1
|
Tian F, Zhang Y, Schriver KE, Hu JM, Roe AW. A novel interface for cortical columnar neuromodulation with multipoint infrared neural stimulation. Nat Commun 2024; 15:6528. [PMID: 39095351 PMCID: PMC11297274 DOI: 10.1038/s41467-024-50375-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/09/2024] [Indexed: 08/04/2024] Open
Abstract
Cutting edge advances in electrical visual cortical prosthetics have evoked perception of shapes, motion, and letters in the blind. Here, we present an alternative optical approach using pulsed infrared neural stimulation. To interface with dense arrays of cortical columns with submillimeter spatial precision, both linear array and 100-fiber bundle array optical fiber interfaces were devised. We deliver infrared stimulation through these arrays in anesthetized cat visual cortex and monitor effects by optical imaging in contralateral visual cortex. Infrared neural stimulation modulation of response to ongoing visual oriented gratings produce enhanced responses in orientation-matched domains and suppressed responses in non-matched domains, consistent with a known higher order integration mediated by callosal inputs. Controls include dynamically applied speeds, directions and patterns of multipoint stimulation. This provides groundwork for a distinct type of prosthetic targeted to maps of visual cortical columns.
Collapse
Affiliation(s)
- Feiyan Tian
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Ying Zhang
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China
| | - Kenneth E Schriver
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China
| | - Jia Ming Hu
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
| | - Anna Wang Roe
- Department of Neurosurgery of the Second Affiliated Hospital, Interdisciplinary Institute of Neuroscience and Technology, School of Medicine, Zhejiang University, Hangzhou, 310029, China.
- Key Laboratory for Biomedical Engineering of Ministry of Education, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, 310027, China.
- MOE Frontier Science Center for Brain Science and Brain-machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310012, China.
- National Key Laboratory of Brain and Computer Intelligence, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
2
|
Lin Z, Liu W, Gan J, Lu J, Huang F, Wu X, Wang W. An Automatic Calibration Method for the Field of View Aberration in a Risley-Prism-Based Image Sensor. SENSORS (BASEL, SWITZERLAND) 2023; 23:7777. [PMID: 37765834 PMCID: PMC10537131 DOI: 10.3390/s23187777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023]
Abstract
Risley-prism-based image sensors can expand the imaging field of view through beam control. The larger the top angle of the prism, the higher the magnification of the field of view, but at the same time, it aggravates the problem of imaging aberrations, which also puts higher requirements on the aberration correction method for the Risley-prism-based image sensor. To improve the speed, accuracy, and stability of the aberration correction process, an automatic calibration method for the Risley-prism-based image sensor is proposed based on a two-axis turntable. The image datasets of the calibration plate with different prism rotation angles and object distances are acquired using a two-axis turntable. Then, the images of the calibration plate are pre-processed using the bicubic interpolation algorithm. The calibration parameters are finally calculated, and parameter optimization is performed. The experimental results verify the feasibility of this automated calibration method. The reprojection error of the calibration is within 0.26 pixels when the distance of the imaging sensor is 3.6 m from the object, and the fine aberration correction results are observed.
Collapse
Affiliation(s)
| | | | | | | | - Feng Huang
- School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China; (Z.L.); (W.L.); (J.G.); (J.L.); (X.W.); (W.W.)
| | | | | |
Collapse
|
3
|
Abstract
Orientation selectivity is one of the most important functional features of visual neurons. In the primate visual cortex, whether all orientations are represented equally is still unclear. Previous electrophysiological recordings led to controversial findings. By analyzing a large set of optical imaging data, we found anisotropic representations of orientation in macaque visual areas and that different areas had different types of anisotropies. These findings not only shed light on the long-standing question regarding a basic property of the primate visual cortex, but also on the strategy the visual system takes to represent and analyze the visual world. In mammals, a larger number of neurons in V1 are devoted to cardinal (horizontal and vertical) orientations than to oblique orientations. However, electrophysiological results from the macaque monkey visual cortex are controversial. Both isotropic and anisotropic orientation distributions have been reported. It is also unclear whether different visual areas along the visual hierarchy have different orientation anisotropies. We analyzed orientation maps in a large set of intrinsic signal optical imaging data and found that both V1 and V4 exhibited significant orientation anisotropies. However, their overrepresented orientations were very different: in V1, both cardinal and radial orientations were overrepresented, while in V4, only cardinal bias was presented. These findings suggest that different cortical areas have evolved to emphasize different features that are suitable for their functional purposes, a factor that needs to be considered when efforts are made to explain the relationships between the visual environment and the cortical representation and between the cortical representation and visual perception.
