1
|
Wang J, Ma Y, Zhang H, Li N, Xu H, Liang Y, Luo M, Wang Y. Swallowing cortical network features under taste stimulation for patients with post stroke dysphagia-Insights from a fNIRS study. Brain Res Bull 2025; 223:111287. [PMID: 40049459 DOI: 10.1016/j.brainresbull.2025.111287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/17/2024] [Accepted: 02/28/2025] [Indexed: 03/18/2025]
Abstract
The alterations in the swallowing cortical network associated with taste stimulation in patients with post-stroke dysphagia remain unclear. The aim of the study was to investigate the alterations in brain functional activity among individuals with post-stroke dysphagia under taste stimuli using functional near-infrared spectroscopy (fNIRS). We recruited 28 patients with post-stroke dysphagia and 24 age-matched healthy controls in this study. Each of them completed swallowing evaluation, resting-state and swallowing task-related fNIRS test. We found that the brain activation of patients significantly decreased in the left and right supplemental motor area (SMA) for water swallowing task and the left SMA and right primary sensory area (S1) for salty water swallowing, compared with healthy controls, only the left SMA remained significant for salty water swallowing after False Discovery Rate (FDR) correction. Fourteen healthy controls and 13 patients were included in the subgroup analysis, to explore the influences of preferred taste on swallowing network, we observed that the brain activation in the right S1 was significantly reduced during water swallowing in patient group (p = 0.008, with FDR corrected), all channels showed similar strengths in the activation under preferred taste stimulus between the groups. Functional connectivity (FC) between hemispheric sensorimotor areas were significantly decreased in patients compared with healthy controls. Our investigation revealed a noteworthy reduction in the activation of the left SMA during the salty water swallowing task in patients with dysphagia when compared to the healthy control group. The dysphagic patients following stroke exhibited impaired interaction between hemispheric sensorimotor areas associated with swallowing. Sour, sweet, and preferred taste stimulation have the potential to enhance brain plasticity, which may offer new insights for developing novel strategies for post-stroke dysphagia.
Collapse
Affiliation(s)
- Jie Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yanping Ma
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Haiping Zhang
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Na Li
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Hangrui Xu
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yanan Liang
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Meiling Luo
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China
| | - Yonghui Wang
- Rehabilitation Center, Qilu Hospital of Shandong University, No. 107, Wenhuaxi Road, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Boukrina O, Madden EB, Sandroff BM, Cui X, Yamin A, Kong Y, Graves WW. Improving reading competence in aphasia with combined aerobic exercise and phono-motor treatment: Protocol for a randomized controlled trial. PLoS One 2025; 20:e0317210. [PMID: 39820216 PMCID: PMC11737671 DOI: 10.1371/journal.pone.0317210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Aphasia, a communication disorder caused primarily by left-hemisphere stroke, affects millions of individuals worldwide, with up to 70% experiencing significant reading impairments. These deficits negatively impact independence and quality of life, highlighting the need for effective treatments that target the cognitive and neural processes essential to reading recovery. This Randomized Clinical Trial (RCT) aims to test the efficacy of a combined intervention incorporating aerobic exercise training (AET) and phono-motor treatment (PMT) to enhance reading recovery in individuals with post-stroke aphasia. AET, known for its positive impact on cerebral blood flow (CBF) and oxygenation, is hypothesized to facilitate neuroplasticity when administered before PMT, an intensive therapy aimed at strengthening phonological processing. While most existing treatments focus on spoken language production, this study builds on evidence that PMT can also improve reading skills. The study is structured as a Phase I/II clinical trial and compares the effects of AET plus PMT to a control condition of stretching plus PMT on reading and other language outcomes including naming, auditory comprehension, and spontaneous speech. Additionally, it investigates the immediate and sustained impacts of the intervention on CBF, functional connectivity, and task-evoked brain activity. The central hypothesis posits that AET will increase CBF and, when combined with PMT, will lead to enhanced reading recovery, supporting treatment-induced plasticity. This trial represents one of the first large-scale interventions targeting post-stroke reading impairments and provides critical insights into the potential of combining AET with cognitive rehabilitation to improve language recovery in aphasia.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
| | - Elizabeth B. Madden
- Department of Communication Science and Disorders, Florida State University, Tallahassee, FL, United States of America
| | - Brian M. Sandroff
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States of America
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Abubakar Yamin
- City University of New York (CUNY) School of Medicine, New York, NY, United States of America
| | - Yekyung Kong
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
- Kessler Institute for Rehabilitation, West Orange, NJ, United States of America
| | - William W. Graves
- Psychology Department, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
3
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00057. [PMID: 39328846 PMCID: PMC11426116 DOI: 10.1162/imag_a_00057] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired blood oxygenation level dependent (BOLD) signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example, in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
4
|
Reddy NA, Zvolanek KM, Moia S, Caballero-Gaudes C, Bright MG. Denoising task-correlated head motion from motor-task fMRI data with multi-echo ICA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.19.549746. [PMID: 37503125 PMCID: PMC10370165 DOI: 10.1101/2023.07.19.549746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Motor-task functional magnetic resonance imaging (fMRI) is crucial in the study of several clinical conditions, including stroke and Parkinson's disease. However, motor-task fMRI is complicated by task-correlated head motion, which can be magnified in clinical populations and confounds motor activation results. One method that may mitigate this issue is multi-echo independent component analysis (ME-ICA), which has been shown to separate the effects of head motion from the desired BOLD signal but has not been tested in motor-task datasets with high amounts of motion. In this study, we collected an fMRI dataset from a healthy population who performed a hand grasp task with and without task-correlated amplified head motion to simulate a motor-impaired population. We analyzed these data using three models: single-echo (SE), multi-echo optimally combined (ME-OC), and ME-ICA. We compared the models' performance in mitigating the effects of head motion on the subject level and group level. On the subject level, ME-ICA better dissociated the effects of head motion from the BOLD signal and reduced noise. Both ME models led to increased t-statistics in brain motor regions. In scans with high levels of motion, ME-ICA additionally mitigated artifacts and increased stability of beta coefficient estimates, compared to SE. On the group level, all three models produced activation clusters in expected motor areas in scans with both low and high motion, indicating that group-level averaging may also sufficiently resolve motion artifacts that vary by subject. These findings demonstrate that ME-ICA is a useful tool for subject-level analysis of motor-task data with high levels of task-correlated head motion. The improvements afforded by ME-ICA are critical to improve reliability of subject-level activation maps for clinical populations in which group-level analysis may not be feasible or appropriate, for example in a chronic stroke cohort with varying stroke location and degree of tissue damage.
