1
|
Li X, Xiong L, Li Y. The role of the prefrontal cortex in modulating aggression in humans and rodents. Behav Brain Res 2025; 476:115285. [PMID: 39369825 DOI: 10.1016/j.bbr.2024.115285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 09/15/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Accumulating evidence suggests that the prefrontal cortex (PFC) plays an important role in aggression. However, the findings regarding the key neural mechanisms and molecular pathways underlying the modulation of aggression by the PFC are relatively scattered, with many inconsistencies and areas that would benefit from exploration. Here, we highlight the relationship between the PFC and aggression in humans and rodents and describe the anatomy and function of the human PFC, along with homologous regions in rodents. At the molecular level, we detail how the major neuromodulators of the PFC impact aggression. At the circuit level, this review provides an overview of known and potential subcortical projections that regulate aggression in rodents. Finally, at the disease level, we review the correlation between PFC alterations and heightened aggression in specific human psychiatric disorders. Our review provides a framework for PFC modulation of aggression, resolves several intriguing paradoxes from previous studies, and illuminates new avenues for further study.
Collapse
Affiliation(s)
- Xinyang Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China; Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Lize Xiong
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Translational Research Institute of Brain and Brain-Like Intelligence and Department of Anesthesiology and Perioperative Medicine, Shanghai Fourth People's Hospital Affiliated with Tongji University School of Medicine, Shanghai, China.
| | - Yan Li
- Department of Psychiatry and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China.
| |
Collapse
|
2
|
Grigorenko EL. The extraordinary "ordinary magic" of resilience. Dev Psychopathol 2024; 36:2481-2498. [PMID: 39363871 DOI: 10.1017/s0954579424000841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
In this essay, I will briefly sample different instances of the utilization of the concept of resilience, attempting to complement a comprehensive representation of the field in the special issue of Development and Psychopathology inspired by the 42nd Minnesota Symposium on Child Psychology, hosted by the Institute of Child Development at the University of Minnesota and held in October of 2022. Having established the general context of the field, I will zoom in on some of its features, which I consider "low-hanging fruit" and which can be harvested in a systematic way to advance the study of resilience in the context of the future of developmental psychopathology.
Collapse
|
3
|
Neri L, Marziani B, Sebastiani P, Del Beato T, Colanardi A, Legge MP, Aureli A. Aggressiveness in Italian Children with ADHD: MAOA Gene Polymorphism Involvement. Diseases 2024; 12:70. [PMID: 38667528 PMCID: PMC11049508 DOI: 10.3390/diseases12040070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
ADHD is a neurodevelopmental disorder that children and adults can develop. A complex interplay of genetic and environmental factors may underlie interindividual variability in ADHD and potentially related aggressive behavior. Using high-resolution molecular biology techniques, we investigated the impact of some MAOA and SLC6A4 variations on ADHD and aggressive behavior in a group of 80 Italian children with ADHD and in 80 healthy controls. We found that homozygous genotypes of MAOA rs6323 and rs1137070 were associated with an increased risk of ADHD (p = 0.02 and p = 0.03, respectively), whereas the heterozygous genotypes (GT of rs6323 and CT of rs1137030) (p = 0.0002 and p = 0.0006) were strongly linked to a lower risk of developing this disorder. In patients with aggressive behavior, we highlighted only a weak negative association of both MAOA polymorphisms (heterozygous genotypes) with aggressiveness, suggesting that these genotypes may be protective towards specific changes in behavior (p = 0.05). Interestingly, an increase in the GG genotype of rs6323 (p = 0.01) and a decrease in GT genotype (p = 0.0005) was also found in patients without aggressive behavior compared to controls. Regarding 5HTT gene genotyping, no allele and genotype differences have been detected among patients and controls. Our work shows that defining a genetic profile of ADHD may help in the early detection of patients who are more vulnerable to ADHD and/or antisocial and aggressive behavior and to design precision-targeted therapies.
Collapse
Affiliation(s)
- Ludovico Neri
- Neurology and Psychiatry Unit for Children and Adolescents, San Salvatore Hospital, via L. Natali, 1, Coppito, 67100 L’Aquila, Italy; (L.N.); (M.P.L.)
| | - Beatrice Marziani
- Emergency Medicine Department, Sant’Anna University Hospital, Via A. Moro, 8, Cona, 44124 Ferrara, Italy;
| | - Pierluigi Sebastiani
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Tiziana Del Beato
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Alessia Colanardi
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| | - Maria Pia Legge
- Neurology and Psychiatry Unit for Children and Adolescents, San Salvatore Hospital, via L. Natali, 1, Coppito, 67100 L’Aquila, Italy; (L.N.); (M.P.L.)
| | - Anna Aureli
- CNR Institute of Translational Pharmacology, Via Carducci 32, 67100 L’Aquila, Italy; (P.S.); (T.D.B.); (A.C.)
| |
Collapse
|
4
|
The neurobiology of human aggressive behavior: Neuroimaging, genetic, and neurochemical aspects. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110059. [PMID: 32822763 DOI: 10.1016/j.pnpbp.2020.110059] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 06/12/2020] [Accepted: 08/03/2020] [Indexed: 12/18/2022]
Abstract
In modern societies, there is a strive to improve the quality of life related to risk of crimes which inevitably requires a better understanding of brain determinants and mediators of aggression. Neurobiology provides powerful tools to achieve this end. Pre-clinical and clinical studies show that changes in regional volumes, metabolism-function and connectivity within specific neural networks are related to aggression. Subregions of prefrontal cortex, insula, amygdala, basal ganglia and hippocampus play a major role within these circuits and have been consistently implicated in biology of aggression. Genetic variations in proteins regulating the synthesis, degradation, and transport of serotonin and dopamine as well as their signal transduction have been found to mediate behavioral variability observed in aggression. Gene-gene and gene-environment interactions represent additional important risk factors for aggressiveness. Considering the social burden of pathological forms of aggression, more basic and translational studies should be conducted to accelerate applications to clinical practice, justice courts, and policy making.
Collapse
|
5
|
Holz NE, Tost H, Meyer-Lindenberg A. Resilience and the brain: a key role for regulatory circuits linked to social stress and support. Mol Psychiatry 2020; 25:379-396. [PMID: 31628419 DOI: 10.1038/s41380-019-0551-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 02/07/2023]
Abstract
Given the high prevalence and burden of mental disorders, fostering the understanding of protective factors is an urgent issue for translational medicine in psychiatry. The concept of resilience describes individual and environmental protective factors against the backdrop of established adversities linked to mental illness. There is convergent evidence for a crucial role of direct as well as indirect adversity impacting the developing brain, with persisting effects until adulthood. Direct adversity may include childhood maltreatment and family adversity, while indirect social adversity can include factors such as urban living or ethnic minority status. Recently, research has begun to examine protective factors which may be able to buffer against or even reverse these influences. First evidence indicates that supportive social environments as well as trait-like individual protective characteristics might impact on similar neural substrates, thus strengthening the capacity to actively cope with stress exposure in order to counteract the detrimental effects evoked by social adversity. Here, we provide an overview of the current literature investigating the neural mechanisms of resilience with a putative social background, including studies on individual traits and genetic variation linked to resilience. We argue that the regulatory perigenual anterior cingulate cortex and limbic regions, including the amygdala and the ventral striatum, play a key role as crucial convergence sites of protective factors. Further, we discuss possible prevention and early intervention approaches targeting both the individual and the social environment to reduce the risk of psychiatric disorders and foster resilience.
Collapse
Affiliation(s)
- Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, J5, 68159, Mannheim, Germany.
| |
Collapse
|
6
|
Fite PJ, Brown S, Hossain WA, Manzardo A, Butler MG, Bortolato M. Sex-Dimorphic Interactions of MAOA Genotype and Child Maltreatment Predispose College Students to Polysubstance Use. Front Genet 2020; 10:1314. [PMID: 32010186 PMCID: PMC6978277 DOI: 10.3389/fgene.2019.01314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 12/02/2019] [Indexed: 11/13/2022] Open
Abstract
Polysubstance use (PSU) is highly prevalent among college students. Recent evidence indicates that PSU is based on gene x environment (G×E) interactions, yet the specific biosocial factors underlying this problem remain elusive. We recently reported that lifetime use of tobacco and cannabis in college students is influenced by the interaction of the X-linked MAOA (monoamine oxidase A) gene and child maltreatment. Building on these premises, here we evaluated whether the same G×E interaction may also predict PSU in this population. Students of a large Midwestern university (n = 470; 50.9% females) took part in a computer survey for substance use, as well as childhood trauma exposure, using the Child Trauma Questionnaire (CTQ). DNA was extracted from their saliva samples and genotyped for MAOA variable-number of tandem repeat (VNTR) variants. Findings indicated that the highest number of substances were used by male students harboring low-activity MAOA alleles with a history of childhood emotional abuse. In contrast, female homozygous high-activity MAOA carriers with a history of emotional and physical abuse reported consumption of the greatest number of substances. Our results indicate that PSU among college students is influenced by the interaction of MAOA and child maltreatment in a sex-specific fashion. Further studies are warranted to understand the mechanisms of sex differences in the biosocial interplays underlying PSU in this at-risk group.
