1
|
Peng T, Zhang C, Xie P, Lin Y, Zhang L, Lan Z, Yang M, Huang X, Liu J, Cheng G. Multimodal MRI analysis of COVID-19 effects on pediatric brain. Sci Rep 2025; 15:11691. [PMID: 40188214 PMCID: PMC11972372 DOI: 10.1038/s41598-025-96191-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 03/26/2025] [Indexed: 04/07/2025] Open
Abstract
The COVID-19 pandemic has raised significant concerns regarding its impact on the central nervous system, including the brain. While the effects on adult populations are well documented, less is known about its implications for pediatric populations. This study investigates alterations in cortical metrics and structural covariance networks (SCNs) based on the Local Gyrification Index (LGI) in children with mild COVID-19, alongside changes in non-invasive MRI proxies related to glymphatic function. We enrolled 19 children with COVID-19 and 22 age-comparable healthy controls. High-resolution T1-weighted and diffusion-weighted MRI images were acquired. Cortical metrics, including thickness, surface area, volume, and LGI, were compared using vertex-wise general linear models. SCNs were analyzed for differences in global and nodal metrics, and MRI proxies, including diffusion tensor imaging along the perivascular space and choroid plexus (CP) volume, were also assessed. Our results showed increased cortical area, volume, and LGI in the left superior parietal cortex, as well as increased cortical thickness in the left lateral occipital cortex among children with COVID-19. SCN analysis revealed altered network topology and larger CP volumes in the COVID group, suggesting virus-induced neuroinflammation. These findings provide evidence of potential brain alterations in children following mild COVID-19, emphasizing the need for further investigation into long-term neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Ting Peng
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Chaowei Zhang
- Department of Neonatology, People's Hospital of Longhua, Shenzhen, 518000, China
| | - Pingping Xie
- Department of Neonatology, Children's Hospital of Fudan University, Shanghai, 201102, China
| | - Ying Lin
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Lin Zhang
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Zuozhen Lan
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Mingwen Yang
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China
| | - Xianghui Huang
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| | - Jungang Liu
- Department of Radiology, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| | - Guoqiang Cheng
- Fujian Key Laboratory of Neonatal Diseases, Children's Hospital of Fudan University (Xiamen Branch), Xiamen Children's Hospital, Xiamen, 361000, China.
| |
Collapse
|
2
|
Loubrie S, Zou J, Rodriguez‐Soto AE, Lim J, Andreassen MM, Cheng Y, Batasin SJ, Ebrahimi S, Fang LK, Conlin CC, Seibert TM, Hahn ME, Dialani V, Wei CJ, Karimi Z, Kuperman J, Dale AM, Ojeda‐Fournier H, Pisano E, Rakow‐Penner R. Discrimination Between Benign and Malignant Lesions With Restriction Spectrum Imaging MRI in an Enriched Breast Cancer Screening Cohort. J Magn Reson Imaging 2025; 61:1876-1887. [PMID: 39291552 PMCID: PMC11896923 DOI: 10.1002/jmri.29599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Breast cancer screening with dynamic contrast-enhanced MRI (DCE-MRI) is recommended for high-risk women but has limitations, including variable specificity and difficulty in distinguishing cancerous (CL) and high-risk benign lesions (HRBL) from average-risk benign lesions (ARBL). Complementary non-invasive imaging techniques would be useful to improve specificity. PURPOSE To evaluate the performance of a previously-developed breast-specific diffusion-weighted MRI (DW-MRI) model (BS-RSI3C) to improve discrimination between CL, HRBL, and ARBL in an enriched screening population. STUDY TYPE Prospective. SUBJECTS Exactly 187 women, either with mammography screening recommending additional imaging (N = 49) or high-risk individuals undergoing routine breast MRI (N = 138), before the biopsy. FIELD STRENGTH/SEQUENCE Multishell DW-MRI echo planar imaging sequence with a reduced field of view at 3.0 T. ASSESSMENT A total of 72 women had at least one biopsied lesion, with 89 lesions categorized into ARBL, HRBL, CL, and combined CLs and HRBLs (CHRLs). DW-MRI data were processed to produce apparent diffusion coefficient (ADC) maps, and estimate signal contributions (C1, C2, and C3-restricted, hindered, and free diffusion, respectively) from the BS-RSI3C model. Lesion regions of interest (ROIs) were delineated on DW images based on suspicious DCE-MRI findings by two radiologists; control ROIs were drawn in the contralateral breast. STATISTICAL TESTS One-way ANOVA and two-sided t-tests were used to assess differences in signal contributions and ADC values among groups. P-values were adjusted using the Bonferroni method for multiple testing, P = 0.05 was used for the significance level. Receiver operating characteristics (ROC) curves and intra-class correlations (ICC) were also evaluated. RESULTS C1, √C1C2, and log C 1 C 2 C 3 were significantly different in HRBLs compared with ARBLs (P-values < 0.05). The log C 1 C 2 C 3 had the highest AUC (0.821) in differentiating CHRLs from ARBLs, performing better than ADC (0.696), especially in non-mass enhancement (0.776 vs. 0.517). DATA CONCLUSION This study demonstrated the BS-RSI3C could differentiate HRBLs from ARBLs in a screening population, and separate CHRLs from ARBLs better than ADC. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE 2.
Collapse
Affiliation(s)
- Stephane Loubrie
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California San DiegoLa JollaCAUSA
| | | | - Jihe Lim
- Department of RadiologyHallym University Dongtan Sacred Heart HospitalGyeonggi‐doRepublic of Korea
| | - Maren M.S. Andreassen
- Department of Circulation and Medical ImagingNorwegian University of Science and TechnologyTrondheimNorway
- Department of Research and InnovationVestre VikenDrammenNorway
| | - Yuwei Cheng
- Herbert Wertheim School of Public Health and Human Longevity ScienceUniversity of California San DiegoLa JollaCAUSA
| | - Summer J. Batasin
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Sheida Ebrahimi
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Lauren K. Fang
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Tyler M. Seibert
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of Radiation MedicineUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Michael E. Hahn
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Vandana Dialani
- Department of RadiologyBeth Israel HospitalBostonMassachusettsUSA
- Harvard Medical SchoolBostonMassachusettsUSA
| | - Catherine J. Wei
- Department of RadiologyMass General Brigham – Salem HospitalSalemMassachusettsUSA
| | - Zahra Karimi
- Department of RadiologyBeth Israel HospitalBostonMassachusettsUSA
| | - Joshua Kuperman
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Anders M. Dale
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of NeurosciencesUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Etta Pisano
- Department of RadiologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- American College of RadiologyRestonVirginiaUSA
| | - Rebecca Rakow‐Penner
- Department of RadiologyUniversity of California San DiegoLa JollaCaliforniaUSA
- Department of BioengineeringUniversity of California San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
3
|
Thorpe JC, Thust SC, Gillon CHM, Rowe S, Swain CE, MacArthur DC, Howarth SP, Avula S, Morgan PS, Dineen RA. Comparison of Echo Planar and Turbo Spin Echo Diffusion-Weighted Imaging in Intraoperative MRI. J Magn Reson Imaging 2025; 61:1847-1857. [PMID: 39389789 PMCID: PMC11896932 DOI: 10.1002/jmri.29614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/03/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Diffusion-weighted imaging (DWI) is routinely used in brain tumor surgery guided by intraoperative MRI (IoMRI). However, conventional echo planar imaging DWI (EPI-DWI) is susceptible to distortion and artifacts that affect image quality. Turbo spin echo DWI (TSE-DWI) is an alternative technique with minimal spatial distortions that has the potential to be the radiologically preferred sequence. PURPOSE To compare via single- and multisequence assessment EPI-DWI and TSE-DWI in the IoMRI setting to determine whether there is a radiological preference for either sequence. STUDY TYPE Retrospective. POPULATION Thirty-four patients (22 female) aged 2-61 years (24 under 18 years) undergoing IoMRI during surgical resection of intracranial tumors. FIELD STRENGTH/SEQUENCE 3-T, EPI-DWI, and TSE-DWI. ASSESSMENT Patients were scanned with EPI- and TSE-DWI as part of the standard IoMRI scanning protocol. A single-sequence assessment of spatial distortion and image artifact was performed by three neuroradiologists blinded to the sequence type. Images were scored regarding distortion and artifacts, around and remote to the resection cavity. A multisequence radiological assessment was performed by three neuroradiologists in full radiological context including all other IoMRI sequences from each case. The DWI images were directly compared with scorings of the radiologists on which they preferred with respect to anatomy, abnormality, artifact, and overall preference. STATISTICAL TESTS Wilcoxon signed-rank tests for single-sequence assessment, weighted kappa for single and multisequence assessment. A P-value <0.001 was considered statistically significant. RESULTS For the blinded single-sequence assessment, the TSE-DWI sequence was scored equal to or superior to the EPI-DWI sequence for distortion and artifacts, around and remote to the resection cavity for every case. In the multisequence assessment, all radiologists independently expressed a preference for TSE-DWI over EPI-DWI sequences on viewing brain anatomy, abnormalities, and artifacts. DATA CONCLUSION The TSE-DWI sequences may be favored over EPI-DWI for IoMRI in patients with intracranial tumors. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- James C. Thorpe
- Medical Physics and Clinical EngineeringNottingham University HospitalsNottinghamUK
| | - Stefanie C. Thust
- Radiological SciencesAcademic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Department of Brain Rehabilitation and RepairUCL Institute of Neurology, Queen SquareLondonUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | | | - Selene Rowe
- RadiologyNottingham University HospitalsNottinghamUK
| | | | - Donald C. MacArthur
- NeurosurgeryNottingham University HospitalsNottinghamUK
- Children's Brain Tumour Research CentreUniversity of NottinghamNottinghamUK
| | | | - Shivaram Avula
- RadiologyAlder Hey Children's Hospital NHS Foundation TrustLiverpoolUK
| | - Paul S. Morgan
- Medical Physics and Clinical EngineeringNottingham University HospitalsNottinghamUK
- Radiological SciencesAcademic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Sir Peter Mansfield Imaging CentreUniversity of NottinghamNottinghamUK
| | - Rob A. Dineen
- Medical Physics and Clinical EngineeringNottingham University HospitalsNottinghamUK
- Radiological SciencesAcademic Unit of Mental Health and Clinical Neuroscience, School of Medicine, University of NottinghamNottinghamUK
- NIHR Nottingham Biomedical Research CentreNottinghamUK
- Children's Brain Tumour Research CentreUniversity of NottinghamNottinghamUK
| |
Collapse
|
4
|
Baboli R, Wu K, Halperin JM, Li X. White Matter Microstructural Abnormalities in Children with Familial vs. Non-Familial Attention-Deficit/Hyperactivity Disorder (ADHD). Biomedicines 2025; 13:676. [PMID: 40149652 PMCID: PMC11940736 DOI: 10.3390/biomedicines13030676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/28/2025] [Accepted: 03/07/2025] [Indexed: 03/29/2025] Open
Abstract
Background: Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent, heterogeneous neurodevelopmental disorder. Methods: This study presents, for the first time, a comprehensive investigation of white matter microstructural differences between familial ADHD (ADHD-F) and non-familial ADHD (ADHD-NF) using advanced diffusion tensor imaging analyses in a large community-based sample. Results: Children with ADHD-F exhibited significantly greater volume in the right anterior thalamic radiations and the left inferior fronto-occipital fasciculus compared to controls, and greater volume in the left inferior longitudinal fasciculus relative to ADHD-NF. The ADHD-NF group showed reduced fractional anisotropy in the left inferior longitudinal fasciculus compared to the controls. In both the ADHD-F and ADHD-NF groups, a greater volume of anterior thalamic radiation significantly contributed to reduced ADHD symptoms. Conclusions: Our findings suggest that white matter microstructural alterations along the frontal-thalamic pathways may play a critical role in hereditary factors among children with ADHD-F and significantly contribute to elevated inattentive and hyperactive/impulsive behaviors in the affected children.