Collapse
Affiliation(s)
- Neha A. Reddy
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Kristina M. Zvolanek
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| | - Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Gipuzkoa, Spain
- Neuro-X Institute, École polytechnique fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics (DRIM), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Molly G. Bright
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, McCormick School of Engineering and Applied Sciences, Northwestern University, Evanston, IL, United States
| |
Collapse
|
5
|
Huang H, Yan J, Lin Y, Lin J, Hu H, Wei L, Zhang X, Zhang Q, Liang S. Brain functional activity of swallowing: A meta-analysis of functional magnetic resonance imaging. J Oral Rehabil 2023; 50:165-175. [PMID: 36437597 DOI: 10.1111/joor.13397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/01/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Swallowing is one of the most important activities in our life and serves the dual roles of nutritional intake and eating enjoyment. OBJECTIVE The study aimed to conduct a meta-analysis to investigate the brain activity of swallowing. METHODS Studies of swallowing using functional magnetic resonance imaging were reviewed in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Chinese Science and Technology Periodical Database (VIP) and Wan Fang before 30 November 2021. Two authors analysed the studies for eligibility criteria. The final inclusion of studies was decided by consensus. An activation likelihood estimation (ALE) meta-analysis of these studies was performed with GingerALE, including 16 studies. RESULTS For swallowing, clusters with high activation likelihood were found in the bilateral insula, bilateral pre-central gyrus, bilateral post-central gyrus, left transverse temporal gyrus, right medial front gyrus, bilateral inferior frontal gyrus and bilateral cingulate gyrus. For water swallowing, clusters with high activation likelihood were found in the bilateral inferior frontal gyrus and the left pre-central gyrus. For saliva swallowing, clusters with high activation likelihood were found in the bilateral cingulate gyrus, bilateral pre-central gyrus, left post-central gyrus and left transverse gyrus. CONCLUSION This meta-analysis reflects that swallowing is regulated by both sensory and motor cortex, and saliva swallowing activates more brain areas than water swallowing, which would promote our knowledge of swallowing and provide some direction for clinical and other research.
Collapse
Affiliation(s)
- Haiyue Huang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jin Yan
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yinghong Lin
- College of Integrated Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Jiaxin Lin
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Huimin Hu
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Linxuan Wei
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Xiwen Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Qingqing Zhang
- College of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Shengxiang Liang
- National-Local Joint Engineering Research Center of Rehabilitation Medicine Technology, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Rehabilitation Industry Institute, Fujian University of Traditional Chinese Medicine, Fuzhou, China.,Traditional Chinese Medicine Rehabilitation Research Center of State Administration of Traditional Chinese Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
6
|
Correspondence between cognitive and neural representations for phonology, orthography, and semantics in supramarginal compared to angular gyrus. Brain Struct Funct 2023; 228:255-271. [PMID: 36326934 DOI: 10.1007/s00429-022-02590-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/23/2022] [Indexed: 11/05/2022]
Abstract
The angular and supramarginal gyri (AG and SMG) together constitute the inferior parietal lobule (IPL) and have been associated with cognitive functions that support reading. How those functions are distributed across the AG and SMG is a matter of debate, the resolution of which is hampered by inconsistencies across stereotactic atlases provided by the major brain image analysis software packages. Schematic results from automated meta-analyses suggest primarily semantic (word meaning) processing in the left AG, with more spatial overlap among phonological (auditory word form), orthographic (visual word form), and semantic processing in the left SMG. To systematically test for correspondence between patterns of neural activation and phonological, orthographic, and semantic representations, we re-analyze a functional magnetic resonance imaging data set of participants reading aloud 465 words. Using representational similarity analysis, we test the hypothesis that within cytoarchitecture-defined subregions of the IPL, phonological representations are primarily associated with the SMG, while semantic representations are primarily associated with the AG. To the extent that orthographic representations can be de-correlated from phonological representations, they will be associated with cortex peripheral to the IPL, such as the intraparietal sulcus. Results largely confirmed these hypotheses, with some nuanced exceptions, which we discuss in terms of neurally inspired computational cognitive models of reading that learn mappings among distributed representations for orthography, phonology, and semantics. De-correlating constituent representations making up complex cognitive processes, such as reading, by careful selection of stimuli, representational formats, and analysis techniques, are promising approaches for bringing additional clarity to brain structure-function relationships.
Collapse
|
7
|
Moia S, Termenon M, Uruñuela E, Chen G, Stickland RC, Bright MG, Caballero-Gaudes C. ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI. Neuroimage 2021; 233:117914. [PMID: 33684602 PMCID: PMC8351526 DOI: 10.1016/j.neuroimage.2021.117914] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 02/22/2021] [Indexed: 12/19/2022] Open
Abstract
Performing a BOLD functional MRI (fMRI) acquisition during breath-hold (BH) tasks is a non-invasive, robust method to estimate cerebrovascular reactivity (CVR). However, movement and breathing-related artefacts caused by the BH can substantially hinder CVR estimates due to their high temporal collinearity with the effect of interest, and attention has to be paid when choosing which analysis model should be applied to the data. In this study, we evaluate the performance of multiple analysis strategies based on lagged general linear models applied on multi-echo BOLD fMRI data, acquired in ten subjects performing a BH task during ten sessions, to obtain subject-specific CVR and haemodynamic lag estimates. The evaluated approaches range from conventional regression models, i.e. including drifts and motion timecourses as nuisance regressors, applied on single-echo or optimally-combined data, to more complex models including regressors obtained from multi-echo independent component analysis with different grades of orthogonalization in order to preserve the effect of interest, i.e. the CVR. We compare these models in terms of their ability to make signal intensity changes independent from motion, as well as the reliability as measured by voxelwise intraclass correlation coefficients of both CVR and lag maps over time. Our results reveal that a conservative independent component analysis model applied on the optimally-combined multi-echo fMRI signal offers the largest reduction of motion-related effects in the signal, while yielding reliable CVR amplitude and lag estimates, although a conventional regression model applied on the optimally-combined data results in similar estimates. This work demonstrates the usefulness of multi-echo based fMRI acquisitions and independent component analysis denoising for precision mapping of CVR in single subjects based on BH paradigms, fostering its potential as a clinically-viable neuroimaging tool for individual patients. It also proves that the way in which data-driven regressors should be incorporated in the analysis model is not straight-forward due to their complex interaction with the BH-induced BOLD response.
Collapse
Affiliation(s)
- Stefano Moia
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain.
| | - Maite Termenon
- Basque Center on Cognition, Brain and Language, Donostia, Spain
| | - Eneko Uruñuela
- Basque Center on Cognition, Brain and Language, Donostia, Spain; University of the Basque Country UPV/EHU, Donostia, Spain
| | - Gang Chen
- Scientific and Statistical Computing Core, NIMH/NIH/HHS, Bethesda, MD, United States
| | - Rachael C Stickland
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Molly G Bright
- Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States; Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, United States
| | | |
Collapse
|
8
|
Yuan Q, Wu J, Zhang M, Zhang Z, Chen M, Ding G, Lu C, Guo T. Patterns and networks of language control in bilingual language production. Brain Struct Funct 2021; 226:963-977. [PMID: 33502622 DOI: 10.1007/s00429-021-02218-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 01/11/2021] [Indexed: 11/29/2022]
Abstract
Many studies have examined the cognitive and neural mechanisms of bilingual language control, but few of them have captured the pattern information of brain activation. However, language control is a functional combination of both cognitive control and language production which demonstrates distinct patterns of neural representations under different language contexts. The first aim of the present study was to explore the brain activation patterns of language control using multivoxel pattern analysis (MVPA). During the experiment, Chinese-English bilinguals were instructed to name pictures in either Chinese or English according to a visually presented cue while being scanned with functional magnetic resonance imaging (fMRI). We found that patterns of neural activity in frontal brain regions including the left dorsolateral prefrontal cortex, left inferior frontal gyrus, left supplementary motor area, anterior cingulate cortex, bilateral precentral gyri, and the left cerebellum reliably discriminated between switch and non-switch conditions. We then modeled causal interactions between these regions by applying effective connectivity analyses based on an extended unified structure equation model (euSEM). The results showed that frontal and fronto-cerebellar connectivity were key components of the language control network. These findings further reveal the engagement of the cognitive control network in bilingual language production.