Collapse
Affiliation(s)
- Paula J. Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Shaquanna Brown
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Clinical Child Psychology Program, University of Kansas, Lawrence, KS, United States
| | - Waheeda A. Hossain
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Ann Manzardo
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Merlin G. Butler
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, United States
| | - Marco Bortolato
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, United States
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, United States
| |
Collapse
|
7
|
Harneit A, Braun U, Geiger LS, Zang Z, Hakobjan M, van Donkelaar MMJ, Schweiger JI, Schwarz K, Gan G, Erk S, Heinz A, Romanczuk-Seiferth N, Witt S, Rietschel M, Walter H, Franke B, Meyer-Lindenberg A, Tost H. MAOA-VNTR genotype affects structural and functional connectivity in distributed brain networks. Hum Brain Mapp 2019; 40:5202-5212. [PMID: 31441562 PMCID: PMC6864897 DOI: 10.1002/hbm.24766] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 07/05/2019] [Accepted: 08/01/2019] [Indexed: 01/17/2023] Open
Abstract
Previous studies have linked the low expression variant of a variable number of tandem repeat polymorphism in the monoamine oxidase A gene (MAOA‐L) to the risk for impulsivity and aggression, brain developmental abnormalities, altered cortico‐limbic circuit function, and an exaggerated neural serotonergic tone. However, the neurobiological effects of this variant on human brain network architecture are incompletely understood. We studied healthy individuals and used multimodal neuroimaging (sample size range: 219–284 across modalities) and network‐based statistics (NBS) to probe the specificity of MAOA‐L‐related connectomic alterations to cortical‐limbic circuits and the emotion processing domain. We assessed the spatial distribution of affected links across several neuroimaging tasks and data modalities to identify potential alterations in network architecture. Our results revealed a distributed network of node links with a significantly increased connectivity in MAOA‐L carriers compared to the carriers of the high expression (H) variant. The hyperconnectivity phenotype primarily consisted of between‐lobe (“anisocoupled”) network links and showed a pronounced involvement of frontal‐temporal connections. Hyperconnectivity was observed across functional magnetic resonance imaging (fMRI) of implicit emotion processing (pFWE = .037), resting‐state fMRI (pFWE = .022), and diffusion tensor imaging (pFWE = .044) data, while no effects were seen in fMRI data of another cognitive domain, that is, spatial working memory (pFWE = .540). These observations are in line with prior research on the MAOA‐L variant and complement these existing data by novel insights into the specificity and spatial distribution of the neurogenetic effects. Our work highlights the value of multimodal network connectomic approaches for imaging genetics.
Collapse
Affiliation(s)
- Anais Harneit
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Urs Braun
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Lena S Geiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Zhenxiang Zang
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marina Hakobjan
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Marjolein M J van Donkelaar
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, the Netherlands
| | - Janina I Schweiger
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Kristina Schwarz
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Gabriela Gan
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Susanne Erk
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Nina Romanczuk-Seiferth
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Stephanie Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy, Charité - University Medicine Berlin, Berlin, Germany
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands.,Department of Psychiatry, Radboud University Medical Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, the Netherlands
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Heike Tost
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
8
|
MAOA genotype influences neural response during an inhibitory task in adolescents with conduct disorder. Eur Child Adolesc Psychiatry 2018; 27:1159-1169. [PMID: 29855796 DOI: 10.1007/s00787-018-1170-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/19/2018] [Indexed: 12/31/2022]
Abstract
Conduct disorder (CD), a common psychiatric disorder in children and adolescents, is characterized by encroaching upon other rights and violations of age-appropriate social expectations repeatedly and persistently. Individuals with CD often have high aggressiveness and low inhibitory capacity. The monoamine oxidase A (MAOA) gene has long been associated with aggression. Effects of MAOA genotype on inhibitory control have been examined in general population. Several studies had revealed reduced activation in prefrontal areas, especially the anterior cingulate cortex (ACC), in low-expression MAOA (MAOA-L) allele carriers compared to high-expression MAOA (MAOA-H) allele carriers. However, little is known about its genetic risk influences on inhibitory processes in clinical samples. In this study, functional magnetic resonance imaging (fMRI) was administered to a sample of adolescent boys with CD during the performance of a GoStop task, 29 of whom carrying MAOA-L allele and 24 carrying MAOA-H allele. Relative to MAOA-H carriers, MAOA-L carriers in CD showed more pronounced deactivation in the precuneus, supplementary motor area (SMA) and dorsal anterior cingulate cortex (dACC). Deactivation within the default mode network (DMN) and inhibitory-related areas in MAOA-L carriers may be related to compensation for low sensitivity to inhibition and/or an atypical allocation of cognitive resources. The results suggested a possible neural mechanism through which MAOA affects inhibitory processes in a clinical sample.
Collapse
|
9
|
Ma R, Gan G, Zhang J, Ming Q, Jiang Y, Gao Y, Wang X, Yao S. MAOA genotype modulates default mode network deactivation during inhibitory control. Biol Psychol 2018; 138:27-34. [PMID: 30092258 DOI: 10.1016/j.biopsycho.2018.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2016] [Revised: 04/04/2018] [Accepted: 08/05/2018] [Indexed: 12/13/2022]
Abstract
It has been demonstrated, in a long line of research, that the low-activity genotype of the monoamine oxidase A (MAOA) gene is associated with aggression. Previous work has linked impaired response inhibition to aggression, but little is known about how this relates to the purported MAOA-aggression relationship in adolescents. Here, we examined how MAOA genotype influences neural correlates of inhibitory control in 74 healthy male adolescents using a GoStop and a Go/Nogo task while differentiating between action cancelation and action restraint. Carriers of the low-expressing MAOA alleles (MAOA-L) did not show altered brain activation in the prefrontal-subcortical inhibition network relative to carriers of the high-expressing alleles across inhibition conditions. However, they exhibited a more pronounced deactivation during response inhibition in the posterior cingulate cortex (PCC) and precuneus, areas belonging to the default mode network (DMN). Larger DMN suppression in MAOA-L carriers might represent a compensation mechanism for impaired cognitive control.
Collapse
Affiliation(s)
- Ren Ma
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Gabriela Gan
- Systems Neuroscience in Psychiatry, Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Mannheim, Germany
| | - Jibiao Zhang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Qingsen Ming
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yali Jiang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Yidian Gao
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Xiang Wang
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China
| | - Shuqiao Yao
- Medical Psychological Institute, The Second Xiangya Hospital, Central South University, Changsha, Hunan, PR China; National Technology Institute of Psychiatry, Central South University, Changsha, Hunan, PR China; Key Laboratory of Psychiatry and Mental Health of Hunan Province, Central South University, Changsha, Hunan, PR China.