Collapse
Affiliation(s)
- Rahman Baboli
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Graduate School of Biomedical Sciences, Rutgers University, Newark, NJ 07102, USA
| | - Kai Wu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511436, China
| | - Jeffrey M. Halperin
- Department of Psychology, Queens College, City University of New York, New York, NY 11367, USA
| | - Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
- Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
5
|
Yang B, Zhou Z, Chen Y, Devakonda V, Cai T, Lee T, Qu Y. Parental warmth buffers the negative impact of weaker fronto-striatal connectivity on early adolescents' academic achievement. JOURNAL OF RESEARCH ON ADOLESCENCE : THE OFFICIAL JOURNAL OF THE SOCIETY FOR RESEARCH ON ADOLESCENCE 2025; 35:e12949. [PMID: 38717122 PMCID: PMC11758458 DOI: 10.1111/jora.12949] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 01/25/2025]
Abstract
In past decades, the positive role of self-control in students' academic success has attracted plenty of scholarly attention. However, fewer studies have examined the link between adolescents' neural development of the inhibitory control system and their academic achievement, especially using a longitudinal approach. Moreover, less is known about the role of parents in this link. Using large-scale longitudinal data from the Adolescent Brain Cognitive Development (ABCD) study (N = 9574; mean age = 9.94 years at baseline, SD = .63; 50% girls), the current study took an integrative biopsychosocial approach to explore the longitudinal link between early adolescents' fronto-striatal connectivity and their academic achievement, with attention to the moderating role of parental warmth. Results showed that weaker intrinsic connectivity between the frontoparietal network and the striatum was associated with early adolescents' worse academic achievement over 2 years during early adolescence. Notably, parental warmth moderated the association between fronto-striatal connectivity and academic achievement, such that weaker fronto-striatal connectivity was only predictive of worse academic achievement among early adolescents who experienced low levels of parental warmth. Taken together, the findings demonstrate weaker fronto-striatal connectivity as a risk factor for early adolescents' academic development and highlight parental warmth as a protective factor for academic development among those with weaker connectivity within the inhibitory control system.
Collapse
Affiliation(s)
- Beiming Yang
- School of Education and Social PolicyNorthwestern UniversityEvanstonIllinoisUSA
| | - Zexi Zhou
- Department of Human Development and Family SciencesThe University of Texas at AustinAustinTexasUSA
| | - Ya‐Yun Chen
- Department of PsychologyVirginia TechBlacksburgVirginiaUSA
| | - Varun Devakonda
- School of Education and Social PolicyNorthwestern UniversityEvanstonIllinoisUSA
| | - Tianying Cai
- School of Education and Social PolicyNorthwestern UniversityEvanstonIllinoisUSA
- Institute of Child DevelopmentUniversity of Minnesota, Twin CitiesMinneapolisMinnesotaUnited States
| | - Tae‐Ho Lee
- Department of PsychologyVirginia TechBlacksburgVirginiaUSA
| | - Yang Qu
- School of Education and Social PolicyNorthwestern UniversityEvanstonIllinoisUSA
| |
Collapse
|
6
|
Tahedl M, Tournier JD, Smith RE. Structural connectome construction using constrained spherical deconvolution in multi-shell diffusion-weighted magnetic resonance imaging. Nat Protoc 2025:10.1038/s41596-024-01129-1. [PMID: 39953164 DOI: 10.1038/s41596-024-01129-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 12/05/2024] [Indexed: 02/17/2025]
Abstract
Connectional neuroanatomical maps can be generated in vivo by using diffusion-weighted magnetic resonance imaging (dMRI) data, and their representation as structural connectome (SC) atlases adopts network-based brain analysis methods. We explain the generation of high-quality SCs of brain connectivity by using recent advances for reconstructing long-range white matter connections such as local fiber orientation estimation on multi-shell dMRI data with constrained spherical deconvolution, which yields both increased sensitivity to detecting crossing fibers compared with competing methods and the ability to separate signal contributions from different macroscopic tissues, and improvements to streamline tractography such as anatomically constrained tractography and spherical-deconvolution informed filtering of tractograms, which have increased the biological accuracy of SC creation. Here, we provide step-by-step instructions to creating SCs by using these methods. In addition, intermediate steps of our procedure can be adapted for related analyses, including region of interest-based tractography and quantification of local white matter properties. The associated software MRtrix3 implements the relevant tools for easy application of the protocol, with specific processing tasks deferred to components of the FSL software. The protocol is suitable for users with expertise in dMRI and neuroscience and requires between 2 h and 13 h to complete, depending on the available computational system.
Collapse
Affiliation(s)
- Marlene Tahedl
- Department of Neuroradiology, School of Medicine and Health, Technical University of Munich, Munich, Germany.
| | - J-Donald Tournier
- Centre for the Developing Brain, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
- Department of Biomedical Engineering, School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK
| | - Robert E Smith
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia
- Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
7
|
Curtis M, Bayat M, Garic D, Alfano AR, Hernandez M, Curzon M, Bejarano A, Tremblay P, Graziano P, Dick AS. Structural Development of Speech Networks in Young Children. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.23.609470. [PMID: 39229017 PMCID: PMC11370569 DOI: 10.1101/2024.08.23.609470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Characterizing the structural development of the neural speech network in early childhood is important to understand speech acquisition. To investigate speech in the developing brain, 94 children aged 4-7-years-old were scanned using diffusion weighted imaging (DWI) magnetic resonance imaging (MRI). In order to increase sample size and performance variability, we included children who were diagnosed with attention-deficit hyperactivity disorder (ADHD) from a larger ongoing study. Additionally, each child completed the Syllable Repetition Task (SRT), a validated measure of phoneme articulation. The DWI data were modeled using restriction spectrum imaging (RSI) to measure restricted and hindered diffusion properties in both grey and white matter. Consequently, we analyzed the diffusion data using both whole brain analysis, and automated fiber quantification (AFQ) analysis to establish tract profiles for each of six fiber pathways thought to be important for supporting speech development. In the whole brain analysis, we found that SRT performance was associated with restricted diffusion in bilateral inferior frontal gyrus, pars opercularis , right pre-supplementary and supplementary motor area, and bilateral cerebellar grey matter ( p < .005). Age moderated these associations in left pars opercularis and frontal aslant tract (FAT). However, in both cases only the cerebellar findings survived a cluster correction. We also found associations between SRT performance and restricted diffusion in cortical association fiber pathways, especially left FAT, and in the cerebellar peduncles. Analyses using automated fiber quantification (AFQ) highlighted differences in high and low performing children along specific tract profiles, most notably in left but not right FAT, in bilateral SLFIII, and in the cerebellar peduncles. These findings suggest that individual differences in speech performance are reflected in structural grey and white matter differences as measured by restricted and hindered diffusion metrics, and offer important insights into developing brain networks supporting speech in very young children.
Collapse
|
8
|
Baranger DAA, Gorelik AJ, Paul SE, Hatoum AS, Dosenbach N, Bogdan R. Enhancing task fMRI individual difference research with neural signatures. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.01.30.25321355. [PMID: 39974058 PMCID: PMC11838658 DOI: 10.1101/2025.01.30.25321355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Task-based functional magnetic resonance imaging (tb-fMRI) has advanced our understanding of brain-behavior relationships. Standard tb-fMRI analyses suffer from limited reliability and low effect sizes, and machine learning (ML) approaches often require thousands of subjects, restricting their ability to inform how brain function may arise from and contribute to individual differences. Using data from 9,024 early adolescents, we derived a classifier ('neural signature') distinguishing between high and low working memory loads in an emotional n-back fMRI task, which captures individual differences in the separability of activation to the two task conditions. Signature predictions were more reliable and had stronger associations with task performance, cognition, and psychopathology than standard estimates of regional brain activation. Further, the signature was more sensitive to psychopathology associations and required a smaller training sample (N=320) than standard ML approaches. Neural signatures hold tremendous promise for enhancing the informativeness of tb-fMRI individual differences research and revitalizing its use.
Collapse
Affiliation(s)
- David AA Baranger
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| | - Aaron J Gorelik
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| | - Sarah E Paul
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| | - Alexander S Hatoum
- Department of Psychiatry, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Nico Dosenbach
- Department of Neurology, Washington University School of Medicine in St Louis, St Louis, Missouri, USA
| | - Ryan Bogdan
- Department of Psychological and Brain Sciences, Washington University in St Louis, St Louis, Missouri, USA
| |
Collapse
|
9
|
Lasaponara S, Pinto M, Lozito S, Scozia G, Pellegrino M, Presti SL, Gazzitano S, Giove F, Doricchi F. Changes in Brain Functional Connectivity Underlying the Space-Number Association. J Cogn Neurosci 2025; 37:210-226. [PMID: 39145759 DOI: 10.1162/jocn_a_02240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Whether small number magnitudes are inherently represented as lying to the left of larger ones, the space-number association (SNA), is an important issue in mathematical cognition. In this fMRI study, we used a go/no-go implicit association task to investigate the brain activity and functional connectivity underlying the SNA. Arabic digits lower or higher than 5 and left- or right-pointing arrows were alternated as central targets. In a single-code task condition, participants responded to a specific number magnitude and to all arrows or to a specific arrow direction and to all number magnitudes. In a joint-code (JC) condition, responses were provided after congruent, for example, "go when a number is lower than 5 or an arrow points left," or incongruent, for example, "go when a number is lower than 5 or an arrow points right," SNAs. The SNA was only found in the JC condition, where responses were faster with congruent instructions. Analyses of fMRI functional connectivity showed that the SNA was matched with enhanced excitatory inputs from ACC, the left TPJ, and the left inferior frontal gyrus to the left and right intraparietal sulcus (IPS). Incongruent JC trials were associated with enhanced excitatory modulation from ACC to the left and right IPS. These results show that the SNA is associated with enhanced activation of top-down brain control and changes in the functional interaction between the left and right IPS. We conclude that the SNA does not depend on an inherent and bottom-up spatial coding of number magnitudes.