Collapse
Affiliation(s)
- Qiming Yuan
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Junjie Wu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Man Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Zhaoqi Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Mo Chen
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Guosheng Ding
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China
| | - Taomei Guo
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China. .,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
9
|
Al Dahhan NZ, Kirby JR, Brien DC, Gupta R, Harrison A, Munoz DP. Understanding the biological basis of dyslexia at a neural systems level. Brain Commun 2020; 2:fcaa173. [PMID: 33305260 PMCID: PMC7713994 DOI: 10.1093/braincomms/fcaa173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 07/17/2020] [Accepted: 08/03/2020] [Indexed: 11/12/2022] Open
Abstract
We examined the naming speed performance of 18 typically achieving and 16 dyslexic adults while simultaneously recording eye movements, articulations and fMRI data. Naming speed tasks, which require participants to name a list of letters or objects, have been proposed as a proxy for reading and are thought to recruit similar reading networks in the left hemisphere of the brain as more complex reading tasks. We employed letter and object naming speed tasks, with task manipulations to make the stimuli more or less phonologically and/or visually similar. Compared to typically achieving readers, readers with dyslexia had a poorer behavioural naming speed task performance, longer fixation durations, more regressions and increased activation in areas of the reading network in the left-hemisphere. Whereas increased network activation was positively associated with performance in dyslexics, it was negatively related to performance in typically achieving readers. Readers with dyslexia had greater bilateral activation and recruited additional regions involved with memory, namely the amygdala and hippocampus; in contrast, the typically achieving readers additionally activated the dorsolateral prefrontal cortex. Areas within the reading network were differentially activated by stimulus manipulations to the naming speed tasks. There was less efficient naming speed behavioural performance, longer fixation durations, more regressions and increased neural activity when letter stimuli were both phonologically and visually similar. Discussion focuses on the differences in activation within the reading network, how they are related to behavioural task differences, and how progress in furthering the understanding of the relationship between behavioural performance and brain activity can change the overall trajectories of children with reading difficulties by contributing to both early identification and remediation processes.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Correspondence to: Noor Z. Al Dahhan, Centre for Neuroscience Studies, Queen’s University, Botterell Hall, 18 Stuart Street, Kingston, ON, K7L 3N6, Canada. E-mail:
| | - John R Kirby
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Faculty of Education, Queen's University, Kingston, ON K7M 5R7, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Rina Gupta
- Regional Assessment and Resource Centre, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Allyson Harrison
- Regional Assessment and Resource Centre, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
10
|
Jing YH, Lin T, Li WQ, Wu C, Li X, Ding Q, Wu MF, Xu GQ, Lan Y. Comparison of Activation Patterns in Mirror Neurons and the Swallowing Network During Action Observation and Execution: A Task-Based fMRI Study. Front Neurosci 2020; 14:867. [PMID: 32973431 PMCID: PMC7472888 DOI: 10.3389/fnins.2020.00867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/27/2020] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Observation of a goal-directed motor action can excite the respective mirror neurons, and this is the theoretical basis for action observation (AO) as a novel tool for functional recovery during stroke rehabilitation. To explore the therapeutic potential of AO for dysphagia, we conducted a task-based functional magnetic resonance imaging (fMRI) study to identify the brain areas activated during observation and execution of swallowing in healthy participants. METHODS Twenty-nine healthy volunteers viewed the following stimuli during fMRI scanning: an action-video of swallowing (condition 1, defined as AO), a neutral image with a Chinese word for "watching" (condition 2), and a neutral image with a Chinese word for "swallowing" (condition 3). Action execution (AE) was defined as condition 3 minus condition 2. One-sample t-tests were performed to define the brain regions activated during AO and AE. RESULTS Many brain regions were activated during AO, including the middle temporal gyrus, inferior frontal gyrus, pre- and postcentral gyrus, supplementary motor area, hippocampus, brainstem, and pons. AE resulted in activation of motor areas as well as other brain areas, including the inferior parietal lobule, vermis, middle frontal gyrus, and middle temporal gyrus. Two brain areas, BA6 and BA21, were activated with both AO and AE. CONCLUSION The left supplementary motor area (BA6) and left middle temporal gyrus (BA21), which contains mirror neurons, were activated in both AO and AE of swallowing. In this study, AO activated mirror neurons and the swallowing network in healthy participants, supporting its potential value in the treatment of dysphagia.
Collapse
Affiliation(s)
- Ying-hua Jing
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Tuo Lin
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Wan-qi Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Cheng Wu
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xue Li
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qian Ding
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Man-feng Wu
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Guang-qing Xu
- Department of Rehabilitation Medicine, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yue Lan
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, School of Medicine, South China University of Technology, Guangzhou, China
- Department of Rehabilitation Medicine, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
11
|
Al Dahhan NZ, Kirby JR, Chen Y, Brien DC, Munoz DP. Examining the neural and cognitive processes that underlie reading through naming speed tasks. Eur J Neurosci 2020; 51:2277-2298. [PMID: 31912932 DOI: 10.1111/ejn.14673] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/13/2019] [Accepted: 12/31/2019] [Indexed: 11/29/2022]
Abstract
We combined fMRI with eye tracking and speech recording to examine the neural and cognitive mechanisms that underlie reading. To simplify the study of the complex processes involved during reading, we used naming speed (NS) tasks (also known as rapid automatized naming or RAN) as a focus for this study, in which average reading right-handed adults named sets of stimuli (letters or objects) as quickly and accurately as possible. Due to the possibility of spoken output during fMRI studies creating motion artifacts, we employed both an overt session and a covert session. When comparing the two sessions, there were no significant differences in behavioral performance, sensorimotor activation (except for regions involved in the motor aspects of speech production) or activation in regions within the left-hemisphere-dominant neural reading network. This established that differences found between the tasks within the reading network were not attributed to speech production motion artifacts or sensorimotor processes. Both behavioral and neuroimaging measures showed that letter naming was a more automatic and efficient task than object naming. Furthermore, specific manipulations to the NS tasks to make the stimuli more visually and/or phonologically similar differentially activated the reading network in the left hemisphere associated with phonological, orthographic and orthographic-to-phonological processing, but not articulatory/motor processing related to speech production. These findings further our understanding of the underlying neural processes that support reading by examining how activation within the reading network differs with both task performance and task characteristics.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - John R Kirby
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Faculty of Education, Queen's University, Kingston, ON, Canada
| | - Ying Chen
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Donald C Brien
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada
| | - Douglas P Munoz
- Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON, Canada
| |
Collapse
|
12
|
Graves WW, Coulanges L, Levinson H, Boukrina O, Conant LL. Neural Effects of Gender and Age Interact in Reading. Front Neurosci 2019; 13:1115. [PMID: 31680843 PMCID: PMC6812500 DOI: 10.3389/fnins.2019.01115] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/02/2019] [Indexed: 12/22/2022] Open
Abstract
There has been an enduring fascination with the possibility of gender differences in the brain basis of language, yet the evidence has been largely equivocal. Evidence does exist, however, for women being at greater risk than men for developing psychomotor slowing and even Alzheimer disease with advancing age, although this may in part at least be due to women living longer. We examined whether gender, age, or their interaction influenced language-related or more general processes in reading. Reading consists of elements related to language, such as the processing of word sound patterns (phonology) and meanings (semantics), along with the lead-in processes of visual perception and orthographic (visual word form) processing that are specific to reading. To test for any influence of gender and age on either semantic processing or orthography-phonology mapping, we tested for an interaction of these factors on differences between meaningful words and meaningless but pronounceable non-words. We also tested for effects of gender and age on how the number of letters in a word modulates neural activity for reading. This lead-in process presumably relates most to orthography. Behaviorally, reading accuracy declined with age for both men and women, but the decline was steeper for men. Neurally, interactions between gender and age were found exclusively in medial orbitofrontal cortex (mOFC). These factors influenced the word-non-word contrast, but not the parametric effect of number of letters. Men showed increasing activation with age for non-words compared to words. Women showed only slightly decreasing activation with age for novel letter strings. Overall, we found interactive effects of gender and age in the mOFC on the left primarily for novel letter strings, but no such interaction for a contrast that emphasized visual form processing. Thus the interaction of gender with age in the mOFC may relate most to orthography-phonology conversion for unfamiliar letter strings. More generally, this suggests that efforts to investigate effects of gender on language-related tasks may benefit from taking into account age and the type of cognitive process being highlighted.