| |
Collapse
|
10
|
Holz NE, Zohsel K, Laucht M, Banaschewski T, Hohmann S, Brandeis D. Gene x environment interactions in conduct disorder: Implications for future treatments. Neurosci Biobehav Rev 2018; 91:239-258. [DOI: 10.1016/j.neubiorev.2016.08.017] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 07/27/2016] [Accepted: 08/15/2016] [Indexed: 01/30/2023]
|
11
|
Fite PJ, Brown S, Hossain W, Manzardo A, Butler MG, Bortolato M. Tobacco and cannabis use in college students are predicted by sex-dimorphic interactions between MAOA genotype and child abuse. CNS Neurosci Ther 2018; 25:101-111. [PMID: 29952131 DOI: 10.1111/cns.13002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 05/06/2018] [Accepted: 06/08/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Postsecondary students in Western countries exhibit a high prevalence of cannabis and tobacco use disorders. The etiology of these problems is contributed by several psychosocial factors, including childhood adversity and trauma; however, the mechanisms whereby these environmental determinants predispose to the use of these substances remain elusive, due to our poor knowledge of genetic and biological moderators. Converging evidence points to the monoamine oxidase A (MAOA) gene as a moderator of the effects of lifetime stress on the initiation of substance use. AIMS Building on these premises, in this study, we analyzed whether MAOA upstream variable number tandem repeat (uVNTR) alleles interact with child maltreatment history to predict for lifetime cannabis and tobacco consumption. MATERIALS AND METHODS Five hundred college students (age: 18-25 years) from a large Midwestern University were surveyed for their child maltreatment history (encompassing emotional, physical, and sexual abuse, as well as emotional and physical neglect) and lifetime consumption of cannabis and tobacco. Saliva samples were obtained to determine the MAOA uVNTR genotype of each participant. RESULTS In female students, lifetime tobacco and cannabis use was predicted by the interaction of physical and emotional abuse with high-activity MAOA allelic variants; conversely, in males, the interaction of low-activity MAOA alleles and physical abuse was associated with lifetime use of tobacco, but not cannabis. DISCUSSION These findings collectively suggest that the vulnerability to smoke tobacco and cannabis is predicted by sex-dimorphic interactions of MAOA gene with childhood abuse. CONCLUSION These biosocial underpinnings of tobacco and cannabis use may prove important in the development of novel personalized preventive strategies for substance use disorders in adolescents.
Collapse
Affiliation(s)
- Paula J Fite
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Shaquanna Brown
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Clinical Child Psychology Program, University of Kansas, Lawrence, KS, USA
| | - Waheeda Hossain
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ann Manzardo
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Merlin G Butler
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Departments of Psychiatry, Behavioral Sciences and Pediatrics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Marco Bortolato
- Consortium for Translational Research on Aggression and Drug Abuse (ConTRADA), University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Kansas, Lawrence, KS, USA.,Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
12
|
Rincón-Pérez I, Sánchez-Carmona AJ, Albert J, Hinojosa JA. The association of monoamine-related gene polymorphisms with behavioural correlates of response inhibition: A meta-analytic review. Neurosci Biobehav Rev 2018; 84:49-62. [DOI: 10.1016/j.neubiorev.2017.11.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 10/05/2017] [Accepted: 11/15/2017] [Indexed: 12/23/2022]
|
13
|
Perry LM, Goldstein-Piekarski AN, Williams LM. Sex differences modulating serotonergic polymorphisms implicated in the mechanistic pathways of risk for depression and related disorders. J Neurosci Res 2017; 95:737-762. [PMID: 27870440 DOI: 10.1002/jnr.23877] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/27/2022]
Abstract
Despite consistent observations of sex differences in depression and related emotional disorders, we do not yet know how these sex differences modulate the effects of genetic polymorphisms implicated in risk for these disorders. This Mini-Review focuses on genetic polymorphisms of the serotonergic system to illustrate how sex differences might modulate the neurobiological pathways involved in the development of depression. We consider the interacting role of environmental factors such as early-life stress. Given limited current knowledge about this topic, we highlight methodological considerations, challenges, and guidelines for future research. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- LeeAnn M Perry
- Neurosciences Program, Stanford University, Stanford, California
| | - Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California.,Sierra-Pacific Mental Illness Research, Education, and Clinical Center, Veterans Affairs Palo Alto Health Care System, Palo Alto, California
| |
Collapse
|
14
|
Klein M, van Donkelaar M, Verhoef E, Franke B. Imaging genetics in neurodevelopmental psychopathology. Am J Med Genet B Neuropsychiatr Genet 2017; 174:485-537. [PMID: 29984470 PMCID: PMC7170264 DOI: 10.1002/ajmg.b.32542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/02/2017] [Accepted: 03/10/2017] [Indexed: 01/27/2023]
Abstract
Neurodevelopmental disorders are defined by highly heritable problems during development and brain growth. Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), and intellectual disability (ID) are frequent neurodevelopmental disorders, with common comorbidity among them. Imaging genetics studies on the role of disease-linked genetic variants on brain structure and function have been performed to unravel the etiology of these disorders. Here, we reviewed imaging genetics literature on these disorders attempting to understand the mechanisms of individual disorders and their clinical overlap. For ADHD and ASD, we selected replicated candidate genes implicated through common genetic variants. For ID, which is mainly caused by rare variants, we included genes for relatively frequent forms of ID occurring comorbid with ADHD or ASD. We reviewed case-control studies and studies of risk variants in healthy individuals. Imaging genetics studies for ADHD were retrieved for SLC6A3/DAT1, DRD2, DRD4, NOS1, and SLC6A4/5HTT. For ASD, studies on CNTNAP2, MET, OXTR, and SLC6A4/5HTT were found. For ID, we reviewed the genes FMR1, TSC1 and TSC2, NF1, and MECP2. Alterations in brain volume, activity, and connectivity were observed. Several findings were consistent across studies, implicating, for example, SLC6A4/5HTT in brain activation and functional connectivity related to emotion regulation. However, many studies had small sample sizes, and hypothesis-based, brain region-specific studies were common. Results from available studies confirm that imaging genetics can provide insight into the link between genes, disease-related behavior, and the brain. However, the field is still in its early stages, and conclusions about shared mechanisms cannot yet be drawn.
Collapse
Affiliation(s)
- Marieke Klein
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Marjolein van Donkelaar
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| | - Ellen Verhoef
- Language and Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Barbara Franke
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
- Department of Psychiatry, Donders Institute for Brain, Cognition and Behaviour, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
15
|
Liu J, Cao F, Li P, Lou F, Lavebratt C. 5-HTTLPR, victimization and ecological executive function of adolescents. Psychiatry Res 2016; 237:55-9. [PMID: 26921052 DOI: 10.1016/j.psychres.2016.01.059] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/22/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022]
Abstract
Executive function (EF) plays an important role in guiding peer relationship, school performance and behavior control. Children exposed to traumatic environments have been reported to perform poorer in EF tasks. We explored if the relationship between victimization and EF was dependent on the functional variation 5-HTTLPR in a non-clinical sample of adolescents. Data on demographics, victimization and daily life EF were collected from school students (Han Chinese, n=2125). All those reporting executive dysfunction (n=169), and classmate controls (n=208), were genotyped for the 5-HTTLPR. It was shown that the number of victimizations associated positively with executive dysfunction (ED). This association was particularly strong in those homozygous for the short allele of 5-HTTLPR, whilst a statistical 5-HTTLPR×victimization interaction on ED was found. Our findings suggest that adolescents with a genotype conferring a low 5-HTT activity are more vulnerable to a childhood adversity-associated ED in their daily life.
Collapse
Affiliation(s)
- JiaJia Liu
- School of Nursing, Shandong University, Jinan 250012, China; Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden.
| | - Fenglin Cao
- School of Nursing, Shandong University, Jinan 250012, China
| | - Ping Li
- School of Nursing, Shandong University, Jinan 250012, China
| | - Fenglan Lou
- School of Nursing, Shandong University, Jinan 250012, China
| | - Catharina Lavebratt
- Neurogenetics Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden; Center for Molecular Medicine, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
16
|
Ma R, Jia H, Yi F, Ming Q, Wang X, Gao Y, Yi J, Yao S. Electrophysiological responses of feedback processing are modulated by MAOA genotype in healthy male adolescents. Neurosci Lett 2016; 610:144-9. [DOI: 10.1016/j.neulet.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 11/05/2015] [Accepted: 11/05/2015] [Indexed: 10/22/2022]
|
17
|
Holz N, Boecker R, Buchmann AF, Blomeyer D, Baumeister S, Hohmann S, Jennen-Steinmetz C, Wolf I, Rietschel M, Witt SH, Plichta MM, Meyer-Lindenberg A, Schmidt MH, Esser G, Banaschewski T, Brandeis D, Laucht M. Evidence for a Sex-Dependent MAOA× Childhood Stress Interaction in the Neural Circuitry of Aggression. Cereb Cortex 2014; 26:904-14. [PMID: 25331606 DOI: 10.1093/cercor/bhu249] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Converging evidence emphasizes the role of an interaction between monoamine oxidase A (MAOA) genotype, environmental adversity, and sex in the pathophysiology of aggression. The present study aimed to clarify the impact of this interaction on neural activity in aggression-related brain systems. Functional magnetic resonance imaging was performed in 125 healthy adults from a high-risk community sample followed since birth. DNA was genotyped for the MAOA-VNTR (variable number of tandem repeats). Exposure to childhood life stress (CLS) between the ages of 4 and 11 years was assessed using a standardized parent interview, aggression by the Youth/Young Adult Self-Report between the ages of 15 and 25 years, and the VIRA-R (Vragenlijst Instrumentele En Reactieve Agressie) at the age of 15 years. Significant interactions were obtained between MAOA genotype, CLS, and sex relating to amygdala, hippocampus, and anterior cingulate cortex (ACC) response, respectively. Activity in the amygdala and hippocampus during emotional face-matching increased with the level of CLS in male MAOA-L, while decreasing in male MAOA-H, with the reverse pattern present in females. Findings in the opposite direction in the ACC during a flanker NoGo task suggested that increased emotional activity coincided with decreased inhibitory control. Moreover, increasing amygdala activity was associated with higher Y(A)SR aggression in male MAOA-L and female MAOA-H carriers. Likewise, a significant association between amygdala activity and reactive aggression was detected in female MAOA-H carriers. The results point to a moderating role of sex in the MAOA× CLS interaction for intermediate phenotypes of emotional and inhibitory processing, suggesting a possible mechanism in conferring susceptibility to violence-related disorders.
