimaging outcomes using a variety of experimental designs and imaging techniques. This review provides an updated overview of these studies in an effort to identify patterns to guide and inform future research. While the weight of evidence provides general support for a beneficial effect of a habitual diet consisting of higher omega-3 PUFA intake on cortical structure and function in healthy human subjects, additional research is needed to replicate and extend these findings as well as identify response mediators and clarify mechanistic pathways. Controlled intervention trials are also needed to determine whether increasing n-3 PUFA biostatus can prevent or attenuate neuropathological brain changes observed in patients with or at risk for psychiatric disorders and dementia.
Collapse
Affiliation(s)
- Robert K McNamara
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States.
| | - Ruth H Asch
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States
| | - Diana M Lindquist
- Imaging Research Center, Department of Radiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45267, United States
| | - Robert Krikorian
- Department of Psychiatry and Behavioral Neuroscience, University of Cincinnati College of Medicine, Cincinnati, OH 45219, United States
| |
Collapse
|
48
|
Gray DT, Umapathy L, Burke SN, Trouard TP, Barnes CA. Tract-Specific White Matter Correlates of Age-Related Reward Devaluation Deficits in Macaque Monkeys. ACTA ACUST UNITED AC 2018; 3:13-26. [PMID: 30198011 PMCID: PMC6126381 DOI: 10.17756/jnpn.2018-023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Aim: Cognitive aging is known to alter reward-guided behaviors that require interactions between the orbitofrontal cortex (OFC) and amygdala. In macaques, OFC, but not amygdala volumes decline with age and correlate with performance on a reward devaluation (RD) task. The present study used diffusion magnetic resonance imaging (dMRI) methods to investigate whether the condition of the white matter associated with amygdala-OFC connectivity changes with age and relates to reward devaluation. Methods: Diffusion-, T1- and T2-weighted MRIs were acquired from adult and aged bonnet macaques. Using probabilistic tractography, fractional anisotropy (FA) estimates from two separate white matter tracts associated with amygdala-OFC connectivity, the uncinate fasciculus (UF) and amygdalofugal (AF) pathways, were obtained. Performance measures on RD and reversal learning (RL) tasks were also acquired and related to FA indices from each anatomical tract. Results: Aged monkeys were impaired on both the RD and RL tasks and had lower FA indices in the AF pathway. Higher FA indices from the right hemisphere UF pathway correlated with better performance on an object-based RD task, whereas higher FA indices from the right hemisphere AF were associated with better performance on an object-free version of the task. FA measures from neither tract correlated with RL performance. Conclusions: These results suggest that the condition of the white matter connecting the amygdala and OFC may impact reward devaluation behaviors. Furthermore, the observation that FA indices from the UF and AF differentially relate to reward devaluation suggests that the amygdala-OFC interactions that occur via these separate tracts are partially independent.
Collapse
Affiliation(s)
- Daniel T Gray
- Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ, USA.,Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
| | - Lavanya Umapathy
- Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Sara N Burke
- Evelyn F McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Theodore P Trouard
- Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.,Department of Biomedical Engineering, University of Arizona, Tucson, AZ, USA
| | - Carol A Barnes
- Division of Neural System, Memory & Aging, University of Arizona, Tucson, AZ, USA.,Evelyn F McKnight Brain Institute, University of Arizona, Tucson, AZ, USA.,Departments of Psychology, Neurology and Neuroscience, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
49
|
Kaftan OJ, Freund AM. A Motivational Life-Span Perspective on Procrastination: The Development of Delaying Goal Pursuit Across Adulthood. RESEARCH IN HUMAN DEVELOPMENT 2018. [DOI: 10.1080/15427609.2018.1489096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
50
|
Zhong JY, Moffat SD. Extrahippocampal Contributions to Age-Related Changes in Spatial Navigation Ability. Front Hum Neurosci 2018; 12:272. [PMID: 30042665 PMCID: PMC6048192 DOI: 10.3389/fnhum.2018.00272] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/13/2018] [Indexed: 12/20/2022] Open
Abstract
Age-related decline in spatial navigation is well-known and the extant literature emphasizes the important contributions of a hippocampus-dependent spatial navigation system in mediating this decline. However, navigation is a multifaceted cognitive domain and some aspects of age-related navigational decline may be mediated by extrahippocampal brain regions and/or systems. The current review presents an overview of some key cognitive domains that contribute to the age-related changes in spatial navigation ability, and elucidates such domains in the context of an increased engagement of navigationally relevant extrahippocampal brain regions with advancing age. Specifically, this review focuses on age-related declines in three main areas: (i) allocentric strategy use and switching between egocentric and allocentric strategies, (ii) associative learning of landmarks/locations and heading directions, and (iii) executive functioning and attention. Thus far, there is accumulating neuroimaging evidence supporting the functional relevance of the striatum for egocentric/response strategy use in older adults, and of the prefrontal cortex for mediating executive functions that contribute to successful navigational performance. Notably, the functional role of the prefrontal cortex was particularly emphasized via the proposed relevance of the fronto-locus coeruleus noradrenergic system for strategy switching and of the fronto-hippocampal circuit for landmark-direction associative learning. In view of these putative prefrontal contributions to navigation-related functions, we recommend future spatial navigation studies to adopt a systems-oriented approach that investigates age-related alterations in the interaction between the prefrontal cortex, the hippocampus, and extrahippocampal regions, as well as an individual differences approach that clarifies the differential engagement of prefrontal executive processes among older adults.
Collapse
Affiliation(s)
| | - Scott D. Moffat
- School of Psychology, Georgia Institute of Technology, Atlanta, GA, United States
| |
Collapse
|