Collapse
Affiliation(s)
- William W. Graves
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Linsah Coulanges
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Hillary Levinson
- Department of Psychology, Rutgers University–Newark, Newark, NJ, United States
| | - Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, United States
| | - Lisa L. Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Hyde JS. Autobiography of James S. Hyde. APPLIED MAGNETIC RESONANCE 2017; 48:1103-1147. [PMID: 29962662 PMCID: PMC6022859 DOI: 10.1007/s00723-017-0950-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The papers, book chapters, reviews, and patents by James S. Hyde in the bibliography of this document have been separated into EPR and MRI sections, and within each section by topics. Within each topic, publications are listed chronologically. A brief summary is provided for each patent listed. A few publications and patents that do not fit this schema have been omitted. This list of publications is preceded by a scientific autobiography that focuses on selected topics that are judged to have been of most scientific importance. References to many of the publications and patents in the bibliography are made in the autobiography.
Collapse
Affiliation(s)
- James S Hyde
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plan Road, Milwaukee, WI 53226; 414-955-4000; ; ORCID: 0000-0002-3023-1243
| |
Collapse
|
14
|
Caballero-Gaudes C, Reynolds RC. Methods for cleaning the BOLD fMRI signal. Neuroimage 2017; 154:128-149. [PMID: 27956209 PMCID: PMC5466511 DOI: 10.1016/j.neuroimage.2016.12.018] [Citation(s) in RCA: 361] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/05/2016] [Accepted: 12/08/2016] [Indexed: 01/13/2023] Open
Abstract
Blood oxygen-level-dependent functional magnetic resonance imaging (BOLD fMRI) has rapidly become a popular technique for the investigation of brain function in healthy individuals, patients as well as in animal studies. However, the BOLD signal arises from a complex mixture of neuronal, metabolic and vascular processes, being therefore an indirect measure of neuronal activity, which is further severely corrupted by multiple non-neuronal fluctuations of instrumental, physiological or subject-specific origin. This review aims to provide a comprehensive summary of existing methods for cleaning the BOLD fMRI signal. The description is given from a methodological point of view, focusing on the operation of the different techniques in addition to pointing out the advantages and limitations in their application. Since motion-related and physiological noise fluctuations are two of the main noise components of the signal, techniques targeting their removal are primarily addressed, including both data-driven approaches and using external recordings. Data-driven approaches, which are less specific in the assumed model and can simultaneously reduce multiple noise fluctuations, are mainly based on data decomposition techniques such as principal and independent component analysis. Importantly, the usefulness of strategies that benefit from the information available in the phase component of the signal, or in multiple signal echoes is also highlighted. The use of global signal regression for denoising is also addressed. Finally, practical recommendations regarding the optimization of the preprocessing pipeline for the purpose of denoising and future venues of research are indicated. Through the review, we summarize the importance of signal denoising as an essential step in the analysis pipeline of task-based and resting state fMRI studies.
Collapse
Affiliation(s)
| | - Richard C Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Department of Health and Human Services, USA
| |
Collapse
|
15
|
A trade-off between somatosensory and auditory related brain activity during object naming but not reading. J Neurosci 2015; 35:4751-9. [PMID: 25788691 DOI: 10.1523/jneurosci.2292-14.2015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The parietal operculum, particularly the cytoarchitectonic area OP1 of the secondary somatosensory area (SII), is involved in somatosensory feedback. Using fMRI with 58 human subjects, we investigated task-dependent differences in SII/OP1 activity during three familiar speech production tasks: object naming, reading and repeatedly saying "1-2-3." Bilateral SII/OP1 was significantly suppressed (relative to rest) during object naming, to a lesser extent when repeatedly saying "1-2-3" and not at all during reading. These results cannot be explained by task difficulty but the contrasting difference between naming and reading illustrates how the demands on somatosensory activity change with task, even when motor output (i.e., production of object names) is matched. To investigate what determined SII/OP1 deactivation during object naming, we searched the whole brain for areas where activity increased as that in SII/OP1 decreased. This across subject covariance analysis revealed a region in the right superior temporal sulcus (STS) that lies within the auditory cortex, and is activated by auditory feedback during speech production. The tradeoff between activity in SII/OP1 and STS was not observed during reading, which showed significantly more activation than naming in both SII/OP1 and STS bilaterally. These findings suggest that, although object naming is more error prone than reading, subjects can afford to rely more or less on somatosensory or auditory feedback during naming. In contrast, fast and efficient error-free reading places more consistent demands on both types of feedback, perhaps because of the potential for increased competition between lexical and sublexical codes at the articulatory level.
Collapse
|
16
|
Improving the use of principal component analysis to reduce physiological noise and motion artifacts to increase the sensitivity of task-based fMRI. J Neurosci Methods 2014; 241:18-29. [PMID: 25481542 DOI: 10.1016/j.jneumeth.2014.11.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/24/2014] [Accepted: 11/25/2014] [Indexed: 01/27/2023]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) time series are subject to corruption by many noise sources, especially physiological noise and motion. Researchers have developed many methods to reduce physiological noise, including RETROICOR, which retroactively removes cardiac and respiratory waveforms collected during the scan, and CompCor, which applies principal components analysis (PCA) to remove physiological noise components without any physiological monitoring during the scan. NEW METHOD We developed four variants of the CompCor method. The optimized CompCor method applies PCA to time series in a noise mask, but orthogonalizes each component to the BOLD response waveform and uses an algorithm to determine a favorable number of components to use as "nuisance regressors." Whole brain component correction (WCompCor) is similar, except that it applies PCA to time-series throughout the whole brain. Low-pass component correction (LCompCor) identifies low-pass filtered components throughout the brain, while high-pass component correction (HCompCor) identifies high-pass filtered components. COMPARISON WITH EXISTING METHOD We compared the new methods with the original CompCor method by examining the resulting functional contrast-to-noise ratio (CNR), sensitivity, and specificity. RESULTS (1) The optimized CompCor method increased the CNR and sensitivity compared to the original CompCor method and (2) the application of WCompCor yielded the best improvement in the CNR and sensitivity. CONCLUSIONS The sensitivity of the optimized CompCor, WCompCor, and LCompCor methods exceeded that of the original CompCor method. However, regressing noise signals showed a paradoxical consequence of reducing specificity for all noise reduction methods attempted.