Collapse
Affiliation(s)
- Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | - Regina Boecker
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | | | | | | | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy
| | | | - Isabella Wolf
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Neuroimaging
| | | | | | - Michael M Plichta
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | - Andreas Meyer-Lindenberg
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim/Heidelberg University, Germany
| | | | - Günter Esser
- Department of Psychology, University of Potsdam, Potsdam, Germany
| | | | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
| | - Manfred Laucht
- Department of Child and Adolescent Psychiatry and Psychotherapy Department of Psychology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
18
|
Moeller SJ, Parvaz MA, Shumay E, Wu S, Beebe-Wang N, Konova AB, Misyrlis M, Alia-Klein N, Goldstein RZ. Monoamine polygenic liability in health and cocaine dependence: imaging genetics study of aversive processing and associations with depression symptomatology. Drug Alcohol Depend 2014; 140:17-24. [PMID: 24837582 PMCID: PMC4053494 DOI: 10.1016/j.drugalcdep.2014.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gene polymorphisms that affect serotonin signaling modulate reactivity to salient stimuli and risk for emotional disturbances. Here, we hypothesized that these serotonin genes, which have been primarily explored in depressive disorders, could also have important implications for drug addiction, with the potential to reveal important insights into drug symptomatology, severity, and/or possible sequelae such as dysphoria. METHODS Using an imaging genetics approach, the current study tested in 62 cocaine abusers and 57 healthy controls the separate and combined effects of variations in the serotonin transporter (5-HTTLPR) and monoamine oxidase A (MAOA) genes on processing of aversive information. Reactivity to standardized unpleasant images was indexed by a psychophysiological marker of stimulus salience (i.e., the late positive potential (LPP) component of the event-related potential) during passive picture viewing. Depressive symptomatology was assessed with the Beck Depression Inventory (BDI). RESULTS Results showed that, independent of diagnosis, the highest unpleasant LPPs emerged in individuals with MAOA-Low and at least one 'Short' allele of 5-HTTLPR. Uniquely in the cocaine participants with these two risk variants, higher unpleasant LPPs correlated with higher BDI scores. CONCLUSIONS Taken together, these results suggest that a multilocus genetic composite of monoamine signaling relates to depression symptomatology through brain function associated with the experience of negative emotions. This research lays the groundwork for future studies that can investigate clinical outcomes and/or pharmacogenetic therapies in drug addiction and potentially other psychopathologies of emotion dysregulation.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Muhammad A Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Elena Shumay
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Salina Wu
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Nicasia Beebe-Wang
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Anna B Konova
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Michail Misyrlis
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
19
|
Ernst LH, Lutz E, Ehlis AC, Fallgatter AJ, Reif A, Plichta MM. Genetic variation in MAOA modulates prefrontal cortical regulation of approach-avoidance reactions. Neuropsychobiology 2014; 67:168-80. [PMID: 23548774 DOI: 10.1159/000346582] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 12/14/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Regulation of automatic approach and avoidance behavior requires affective and cognitive control, which are both influenced by a genetic variation in the gene encoding Monoamine Oxidase A (termed MAOA-uVNTR). METHODS The current study investigated MAOA genotype as a moderator of prefrontal cortical activation measured with functional near-infrared spectroscopy (fNIRS) in 37 healthy young adults during performance of the approach-avoidance task with positive and negative pictures. RESULTS Carriers of the low- compared to the high-expressing genetic variant (MAOA-L vs. MAOA-H) showed increasing regulatory activity in the right dorsolateral prefrontal cortex (DLPFC) during incompatible conditions (approach negative, avoid positive). This might have been a compensatory mechanism for stronger emotional reactions as shown in previous studies and might have prevented any influence of incompatibility on behavior. In contrast, fewer errors but also lower activity in the right DLPFC during processing of negative compared to positive stimuli indicated MAOA-H carriers to have used other regulatory areas. This resulted in slower reaction times in incompatible conditions, but--in line with the known better cognitive regulation efficiency--allowed them to perform incompatible reactions without activating the DLPFC as the highest control instance. Carriers of one low- and one high-expressing allele lay as an intermediate group between the reactions of the low- and high-expressing groups. CONCLUSIONS The relatively small sample size and restriction to fNIRS for assessment of cortical activity limit our findings. Nevertheless, these first results suggest monoam-inergic mechanisms to contribute to interindividual differences in the two basic behavioral principles of approach and avoidance and their neuronal correlates.
Collapse
Affiliation(s)
- Lena H Ernst
- Psychophysiology and Optical Imaging, Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
20
|
Dorfman HM, Meyer-Lindenberg A, Buckholtz JW. Neurobiological mechanisms for impulsive-aggression: the role of MAOA. Curr Top Behav Neurosci 2014; 17:297-313. [PMID: 24470068 DOI: 10.1007/7854_2013_272] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Aggression may be present across a large part of the spectrum of psychopathology, and underlies costly criminal antisocial behaviors. Human aggression is a complex and underspecified construct, confounding scientific discovery. Nevertheless, some biologically tractable subtypes are apparent, and one in particular-impulsive (reactive) aggression-appears to account for many facets of aggression-related dysfunction in psychiatric illness. Impulsive-aggression is significantly heritable, suggesting genetic transmission. However, the specific neurobiological mechanisms that mediate genetic risk for impulsive-aggression remain unclear. Here, we review extant data on the genetics and neurobiology of individual differences in impulsive-aggression, with particular attention to the role of genetic variation in Monoamine Oxidase A (MAOA) and its impact on serotonergic signaling within corticolimbic circuitry.
Collapse
Affiliation(s)
- Hayley M Dorfman
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | | | | |
Collapse
|
21
|
Rabl U, Scharinger C, Müller M, Pezawas L. Imaging genetics: implications for research on variable antidepressant drug response. Expert Rev Clin Pharmacol 2012; 3:471-89. [PMID: 22111678 DOI: 10.1586/ecp.10.35] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Genetic variation of SLC6A4, HTR1A, MAOA, COMT and BDNF has been associated with depression, variable antidepressant drug responses as well as impacts on brain regions of emotion processing that are modulated by antidepressants. Pharmacogenetic studies are using psychometric outcome measures of drug response and are hampered by small effect sizes that might be overcome by the use of intermediate endophenotypes of drug response, which are suggested by imaging studies. Such an approach will not only tighten the relationship between genes and drug response, but also yield new insights into the neurobiology of depression and individual drug responses. This article provides a comprehensive overview of pharmacogenetic, imaging genetics and drug response studies, utilizing imaging techniques within the context of antidepressive drug therapy.
Collapse
Affiliation(s)
- Ulrich Rabl
- >Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | | | | | | |
Collapse
|
22
|
Interaction of serotonin transporter linked polymorphic region and childhood neglect on criminal behavior and substance use for males and females. Dev Psychopathol 2012; 24:181-93. [PMID: 22293003 DOI: 10.1017/s0954579411000769] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Childhood neglect has been cited as a risk factor for later substance abuse and criminal behavior. However, a large body of literature shows that a substantial percentage of neglected and abused individuals do not go on to abuse substances or engage in criminal behavior. The current study investigates whether a genetic variant (serotonin transporter linked polymorphic region [5-HTTLPR]) in the 5-hydroxytryptamine (5-HTT) gene moderates the effect of childhood neglect on alcohol use problems, marijuana use, and criminal behavior. Data from the National Longitudinal Study of Adolescent Health shows that 5-HTTLPR conditions the effect of neglect on marijuana use for females, but not for males. Findings also reveal a significant gene-environment correlation between 5-HTTLPR and neglect for females only. These results suggest that 5-HTTLPR is associated with an increased risk of neglect for females, and it also increases neglected females' risk of abusing marijuana.