Collapse
Affiliation(s)
| | - Mario Pinto
- "Sapienza" Università di Roma
- IRCCS Fondazione Santa Lucia, Rome
| | | | - Gabriele Scozia
- "Sapienza" Università di Roma
- IRCCS Fondazione Santa Lucia, Rome
| | | | - Sara Lo Presti
- "Sapienza" Università di Roma
- IRCCS Fondazione Santa Lucia, Rome
| | | | - Federico Giove
- IRCCS Fondazione Santa Lucia, Rome
- Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi, Rome
| | | |
Collapse
|
10
|
Numamoto H, Fujimoto K, Miyake KK, Fushimi Y, Okuchi S, Imai R, Kondo H, Saga T, Nakamoto Y. Evaluating Reproducibility of the ADC and Distortion in Diffusion-weighted Imaging (DWI) with Reverse Encoding Distortion Correction (RDC). Magn Reson Med Sci 2025; 24:66-77. [PMID: 37952942 PMCID: PMC11733504 DOI: 10.2463/mrms.mp.2023-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 11/14/2023] Open
Abstract
PURPOSE To compare image distortion and reproducibility of quantitative values between reverse encoding distortion correction (RDC) diffusion-weighted imaging (DWI) and conventional DWI techniques in a phantom study and in healthy volunteers. METHODS This prospective study was conducted with the approval of our institutional review board. Written informed consent was obtained from each participant. RDC-DWIs were created from images obtained at 3T in three orthogonal directions in a phantom and in 10 participants (mean age, 70.9 years; age range, 63-83 years). Images without distortion correction (noDC-DWI) and those corrected with B0 (B0c-DWI) were also created. To evaluate distortion, coefficients of variation were calculated for each voxel and ROIs were placed at four levels of the brain. To evaluate the reproducibility of apparent diffusion coefficient (ADC) measurements, intra- and inter-scan variability (%CVADC) were calculated from repeated scans of the phantom. Analysis was performed using Wilcoxon signed-rank test with Bonferroni correction, and P < 0.05 was considered statistically significant. RESULTS In the phantom, distortion was less in RDC-DWI than in B0c-DWI (P < 0.006), and was less in B0c-DWI than in noDC-DWI (P < 0.006). Intra-scan %CVADC was within 1.30%, and inter-scan %CVADC was within 2.99%. In the volunteers, distortion was less in RDC-DWI than in B0c-DWI in three of four locations (P < 0.006), and was less in B0c-DWI than in noDC-DWI (P < 0.006). At the middle cerebellar peduncle, distortion was less in RDC-DWI than in noDC-DWI (P < 0.006), and was less in noDC-DWI than in B0c-DWI (P < 0.0177). CONCLUSION In both the phantom and in volunteers, distortion was the least in RDC-DWI than in B0c-DWI and noDC-DWI.
Collapse
Affiliation(s)
- Hitomi Numamoto
- Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Koji Fujimoto
- Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Kanae Kawai Miyake
- Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Sachi Okuchi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Rimika Imai
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hiroki Kondo
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Tsuneo Saga
- Department of Advanced Imaging in Medical Magnetic Resonance, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Kyoto, Japan
| |
Collapse
|
11
|
Kashiwagi N, Sakai M, Nakamoto A, Takahashi H, Isogawa Y, Suzuki Y, Yamada S, Tomiyama M, Nakanishi K, Tomiyama N. Reverse Encoding Distortion Correction for Clinical Head Echo-Planar Diffusion-Weighted MRI: Initial Experience. J Comput Assist Tomogr 2025; 49:140-146. [PMID: 39190721 DOI: 10.1097/rct.0000000000001658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
OBJECTIVE This study aimed to evaluate the feasibility of the recently commercialized reverse encoding distortion correction (RDC) method for echo-planar imaging (EPI) diffusion-weighted imaging (DWI) by applying clinical head MRI. METHODS This study included 50 consecutive patients who underwent head MRI, including single-shot (SS) EPI DWI and RDC-EPI DWI. For evaluation of normal structures, qualitative scores for image distortion, Dice similarity coefficient (DSC) values, distortion ratios, and mean apparent diffusion coefficient (ADC) values were assessed in the pons, temporal lobe at the skull base, and frontal lobe at the level of the lateral ventricles in 30 patients. To evaluate pathologies, qualitative scores for image distortion were assessed for 25 intracranial and 21 extracranial pathologies identified in 32 patients. RESULTS Qualitative scores for image distortion, DSC values, distortion ratios, and mean ADC values of the pons and temporal lobe were significantly different between SS-EPI DWI and RDC-EPI DWI, whereas those of the frontal lobe at the level of the lateral ventricles were not significantly different between the 2 DWIs. The qualitative scores for image distortion and mean ADC values of extracranial pathologies were significantly different between the DWIs, whereas those of intracranial pathologies were not significantly different. CONCLUSIONS RDC-EPI DWI significantly reduced image distortion and showed higher mean ADC values of the brain parenchyma in the skull base and extracranial pathologies.
Collapse
Affiliation(s)
- Nobuo Kashiwagi
- From the Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute
| | - Mio Sakai
- From the Department of Diagnostic and Interventional Radiology, Osaka International Cancer Institute
| | | | | | | | - Yuki Suzuki
- Department of Artificial Intelligence Diagnostic Radiology, Osaka University Graduate School of Medicine
| | - Sawaka Yamada
- Department of Radiology, Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Miyuki Tomiyama
- Department of Radiology, Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | - Katsuyuki Nakanishi
- Department of Radiology, Diagnostic and Interventional Radiology, Osaka International Cancer Institute, Osaka, Japan
| | | |
Collapse
|
12
|
Kang X, Grossner E, Yoon BC, Adamson MM. Relationship Between Structural and Functional Network Connectivity Changes for Patients With Traumatic Brain Injury and Chronic Health Symptoms. Eur J Neurosci 2025; 61:e16678. [PMID: 39831462 DOI: 10.1111/ejn.16678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/16/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Combination of structural and functional brain connectivity methods provides a more complete and effective avenue into the investigation of cortical network responses to traumatic brain injury (TBI) and subtle alterations in brain connectivity associated with TBI. Structural connectivity (SC) can be measured using diffusion tensor imaging to evaluate white matter integrity, whereas functional connectivity (FC) can be studied by examining functional correlations within or between functional networks. In this study, the alterations of SC and FC were assessed for TBI patients, with and without chronic symptoms (TBIcs/TBIncs), compared with a healthy control group (CG). The correlation between global SC and FC was significantly increased for both TBI groups compared with CG. SC was significantly lower in the TBIcs group compared with CG, and FC changes were seen in the TBIncs group compared with CG. When comparing TBI groups, FC differences were observed in the TBIcs group compared with the TBIncs group. These observations show that the presence of chronic symptoms is associated with a distinct pattern of SC and FC changes including the atrophy of the SC and a mixture of functional hypoconnectivity and hyperconnectivity, as well as loss of segregation of functional networks.
Collapse
Affiliation(s)
- Xiaojian Kang
- WRIISC-Women, VA Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Emily Grossner
- Department of Psychology, VA Palo Alto Health Care System, Palo Alto, California, USA
| | - Byung C Yoon
- Department of Radiology, Stanford University School of Medicine, VA Palo Alto Heath Care System, Palo Alto, California, USA
| | - Maheen M Adamson
- WRIISC-Women, VA Palo Alto Health Care System, Palo Alto, California, USA
- Rehabilitation Service, VA Palo Alto Health Care System, Palo Alto, California, USA
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
13
|
Rojo Domingo M, Conlin CC, Karunamuni R, Ollison C, Baxter MT, Kallis K, Do DD, Song Y, Kuperman J, Shabaik AS, Hahn ME, Murphy PM, Rakow-Penner R, Dale AM, Seibert TM. Utility of quantitative measurement of T 2 using restriction spectrum imaging for detection of clinically significant prostate cancer. Sci Rep 2024; 14:31318. [PMID: 39732834 PMCID: PMC11682432 DOI: 10.1038/s41598-024-82742-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 12/09/2024] [Indexed: 12/30/2024] Open
Abstract
The Restriction Spectrum Imaging restriction score (RSIrs) has been shown to improve the accuracy for diagnosis of clinically significant prostate cancer (csPCa) compared to standard DWI. Both diffusion and T2 properties of prostate tissue contribute to the signal measured in DWI, and studies have demonstrated that each may be valuable for distinguishing csPCa from benign tissue. The purpose of this retrospective study was to (1) determine whether prostate T2 varies across RSI compartments and in the presence of csPCa, and (2) evaluate whether csPCa detection with RSIrs is improved by acquiring multiple scans at different TEs to measure compartmental T2 (cT2). Data includes two cohorts scanned for csPCa with 3T multi-b-value diffusion-weighted sequences acquired at multiple TEs. cT2 values were computed from multi-TE RSI data and compared by compartment. CsPCa detection was compared between RSIrs and a logistic regression model (LRM) to predict the probability of csPCa using cT2 in combination with RSI measurements. Two-sample t-tests (α = 0.05) and the area under the receiver operating characteristic curve (AUC) were used for the statistical analyses. In both cohorts, T2 was different (p < 0.05) across the four RSI compartments (C1, C2, C3, C4). Voxel-level, cohort 1: T2 was different in csPCa for C1, C2, C3 (p < 0.001). Patient-level, cohort 1: T2 was different in csPCa patients in C3 (p = 0.02); cohort 2: T2 differed in csPCa patients in C1 (p = 0.01), C3 (p = 0.01) and C4 (p < 0.01). Voxel-level csPCa detection: cT2 did not improve discrimination over RSIrs alone (p = 0.9). Patient-level: RSIrs and the LRM performed better than diffusion alone (p < 0.001), but the difference in AUCs between RSIrs and the LRM was not significantly different (p = 0.54). In conclusion, significant differences in cT2 were observed between normal and cancerous prostatic tissue. With our data, however, consideration of cT2 in addition to diffusion did not significantly improve cancer detection performance.
Collapse
Affiliation(s)
- Mariluz Rojo Domingo
- Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Christopher C Conlin
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Courtney Ollison
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Madison T Baxter
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Deondre D Do
- Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, CA, USA
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Yuze Song
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA
- Department of Electrical and Computer Engineering, University of California San Diego Jacobs School of Engineering, La Jolla, CA, USA
| | - Joshua Kuperman
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Ahmed S Shabaik
- Department of Pathology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Michael E Hahn
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Paul M Murphy
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
| | - Tyler M Seibert
- Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, CA, USA.
- Department of Radiation Medicine and Applied Sciences, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego School of Medicine, La Jolla, CA, USA.
- Altman Clinical and Translational Research Institute, 9500 Gilman Drive, #0861, La Jolla, CA, 92093, USA.