Collapse
|
17
|
Mihai PG, von Bohlen Und Halbach O, Lotze M. Differentiation of cerebral representation of occlusion and swallowing with fMRI. Am J Physiol Gastrointest Liver Physiol 2013; 304:G847-54. [PMID: 23494122 DOI: 10.1152/ajpgi.00456.2012] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Early work on representational specificity and recent findings on temporomandibular joint (TMJ) movement representation raise doubts that a specific swallow representation does exist. Additionally, during cortical stimulation TMJ movements and swallowing show a high overlap of representational areas in the primary motor cortex. It has thus been hypothesized that they overall might share the same neural structures. To differentiate these two movements, we performed a functional MRI (fMRI) study that enabled a direct comparison of functional representation of both actions in the same subject group. Effort during these tasks was controlled by skin conductance response. When balancing effort, we found a comparable neural representation pattern for both tasks but increased resources necessary to perform swallowing in direct comparison between tasks. For the first time, with the usage of fMRI, we demonstrated a representation in the brainstem for swallowing and occlusion. Increased activation for swallowing was observed in bilateral sensorimotor cortex, bilateral premotor and supplementary motor cortex, motor cingulate, thalamus, cerebellar hemispheres, left pallidum, bilateral pons, and midbrain. Peaks of activation in primary motor cortex between both conditions were about 5 mm adjacent. Brainstem activation was found corresponding to the sensory nucleus of the trigeminal nerve, the solitary nucleus for swallowing, and the trigeminal nucleus for occlusion. Our data suggest that cerebral representation of occlusion and swallowing are spatially widely overlapping, differing predominantly with respect to the quantity of neural resources involved. Both brainstem and primary motor representation differ in location with respect to somatotopy and contribution of cranial nerve nuclei.
Collapse
Affiliation(s)
- Paul G Mihai
- Functional Imaging Unit, Ctr. for Diagnostic Radiology and Neuroradiology, Univ. of Greifswald, Walther-Rathenau-Str. 46, D-17475 Greifswald, Germany
| | | | | |
Collapse
|
18
|
Babaei A, Ward BD, Ahmad S, Patel A, Nencka A, Li SJ, Hyde J, Shaker R. Reproducibility of swallow-induced cortical BOLD positive and negative fMRI activity. Am J Physiol Gastrointest Liver Physiol 2012; 303:G600-9. [PMID: 22766854 PMCID: PMC3468557 DOI: 10.1152/ajpgi.00167.2012] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Functional MRI (fMRI) studies have demonstrated that a number of brain regions (cingulate, insula, prefrontal, and sensory/motor cortices) display blood oxygen level-dependent (BOLD) positive activity during swallow. Negative BOLD activations and reproducibility of these activations have not been systematically studied. The aim of our study was to investigate the reproducibility of swallow-related cortical positive and negative BOLD activity across different fMRI sessions. We studied 16 healthy volunteers utilizing an fMRI event-related analysis. Individual analysis using a general linear model was used to remove undesirable signal changes correlated with motion, white matter, and cerebrospinal fluid. The group analysis used a mixed-effects multilevel model to identify active cortical regions. The volume and magnitude of a BOLD signal within each cluster was compared between the two study sessions. All subjects showed significant clustered BOLD activity within the known areas of cortical swallowing network across both sessions. The cross-correlation coefficient of percent fMRI signal change and the number of activated voxels across both positive and negative BOLD networks were similar between the two studies (r ≥ 0.87, P < 0.0001). Swallow-associated negative BOLD activity was comparable to the well-defined "default-mode" network, and positive BOLD activity had noticeable overlap with the previously described "task-positive" network. Swallow activates two parallel cortical networks. These include a positive and a negative BOLD network, respectively, correlated and anticorrelated with swallow stimulus. Group cortical activity maps, as well as extent and amplitude of activity induced by volitional swallowing in the cortical swallowing network, are reproducible between study sessions.
Collapse
Affiliation(s)
- Arash Babaei
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - B. Douglas Ward
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shahryar Ahmad
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - Anna Patel
- 1Gastroenterology and Hepatology, Department of Medicine, and
| | - Andrew Nencka
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Shi-Jiang Li
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - James Hyde
- 2Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Reza Shaker
- 1Gastroenterology and Hepatology, Department of Medicine, and
| |
Collapse
|
19
|
Szenkovits G, Peelle JE, Norris D, Davis MH. Individual differences in premotor and motor recruitment during speech perception. Neuropsychologia 2012; 50:1380-92. [DOI: 10.1016/j.neuropsychologia.2012.02.023] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 12/13/2011] [Accepted: 02/25/2012] [Indexed: 10/28/2022]
|
20
|
Functional connectivity and laterality of the motor and sensory components in the volitional swallowing network. Exp Brain Res 2012; 219:85-96. [PMID: 22441258 DOI: 10.1007/s00221-012-3069-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 03/05/2012] [Indexed: 10/28/2022]
Abstract
Functional neuroimaging has shown that multiple brain regions are active during volitional swallowing. Little is known, however, about which regions integrate motor execution and sensory feedback in the swallowing system. Although unilateral brain lesions in either hemisphere can produce swallowing deficits, some functional neuroimaging studies indicate that the left hemisphere has greater activation in certain sensory and motor-related swallowing regions. In this study, correlation coefficients were computed for five seed regions during volitional saliva swallowing to determine the functional relationships of these regions with the rest of the brain: the anterior and posterior insula, inferior frontal gyrus (BA44), primary sensory cortex (S1), and primary motor cortex (M1). A laterality index (LI) was derived that accounts for relative differences in total, positive connected voxels for the left/right hemisphere seeds. Clusters of significantly connected voxels were greater from the anterior and posterior insula than from the other three seed regions. Interactions of the insula with other brain regions were greater on the left than on the right during volitional swallowing. Group means showed laterality in the anterior insula (LI = 0.25) and the posterior insula (LI = 0.33). BA44 showed a lesser degree of difference in left versus right hemisphere interactions (LI = 0.12) while S1 did not show lateralization (LI = 0.02) and M1 showed some predominance of interactions in the right hemisphere (LI = -0.19). The greater connectivity from the left hemisphere insula to brain regions within and across hemispheres suggests that the insula is a primary integrative region for volitional swallowing in humans.
Collapse
|
21
|
Hahn AD, Nencka AS, Rowe DB. Enhancing the utility of complex-valued functional magnetic resonance imaging detection of neurobiological processes through postacquisition estimation and correction of dynamic B(0) errors and motion. Hum Brain Mapp 2012; 33:288-306. [PMID: 21305669 PMCID: PMC4001883 DOI: 10.1002/hbm.21217] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Revised: 10/18/2010] [Accepted: 10/27/2010] [Indexed: 11/07/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) time series analysis is typically performed using only the magnitude portion of the data. The phase information remains unused largely due to its sensitivity to temporal variations in the magnetic field unrelated to the functional response of interest. These phase changes are commonly the result of physiologic processes such as breathing or motion either inside or outside the imaging field of view. As a result, although the functional phase response carries pertinent physiological information concerning the vasculature, one aspect of which is the location of large draining veins, the full hemodynamic phase response is understudied and is poorly understood, especially in comparison with the magnitude response. It is likely that the magnitude and phase contain disjoint information, which could be used in tandem to better characterize functional hemodynamics. In this work, simulated and human fMRI experimental data are used to demonstrate how statistical analysis of complex-valued fMRI time series can be problematic, and how robust analysis using these powerful and flexible complex-valued statistics is possible through postprocessing with correction for dynamic magnetic field fluctuations in conjunction with estimated motion parameters. These techniques require no special pulse sequence modifications and can be applied to any complex-valued echo planar imaging data set. This analysis shows that the phase component appears to contain information complementary to that in the magnitude and that processing and analysis techniques are available to investigate it in a robust and flexible manner.