Collapse
|
23
|
Passamonti L, Crockett MJ, Apergis-Schoute AM, Clark L, Rowe JB, Calder AJ, Robbins TW. Effects of acute tryptophan depletion on prefrontal-amygdala connectivity while viewing facial signals of aggression. Biol Psychiatry 2012; 71:36-43. [PMID: 21920502 PMCID: PMC3368260 DOI: 10.1016/j.biopsych.2011.07.033] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 07/15/2011] [Accepted: 07/18/2011] [Indexed: 12/30/2022]
Abstract
BACKGROUND Reduced levels of serotonin (5-HT) within prefrontal cortex (PFC)-amygdala circuits have long been implicated in impulsive aggression. However, whether lowering 5-HT alters the dynamic interplay between the PFC and the amygdala has not been directly tested in humans. It is known that manipulating 5-HT via acute tryptophan depletion (ATD) causes variable effects on brain responses to a variety of emotional stimuli, but it remains unclear whether ATD affects functional connectivity in neural networks involved in processing social signals of aggression (e.g., angry faces). METHODS Thirty healthy individuals were enrolled in a randomized, double-blind, placebo-controlled ATD study. On each treatment, brain responses to angry, sad, and neutral faces were measured with functional magnetic resonance imaging. Two methods (psycho-physiological-interaction in a general linear model and dynamic causal modeling) were used to assess the impact of ATD on the functional connectivity between PFC and amygdala. RESULTS Data from 19 subjects were available for the final analyses. A whole-brain psycho-physiological-interaction in a general linear model showed that ATD significantly modulated the connectivity between the amygdala and two PFC regions (ventral anterior cingulate cortex and ventrolateral PFC) when processing angry vs. neutral and angry vs. sad but not sad vs. neutral faces. Dynamic causal modeling corroborated and extended these findings by showing that 5-HT depletion reduced the influence of processing angry vs. neutral faces on circuits within PFC and on PFC-amygdala pathways. CONCLUSIONS We provide strong support for neurobiological accounts positing that 5-HT significantly influences PFC-amygdala circuits implicated in aggression and other affective behaviors.
Collapse
Affiliation(s)
- Luca Passamonti
- Unità di Ricerca Neuroimmagini, Consiglio Nazionale delle Ricerche, Catanzaro, Italy.
| | | | | | | | | | | | | |
Collapse
|
24
|
Enge S, Fleischhauer M, Lesch KP, Reif A, Strobel A. Serotonergic modulation in executive functioning: Linking genetic variations to working memory performance. Neuropsychologia 2011; 49:3776-85. [DOI: 10.1016/j.neuropsychologia.2011.09.038] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Revised: 09/10/2011] [Accepted: 09/25/2011] [Indexed: 12/16/2022]
|
25
|
Korb AS, Hunter AM, Cook IA, Leuchter AF. Rostral anterior cingulate cortex activity and early symptom improvement during treatment for major depressive disorder. Psychiatry Res 2011; 192:188-94. [PMID: 21546222 PMCID: PMC3152489 DOI: 10.1016/j.pscychresns.2010.12.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Revised: 12/09/2010] [Accepted: 12/09/2010] [Indexed: 10/18/2022]
Abstract
In treatment trials for major depressive disorder (MDD), early symptom improvement is predictive of eventual clinical response. Clinical response may also be predicted by elevated pretreatment theta (4-7Hz) current density in the rostral anterior cingulate (rACC) and medial orbitofrontal cortex (mOFC). We investigated the relationship between pretreatment EEG and early improvement in predicting clinical outcome in 72 MDD subjects across three placebo-controlled treatment trials. Subjects were randomized to receive fluoxetine, venlafaxine, or placebo. Theta current density in the rACC and mOFC was computed with Low-Resolution Brain Electromagnetic Tomography (LORETA). An analysis of covariance examining week-8 Hamilton Depression Rating Scale (HamD) percent change, showed a significant effect of week-2HamD percent change, and a significant three-way interaction of week-2HamD percent change×treatment×rACC. Medication subjects with robust early improvement showed almost no relationship between rACC theta current density and final clinical outcome. However, in subjects with little early improvement, rACC activity showed a strong relationship with clinical outcome. The model examining the mOFC showed a trend in the three-way interaction. A combination of pretreatment rACC activity and early symptom improvement may be useful for predicting treatment response.
Collapse
Affiliation(s)
- Alexander S Korb
- Labrotory of Brain, Behavior, and Pharmacology, and the UCLA Depression Research for Clinic Program, Semel Institute for Neuroscience and Human Behavior at UCLA, Los Angeles, CA, USA.
| | | | | | | |
Collapse
|
26
|
Barnes JJM, Dean AJ, Nandam LS, O'Connell RG, Bellgrove MA. The molecular genetics of executive function: role of monoamine system genes. Biol Psychiatry 2011; 69:e127-43. [PMID: 21397212 DOI: 10.1016/j.biopsych.2010.12.040] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Revised: 11/25/2010] [Accepted: 12/17/2010] [Indexed: 12/20/2022]
Abstract
Executive control processes, such as sustained attention, response inhibition, and error monitoring, allow humans to guide behavior in appropriate, flexible, and adaptive ways. The consequences of executive dysfunction for humans can be dramatic, as exemplified by the large range of both neurologic and neuropsychiatric disorders in which such deficits negatively affect outcome and quality of life. Much evidence suggests that many clinical disorders marked by executive deficits are highly heritable and that individual differences in quantitative measures of executive function are strongly driven by genetic differences. Accordingly, intense research effort has recently been directed toward mapping the genetic architecture of executive control processes in both clinical (e.g., attention-deficit/hyperactivity disorder) and nonclinical populations. Here we review the extant literature on the molecular genetic correlates of three exemplar but dissociable executive functions: sustained attention, response inhibition, and error processing. Our review focuses on monoaminergic gene variants given the strong body of evidence from cognitive neuroscience and pharmacology implicating dopamine, noradrenaline, and serotonin as neuromodulators of executive function. Associations between DNA variants of the dopamine beta hydroxylase gene and measures of sustained attention accord well with cognitive-neuroanatomical models of sustained attention. Equally, functional variants of the dopamine D2 receptor gene are reliably associated with performance monitoring, error processing, and reinforcement learning. Emerging evidence suggests that variants of the dopamine transporter gene (DAT1) and dopamine D4 receptor gene (DRD4) show promise for explaining significant variance in individual differences in both behavioral and neural measures of inhibitory control.
Collapse
Affiliation(s)
- Jessica J M Barnes
- Queensland Brain Institute and School of Psychology, University of Queensland, Brisbane, Australia
| | | | | | | | | |
Collapse
|
27
|
Gong P, Zhang F, Lei X, Wu X, Chen D, Zhang W, Zhang K, Zheng A, Gao X. No observable relationship between the 12 genes of nervous system and reasoning skill in a young Chinese Han population. Cell Mol Neurobiol 2011; 31:519-26. [PMID: 21234799 PMCID: PMC11498615 DOI: 10.1007/s10571-010-9645-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Accepted: 12/29/2010] [Indexed: 11/26/2022]
Abstract
Reasoning skill is an advanced cognitive ability which is needed for drawing inferences from given information. It is well known that the ability depends on the neural network of the frontal and parietal brain regions. In this study, we hypothesized that some genes involved in neurotransmitter systems were related to reasoning skill. To confirm this hypothesis, we examined the effects of 13 genes (BDNF, NRSF, COMT, DBH, DRD(2), DRD(3), DAT(1), MAOA, GRM(1), GRIN2B, TPH(2), 5-HT(2A), and 5-HT(6)) in neurotransmitter systems on the non-verbal reasoning and verbal reasoning skills. The results indicated there were on significant effects of the 17 functional variants of these genes on the performance of non-verbal reasoning and verbal analogical reasoning skills (χ(2) > 3.84, df = 1, P > 0.05). This study suggests that some of the functional variations in BDNF, COMT, DBH, DRD(2), DRD(3), MAOA, 5-HT(2A), 5-HT(6), GRM(1), and GRIN2B have no observable effects on the certain reasoning skills in a young healthy Chinese Han population.