- Department of Urology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Matthews TE, Lumaca M, Witek MAG, Penhune VB, Vuust P. Music reward sensitivity is associated with greater information transfer capacity within dorsal and motor white matter networks in musicians. Brain Struct Funct 2024; 229:2299-2313. [PMID: 39052097 PMCID: PMC11611946 DOI: 10.1007/s00429-024-02836-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/12/2024] [Indexed: 07/27/2024]
Abstract
There are pronounced differences in the degree to which individuals experience music-induced pleasure which are linked to variations in structural connectivity between auditory and reward areas. However, previous studies exploring the link between white matter structure and music reward sensitivity (MRS) have relied on standard diffusion tensor imaging methods, which present challenges in terms of anatomical accuracy and interpretability. Further, the link between MRS and connectivity in regions outside of auditory-reward networks, as well as the role of musical training, have yet to be investigated. Therefore, we investigated the relation between MRS and structural connectivity in a large number of directly segmented and anatomically verified white matter tracts in musicians (n = 24) and non-musicians (n = 23) using state-of-the-art tract reconstruction and fixel-based analysis. Using a manual tract-of-interest approach, we additionally tested MRS-white matter associations in auditory-reward networks seen in previous studies. Within the musician group, there was a significant positive relation between MRS and fiber density and cross section in the right middle longitudinal fascicle connecting auditory and inferior parietal cortices. There were also positive relations between MRS and fiber-bundle cross-section in tracts connecting the left thalamus to the ventral precentral gyrus and connecting the right thalamus to the right supplementary motor area, however, these did not survive FDR correction. These results suggest that, within musicians, dorsal auditory and motor networks are crucial to MRS, possibly via their roles in top-down predictive processing and auditory-motor transformations.
Collapse
Affiliation(s)
- Tomas E Matthews
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark.
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
| | - Maria A G Witek
- Department of Music School of Languages, Art History and Music, University of Birmingham, Cultures, Birmingham, B15 2TT, UK
| | - Virginia B Penhune
- Department of Psychology, Concordia University, 7141 Sherbrooke St W, Montreal, QC, H4B 1R6, Canada
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University Hospital, Nørrebrogade 44, Building 1A, Aarhus C, 8000, Denmark
- Royal Academy of Music, Skovgaardsgade 2C, Aarhus C, DK-8000, Denmark
| |
Collapse
|
15
|
Bonetti L, Vænggård AK, Iorio C, Vuust P, Lumaca M. Decreased inter-hemispheric connectivity predicts a coherent retrieval of auditory symbolic material. Biol Psychol 2024; 193:108881. [PMID: 39332661 DOI: 10.1016/j.biopsycho.2024.108881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 09/19/2024] [Accepted: 09/24/2024] [Indexed: 09/29/2024]
Abstract
Investigating the transmission of information between individuals is essential to better understand how humans communicate. Coherent information transmission (i.e., transmission without significant modifications or loss of fidelity) helps preserving cultural traits and traditions over time, while innovation may lead to new cultural variants. Although much research has focused on the cognitive mechanisms underlying cultural transmission, little is known on the brain features which correlates with coherent transmission of information. To address this gap, we combined structural (from high-resolution diffusion imaging) and functional connectivity (from resting-state functional magnetic resonance imaging [fMRI]) with a laboratory model of cultural transmission, the signalling games, implemented outside the MRI scanner. We found that individuals who exhibited more coherence in the transmission of auditory symbolic information were characterized by lower levels of both structural and functional inter-hemispheric connectivity. Specifically, higher coherence negatively correlated with the strength of bilateral structural connections between frontal and subcortical, insular and temporal brain regions. Similarly, we observed increased inter-hemispheric functional connectivity between inferior frontal brain regions derived from structural connectivity analysis in individuals who exhibited lower transmission coherence. Our results suggest that lateralization of cognitive processes involved in semantic mappings in the brain may be related to the stability over time of auditory symbolic systems.
Collapse
Affiliation(s)
- Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, University of Oxford, Oxford, United Kingdom.
| | - Anna Kildall Vænggård
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Claudia Iorio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark; LEAD-CNRS UMR 5022, Université de Bourgogne, Dijon 21000, France
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Denmark.
| |
Collapse
|
16
|
Kallis K, Conlin CC, Ollison C, Hahn ME, Rakow‐Penner R, Dale AM, Seibert TM. Quantitative MRI biomarker for classification of clinically significant prostate cancer: Calibration for reproducibility across echo times. J Appl Clin Med Phys 2024; 25:e14514. [PMID: 39374162 PMCID: PMC11539966 DOI: 10.1002/acm2.14514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/08/2024] [Accepted: 08/14/2024] [Indexed: 10/09/2024] Open
Abstract
PURPOSE The purpose of the present study is to develop a calibration method to account for differences in echo times (TE) and facilitate the use of restriction spectrum imaging restriction score (RSIrs) as a quantitative biomarker for the detection of clinically significant prostate cancer (csPCa). METHODS This study included 197 consecutive patients who underwent MRI and biopsy examination; 97 were diagnosed with csPCa (grade group ≥ 2). RSI data were acquired three times during the same session: twice at minimum TE ~75 ms and once at TE = 90 ms (TEmin1, TEmin2, and TE90, respectively). A linear regression model was determined to match the C-maps of TE90 to the reference C-maps of TEmin1 within the interval ranging from 95th to 99th percentile of signal intensity within the prostate. RSIrs comparisons were made at the 98th percentile within each patient's prostate. We compared RSIrs from calibrated TE90 (RSIrsTE90corr) and uncorrected TE90 (RSIrsTE90) to RSIrs from reference TEmin1 (RSIrsTEmin1) and repeated TEmin2 (RSIrsTEmin2). Calibration performance was evaluated with sensitivity, specificity and area under the ROC curve (AUC). RESULTS Scaling factors for C1, C2, C3, and C4 were estimated as 1.68, 1.33, 1.02, and 1.13, respectively. In non-csPCa cases, the 98th percentile of RSIrsTEmin2 and RSIrsTEmin1 differed by 0.27 ± 0.86SI (mean ± standard deviation), whereas RSIrsTE90 differed from RSIrsTEmin1 by 1.82 ± 1.20SI. After calibration, this bias was reduced to -0.51 ± 1.21SI, representing a 72% reduction in absolute error. For patients with csPCa, the difference was 0.54 ± 1.98SI between RSIrsTEmin2 and RSIrsTEmin1 and 2.28 ± 2.06SI between RSIrsTE90 and RSIrsTEmin1. After calibration, the mean difference decreased to -1.03SI, a 55% reduction in absolute error. At the Youden index for patient-level classification of csPCa (8.94SI), RSIrsTEmin1 has a sensitivity of 66% and a specificity of 72%. CONCLUSIONS The proposed linear calibration method produces similar quantitative biomarker values for acquisitions with different TE, reducing TE-induced error by 72% and 55% for non-csPCa and csPCa, respectively.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
| | | | - Courtney Ollison
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
| | - Michael E. Hahn
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
| | | | - Anders M. Dale
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
- Department of NeurosciencesUC San Diego HealthLa JollaCaliforniaUSA
- Halıcıoğlu Data Science InstituteUC San DiegoLa JollaCaliforniaUSA
| | - Tyler M. Seibert
- Department of Radiation Medicine and Applied SciencesUC San Diego HealthLa JollaCaliforniaUSA
- Department of RadiologyUC San Diego HealthLa JollaCaliforniaUSA
- Department of BioengineeringUC San Diego Jacobs School of EngineeringLa JollaCaliforniaUSA
| |
Collapse
|
17
|
Reynolds RC, Glen DR, Chen G, Saad ZS, Cox RW, Taylor PA. Processing, evaluating, and understanding FMRI data with afni_proc.py. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-52. [PMID: 39575179 PMCID: PMC11576932 DOI: 10.1162/imag_a_00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 11/24/2024]
Abstract
FMRI data are noisy, complicated to acquire, and typically go through many steps of processing before they are used in a study or clinical practice. Being able to visualize and understand the data from the start through the completion of processing, while being confident that each intermediate step was successful, is challenging. AFNI's afni_proc.py is a tool to create and run a processing pipeline for FMRI data. With its flexible features, afni_proc.py allows users to both control and evaluate their processing at a detailed level. It has been designed to keep users informed about all processing steps: it does not just process the data, but also first outputs a fully commented processing script that the users can read, query, interpret, and refer back to. Having this full provenance is important for being able to understand each step of processing; it also promotes transparency and reproducibility by keeping the record of individual-level processing and modeling specifics in a single, shareable place. Additionally, afni_proc.py creates pipelines that contain several automatic self-checks for potential problems during runtime. The output directory contains a dictionary of relevant quantities that can be programmatically queried for potential issues and a systematic, interactive quality control (QC) HTML. All of these features help users evaluate and understand their data and processing in detail. We describe these and other aspects of afni_proc.py here using a set of task-based and resting-state FMRI example commands.
Collapse
Affiliation(s)
- Richard C. Reynolds
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Daniel R. Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Gang Chen
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Ziad S. Saad
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Robert W. Cox
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| | - Paul A. Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, NIH, Bethesda, MD, United States
| |
Collapse
|
18
|
Kang X, Yoon BC, Grossner E, Adamson MM. Characteristics of the Structural Connectivity in Patients with Brain Injury and Chronic Health Symptoms: A Pilot Study. Neuroinformatics 2024; 22:573-589. [PMID: 38990502 DOI: 10.1007/s12021-024-09681-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2024] [Indexed: 07/12/2024]
Abstract
Diffusion properties from diffusion tensor imaging (DTI) are exquisitely sensitive to white matter abnormalities incurred during traumatic brain injury (TBI), especially for those patients with chronic post-TBI symptoms such as headaches, dizziness, fatigue, etc. The evaluation of structural and functional connectivity using DTI has become a promising method for identifying subtle alterations in brain connectivity associated with TBI that are otherwise not visible with conventional imaging. This study assessed whether TBI patients with (n = 17) or without (n = 16) chronic symptoms (TBIcs/TBIncs) exhibit any changes in structural connectivity (SC) and mean fractional anisotropy (mFA) of intra- and inter-hemispheric connections when compared to a control group (CG) (n = 13). Reductions in SC and mFA were observed for TBIcs compared to CG, but not for TBIncs. More connections were found to have mFA reductions than SC reductions. On the whole, SC is dominated by ipsilateral connections for all the groups after the comparison of contralateral and ipsilateral connections. More contra-ipsi reductions of mFA were found for TBIcs than TBIncs compared to CG. These findings suggest that TBI patients with chronic symptoms not only demonstrate decreased global and regional mFA but also reduced structural network connectivity.