Collapse
Affiliation(s)
- Andrew D. Hahn
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53222
| | - Andrew S. Nencka
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53222
| | - Daniel B. Rowe
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, Wisconsin 53222
- Department of Mathematics, Statistics and Computer Science, Milwaukee, Wisconsin 53233
| |
Collapse
|
22
|
Motor control of jaw movements: An fMRI study of parafunctional clench and grind behavior. Brain Res 2011; 1383:206-17. [DOI: 10.1016/j.brainres.2011.01.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 01/14/2011] [Accepted: 01/26/2011] [Indexed: 01/30/2023]
|
23
|
Byrd KE, Romito LM, Dzemidzic M, Wong D, Talavage TM. fMRI study of brain activity elicited by oral parafunctional movements. J Oral Rehabil 2010; 36:346-61. [PMID: 19382299 DOI: 10.1111/j.1365-2842.2009.01947.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Parafunctional masticatory activity, such as the tooth clenching and grinding that is associated with bruxism, is encountered by clinicians in many disciplines, including dentistry, neurology and psychiatry. Despite this, little is known about the neurological basis for these activities. To identify the brain network engaged in such complex oromotor activity, functional magnetic resonance imaging (fMRI) was used to elucidate the brain activation patterns of 20 individuals (10 males and 10 females, mean s.d. age of 26.3+/-4.1 years) with (parafunctional, PFx group, 5M/5F) and without (normal functional, NFx group, 5 M/5F) self-reported parafunctional grinding and clenching habits during clenching and grinding tasks. Subject group classification was based on: (i) self-reported history, (ii) clinical examination, (iii) evaluation of dental casts and (iv) positive responses to the temporomandibular disorder (TMD) History Questionnaire [Dworkinand LeResche, Journal of Craniomandibular Disorders, (1992) 6:301]. While subjects performed these oromotor tasks, each wore a custom-designed oral appliance minimizing head motion during imaging. Mean per cent signal changes showed significant between group differences in motor cortical (supplementary motor area, sensorimotor cortex and rolandic operculum) and subcortical (caudate) regions. Supplementary motor area data suggest that motor planning and initiation, particularly during the act of clenching, are less prominent in individuals with oromotor parafunctional behaviours. The overall extent of activated areas was reduced in subjects with self-reported parafunctional masticatory activity compared with the controls. This study's methodology and findings provide an initial step in understanding the neurological basis of parafunctional masticatory activities that are relevant for therapeutic research applications of temporomandibular joint and muscle disorders and associated comorbidities.
Collapse
Affiliation(s)
- K E Byrd
- Department of Anatomy & Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202-5120, USA.
| | | | | | | | | |
Collapse
|
24
|
Birn RM, Kenworthy L, Case L, Caravella R, Jones TB, Bandettini PA, Martin A. Neural systems supporting lexical search guided by letter and semantic category cues: a self-paced overt response fMRI study of verbal fluency. Neuroimage 2010; 49:1099-107. [PMID: 19632335 PMCID: PMC2832834 DOI: 10.1016/j.neuroimage.2009.07.036] [Citation(s) in RCA: 268] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 06/04/2009] [Accepted: 07/16/2009] [Indexed: 11/27/2022] Open
Abstract
Verbal fluency tasks have been widely used to evaluate language and executive control processes in the human brain. FMRI studies of verbal fluency, however, have used either silent word generation (which provides no behavioral measure) or cued generation of single words in order to contend with speech-related motion artifacts. In this study, we use a recently developed paradigm design to investigate the neural correlates of verbal fluency during overt, free recall, word generation so that performance and brain activity could be evaluated under conditions that more closely mirror standard behavioral test demands. We investigated verbal fluency to both letter and category cues in order to evaluate differential involvement of specific frontal and temporal lobe sites as a function of retrieval cue type, as suggested by previous neuropsychological and neuroimaging investigations. In addition, we incorporated both a task switching manipulation and an automatic speech condition in order to modulate the demand placed on executive functions. We found greater activation in the left hemisphere during category and letter fluency tasks, and greater right hemisphere activation during automatic speech. We also found that letter and category fluency tasks were associated with differential involvement of specific regions of the frontal and temporal lobes. These findings provide converging evidence that letter and category fluency performance is dependent on partially distinct neural circuitry. They also provide strong evidence that verbal fluency can be successfully evaluated in the MR environment using overt, self-paced, responses.
Collapse
Affiliation(s)
- Rasmus M Birn
- Laboratory of Brain and Cognition, National Institute of Mental Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
25
|
Haller S, Bartsch AJ. Pitfalls in fMRI. Eur Radiol 2009; 19:2689-706. [DOI: 10.1007/s00330-009-1456-9] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2009] [Revised: 03/10/2009] [Accepted: 03/21/2009] [Indexed: 11/27/2022]
|
26
|
Buur PF, Poser BA, Norris DG. A dual echo approach to removing motion artefacts in fMRI time series. NMR IN BIOMEDICINE 2009; 22:551-560. [PMID: 19259989 DOI: 10.1002/nbm.1371] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In fMRI, subject motion can severely affect data quality. This is a particular problem when movement is correlated with the experimental paradigm as this potentially causes artefactual activation. A method is presented that uses linear regression, to utilise the time course of an image acquired at very short echo time (TE) as a voxel-wise regressor for a second image in the same echo train, that is acquired with high BOLD sensitivity. The value of this approach is demonstrated using task-locked motion combined with visual stimulation. Results obtained at both 1.5 and 3 T show improvements in functional activation maps for individual subjects. The method is straightforward to implement, does not require extra scan time and can easily be embedded in a multi-echo acquisition framework.
Collapse
Affiliation(s)
- Pieter F Buur
- Donders Institute for Brain, Cognition and Behaviour, Donders Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands.
| | | | | |
Collapse
|
27
|
Gopinath K, Crosson B, McGregor K, Peck K, Chang YL, Moore A, Sherod M, Cavanagh C, Wabnitz A, Wierenga C, White K, Cheshkov S, Krishnamurthy V, Briggs RW. Selective detrending method for reducing task-correlated motion artifact during speech in event-related FMRI. Hum Brain Mapp 2009; 30:1105-19. [PMID: 18465746 PMCID: PMC3010868 DOI: 10.1002/hbm.20572] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 01/22/2008] [Accepted: 02/28/2008] [Indexed: 11/12/2022] Open
Abstract
Task-correlated motion artifacts that occur during functional magnetic resonance imaging can be mistaken for brain activity. In this work, a new selective detrending method for reduction of artifacts associated with task-correlated motion (TCM) during speech in event-related functional magnetic resonance imaging is introduced and demonstrated in an overt word generation paradigm. The performance of this new method is compared with that of three existing methods for reducing artifacts because of TCM: (1) motion parameter regression, (2) ignoring images during speech, and (3) detrending time course datasets of signal components related to TCM (deduced from artifact corrupted voxels). The selective detrending method outperforms the other three methods in reducing TCM artifacts and in retaining blood oxygenation level dependent signal.