Collapse
Affiliation(s)
- Pingyuan Gong
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
- College of Medicine, Henan University of Science and Technology, Luoyang, 471003 China
| | - Fuchang Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
- School of Life Science, Institute of Application Psychology, Northwest University, 229 Tai Bai Road, Xi’an, 710069 China
| | - Xu Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
| | - Xiaodong Wu
- School of Life Science, Institute of Application Psychology, Northwest University, 229 Tai Bai Road, Xi’an, 710069 China
| | - Dongmei Chen
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
| | - Wenjiang Zhang
- School of Life Science, Institute of Application Psychology, Northwest University, 229 Tai Bai Road, Xi’an, 710069 China
| | - Kejin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
| | - Anyun Zheng
- School of Life Science, Institute of Application Psychology, Northwest University, 229 Tai Bai Road, Xi’an, 710069 China
| | - Xiaocai Gao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Institute of Population and Health, Xi’an, 710069 China
| |
Collapse
|
28
|
Barnett JH, Xu K, Heron J, Goldman D, Jones PB. Cognitive effects of genetic variation in monoamine neurotransmitter systems: a population-based study of COMT, MAOA, and 5HTTLPR. Am J Med Genet B Neuropsychiatr Genet 2011; 156:158-67. [PMID: 21302344 PMCID: PMC3494973 DOI: 10.1002/ajmg.b.31150] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 10/28/2010] [Indexed: 02/04/2023]
Abstract
Individual differences in cognitive function are highly heritable and most likely driven by multiple genes of small effect. Well-characterized common functional polymorphisms in the genes MAOA, COMT, and 5HTTLPR each have predictable effects on the availability of the monoamine neurotransmitters dopamine, noradrenaline, and serotonin. We hypothesized that 5HTTLPR genotype would show little association with prefrontal cognitive performance, but that COMT and MAOA would have interacting effects on cognition through their shared influence on prefrontal catecholamine availability. We assessed the individual and epistatic effects of functional polymorphisms in COMT, MAOA, and 5HTTLPR on children's prefrontal cognitive function in nearly 6,000 children from the population-based Avon Longitudinal Study of Parents and Children (ALSPAC). Neither MAOA nor 5HTTLPR polymorphisms showed significant effects on cognitive function. In boys but not girls, there was a modest but statistically significant interaction between MAOA and COMT genotypes such that increased prefrontal catecholamine availability was associated with better working memory. These results suggest that assessment of multiple genes within functionally related systems may improve our understanding of the genetic basis of cognition.
Collapse
|
29
|
Cerasa A, Quattrone A, Gioia MC, Magariello A, Muglia M, Assogna F, Bernardini S, Caltagirone C, Bossù P, Spalletta G. MAO A VNTR polymorphism and amygdala volume in healthy subjects. Psychiatry Res 2011; 191:87-91. [PMID: 21236646 DOI: 10.1016/j.pscychresns.2010.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Revised: 11/02/2010] [Accepted: 11/02/2010] [Indexed: 11/19/2022]
Abstract
The X-linked Monoamine Oxidase A (MAO A) gene presents a well known functional polymorphism consisting of a variable number of tandem repeats (VNTR) (long and short variants) previously associated with altered neural function of the amygdala. Using automatic subcortical segmentation (Freesurfer), we investigated whether amygdala volume could be influenced by this genotype. We studied 109 healthy subjects (age range 18-80 years; 59 male and 50 female), 74 carrying the MAO A High-activity allele and 35 the MAO A Low-activity allele. No significant effect of the MAO A polymorphism or interaction effect between polymorphism × gender was found on amygdalar volume. Thus, our findings suggest that the reported impact of the MAO A polymorphism on amygdala function is not coupled with consistent volumetric changes in healthy subjects. Future studies are needed to investigate whether the association between volume of the amygdala and the MAO A VNTR polymorphism is influenced by social/psychological variables, such as impulsivity, trauma history and cigarette smoking behaviour, not taken into account in this work.
Collapse
Affiliation(s)
- Antonio Cerasa
- Neuroimaging Research Unit, Institute of Neurological Sciences, National Research Council, Catanzaro, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Brain serotonin receptors and transporters: initiation vs. termination of escalated aggression. Psychopharmacology (Berl) 2011; 213:183-212. [PMID: 20938650 PMCID: PMC3684010 DOI: 10.1007/s00213-010-2000-y] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Accepted: 08/09/2010] [Indexed: 12/24/2022]
Abstract
RATIONALE Recent findings have shown a complexly regulated 5-HT system as it is linked to different kinds of aggression. OBJECTIVE We focus on (1) phasic and tonic changes of 5-HT and (2) state and trait of aggression, and emphasize the different receptor subtypes, their role in specific brain regions, feed-back regulation and modulation by other amines, acids and peptides. RESULTS New pharmacological tools differentiate the first three 5-HT receptor families and their modulation by GABA, glutamate and CRF. Activation of 5-HT(1A), 5-HT(1B) and 5-HT(2A/2C) receptors in mesocorticolimbic areas, reduce species-typical and other aggressive behaviors. In contrast, agonists at 5-HT(1A) and 5-HT(1B) receptors in the medial prefrontal cortex or septal area can increase aggressive behavior under specific conditions. Activation of serotonin transporters reduce mainly pathological aggression. Genetic analyses of aggressive individuals have identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT(1B), 5-HT transporter, Pet1, MAOA) or indirectly (e.g., Neuropeptide Y, αCaMKII, NOS, BDNF). Dysfunction in genes for MAOA escalates pathological aggression in rodents and humans, particularly in interaction with specific experiences. CONCLUSIONS Feedback to autoreceptors of the 5-HT(1) family and modulation via heteroreceptors are important in the expression of aggressive behavior. Tonic increase of the 5-HT(2) family expression may cause escalated aggression, whereas the phasic increase of 5-HT(2) receptors inhibits aggressive behaviors. Polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT modulate aggression, often requiring interaction with the rearing environment.
Collapse
|
31
|
Takahashi A, Quadros IM, de Almeida RMM, Miczek KA. Behavioral and pharmacogenetics of aggressive behavior. Curr Top Behav Neurosci 2011; 12:73-138. [PMID: 22297576 DOI: 10.1007/7854_2011_191] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Serotonin (5-HT) has long been considered as a key transmitter in the neurocircuitry controlling aggression. Impaired regulation of each subtype of 5-HT receptor, 5-HT transporter, synthetic and metabolic enzymes has been linked particularly to impulsive aggression. The current summary focuses mostly on recent findings from pharmacological and genetic studies. The pharmacological treatments and genetic manipulations or polymorphisms of aspecific target (e.g., 5-HT1A receptor) can often result in inconsistent results on aggression, due to "phasic" effects of pharmacological agents versus "trait"-like effects of genetic manipulations. Also, the local administration of a drug using the intracranial microinjection technique has shown that activation of specific subtypes of 5-HT receptors (5-HT1A and 5-HT1B) in mesocorticolimbic areas can reduce species-typical and other aggressive behaviors, but the same receptors in the medial prefrontal cortex or septal area promote escalated forms of aggression. Thus, there are receptor populations in specific brain regions that preferentially modulate specific types of aggression. Genetic studies have shown important gene-environment interactions; it is likely that the polymorphisms in the genes of 5-HT transporters or rate-limiting synthetic and metabolic enzymes of 5-HT (e.g., MAOA) determine the vulnerability to adverse environmental factors that escalate aggression. We also discuss the interaction between the 5-HT system and other systems. Modulation of 5-HT neurons in the dorsalraphe nucleus by GABA, glutamate and CRF profoundly regulate aggressive behaviors. Also, interactions of the 5-HT system with other neuropeptides(arginine vasopressin, oxytocin, neuropeptide Y, opioid) have emerged as important neurobiological determinants of aggression. Studies of aggression in genetically modified mice identified several molecules that affect the 5-HT system directly (e.g., Tph2, 5-HT1B, 5-HT transporter, Pet1, MAOA) or indirectly[e.g., BDNF, neuronal nitric oxide (nNOS), aCaMKII, Neuropeptide Y].The future agenda delineates specific receptor subpopulations for GABA, glutamate and neuropeptides as they modulate the canonical aminergic neurotransmitters in brainstem, limbic and cortical regions with the ultimate outcome of attenuating or escalating aggressive behavior.