Collapse
|
4
|
Chen G, Lu HD, Tanigawa H, Roe AW. Solving visual correspondence between the two eyes via domain-based population encoding in nonhuman primates. Proc Natl Acad Sci U S A 2017; 114:13024-13029. [PMID: 29180437 PMCID: PMC5724244 DOI: 10.1073/pnas.1614452114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stereoscopic vision depends on correct matching of corresponding features between the two eyes. It is unclear where the brain solves this binocular correspondence problem. Although our visual system is able to make correct global matches, there are many possible false matches between any two images. Here, we use optical imaging data of binocular disparity response in the visual cortex of awake and anesthetized monkeys to demonstrate that the second visual cortical area (V2) is the first cortical stage that correctly discards false matches and robustly encodes correct matches. Our findings indicate that a key transformation for achieving depth perception lies in early stages of extrastriate visual cortex and is achieved by population coding.
Collapse
Affiliation(s)
- Gang Chen
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China;
- College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering and Instrument Science, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
| | - Haidong D Lu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China
| | - Hisashi Tanigawa
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China
- Department of Physiology, Niigata University, School of Medicine, Chuo-ku, Niigata 951-8510, Japan
| | - Anna W Roe
- Interdisciplinary Institute of Neuroscience and Technology, Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou 310029, China
- College of Biomedical Engineering and Instrument Science, Key Laboratory of Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
- School of Medicine, Zhejiang University, Hangzhou 310058, China
- College of Biomedical Engineering and Instrument Science, Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Zhejiang University, Hangzhou 310027, China
- Department of Psychology, Vanderbilt University, Nashville, TN 37203
- Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006
| |
Collapse
|
5
|
Ma Y, Shaik MA, Kim SH, Kozberg MG, Thibodeaux DN, Zhao HT, Yu H, Hillman EMC. Wide-field optical mapping of neural activity and brain haemodynamics: considerations and novel approaches. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0360. [PMID: 27574312 PMCID: PMC5003860 DOI: 10.1098/rstb.2015.0360] [Citation(s) in RCA: 204] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 12/30/2022] Open
Abstract
Although modern techniques such as two-photon microscopy can now provide cellular-level three-dimensional imaging of the intact living brain, the speed and fields of view of these techniques remain limited. Conversely, two-dimensional wide-field optical mapping (WFOM), a simpler technique that uses a camera to observe large areas of the exposed cortex under visible light, can detect changes in both neural activity and haemodynamics at very high speeds. Although WFOM may not provide single-neuron or capillary-level resolution, it is an attractive and accessible approach to imaging large areas of the brain in awake, behaving mammals at speeds fast enough to observe widespread neural firing events, as well as their dynamic coupling to haemodynamics. Although such wide-field optical imaging techniques have a long history, the advent of genetically encoded fluorophores that can report neural activity with high sensitivity, as well as modern technologies such as light emitting diodes and sensitive and high-speed digital cameras have driven renewed interest in WFOM. To facilitate the wider adoption and standardization of WFOM approaches for neuroscience and neurovascular coupling research, we provide here an overview of the basic principles of WFOM, considerations for implementation of wide-field fluorescence imaging of neural activity, spectroscopic analysis and interpretation of results. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’.
Collapse
Affiliation(s)
- Ying Ma
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mohammed A Shaik
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Sharon H Kim
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Mariel G Kozberg
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - David N Thibodeaux
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hanzhi T Zhao
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Hang Yu
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Elizabeth M C Hillman
- Laboratory for Functional Optical Imaging, Department of Biomedical Engineering and Radiology, Columbia University, New York, NY 10027, USA Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| |
Collapse
|
6
|
Zarella MD, Ts'o DY. Contextual modulation revealed by optical imaging exhibits figural asymmetry in macaque V1 and V2. Eye Brain 2017; 9:1-12. [PMID: 28761385 PMCID: PMC5516621 DOI: 10.2147/eb.s105609] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Neurons in early visual cortical areas are influenced by stimuli presented well beyond the confines of their classical receptive fields, endowing them with the ability to encode fine-scale features while also having access to the global context of the visual scene. This property can potentially define a role for the early visual cortex to contribute to a number of important visual functions, such as surface segmentation and figure-ground segregation. It is unknown how extraclassical response properties conform to the functional architecture of the visual cortex, given the high degree of functional specialization in areas V1 and V2. We examined the spatial relationships of contextual activations in macaque V1 and V2 with intrinsic signal optical imaging. Using figure-ground stimulus configurations defined by orientation or motion, we found that extraclassical modulation is restricted to the cortical representations of the figural component of the stimulus. These modulations were positive in sign, suggesting a relative enhancement in neuronal activity that may reflect an excitatory influence. Orientation and motion cues produced similar patterns of activation that traversed the functional subdivisions of V2. The asymmetrical nature of the enhancement demonstrated the capacity for visual cortical areas as early as V1 to contribute to figure-ground segregation, and the results suggest that this information can be extracted from the population activity constrained only by retinotopy, and not the underlying functional organization.