Collapse
Affiliation(s)
- Xiaojian Kang
- WRIISC-Women, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
- Rehabilitation Service, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| | - Byung C Yoon
- Department of Radiology, Stanford University School of Medicine, VA Palo Alto Heath Care System, Palo Alto, CA, 94304, USA
| | - Emily Grossner
- Department of Psychology, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Maheen M Adamson
- WRIISC-Women, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Rehabilitation Service, VA Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
- Department of Neurosurgery, Stanford University School of Medicine, 300 Pasteur Dr, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Rodríguez-Soto AE, Zou J, Loubrie S, Ebrahimi S, Jordan S, Schlein A, Lim V, Ojeda-Fournier H, Rakow-Penner R. Effect of Phase Encoding Direction on Image Quality in Single-Shot EPI Diffusion-Weighted Imaging of the Breast. J Magn Reson Imaging 2024; 60:1340-1349. [PMID: 38418419 DOI: 10.1002/jmri.29304] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/05/2024] [Accepted: 02/05/2024] [Indexed: 03/01/2024] Open
Abstract
BACKGROUND In breast diffusion-weighted imaging (DWI), distortion and physiologic artifacts affect clinical interpretation. Image quality can be optimized by addressing the effect of phase encoding (PE) direction on these artifacts. PURPOSE To compare distortion artifacts in breast DWI acquired with different PE directions and polarities, and to discuss their clinical implications. STUDY TYPE Prospective. POPULATION Eleven healthy volunteers (median age: 47 years old; range: 22-74 years old) and a breast phantom. FIELD STRENGTH/SEQUENCE Single-shot echo planar DWI and three-dimensional fast gradient echo sequences at 3 T. ASSESSMENT All DWI data were acquired with left-right, right-left, posterior-anterior, and anterior-posterior PE directions. In phantom data, displacement magnitude was evaluated by comparing the location of landmarks in anatomical and DWI images. Three breast radiologists (5, 17, and 23 years of experience) assessed the presence or absence of physiologic artifacts in volunteers' DWI datasets and indicated their PE-direction preference. STATISTICAL TESTS Analysis of variance with post-hoc tests were used to assess differences in displacement magnitude across DWI datasets and observers. A binomial test and a chi-squared test were used to evaluate if each in vivo DWI dataset had an equal probability (25%) of being preferred by radiologists. Inter-reader agreement was evaluated using Gwet's AC1 agreement coefficient. A P-value <0.05 was considered statistically significant. RESULTS In the phantom study, median displacement was the significantly largest in posterior-anterior data. While the displacement in the anterior-posterior and left-right data were equivalent (P = 0.545). In the in vivo data, there were no physiological artifacts observed in any dataset, regardless of PE direction. In the reader study, there was a significant preference for the posterior-anterior datasets which were selected 94% of the time. There was good agreement between readers (0.936). DATA CONCLUSION This study showed the impact of PE direction on distortion artifacts in breast DWI. In healthy volunteers, the posterior-to-anterior PE direction was preferred by readers. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Ana E Rodríguez-Soto
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Jingjing Zou
- Herbert Wertheim School of Public Health and Human Longevity Science, University of California San Diego, La Jolla, California, USA
| | - Stephane Loubrie
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Sheida Ebrahimi
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Stephan Jordan
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Alexandra Schlein
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Vivian Lim
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Haydee Ojeda-Fournier
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
20
|
Stabinska J, Wittsack HJ, Lerman LO, Ljimani A, Sigmund EE. Probing Renal Microstructure and Function with Advanced Diffusion MRI: Concepts, Applications, Challenges, and Future Directions. J Magn Reson Imaging 2024; 60:1259-1277. [PMID: 37991093 PMCID: PMC11117411 DOI: 10.1002/jmri.29127] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/23/2023] Open
Abstract
Diffusion measurements in the kidney are affected not only by renal microstructure but also by physiological processes (i.e., glomerular filtration, water reabsorption, and urine formation). Because of the superposition of passive tissue diffusion, blood perfusion, and tubular pre-urine flow, the limitations of the monoexponential apparent diffusion coefficient (ADC) model in assessing pathophysiological changes in renal tissue are becoming apparent and motivate the development of more advanced diffusion-weighted imaging (DWI) variants. These approaches take advantage of the fact that the length scale probed in DWI measurements can be adjusted by experimental parameters, including diffusion-weighting, diffusion gradient directions and diffusion time. This forms the basis by which advanced DWI models can be used to capture not only passive diffusion effects, but also microcirculation, compartmentalization, tissue anisotropy. In this review, we provide a comprehensive overview of the recent advancements in the field of renal DWI. Following a short introduction on renal structure and physiology, we present the key methodological approaches for the acquisition and analysis of renal DWI data, including intravoxel incoherent motion (IVIM), diffusion tensor imaging (DTI), non-Gaussian diffusion, and hybrid IVIM-DTI. We then briefly summarize the applications of these methods in chronic kidney disease and renal allograft dysfunction. Finally, we discuss the challenges and potential avenues for further development of renal DWI. LEVEL OF EVIDENCE: 5 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Hans-Jörg Wittsack
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Lilach O. Lerman
- Division of Nephrology and Hypertension and Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN, USA
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Eric E. Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| |
Collapse
|
21
|
Kallis K, Conlin CC, Zhong AY, Hussain TS, Chatterjee A, Karczmar GS, Rakow-Penner R, Dale AM, Seibert TM. Comparison of synthesized and acquired high b-value diffusion-weighted MRI for detection of prostate cancer. Cancer Imaging 2024; 24:89. [PMID: 38972972 PMCID: PMC11229343 DOI: 10.1186/s40644-024-00723-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
BACKGROUND High b-value diffusion-weighted images (DWI) are used for detection of clinically significant prostate cancer (csPCa). This study qualitatively and quantitatively compares synthesized DWI (sDWI) to acquired (aDWI) for detection of csPCa. METHODS One hundred fifty-one consecutive patients who underwent prostate MRI and biopsy were included in the study. Axial DWI with b = 0, 500, 1000, and 2000 s/mm2 using a 3T clinical scanner using a 32-channel phased-array body coil were acquired. We retrospectively synthesized DWI for b = 2000 s/mm2 via extrapolation based on mono-exponential decay, using b = 0 and b = 500 s/mm2 (sDWI500) and b = 0, b = 500 s/mm2, and b = 1000 s/mm2 (sDWI1000). Differences in signal intensity between sDWI and aDWI were evaluated within different regions of interest (prostate alone, prostate plus 5 mm, 30 mm and 70 mm margin and full field of view). The maximum DWI value within each ROI was evaluated for prediction of csPCa. Classification accuracy was compared to Restriction Spectrum Imaging restriction score (RSIrs), a previously validated biomarker based on multi-exponential DWI. Discrimination of csPCa was evaluated via area under the receiver operating characteristic curve (AUC). RESULTS Within the prostate, mean ± standard deviation of percent mean differences between sDWI and aDWI signal were -46 ± 35% for sDWI1000 and -67 ± 24% for sDWI500. AUC for aDWI, sDWI500, sDWI1000, and RSIrs within the prostate 0.62[95% confidence interval: 0.53, 0.71], 0.63[0.54, 0.72], 0.65[0.56, 0.73] and 0.78[0.71, 0.86], respectively. CONCLUSION sDWI is qualitatively comparable to aDWI within the prostate. However, hyperintense artifacts are introduced with sDWI in the surrounding pelvic tissue that interfere with quantitative cancer detection and might mask metastases. In the prostate, RSIrs yields superior quantitative csPCa detection than sDWI or aDWI.
Collapse
Affiliation(s)
- Karoline Kallis
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Christopher C Conlin
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
| | - Allison Y Zhong
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Troy S Hussain
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA
| | - Aritrick Chatterjee
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossmann Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Gregory S Karczmar
- Department of Radiology, University of Chicago, Chicago, IL, USA
- Sanford J. Grossmann Center of Excellence in Prostate Imaging and Image Guided Therapy, University of Chicago, Chicago, IL, USA
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
| | - Anders M Dale
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego Health, La Jolla, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, San Diego, CA, USA
| | - Tyler M Seibert
- Department of Radiology, University of California San Diego Health, La Jolla, San Diego, CA, USA.
- Department of Radiation Medicine and Applied Sciences, University of California San Diego Health, La Jolla, CA, USA.
- Department of Bioengineering, University of California San Diego Jacobs School of Engineering, La Jolla, San Diego, CA, USA.
| |
Collapse
|
22
|
Snoussi H, Karimi D, Afacan O, Utkur M, Gholipour A. HAITCH: A Framework for Distortion and Motion Correction in Fetal Multi-Shell Diffusion-Weighted MRI. ARXIV 2024:arXiv:2406.20042v1. [PMID: 38979484 PMCID: PMC11230346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Diffusion magnetic resonance imaging (dMRI) is pivotal for probing the microstructure of the rapidly-developing fetal brain. However, fetal motion during scans and its interaction with magnetic field inhomogeneities result in artifacts and data scattering across spatial and angular domains. The effects of those artifacts are more pronounced in high-angular resolution fetal dMRI, where signal-to-noise ratio is very low. Those effects lead to biased estimates and compromise the consistency and reliability of dMRI analysis. This work presents HAITCH, the first and the only publicly available tool to correct and reconstruct multi-shell high-angular resolution fetal dMRI data. HAITCH offers several technical advances that include a blip-reversed dual-echo acquisition for dynamic distortion correction, advanced motion correction for model-free and robust reconstruction, optimized multi-shell design for enhanced information capture and increased tolerance to motion, and outlier detection for improved reconstruction fidelity. The framework is open-source, flexible, and can be used to process any type of fetal dMRI data including single-echo or single-shell acquisitions, but is most effective when used with multi-shell multi-echo fetal dMRI data that cannot be processed with any of the existing tools. Validation experiments on real fetal dMRI scans demonstrate significant improvements and accurate correction across diverse fetal ages and motion levels. HAITCH successfully removes artifacts and reconstructs high-fidelity fetal dMRI data suitable for advanced diffusion modeling, including fiber orientation distribution function estimation. These advancements pave the way for more reliable analysis of the fetal brain microstructure and tractography under challenging imaging conditions.
Collapse
Affiliation(s)
- Haykel Snoussi
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Davood Karimi
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Onur Afacan
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Mustafa Utkur
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| | - Ali Gholipour
- Boston Children's Hospital, and Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
23
|
Stinson EA, Sullivan RM, Navarro GY, Wallace AL, Larson CL, Lisdahl KM. Childhood adversity is associated with reduced BOLD response in inhibitory control regions amongst preadolescents from the ABCD study. Dev Cogn Neurosci 2024; 67:101378. [PMID: 38626611 PMCID: PMC11035055 DOI: 10.1016/j.dcn.2024.101378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024] Open
Abstract
Adolescence is characterized by dynamic neurodevelopment, which poses opportunities for risk and resilience. Adverse childhood experiences (ACEs) confer additional risk to the developing brain, where ACEs have been associated with alterations in functional magnetic resonance imaging (fMRI) BOLD signaling in brain regions underlying inhibitory control. Socioenvironmental factors like the family environment may amplify or buffer against the neurodevelopmental risks associated with ACEs. Using baseline to Year 2 follow-up data from the Adolescent Brain Cognitive Development (ABCD) Study, the current study examined how ACEs relate to fMRI BOLD signaling during successful inhibition on the Stop Signal Task in regions associated with inhibitory control and examined whether family conflict levels moderated that relationship. Results showed that greater ACEs were associated with reduced BOLD response in the right opercular region of the inferior frontal gyrus and bilaterally in the pre-supplementary motor area, which are key regions underlying inhibitory control. Further, greater BOLD response was correlated with less impulsivity behaviorally, suggesting reduced activation may not be behaviorally adaptive at this age. No significant two or three-way interactions with family conflict levels or time were found. Findings highlight the continued utility of examining the relationship between ACEs and neurodevelopmental outcomes and the importance of intervention/prevention of ACES.