Collapse
|
32
|
von dem Hagen EAH, Passamonti L, Nutland S, Sambrook J, Calder AJ. The serotonin transporter gene polymorphism and the effect of baseline on amygdala response to emotional faces. Neuropsychologia 2010; 49:674-80. [PMID: 21167188 PMCID: PMC3209561 DOI: 10.1016/j.neuropsychologia.2010.12.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2010] [Revised: 11/30/2010] [Accepted: 12/08/2010] [Indexed: 11/18/2022]
Abstract
Previous research has found that a common polymorphism in the serotonin transporter gene (5-HTTLPR) is an important mediator of individual differences in brain responses associated with emotional behaviour. In particular, relative to individuals homozygous for the l-allele, carriers of the s-allele display heightened amygdala activation to emotional compared to non-emotional stimuli. However, there is some debate as to whether this difference is driven by increased activation to emotional stimuli, resting baseline differences between the groups, or decreased activation to neutral stimuli. We performed functional imaging during an implicit facial expression processing task in which participants viewed angry, sad and neutral faces. In addition to neutral faces, we included two further baseline conditions, houses and fixation. We found increased amygdala activation in s-allele carriers relative to l-homozygotes in response to angry faces compared to neutral faces, houses and fixation. When comparing neutral faces to houses or fixation, we found no significant difference in amygdala response between the two groups. In addition, there was no significant difference between the groups in response to fixation when compared with a houses baseline. Overall, these results suggest that the increased amygdala response observed in s-allele carriers to emotional faces is primarily driven by an increased response to emotional faces rather than a decreased response to neutral faces or an increased resting baseline. The results are discussed in relation to the tonic and phasic hypotheses of 5-HTTLPR-mediated modulation of amygdala activity.
Collapse
|
33
|
Scharinger C, Rabl U, Sitte HH, Pezawas L. Imaging genetics of mood disorders. Neuroimage 2010; 53:810-21. [PMID: 20156570 PMCID: PMC4502568 DOI: 10.1016/j.neuroimage.2010.02.019] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 01/17/2010] [Accepted: 02/09/2010] [Indexed: 12/15/2022] Open
Abstract
Mood disorders are highly heritable and have been linked to brain regions of emotion processing. Over the past few years, an enormous amount of imaging genetics studies has demonstrated the impact of risk genes on brain regions and systems of emotion processing in vivo in healthy subjects as well as in mood disorder patients. While sufficient evidence already exists for several monaminergic genes as well as for a few non-monoaminergic genes, such as brain-derived neurotrophic factor (BDNF) in healthy subjects, many others only have been investigated in single studies so far. Apart from these studies, the present review also covers imaging genetics studies applying more complex genetic disease models of mood disorders, such as epistasis and gene-environment interactions, and their impact on brain systems of emotion processing. This review attempts to provide a comprehensive overview of the rapidly growing field of imaging genetics studies in mood disorder research.
Collapse
Affiliation(s)
- Christian Scharinger
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Ulrich Rabl
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| | - Harald H. Sitte
- Center for Physiology and Pharmacology, Institute of Pharmacology, Medical University of Vienna, Austria
| | - Lukas Pezawas
- Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria
| |
Collapse
|
34
|
Hildebrandt T, Alfano L, Tricamo M, Pfaff DW. Conceptualizing the role of estrogens and serotonin in the development and maintenance of bulimia nervosa. Clin Psychol Rev 2010; 30:655-68. [PMID: 20554102 DOI: 10.1016/j.cpr.2010.04.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 04/24/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
Abstract
Serotonergic dysregulation is thought to underlie much of the pathology in bulimia nervosa (BN). The purpose of this review is to expand the serotonergic model by incorporating specific and nonspecific contributions of estrogens to the development and maintenance of bulimic pathology in order to guide research from molecular genetics to novel therapeutics for BN. Special emphasis is given to the organizing theory of general brain arousal which allows for integration of specific and nonspecific effects of these systems on behavioral endpoints such as binge eating or purging as well as arousal states such as fear, novelty seeking, or sex. Regulation of the serotonergic system by estrogens is explored, and genetic, epigenetic, and environmental estrogen effects on bulimic pathology and risk factors are discussed. Genetic and neuroscientific research support this two-system conceptualization of BN with both contributions to the developmental and maintenance of the disorder. Implications of an estrogenic-serotonergic model of BN are discussed as well as guidelines and suggestions for future research and novel therapeutic targets.
Collapse
Affiliation(s)
- Tom Hildebrandt
- Eating and Weight Disorders Program, Mount Sinai School of Medicine, One Gustave L. Levy Place, Box 1230, New York, NY 10029, USA.
| | | | | | | |
Collapse
|
35
|
Abstract
Brain monoamines, and serotonin in particular, have repeatedly been shown to be linked to different psychiatric conditions such as depression, anxiety, antisocial behaviour, and dependence. Many studies have implicated genetic variability in the genes encoding monoamine oxidase A (MAOA) and the serotonin transporter (5HTT) in modulating susceptibility to these conditions. Paradoxically, the risk variants of these genes have been shown, in vitro, to increase levels of serotonin, although many of the conditions are associated with decreased levels of serotonin. Furthermore, in adult humans, and monkeys with orthologous genetic polymorphisms, there is no observable correlation between these functional genetic variants and the amount or activity of the corresponding proteins in the brain. These seemingly contradictory data might be explained if the association between serotonin and these behavioural and psychiatric conditions were mainly a consequence of events taking place during foetal and neonatal brain development. In this review we explore, based on recent research, the hypothesis that the dual role of serotonin as a neurotransmitter and a neurotrophic factor has a significant impact on behaviour and risk for neuropsychiatric disorders through altered development of limbic neurocircuitry involved in emotional processing, and development of the serotonergic neurons, during early brain development.
Collapse
Affiliation(s)
- Niklas Nordquist
- Department of Neuroscience, Section of Pharmacology, Uppsala University, Uppsala, Sweden.
| | | |
Collapse
|
36
|
|
37
|
Williams LM, Gatt JM, Kuan SA, Dobson-Stone C, Palmer DM, Paul RH, Song L, Costa PT, Schofield PR, Gordon E. A polymorphism of the MAOA gene is associated with emotional brain markers and personality traits on an antisocial index. Neuropsychopharmacology 2009; 34:1797-809. [PMID: 19194374 DOI: 10.1038/npp.2009.1] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Association studies suggest that the low activity variant of the monoamine oxidase A (MAOA)-uVNTR polymorphism confers risk for emotional disturbances associated with antisocial traits, particularly in males. Here, we assessed the low (MAOA-L) activity variant in relation to both brain function and a behavioral index of antisocial traits. From an initial sample of 290 healthy participants, 210 had low (MAOA-L) or high (MAOA-H) activity variants. Participants underwent a brief assessment of personality traits and event-related potential (ERP) recording during an emotion-processing task. Genotype differences in ERPs were localized using LORETA. The MAOA-L genotype was distinguished by elevated scores on the index of antisocial traits. These traits were related to altered ERPs elicited 120-280ms post-stimulus, particularly for negative emotion. Altered neural processing of anger in MAOA-L genotypes was localized to medial frontal, parietal, and superior temporo-occipital regions in males, but only to the superior occipital cortex in females. The MAOA low activity variant may increase susceptibility to antisocial traits through alterations to the neural systems for processing threat-related emotion, especially for males. Monoamines such as noradrenalin and serotonin may modulate these relationships, given that their metabolism varies according to MAOA variants, and that they modulate both emotional brain systems and antisocial aggression.
Collapse
Affiliation(s)
- Leanne M Williams
- The Brain Dynamics Centre, Westmead Millennium Institute, Westmead Hospital and Western Clinical School, University of Sydney, Westmead, NSW, Australia.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Garner M, Möhler H, Stein DJ, Mueggler T, Baldwin DS. Research in anxiety disorders: from the bench to the bedside. Eur Neuropsychopharmacol 2009; 19:381-90. [PMID: 19327970 DOI: 10.1016/j.euroneuro.2009.01.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Accepted: 01/30/2009] [Indexed: 01/22/2023]
Abstract
The development of ethologically based behavioural animal models has clarified the anxiolytic properties of a range of neurotransmitter and neuropeptide receptor agonists and antagonists, with several models predicting efficacy in human clinical samples. Neuro-cognitive models of human anxiety and findings from fMRI suggest dysfunction in amygdala-prefrontal circuitry underlies biases in emotion activation and regulation. Cognitive and neural mechanisms involved in emotion processing can be manipulated pharmacologically, and research continues to identify genetic polymorphisms and interactions with environmental risk factors that co-vary with anxiety-related behaviour and neuro-cognitive endophenotypes. This paper describes findings from a range of research strategies in anxiety, discussed at the recent ECNP Targeted Expert Meeting on anxiety disorders and anxiolytic drugs. The efficacy of existing pharmacological treatments for anxiety disorders is discussed, with particular reference to drugs modulating serotonergic, noradrenergic and gabaergic mechanisms, and novel targets including glutamate, CCK, NPY, adenosine and AVP. Clinical and neurobiological predictors of active treatment and placebo response are considered.