Collapse
Affiliation(s)
- Mark D Zarella
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Daniel Y Ts'o
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
7
|
Sauvage A, Hubert G, Touboul J, Ribot J. The hemodynamic signal as a first-order low-pass temporal filter: Evidence and implications for neuroimaging studies. Neuroimage 2017; 155:394-405. [PMID: 28343986 DOI: 10.1016/j.neuroimage.2017.03.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/23/2017] [Indexed: 01/26/2023] Open
Abstract
Neuronal activation triggers local changes in blood flow and hemoglobin oxygenation. These hemodynamic signals can be recorded through functional magnetic resonance imaging or intrinsic optical imaging, and allows inferring neural activity in response to stimuli. These techniques are widely used to uncover functional brain architectures. However, their accuracy suffers from distortions inherent to hemodynamic responses and noise. The analysis of these signals currently relies on models of impulse hemodynamic responses to brief stimuli. Here, in order to infer precise functional architectures, we focused on integrated signals associated to the dynamic response of functional maps. To this end, we recorded orientation and direction maps in cat primary visual cortex and compared two protocols: the conventional episodic stimulation technique and a continuous, periodic stimulation paradigm. Conventional methods show that the dynamics of activation and deactivation of the functional maps follows a linear first-order differential equation representing a low-pass filter. Comparison with the periodic stimulation methods confirmed this observation: the phase shifts and magnitude attenuations extracted at various frequencies were consistent with a low-pass filter with a 5s time constant. This dynamics presumably reflects the variations in deoxyhemoglobin mediated by arterial dilations. This dynamics open new avenues in the analysis of neuroimaging data that differs from common methods based on the hemodynamic response function. In particular, we demonstrate that inverting this first-order low-pass filter minimized the distortions of the signal and enabled a much faster and accurate reconstruction of functional maps.
Collapse
Affiliation(s)
- Antoine Sauvage
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Guillaume Hubert
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France
| | - Jonathan Touboul
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France; INRIA Mycenae Team, Paris-Rocquencourt, France
| | - Jérôme Ribot
- Mathematical Neuroscience Team, CIRB - Collège de France (CNRS UMR 7241, INSERM U1050, UPMC ED 158, MEMOLIFE PSL), 11 Place Marcelin Berthelot, 75005 Paris, France.
| |
Collapse
|
8
|
Intrinsic signal optical imaging of visual brain activity: Tracking of fast cortical dynamics. Neuroimage 2017; 148:160-168. [PMID: 28063974 DOI: 10.1016/j.neuroimage.2017.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 12/29/2016] [Accepted: 01/03/2017] [Indexed: 11/21/2022] Open
Abstract
Hemodynamic-based brain imaging techniques are typically incapable of monitoring brain activity with both high spatial and high temporal resolutions. In this study, we have used intrinsic signal optical imaging (ISOI), a relatively high spatial resolution imaging technique, to examine the temporal resolution of the hemodynamic signal. We imaged V1 responses in anesthetized monkey to a moving light spot. Movies of cortical responses clearly revealed a focus of hemodynamic response traveling across the cortical surface. Importantly, at different locations along the cortical trajectory, response timecourses maintained a similar tri-phasic shape and shifted sequentially across cortex with a predictable delay. We calculated the time between distinguishable timecourses and found that the temporal resolution of the signal at which two events can be reliably distinguished is about 80 milliseconds. These results suggest that hemodynamic-based imaging is suitable for detecting ongoing cortical events at high spatial resolution and with temporal resolution relevant for behavioral studies.