Collapse
Affiliation(s)
- Elizabeth A Stinson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Ryan M Sullivan
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Gabriella Y Navarro
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Alexander L Wallace
- Department of Psychiatry, University of California San Diego, La Jolla, CA 92093, United States
| | - Christine L Larson
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States
| | - Krista M Lisdahl
- Department of Psychology, University of Wisconsin at Milwaukee, Milwaukee, WI 53201, United States.
| |
Collapse
|
24
|
Julian A, Ruthotto L. PyHySCO: GPU-enabled susceptibility artifact distortion correction in seconds. Front Neurosci 2024; 18:1406821. [PMID: 38863882 PMCID: PMC11165994 DOI: 10.3389/fnins.2024.1406821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/25/2024] [Indexed: 06/13/2024] Open
Abstract
Over the past decade, reversed gradient polarity (RGP) methods have become a popular approach for correcting susceptibility artifacts in echo-planar imaging (EPI). Although several post-processing tools for RGP are available, their implementations do not fully leverage recent hardware, algorithmic, and computational advances, leading to correction times of several minutes per image volume. To enable 3D RGP correction in seconds, we introduce PyTorch Hyperelastic Susceptibility Correction (PyHySCO), a user-friendly EPI distortion correction tool implemented in PyTorch that enables multi-threading and efficient use of graphics processing units (GPUs). PyHySCO uses a time-tested physical distortion model and mathematical formulation and is, therefore, reliable without training. An algorithmic improvement in PyHySCO is its use of the one-dimensional distortion correction method by Chang and Fitzpatrick to initialize the non-linear optimization. PyHySCO is published under the GNU public license and can be used from the command line or its Python interface. Our extensive numerical validation using 3T and 7T data from the Human Connectome Project suggests that PyHySCO can achieve accuracy comparable to that of leading RGP tools at a fraction of the cost. We also validate the new initialization scheme, compare different optimization algorithms, and test the algorithm on different hardware and arithmetic precisions.
Collapse
Affiliation(s)
- Abigail Julian
- Department of Computer Science, Emory University, Atlanta, GA, United States
| | - Lars Ruthotto
- Department of Computer Science, Emory University, Atlanta, GA, United States
- Department of Mathematics, Emory University, Atlanta, GA, United States
| |
Collapse
|
25
|
Dhiman S, Hickey RE, Thorn KE, Moss HG, McKinnon ET, Adisetiyo V, Ades-Aron B, Jensen JH, Benitez A. PyDesigner v1.0: A Pythonic Implementation of the DESIGNER Pipeline for Diffusion Magnetic Resonance Imaging. J Vis Exp 2024:10.3791/66397. [PMID: 38829110 PMCID: PMC11378319 DOI: 10.3791/66397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
PyDesigner is a Python-based software package based on the original Diffusion parameter EStImation with Gibbs and NoisE Removal (DESIGNER) pipeline (Dv1) for dMRI preprocessing and tensor estimation. This software is openly provided for non-commercial research and may not be used for clinical care. PyDesigner combines tools from FSL and MRtrix3 to perform denoising, Gibbs ringing correction, eddy current motion correction, brain masking, image smoothing, and Rician bias correction to optimize the estimation of multiple diffusion measures. It can be used across platforms on Windows, Mac, and Linux to accurately derive commonly used metrics from DKI, DTI, WMTI, FBI, and FBWM datasets as well as tractography ODFs and .fib files. It is also file-format agnostic, accepting inputs in the form of .nii, .nii.gz, .mif, and dicom format. User-friendly and easy to install, this software also outputs quality control metrics illustrating signal-to-noise ratio graphs, outlier voxels, and head motion to evaluate data integrity. Additionally, this dMRI processing pipeline supports multiple echo-time dataset processing and features pipeline customization, allowing the user to specify which processes are employed and which outputs are produced to meet a variety of user needs.
Collapse
Affiliation(s)
| | - Reyna E Hickey
- Department of Neurology, Medical University of South Carolina
| | - Kathryn E Thorn
- Department of Neurology, Medical University of South Carolina
| | - Hunter G Moss
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina
| | - Emilie T McKinnon
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina
| | - Vitria Adisetiyo
- Department of Neuroscience, Medical University of South Carolina
| | - Benjamin Ades-Aron
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine
| | - Jens H Jensen
- Department of Neuroscience, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina; Department of Radiology and Radiological Science, Medical University of South Carolina;
| | - Andreana Benitez
- Department of Neurology, Medical University of South Carolina; Center for Biomedical Imaging, Medical University of South Carolina;
| |
Collapse
|
26
|
Devakonda V, Zhou Z, Yang B, Qu Y. Neural Reward Anticipation Moderates Longitudinal Relation between Parents' Familism Values and Latinx American Youth's School Disengagement. J Cogn Neurosci 2024; 36:962-977. [PMID: 38307126 DOI: 10.1162/jocn_a_02113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Parents' familism values predict a variety of Latinx American youth's academic adjustment. However, it is unclear how cultural values such as familism interact with youth's brain development, which is sensitive to sociocultural input, to shape their academic adjustment. Using a sample of 1916 Latinx American youth (mean age = 9.90 years, SD = .63 years; 50% girls) and their primary caregivers (mean age = 38.43 years, SD = 6.81 years; 90% mothers) from the Adolescent Brain Cognitive Development Study, this study examined the longitudinal relation between parents' familism values and youth's school disengagement, as well as the moderating role of youth's neural sensitivity to personal reward. Parents' familism values predicted youth's decreased school disengagement 1 year later, adjusting for their baseline school disengagement and demographic covariates. Notably, this association was more salient among youth who showed lower (vs. higher) neural activation in the ventral striatum and the lateral OFC during the anticipation of a personal reward. These findings underscore the protective role of familism for Latinx American youth, highlighting the necessity of developing culturally informed interventions that take into consideration a youth's brain development.
Collapse
Affiliation(s)
| | | | | | - Yang Qu
- Northwestern University, Evanston, IL
| |
Collapse
|
27
|
Lin Z, Si Y, Kang J. LATENT SUBGROUP IDENTIFICATION IN IMAGE-ON-SCALAR REGRESSION. Ann Appl Stat 2024; 18:468-486. [PMID: 38846637 PMCID: PMC11156244 DOI: 10.1214/23-aoas1797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Image-on-scalar regression has been a popular approach to modeling the association between brain activities and scalar characteristics in neuroimaging research. The associations could be heterogeneous across individuals in the population, as indicated by recent large-scale neuroimaging studies, for example, the Adolescent Brain Cognitive Development (ABCD) Study. The ABCD data can inform our understanding of heterogeneous associations and how to leverage the heterogeneity and tailor interventions to increase the number of youths who benefit. It is of great interest to identify subgroups of individuals from the population such that: (1) within each subgroup the brain activities have homogeneous associations with the clinical measures; (2) across subgroups the associations are heterogeneous, and (3) the group allocation depends on individual characteristics. Existing image-on-scalar regression methods and clustering methods cannot directly achieve this goal. We propose a latent subgroup image-on-scalar regression model (LASIR) to analyze large-scale, multisite neuroimaging data with diverse sociode-mographics. LASIR introduces the latent subgroup for each individual and group-specific, spatially varying effects, with an efficient stochastic expectation maximization algorithm for inferences. We demonstrate that LASIR outperforms existing alternatives for subgroup identification of brain activation patterns with functional magnetic resonance imaging data via comprehensive simulations and applications to the ABCD study. We have released our reproducible codes for public use with the software package available on Github.
Collapse
Affiliation(s)
- Zikai Lin
- Department of Biostatistics, University of Michigan
| | - Yajuan Si
- Survey Research Center, Institute for Social Research, University of Michigan
| | - Jian Kang
- Department of Biostatistics, University of Michigan
| |
Collapse
|
28
|
Wade RG, Tam W, Perumal A, Pepple S, Griffiths TT, Flather R, Haroon HA, Shelley D, Plein S, Bourke G, Teh I. Comparison of distortion correction preprocessing pipelines for DTI in the upper limb. Magn Reson Med 2024; 91:773-783. [PMID: 37831659 PMCID: PMC10952179 DOI: 10.1002/mrm.29881] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 09/12/2023] [Accepted: 09/12/2023] [Indexed: 10/15/2023]
Abstract
PURPOSE DTI characterizes tissue microstructure and provides proxy measures of nerve health. Echo-planar imaging is a popular method of acquiring DTI but is susceptible to various artifacts (e.g., susceptibility, motion, and eddy currents), which may be ameliorated via preprocessing. There are many pipelines available but limited data comparing their performance, which provides the rationale for this study. METHODS DTI was acquired from the upper limb of heathy volunteers at 3T in blip-up and blip-down directions. Data were independently corrected using (i) FSL's TOPUP & eddy, (ii) FSL's TOPUP, (iii) DSI Studio, and (iv) TORTOISE. DTI metrics were extracted from the median, radial, and ulnar nerves and compared (between pipelines) using mixed-effects linear regression. The geometric similarity of corrected b = 0 images and the slice matched T1-weighted (T1w) images were computed using the Sörenson-Dice coefficient. RESULTS Without preprocessing, the similarity coefficient of the blip-up and blip-down datasets to the T1w was 0·80 and 0·79, respectively. Preprocessing improved the geometric similarity by 1% with no difference between pipelines. Compared to TOPUP & eddy, DSI Studio and TORTOISE generated 2% and 6% lower estimates of fractional anisotropy, and 6% and 13% higher estimates of radial diffusivity, respectively. Estimates of anisotropy from TOPUP & eddy versus TOPUP were not different but TOPUP reduced radial diffusivity by 3%. The agreement of DTI metrics between pipelines was poor. CONCLUSIONS Preprocessing DTI from the upper limb improves geometric similarity but the choice of the pipeline introduces clinically important variability in diffusion parameter estimates from peripheral nerves.