Collapse
Affiliation(s)
- Matthew Garner
- School of Psychology and Division of Clinical Neurosciences, School of Medicine, University of Southampton, UK.
| | | | | | | | | |
Collapse
|
39
|
Abstract
Genetic variation at the serotonin transporter-linked polymorphic region (5-HTTLPR) is associated with altered amygdala reactivity and lack of prefrontal regulatory control. Similar regions mediate decision-making biases driven by contextual cues and ambiguity, for example the "framing effect." We hypothesized that individuals hemozygous for the short (s) allele at the 5-HTTLPR would be more susceptible to framing. Participants, selected as homozygous for either the long (la) or s allele, performed a decision-making task where they made choices between receiving an amount of money for certain and taking a gamble. A strong bias was evident toward choosing the certain option when the option was phrased in terms of gains and toward gambling when the decision was phrased in terms of losses (the frame effect). Critically, this bias was significantly greater in the ss group compared with the lala group. In simultaneously acquired functional magnetic resonance imaging data, the ss group showed greater amygdala during choices made in accord, compared with those made counter to the frame, an effect not seen in the lala group. These differences were also mirrored by differences in anterior cingulate-amygdala coupling between the genotype groups during decision making. Specifically, lala participants showed increased coupling during choices made counter to, relative to those made in accord with, the frame, with no such effect evident in ss participants. These data suggest that genetically mediated differences in prefrontal-amygdala interactions underpin interindividual differences in economic decision making.
Collapse
|
40
|
'Negativity bias' in risk for depression and anxiety: brain-body fear circuitry correlates, 5-HTT-LPR and early life stress. Neuroimage 2009; 47:804-14. [PMID: 19446647 DOI: 10.1016/j.neuroimage.2009.05.009] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2009] [Revised: 04/26/2009] [Accepted: 05/04/2009] [Indexed: 11/20/2022] Open
Abstract
The INTEGRATE Model draws on the framework of 'integrative neuroscience' to bring together brain-body and behavioral concepts of emotion, thinking and feeling and their regulation. The key organizing principle is the drive to 'minimize danger and maximize reward' that determines what is significant to us at each point in time. Traits of 'negativity bias' reflect the tendency to perceive danger rather than reward related information, and this bias influences emotion, thinking and feeling processes. Here, we examined a self-report measure of Negativity Bias in relation to its impact on brain and body correlates of emotion processing. The contributions of the serotonin transporter (5-HTT-LPR) allelic variants and early life stress to both negativity bias and these correlates were also examined. Data were accessed in collaboration with the Brain Resource International Database (BRID) which provides standardized data across these domains of measurement. From an initial sample of 303 nonclinical subjects from the BRID, subjects scoring one standard deviation below (n=55) and above (n=47) the mean on the measure of negativity bias were identified as 'Negativity Bias' and 'Positivity Bias' groups for analysis, respectively. These subjects had been genotyped for 5-HTT-LPR Short allele versus LL homozygote status, and completed the early life stress scale, and recording of startle responses and heart rate for conscious and nonconscious fear conditions. A matched subset (n=39) of BRID subjects completed functional MRI with the same facial emotion tasks. The Negativity Bias (compared to Positivity Bias) group was distinguished by both arousal and brain function correlates: higher startle amplitude, higher heart rate for conscious and nonconscious fear conditions, and heightened activation in neural circuitry for both fear conditions. Regions of heightened activation included brainstem and bilateral amygdala, anterior cingulate and ventral and dorsal medial prefrontal cortex (mPFC) for conscious fear, and brainstem and right-sided amygdala, anterior cingulate and ventral, mPFC for nonconscious fear. The 5-HTT-LPR Short allele (versus LL) conferred a similar pattern of arousal and neural activation. For those with the 5-HTT-LPR Short allele, the addition of early life stress contributed to enhanced negativity bias, and to further effects on heart rate and neural activation for nonconscious fear in particular. These findings suggest that traits of negativity bias impact brain-body arousal correlates of fear circuitry. Both genetic variation and life stressors contribute to the impact of negativity bias. Given that negativity bias is a feature of conditions such as depression and associated biological alterations, the findings have implications for translation into clinical decision support.
Collapse
|
41
|
Abstract
The personality trait of neuroticism refers to relatively stable tendencies to respond with negative emotions to threat, frustration, or loss. Individuals in the population vary markedly on this trait, ranging from frequent and intense emotional reactions to minor challenges to little emotional reaction even in the face of significant difficulties. Although not widely appreciated, there is growing evidence that neuroticism is a psychological trait of profound public health significance. Neuroticism is a robust correlate and predictor of many different mental and physical disorders, comorbidity among them, and the frequency of mental and general health service use. Indeed, neuroticism apparently is a predictor of the quality and longevity of our lives. Achieving a full understanding of the nature and origins of neuroticism, and the mechanisms through which neuroticism is linked to mental and physical disorders, should be a top priority for research. Knowing why neuroticism predicts such a wide variety of seemingly diverse outcomes should lead to improved understanding of commonalities among those outcomes and improved strategies for preventing them.
Collapse
Affiliation(s)
- Benjamin B Lahey
- Department of Health Studies, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
42
|
Weder N, Yang BZ, Douglas-Palumberi H, Massey J, Krystal JH, Gelernter J, Kaufman J. MAOA genotype, maltreatment, and aggressive behavior: the changing impact of genotype at varying levels of trauma. Biol Psychiatry 2009; 65:417-24. [PMID: 18996506 PMCID: PMC3816252 DOI: 10.1016/j.biopsych.2008.09.013] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 11/23/2022]
Abstract
BACKGROUND Childhood adversity has been shown to interact with monoamine oxidase-A (MAOA) genotype to confer risk for antisocial behavior. Studies examining this gene-by-environment (G x E) association, however, have produced mixed results. METHODS Relevant research is reviewed, and results of a study with 114 children (73 maltreated and 41 control subjects) are presented. The maltreated children represent the extreme on a continuum of adversity and were assessed at a time of extreme stress-shortly after removal from their parents' care due to abuse. Measures of aggressive behavior were obtained using standard research instruments, and monoamine oxidase-A MAOA genotypes were obtained from saliva-derived DNA specimens. Population structure was controlled for using ancestral proportion scores computed on the basis of genotypes of ancestry informative markers. RESULTS Many prior investigations appear to have had reduced power to detect the predicted G x E interaction because of low base rates of maltreatment and antisocial behavior in their samples and failure to use optimal procedures to control for population structure in ethnically diverse cohorts. In this investigation, a significant interaction was detected between exposure to moderate trauma and the "low-activity" MAOA genotype in conferring risk for aggression. Children with exposure to extreme levels of trauma, however, had high aggression scores regardless of genotype. CONCLUSIONS Our study suggests that problems in aggressive behavior in maltreated children are moderated by MAOA genotype, but only up to moderate levels of trauma exposure. Extreme levels of trauma appear to overshadow the effect of MAOA genotype, especially in children assessed at time of acute crisis.
Collapse
Affiliation(s)
- Natalie Weder
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut 06511, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Vaske J, Newsome J, Makarios M, Wright JP, Boutwell BB, Beaver KM. Interaction of 5HTTLPR and marijuana use on property offending. BIODEMOGRAPHY AND SOCIAL BIOLOGY 2009; 55:93-102. [PMID: 19835103 DOI: 10.1080/19485560903054762] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
This study uses data from the National Longitudinal Study of Adolescent Health to examine whether a polymorphism in the serotonin transporter gene (SHTTLPR) moderates the effects of marijuana use on property offending. The results reveal that 5HTTLPR interacts with marijuana use to predict significantly higher levels of property offending for African American females. The interaction coefficient is not statistically significant for Caucasian males, African American males, or Caucasian females. These findings suggest that marijuana use is associated only with higher levels of property offending among African American females who carry one or more copies of the 5HTTLPR short allele.
Collapse
Affiliation(s)
- Jamie Vaske
- Division of Criminal Justice, University of Cincinnati, 600 Dyer Hall, PO Box 210389, Cincinnati, OH 45221-0389, USA.
| | | | | | | | | | | |
Collapse
|