Collapse
Affiliation(s)
- Kaundinya Gopinath
- Department of Radiology, UT Southwestern Medical Center, Dallas, Texas 753908896, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Seghier ML, Lee HL, Schofield T, Ellis CL, Price CJ. Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words. Neuroimage 2008; 42:1226-36. [PMID: 18639469 PMCID: PMC2724104 DOI: 10.1016/j.neuroimage.2008.05.029] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 05/14/2008] [Accepted: 05/15/2008] [Indexed: 11/16/2022] Open
Abstract
Cognitive models of reading predict that high frequency regular words can be read in more than one way. We investigated this hypothesis using functional MRI and covariance analysis in 43 healthy skilled readers. Our results dissociated two sets of regions that were differentially engaged across subjects who were reading the same familiar words. Some subjects showed more activation in left inferior frontal and anterior occipito-temporal regions while other subjects showed more activation in right inferior parietal and left posterior occipito-temporal regions. To explore the behavioural correlates of these systems, we measured the difference between reading speed for irregularly spelled words relative to pseudowords outside the scanner in fifteen of our subjects and correlated this measure with fMRI activation for reading familiar words. The faster the lexical reading the greater the activation in left posterior occipito-temporal and right inferior parietal regions. Conversely, the slower the lexical reading the greater the activation in left anterior occipito-temporal and left ventral inferior frontal regions. Thus, the double dissociation in irregular and pseudoword reading behaviour predicted the double dissociation in neuronal activation for reading familiar words. We discuss the implications of these results which may be important for understanding how reading is learnt in childhood or re-learnt following brain damage in adulthood.
Collapse
Affiliation(s)
- M L Seghier
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, London, UK.
| | | | | | | | | |
Collapse
|
29
|
Lowell SY, Poletto CJ, Knorr-Chung BR, Reynolds RC, Simonyan K, Ludlow CL. Sensory stimulation activates both motor and sensory components of the swallowing system. Neuroimage 2008; 42:285-95. [PMID: 18515150 PMCID: PMC2556067 DOI: 10.1016/j.neuroimage.2008.04.234] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2008] [Revised: 03/25/2008] [Accepted: 04/16/2008] [Indexed: 10/22/2022] Open
Abstract
Volitional swallowing in humans involves the coordination of both brainstem and cerebral swallowing control regions. Peripheral sensory inputs are necessary for safe and efficient swallowing, and their importance to the patterned components of swallowing has been demonstrated. However, the role of sensory inputs to the cerebral system during volitional swallowing is less clear. We used four conditions applied during functional magnetic resonance imaging to differentiate between sensory, motor planning, and motor execution components for cerebral control of swallowing. Oral air pulse stimulation was used to examine the effect of sensory input, covert swallowing was used to engage motor planning for swallowing, and overt swallowing was used to activate the volitional swallowing system. Breath-holding was also included to determine whether its effects could account for the activation seen during overt swallowing. Oral air pulse stimulation, covert swallowing and overt swallowing all produced activation in the primary motor cortex, cingulate cortex, putamen and insula. Additional regions of the swallowing cerebral system that were activated by the oral air pulse stimulation condition included the primary and secondary somatosensory cortex and thalamus. Although air pulse stimulation was on the right side only, bilateral cerebral activation occurred. On the other hand, covert swallowing minimally activated sensory regions, but did activate the supplementary motor area and other motor regions. Breath-holding did not account for the activation during overt swallowing. The effectiveness of oral-sensory stimulation for engaging both sensory and motor components of the cerebral swallowing system demonstrates the importance of sensory input in cerebral swallowing control.
Collapse
Affiliation(s)
- Soren Y. Lowell
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, 5D-38, 10 Center Drive, MSC 1416, Bethesda, MD 20892-1416
| | - Christopher J. Poletto
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, 5D-38, 10 Center Drive, MSC 1416, Bethesda, MD 20892-1416
| | - Bethany R. Knorr-Chung
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, 5D-38, 10 Center Drive, MSC 1416, Bethesda, MD 20892-1416
| | - Richard C. Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892
| | - Kristina Simonyan
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, 5D-38, 10 Center Drive, MSC 1416, Bethesda, MD 20892-1416
| | - Christy L. Ludlow
- Laryngeal and Speech Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Building 10, 5D-38, 10 Center Drive, MSC 1416, Bethesda, MD 20892-1416
| |
Collapse
|
30
|
Soltysik DA, Hyde JS. High spatial resolution increases the specificity of block-design BOLD fMRI studies of overt vowel production. Neuroimage 2008; 41:389-97. [PMID: 18387825 PMCID: PMC2483239 DOI: 10.1016/j.neuroimage.2008.01.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2007] [Revised: 01/22/2008] [Accepted: 01/24/2008] [Indexed: 11/30/2022] Open
Abstract
Functional MRI (fMRI) studies of tasks involving orofacial motion, such as speech, are prone to problems related to motion-induced magnetic field variations. Orofacial motion perturbs the static magnetic field, leading to signal changes that correlate with the task and corrupt activation maps with false positives or signal loss. These motion-induced signal changes represent a contraindication for the implementation of fMRI to study the neurophysiology of orofacial motion. An fMRI experiment of a structured, non-semantic vowel production task was performed using four different voxel volumes and three different slice orientations in an attempt to find a set of acquisition parameters leading to activation maps with maximum specificity. Results indicate that the use of small voxel volumes (2 x 2 x 3 mm(3)) yielded a significantly higher percentage of true positive activation compared to the use of larger voxel volumes. Slice orientation did not have as great an impact as spatial resolution, although coronal slices appeared superior at high spatial resolutions. Furthermore, it was found that combining the strategy of high spatial resolution with an optimum task duration and post-processing methods for separating true and false positives greatly improved the specificity of single-subject, block-design fMRI studies of structured, overt vowel production.
Collapse
Affiliation(s)
- David A. Soltysik
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| | - James S. Hyde
- Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI 53226 USA
| |
Collapse
|
31
|
Lee JM, Hu J, Gao J, Crosson B, Peck KK, Wierenga CE, McGregor K, Zhao Q, White KD. Discriminating brain activity from task-related artifacts in functional MRI: fractal scaling analysis simulation and application. Neuroimage 2008; 40:197-212. [PMID: 18178485 PMCID: PMC2289872 DOI: 10.1016/j.neuroimage.2007.11.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Revised: 10/01/2007] [Accepted: 11/02/2007] [Indexed: 11/29/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) signal changes can be separated from background noise by various processing algorithms, including the well-known deconvolution method. However, discriminating signal changes due to task-related brain activities from those due to task-related head motion or other artifacts correlated in time to the task has been little addressed. We examine whether three exploratory fractal scaling analyses correctly classify these possibilities by capturing temporal self-similarity; namely, fluctuation analysis, wavelet multi-resolution analysis, and detrended fluctuation analysis (DFA). We specifically evaluate whether these fractal analytic methods can be effective and reliable in discriminating activations from artifacts. DFA is indeed robust for such classification. Brain activation maps derived by DFA are similar, but not identical, to maps derived by deconvolution. Deconvolution explicitly utilizes task timing to extract the signals whereas DFA does not, so these methods reveal somewhat different information from the data. DFA is better than deconvolution for distinguishing fMRI activations from task-related artifacts, although a combination of these approaches is superior to either one taken alone. We also present a method for estimating noise levels in fMRI data, validated with numerical simulations suggesting that Birn's model is effective for simulating fMRI signals. Simulations further corroborate that DFA is excellent at discriminating signal changes due to task-related brain activities from those due to task-related artifacts, under a range of conditions.