Collapse
Affiliation(s)
- Ryckie G. Wade
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
- Department of Plastic, Reconstructive and Hand SurgeryLeeds Teaching Hospitals TrustLeedsUK
| | - Winnie Tam
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
| | - Antonia Perumal
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
| | - Sophanit Pepple
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
| | - Timothy T. Griffiths
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
- Department of Plastic, Reconstructive and Hand SurgeryLeeds Teaching Hospitals TrustLeedsUK
| | - Robert Flather
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
- Department of Plastic, Reconstructive and Hand SurgeryLeeds Teaching Hospitals TrustLeedsUK
| | - Hamied A. Haroon
- Division of Psychology, Communication & Human NeuroscienceThe University of ManchesterManchesterUK
| | | | - Sven Plein
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUK
| | - Grainne Bourke
- Leeds Institute for Medical Research, University of Leeds
LeedsUK
- Department of Plastic, Reconstructive and Hand SurgeryLeeds Teaching Hospitals TrustLeedsUK
| | - Irvin Teh
- Leeds Institute of Cardiovascular and Metabolic Medicine, University of LeedsLeedsUK
| |
Collapse
|
29
|
Teghil A, Boccia M. Brain connectivity patterns associated with individual differences in the access to experience-near personal semantics: a resting-state fMRI study. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:87-99. [PMID: 38200283 PMCID: PMC10827898 DOI: 10.3758/s13415-023-01149-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
It has been proposed that a continuum of specificity exists between episodic and semantic autobiographical memory. Personal semantics have been theorized to situate intermediately on this continuum, with more "experience-near" personal semantics (enPS) closer to the episodic end. We used individual differences in behavior as a model to investigate brain networks associated with the access to episodic autobiographical (EAM) and enPS information, assessing the relation between performance in the EAM and enPS conditions of the Autobiographical Fluency Task (AFT) and intrinsic brain connectivity. Results of an intrinsic connectivity contrast analysis showed that the global connectivity of two clusters in the left and right posterior cingulate cortex (PCC) was predicted by performance in the enPS conditions. Moreover, enPS scores predicted the connectivity strength of the right PCC with the bilateral anterior hippocampus (aHC), anterior middle temporal gyrus (aMTG) and medial orbitofrontal cortex, and the left aMTG and PCC. enPS scores also predicted the connectivity strength of the left PCC with the bilateral HC and MTG. The network highlighted involves parts of the core and of the dorsal medial subsystems of the Default Mode Network, in line with the proposal that enPS represents an intermediate entity between episodic and semantic memory.
Collapse
Affiliation(s)
- Alice Teghil
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy.
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Maddalena Boccia
- Department of Psychology, "Sapienza" University of Rome, Via dei Marsi, 78, 00185, Rome, Italy
- Cognitive and Motor Rehabilitation and Neuroimaging Unit, IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
30
|
Furuta M, Ikeda H, Hanamatsu S, Yamamoto K, Shinohara M, Ikedo M, Yui M, Nagata H, Nomura M, Ueda T, Ozawa Y, Toyama H, Ohno Y. Diffusion weighted imaging with reverse encoding distortion correction: Improvement of image quality and distortion for accurate ADC evaluation in in vitro and in vivo studies. Eur J Radiol 2024; 171:111289. [PMID: 38237523 DOI: 10.1016/j.ejrad.2024.111289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/13/2023] [Accepted: 01/02/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE The purpose of this in vivo study was to determine the effect of reverse encoding direction (RDC) on apparent diffusion coefficient (ADC) measurements and its efficacy for improving image quality and diagnostic performance for differentiating malignant from benign tumors on head and neck diffusion-weighted imaging (DWI). METHODS Forty-eight patients with head and neck tumors underwent DWI with and without RDC and pathological examinations. Their tumors were then divided into two groups: malignant (n = 21) and benign (n = 27). To determine the utility of RDC for DWI, the difference in the deformation ratio (DR) between DWI and T2-weighted images of each tumor was determined for each tumor area. To compare ADC measurement accuracy of DWIs with and without RDC for each patient, ADC values for tumors and spinal cord were determined by using ROI measurements. To compare DR and ADC between two methods, Student's t-tests were performed. Then, ADC values were compared between malignant and benign tumors by Student's t-test on each DWI. Finally, sensitivity, specificity and accuracy were compared by means of McNemar's test. RESULTS DR of DWI with RDC was significantly smaller than that without RDC (p < 0.0001). There were significant differences in ADC between malignant and benign lesions on each DWI (p < 0.05). However, there were no significant difference of diagnostic accuracy between the two DWIs (p > 0.05). CONCLUSION RDC can improve image quality and distortion of DWI and may have potential for more accurate ADC evaluation and differentiation of malignant from benign head and neck tumors.
Collapse
Affiliation(s)
- Minami Furuta
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hirotaka Ikeda
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Satomu Hanamatsu
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Kaori Yamamoto
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | | | - Masato Ikedo
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Masao Yui
- Canon Medical Systems Corporation, Otawara, Tochigi, Japan
| | - Hiroyuki Nagata
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Masahiko Nomura
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Takahiro Ueda
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiyuki Ozawa
- Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Hiroshi Toyama
- Department of Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan
| | - Yoshiharu Ohno
- Joint Research Laboratory of Advanced Medical Imaging, Fujita Health University School of Medicine, Toyoake, Aichi, Japan; Department of Diagnostic Radiology, Fujita Health University School of Medicine, Toyoake, Aichi, Japan.
| |
Collapse
|
31
|
Kallis K, Conlin CC, Ollison C, Hahn ME, Rakow-Penner R, Dale AM, Seibert TM. Quantitative MRI biomarker for classification of clinically significant prostate cancer: calibration for reproducibility across echo times. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.25.24301789. [PMID: 38343810 PMCID: PMC10854339 DOI: 10.1101/2024.01.25.24301789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2024]
Abstract
Background Restriction Spectrum Imaging restriction score (RSIrs) is a quantitative biomarker for detecting clinically significant prostate cancer (csPCa). However, the quantitative value of the RSIrs is affected by imaging parameters such as echo time (TE). Purpose The purpose of the present study is to develop a calibration method to account for differences in echo times and facilitate use of RSIrs as a quantitative biomarker for the detection of csPCa. Methods This study included 197 consecutive patients who underwent MRI and biopsy examination; 97 were diagnosed with csPCa (grade group ≥ 2). RSI data were acquired three times during the same session: twice at minimum TE∼75ms and once at TE=90ms (TEmin 1 , TEmin 2 , and TE90, respectively). A proposed calibration method, trained on patients without csPCa, estimated a linear scaling factor (f) for each of the four diffusion compartments (C) of the RSI signal model. A linear regression model was determined to match C-maps of TE90 to the reference C-maps of TEmin 1 within the interval ranging from 95 th to 99 th percentile of signal intensity within the prostate. RSIrs comparisons were made at 98 th percentile within each patient's prostate. We compared RSIrs from calibrated TE90 (RSIrs TE90corr ) and uncorrected TE90 (RSIrs TE90 ) to RSIrs from reference TEmin 1 (RSIrs TEmin1 ) and repeated TEmin 2 (RSIrs TEmin2 ). Calibration performance was evaluated with sensitivity, specificity, area under the ROC curve, positive predicted value, negative predicted value, and F1-score. Results Scaling factors for C 1 , C 2 , C 3 , and C 4 were estimated as 1.70, 1.38, 1.03, and 1.19, respectively. In non-csPCa cases, the 98 th percentile of RSIrs TEmin2 and RSIrs TEmin1 differed by 0.27±0.86SI (mean±standard deviation), whereas RSIrs TE90 differed from RSIrs TEmin1 by 1.81±1.20SI. After calibration, this bias was reduced to -0.41±1.20SI, representing a 78% reduction in absolute error. For patients with csPCa, the difference was 0.54±1.98SI between RSIrs TEmin2 and RSIrs TEmin1 and 2.28±2.06SI between RSIrs TE90 and RSIrs TEmin1 . After calibration, the mean difference decreased to -0.86SI, a 38% reduction in absolute error. At the Youden index for patient-level classification of csPCa (8.94SI), RSIrs TEmin1 has a sensitivity of 66% and a specificity of 72%. Prior to calibration, RSIrs TE90 at the same threshold tended to over-diagnose benign cases (sensitivity 44%, specificity 88%). Post-calibration, RSIrs TE90corr performs more similarly to the reference (sensitivity 71%, specificity 62%). Conclusion The proposed linear calibration method produces similar quantitative biomarker values for acquisitions with different TE, reducing TE-induced error by 78% and 38% for non-csPCa and csPCa, respectively.
Collapse
|
32
|
Wang HH, Moon SY, Kim H, Kim G, Ahn WY, Joo YY, Cha J. Early life stress modulates the genetic influence on brain structure and cognitive function in children. Heliyon 2024; 10:e23345. [PMID: 38187352 PMCID: PMC10770463 DOI: 10.1016/j.heliyon.2023.e23345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
The enduring influence of early life stress (ELS) on brain and cognitive development has been widely acknowledged, yet the precise mechanisms underlying this association remain elusive. We hypothesize that ELS might disrupt the genome-wide influence on brain morphology and connectivity development, consequently exerting a detrimental impact on children's cognitive ability. We analyzed the multimodal data of DNA genotypes, brain imaging (structural and diffusion MRI), and neurocognitive battery (NIH Toolbox) of 4276 children (ages 9-10 years, European ancestry) from the Adolescent Brain Cognitive Development (ABCD) study. The genome-wide influence on cognitive function was estimated using the polygenic score (GPS). By using brain morphometry and tractography, we identified the brain correlates of the cognition GPSs. Statistical analyses revealed relationships for the gene-brain-cognition pathway. The brain structural variance significantly mediated the genetic influence on cognition (indirect effect = 0.016, PFDR < 0.001). Of note, this gene-brain relationship was significantly modulated by abuse, resulting in diminished cognitive capacity (Index of Moderated Mediation = -0.007; 95 % CI = -0.012 ∼ -0.002). Our results support a novel gene-brain-cognition model likely elucidating the long-lasting negative impact of ELS on children's cognitive development.
Collapse
Affiliation(s)
- Hee-Hwan Wang
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
| | - Seo-Yoon Moon
- College of Liberal Studies, Seoul National University, Seoul, 08825, South Korea
| | - Hyeonjin Kim
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
| | - Gakyung Kim
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
| | - Woo-Young Ahn
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
| | - Yoonjung Yoonie Joo
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University, Seoul, 06355, South Korea
- Research Center for Future Medicine, Samsung Medical Center, Seoul, 06335, South Korea
| | - Jiook Cha
- Department of Brain Cognitive and Science, Seoul National University, Seoul, 08825, South Korea
- Department of Psychology, Seoul National University, Seoul, 08825, South Korea
- AI Institute, Seoul National University, Seoul, 08825, South Korea
| |
Collapse
|
33
|
Zaid Alkilani A, Çukur T, Saritas EU. FD-Net: An unsupervised deep forward-distortion model for susceptibility artifact correction in EPI. Magn Reson Med 2024; 91:280-296. [PMID: 37811681 DOI: 10.1002/mrm.29851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 07/18/2023] [Accepted: 08/15/2023] [Indexed: 10/10/2023]
Abstract
PURPOSE To introduce an unsupervised deep-learning method for fast and effective correction of susceptibility artifacts in reversed phase-encode (PE) image pairs acquired with echo planar imaging (EPI). METHODS Recent learning-based correction approaches in EPI estimate a displacement field, unwarp the reversed-PE image pair with the estimated field, and average the unwarped pair to yield a corrected image. Unsupervised learning in these unwarping-based methods is commonly attained via a similarity constraint between the unwarped images in reversed-PE directions, neglecting consistency to the acquired EPI images. This work introduces a novel unsupervised deep Forward-Distortion Network (FD-Net) that predicts both the susceptibility-induced displacement field and the underlying anatomically correct image. Unlike previous methods, FD-Net enforces the forward-distortions of the correct image in both PE directions to be consistent with the acquired reversed-PE image pair. FD-Net further leverages a multiresolution architecture to maintain high local and global performance. RESULTS FD-Net performs competitively with a gold-standard reference method (TOPUP) in image quality, while enabling a leap in computational efficiency. Furthermore, FD-Net outperforms recent unwarping-based methods for unsupervised correction in terms of both image and field quality. CONCLUSION The unsupervised FD-Net method introduces a deep forward-distortion approach to enable fast, high-fidelity correction of susceptibility artifacts in EPI by maintaining consistency to measured data. Therefore, it holds great promise for improving the anatomical accuracy of EPI imaging.