Collapse
|
9
|
Abstract
UNLABELLED Two incongruent images viewed by the two eyes cause binocular rivalry, during which observers perceive continuous alternations between these two visual images. Previous studies in both humans and monkeys have shown that the primary visual cortex (V1) plays a critical role in the rivalry perception. However, it is unclear whether the rivalry activity observed in V1 relies on conscious influences. Here, we examine the responses of V1 in monkeys under general anesthesia. With intrinsic signal optical imaging and single-trial analysis, alternating activation of ocular dominance columns in V1 was observed during binocularly incongruent stimulation. Left- and right-eye columns exhibited counterphase activation, which were modulated by stimulus features in ways similar to those found in conscious human observers. These observations indicated that binocular rivalry occurs in V1 without consciousness, suggesting that the low-level automatic mechanisms play a more important role than previously believed in handling visual ambiguities. SIGNIFICANCE STATEMENT When visual input is ambiguous, for example, in viewing bistable images, human subjects normally perceive one of the interpretations at a particular moment. Previous studies have shown that both low-level visual processing and high-level attention contribute to the establishment of the final visual perception. However, it is not clear whether attention is indispensable in such a process. Here we show that rivalry-like neural activity persisted in monkey V1 when the monkeys were anesthetized and viewed binocularly incongruent stimuli. Such activity has many key features similar to those observed in conscious human subjects. These findings indicate that low-level visual processes play a critical role in solving visual ambiguity such as binocular rivalry.
Collapse
|
10
|
Rasch MJ, Chen M, Wu S, Lu HD, Roe AW. Quantitative inference of population response properties across eccentricity from motion-induced maps in macaque V1. J Neurophysiol 2012. [PMID: 23197457 DOI: 10.1152/jn.00673.2012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interpreting population responses in the primary visual cortex (V1) remains a challenge especially with the advent of techniques measuring activations of large cortical areas simultaneously with high precision. For successful interpretation, a quantitatively precise model prediction is of great importance. In this study, we investigate how accurate a spatiotemporal filter (STF) model predicts average response profiles to coherently drifting random dot motion obtained by optical imaging of intrinsic signals in V1 of anesthetized macaques. We establish that orientation difference maps, obtained by subtracting orthogonal axis-of-motion, invert with increasing drift speeds, consistent with the motion streak effect. Consistent with perception, the speed at which the map inverts (the critical speed) depends on cortical eccentricity and systematically increases from foveal to parafoveal. We report that critical speeds and response maps to drifting motion are excellently reproduced by the STF model. Our study thus suggests that the STF model is quantitatively accurate enough to be used as a first model of choice for interpreting responses obtained with intrinsic imaging methods in V1. We show further that this good quantitative correspondence opens the possibility to infer otherwise not easily accessible population receptive field properties from responses to complex stimuli, such as drifting random dot motions.
Collapse
Affiliation(s)
- Malte J Rasch
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal Univ, Beijing, China.
| | | | | | | | | |
Collapse
|
11
|
Abstract
In mammals, the perception of motion starts with direction-selective neurons in the visual cortex. Despite numerous studies in monkey primary and second visual cortex (V1 and V2), there has been no evidence of direction maps in these areas. In the present study, we used optical imaging methods to study the organization of motion response in macaque V1 and V2. In contrast to the findings in other mammals (e.g., cats and ferrets), we found no direction maps in macaque V1. Robust direction maps, however, were found in V2 thick/pale stripes and avoided thin stripes. In many cases direction maps were located within thick stripes and exhibited pinwheel or linear organizations. The presence of motion maps in V2 points to a newfound prominence of V2 in motion processing, for contributing to motion perception in the dorsal pathway and/or for motion cue-dependent form perception in the ventral pathway.
Collapse
Affiliation(s)
- Haidong D Lu
- Department of Psychology, Vanderbilt University, Nashville, TN 37240, USA.
| | | | | | | |
Collapse
|
12
|
Bouchard MB, Chen BR, Burgess SA, Hillman EMC. Ultra-fast multispectral optical imaging of cortical oxygenation, blood flow, and intracellular calcium dynamics. OPTICS EXPRESS 2009; 17:15670-8. [PMID: 19724566 PMCID: PMC2760073 DOI: 10.1364/oe.17.015670] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Camera-based optical imaging of the exposed brain allows cortical hemodynamic responses to stimulation to be examined. Typical multispectral imaging systems utilize a camera and illumination at several wavelengths, allowing discrimination between changes in oxy- and deoxyhemoglobin concentration. However, most multispectral imaging systems utilize white light sources and mechanical filter wheels to multiplex illumination wavelengths, which are slow and difficult to synchronize at high frame rates. We present a new LED-based system capable of high-resolution multispectral imaging at frame rates exceeding 220 Hz. This improved performance enables simultaneous visualization of hemoglobin oxygenation dynamics within single vessels, changes in vessel diameters, blood flow dynamics from the motion of erythrocytes, and dynamically changing fluorescence.
Collapse
|