Collapse
Affiliation(s)
- Jae-Min Lee
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jing Hu
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Jianbo Gao
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
| | - Bruce Crosson
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Kyung K. Peck
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, 10021, USA
| | - Christina E. Wierenga
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Keith McGregor
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| | - Qun Zhao
- Department of Physics Astronomy, University of Georgia Athens, GA 30602, USA
| | - Keith D. White
- Brain Rehabilitation Research Center, Malcom Randall VAMC, Gainesville, FL 32608, USA
- Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL 32611, USA
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32611, USA
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
32
|
Probing overtly spoken language at sentential level: a comprehensive high-field BOLD-fMRI protocol reflecting everyday language demands. Neuroimage 2007; 39:1613-24. [PMID: 18060812 DOI: 10.1016/j.neuroimage.2007.10.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2007] [Revised: 09/29/2007] [Accepted: 10/12/2007] [Indexed: 11/22/2022] Open
Abstract
Regarding the application of functional magnetic resonance imaging (fMRI) to preoperative mapping of language, the majority of previous studies applied silent vocalization at word level. Since mapping of language targets the protection of overt communication, the selection of the stimulation paradigm is a crucial issue. Typically, everyday language demands overt speech with construction of syntactically and semantically complete sentences. Here, 23 healthy right-handed subjects performed overt vocalization of complete german sentences. Subjects produced these sentences based on visually presented semantic choices. Special efforts were undertaken to minimize motion artifacts and maximize signal gain on a 3-T MR unit. Compared to previous studies, results showed a larger amount of highly reliable fMRI activations over the whole brain. Particularly, high sensitivity was found for Broca's and Wernicke's regions, as well as anterior and inferior temporal areas. Regarding the left hemisphere, simultaneous "Broca" and "Wernicke" activities were found in 95% of all subjects. When including atypical lateralizations, "Broca" and "Wernicke" activations were found in every subject. Overt vocalization at sentential level represents a new comprehensive language task with the potential to generate reliable activation maps that reflect brain activity associated with everyday language demands.
Collapse
|
33
|
Foki T, Geissler A, Gartus A, Pahs G, Deecke L, Beisteiner R. Cortical lateralization of bilateral symmetric chin movements and clinical relevance in tumor patients—A high field BOLD–FMRI study. Neuroimage 2007; 37:26-39. [PMID: 17560128 DOI: 10.1016/j.neuroimage.2007.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2006] [Revised: 02/01/2007] [Accepted: 02/25/2007] [Indexed: 10/23/2022] Open
Abstract
Although unilateral lesion studies concerning the opercular part of primary motor cortex report clinically severe motor deficits (e.g. anarthria, masticatory paralysis), functional lateralization of this area has not yet been addressed in neuroimaging studies. Using BOLD-FMRI, this study provides the first quantitative evaluation of a possible cortical lateralization of symmetric chin movements (rhythmic contraction of masticatory muscles) in right-handed healthy subjects and presurgical patients suffering tumorous lesions in the opercular primary motor cortex. Data were analyzed according to "activation volume" and "activation intensity". At group level, results showed a strong left-hemispheric dominance for chin movements in the group of healthy subjects. In contrast, patients indicated dominance of the healthy hemisphere. Here, a clinically relevant dissociation was found between "activation volume" and "activation intensity": Although "activation volume" may be clearly lateralized to the healthy hemisphere, "activation intensity" may indicate residual functionally important tissue close to the pathological tissue. In these cases, consideration of BOLD-FMRI maps with the exclusive focus on "activation volume" may lead to erroneous presurgical conclusions. We conclude that comprehensive analyses of presurgical fMRI data may help to avoid sustained postoperative motor deficits and dysarthria in patients with lesions in the opercular part of primary motor cortex.
Collapse
Affiliation(s)
- Thomas Foki
- Study Group Clinical fMRI at the Department of Neurology, MR Center of Excellence, Medical University of Vienna, Waehringer Guertel 18-20, 1090 Vienna, Austria
| | | | | | | | | | | |
Collapse
|
34
|
Kleber B, Birbaumer N, Veit R, Trevorrow T, Lotze M. Overt and imagined singing of an Italian aria. Neuroimage 2007; 36:889-900. [PMID: 17478107 DOI: 10.1016/j.neuroimage.2007.02.053] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2006] [Revised: 02/20/2007] [Accepted: 02/23/2007] [Indexed: 11/17/2022] Open
Abstract
Activation maps of 16 professional classical singers were evaluated during overt singing and imagined singing of an Italian aria utilizing a sparse sampling functional magnetic imaging (fMRI) technique. Overt singing involved bilateral primary and secondary sensorimotor and auditory cortices but also areas associated with speech and language production. Activation magnitude within the gyri of Heschl (A1) was comparable in both hemispheres. Subcortical motor areas (cerebellum, thalamus, medulla and basal ganglia) were active too. Areas associated with emotional processing showed slight (anterior cingulate cortex, anterior insula) activation. Cerebral activation sites during imagined singing were centered on fronto-parietal areas and involved primary and secondary sensorimotor areas in both hemispheres. Areas processing emotions showed intense activation (ACC and bilateral insula, hippocampus and anterior temporal poles, bilateral amygdala). Imagery showed no significant activation in A1. Overt minus imagined singing revealed increased activation in cortical (bilateral primary motor; M1) and subcortical (right cerebellar hemisphere, medulla) motor as well as in sensory areas (primary somatosensory cortex, bilateral A1). Imagined minus overt singing showed enhanced activity in the medial Brodmann's area 6, the ventrolateral and medial prefrontal cortex (PFC), the anterior cingulate cortex and the inferior parietal lobe. Additionally, Wernicke's area and Brocca's area and their homologues were increasingly active during imagery. We conclude that imagined and overt singing involves partly different brain systems in professional singers with more prefrontal and limbic activation and a larger network of higher order associative functions during imagery.
Collapse
Affiliation(s)
- B Kleber
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Germany.
| | | | | | | | | |
Collapse
|
35
|
Jones SR, Fernyhough C. Neural correlates of inner speech and auditory verbal hallucinations: a critical review and theoretical integration. Clin Psychol Rev 2006; 27:140-54. [PMID: 17123676 DOI: 10.1016/j.cpr.2006.10.001] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2006] [Revised: 08/15/2006] [Accepted: 10/02/2006] [Indexed: 12/23/2022]
Abstract
The neuroimaging and neurophysiological literature on inner speech in healthy participants and those who experience auditory verbal hallucinations (AVHs) is reviewed. AVH-hearers in remission and controls do not differ neurologically on tasks involving low levels of verbal self-monitoring (VSM), such as reciting sentences in inner speech. In contrast, on tasks involving high levels of VSM, such as auditory verbal imagery, AVH-hearers in remission show less activation in areas including the middle and superior temporal gyri. This pattern of findings leads to a conundrum, given that mentation involving low levels of VSM is typically held to form the raw material for AVHs. We address this by noting that existing neuroimaging and neurophysiological studies have been based on unexamined assumptions about the form and developmental significance of inner speech. We set out a Vygotskian approach to AVHs which can account for why they are generally experienced as the voice of another person, with specific acoustic properties, and a tendency to take the form of commands. On this approach, which we argue is consistent with the neural correlates evidence, AVHs result from abnormalities in the transition between condensed and expanded dialogic inner speech. Further potential empirical tests of this model are discussed.
Collapse
Affiliation(s)
- Simon R Jones
- Department of Psychology, Durham University, South Road, Durham, DH1 3LE, UK.
| | | |
Collapse
|