Collapse
Affiliation(s)
- Abdallah Zaid Alkilani
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
| | - Tolga Çukur
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| | - Emine Ulku Saritas
- Department of Electrical and Electronics Engineering, Bilkent University, Ankara, Turkey
- National Magnetic Resonance Research Center (UMRAM), Bilkent University, Ankara, Turkey
- Neuroscience Graduate Program, Bilkent University, Ankara, Turkey
| |
Collapse
|
34
|
Barrett T, Lee KL, de Rooij M, Giganti F. Update on Optimization of Prostate MR Imaging Technique and Image Quality. Radiol Clin North Am 2024; 62:1-15. [PMID: 37973236 DOI: 10.1016/j.rcl.2023.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Prostate MR imaging quality has improved dramatically over recent times, driven by advances in hardware, software, and improved functional imaging techniques. MRI now plays a key role in prostate cancer diagnostic work-up, but outcomes of the MRI-directed pathway are heavily dependent on image quality and optimization. MR sequences can be affected by patient-related degradations relating to motion and susceptibility artifacts which may enable only partial mitigation. In this Review, we explore issues relating to prostate MRI acquisition and interpretation, mitigation strategies at a patient and scanner level, PI-QUAL reporting, and future directions in image quality, including artificial intelligence solutions.
Collapse
Affiliation(s)
- Tristan Barrett
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK.
| | - Kang-Lung Lee
- Department of Radiology, Addenbrooke's Hospital and University of Cambridge, Cambridge, UK; Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan; School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Maarten de Rooij
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, London, UK; Division of Surgery and Interventional Science, University College London, London, UK
| |
Collapse
|
35
|
Sun K, Chen Z, Dan G, Luo Q, Yan L, Liu F, Zhou XJ. Three-dimensional echo-shifted EPI with simultaneous blip-up and blip-down acquisitions for correcting geometric distortion. Magn Reson Med 2023; 90:2375-2387. [PMID: 37667533 PMCID: PMC10903279 DOI: 10.1002/mrm.29828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/08/2023] [Accepted: 07/25/2023] [Indexed: 09/06/2023]
Abstract
PURPOSE EPI with blip-up/down acquisition (BUDA) can provide high-quality images with minimal distortions by using two readout trains with opposing phase-encoding gradients. Because of the need for two separate acquisitions, BUDA doubles the scan time and degrades the temporal resolution when compared to single-shot EPI, presenting a major challenge for many applications, particularly fMRI. This study aims at overcoming this challenge by developing an echo-shifted EPI BUDA (esEPI-BUDA) technique to acquire both blip-up and blip-down datasets in a single shot. METHODS A 3D esEPI-BUDA pulse sequence was designed by using an echo-shifting strategy to produce two EPI readout trains. These readout trains produced a pair of k-space datasets whose k-space trajectories were interleaved with opposite phase-encoding gradient directions. The two k-space datasets were separately reconstructed using a 3D SENSE algorithm, from which time-resolved B0 -field maps were derived using TOPUP in FSL and then input into a forward model of joint parallel imaging reconstruction to correct for geometric distortion. In addition, Hankel structured low-rank constraint was incorporated into the reconstruction framework to improve image quality by mitigating the phase errors between the two interleaved k-space datasets. RESULTS The 3D esEPI-BUDA technique was demonstrated in a phantom and an fMRI study on healthy human subjects. Geometric distortions were effectively corrected in both phantom and human brain images. In the fMRI study, the visual activation volumes and their BOLD responses were comparable to those from conventional 3D echo-planar images. CONCLUSION The improved imaging efficiency and dynamic distortion correction capability afforded by 3D esEPI-BUDA are expected to benefit many EPI applications.
Collapse
Affiliation(s)
- Kaibao Sun
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Zhifeng Chen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Data Science and AI, Faculty of IT, Monash University, Clayton, VIC, Australia
| | - Guangyu Dan
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Qingfei Luo
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States
| | - Lirong Yan
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Xiaohong Joe Zhou
- Center for Magnetic Resonance Research, University of Illinois at Chicago, Chicago, IL, United States
- Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Departments of Radiology and Neurosurgery, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Rostampour M, Gharaylou Z, Rostampour A, Shahbodaghy F, Zarei M, Fadaei R, Khazaie H. Study of structural network connectivity using DTI tractography in insomnia disorder. Psychiatry Res Neuroimaging 2023; 336:111730. [PMID: 37944426 DOI: 10.1016/j.pscychresns.2023.111730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 10/01/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023]
Abstract
Most of tractography studies on insomnia disorder (ID) have reported decreased structural connectivity between cortical and subcortical structures. Tractography based on standard diffusion tensor imaging (DTI) can generate high number of false-positive streamlines connections between gray matter regions. In the present study, we employed the convex optimization modeling for microstructure informed tractography-2 (COMMIT2) to improve the accuracy of the reconstructed whole-brain connectome and filter implausible brain connections in 28 patients with ID and compared with 27 healthy controls. Then, we used NBS-predict (a prediction-based extension to the network-based statistic method) in the COMMIT2-weighted connectome. Our results revealed decreased structural connectivity between subregions of the left somatomotor, ventral attention, frontoparietal, dorsal attention and default mode networks in the insomnia group. Moreover, there is a negative correlation between sleep efficiency and structural connectivity within the left frontoparietal, visual, default mode network, limbic, dorsal attention, right dorsal attention as well as right default mode networks. By comparing with standard connectivity analysis, we showed that by removing of false-positive streamlines connections after COMMIT2 filtering, abnormal structural connectivity was reduced in patients with ID compared to controls. Our results demonstrate the importance of improving the accuracy of tractography for understanding structural connectivity networks in ID.
Collapse
Affiliation(s)
- Masoumeh Rostampour
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Ali Rostampour
- Department of Computer Engineering and Information Technology, Payame Noor University, Tehran, Iran
| | - Fatemeh Shahbodaghy
- Biomedical Engineering Department, Amirkabir University of Technology, Tehran, Iran
| | - Mojtaba Zarei
- Department of Neurology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Habibolah Khazaie
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
37
|
Salans M, Karunamuni R, Unnikrishnan S, Qian A, Connor M, Gudipati S, Yip A, Huynh-Le MP, Tibbs M, Reyes A, Stasenko A, Schadler A, McDonald C, Hattangadi-Gluth JA. Microstructural Cerebellar Injury Independently Associated With Processing Speed in Adult Patients With Primary Brain Tumors: Implications for Cognitive Preservation. Int J Radiat Oncol Biol Phys 2023; 117:1107-1117. [PMID: 37414262 DOI: 10.1016/j.ijrobp.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE The cerebellum's role in posttreatment neurocognitive decline is unexplored. This study investigated associations between cerebellar microstructural integrity using quantitative neuroimaging biomarkers and neurocognition among patients with primary brain tumors receiving partial-brain radiation therapy (RT). METHODS AND MATERIALS In a prospective trial, 65 patients underwent volumetric brain magnetic resonance imaging, diffusion tensor imaging, and memory, executive function, language, attention, and processing speed (PS) assessment before RT and at 3, 6, and 12 months after RT. Delis-Kaplan Executive Function System-Trail Making (D-KEFS-TM) visual scanning and number and letter sequencing and Wechsler Adult Intelligence Scale, Fourth Edition, coding were used to evaluate PS. The cerebellar cortex and white matter (WM) and supratentorial structures subserving the previously mentioned cognitive domains were autosegmented. Volume was measured within each structure at each time point along with diffusion biomarkers (fractional anisotropy and mean diffusivity) in WM structures. Linear mixed-effects models assessed cerebellar biomarkers as predictors of neurocognitive scores. If associated, cerebellar biomarkers were evaluated as independent predictors of cognitive scores controlling for domain-specific supratentorial biomarkers. RESULTS Left (P = .04) and right (P < .001) cerebellar WM volume declined significantly over time. Cerebellar biomarkers were not associated with memory, executive function, or language. Smaller left cerebellar cortex volume was associated with worse D-KEFS-TM number (P = .01) and letter (P = .01) sequencing scores. A smaller right cerebellar cortex volume correlated with worse D-KEFS-TM visual scanning (P = .02) and number (P = .03) and letter (P = .02) sequencing scores. Greater right cerebellar WM mean diffusivity, indicating WM injury, was associated with worse D-KEFS-TM visual scanning performance (P = .03). Associations remained significant after controlling for corpus callosum and intrahemispheric WM injury biomarkers. CONCLUSIONS Injury to the cerebellum as measured with quantitative biomarkers correlates with worse post-RT PS, independent of corpus callosum and intrahemispheric WM damage. Efforts to preserve cerebellar integrity may preserve PS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Alexander Qian
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Suma Gudipati
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, California
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, California
| | - Carrie McDonald
- Department of Psychiatry, University of California, San Diego, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California.
| |
Collapse
|
38
|
Yoon D, Lutz AM. Diffusion Tensor Imaging of Peripheral Nerves: Current Status and New Developments. Semin Musculoskelet Radiol 2023; 27:641-648. [PMID: 37935210 DOI: 10.1055/s-0043-1775742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Diffusion tensor imaging (DTI) is an emerging technique for peripheral nerve imaging that can provide information about the microstructural organization and connectivity of these nerves and complement the information gained from anatomical magnetic resonance imaging (MRI) sequences. With DTI it is possible to reconstruct nerve pathways and visualize the three-dimensional trajectory of nerve fibers, as in nerve tractography. More importantly, DTI allows for quantitative evaluation of peripheral nerves by the calculation of several important parameters that offer insight into the functional status of a nerve. Thus DTI has a high potential to add value to the work-up of peripheral nerve pathologies, although it is more technically demanding. Peripheral nerves pose specific challenges to DTI due to their small diameter and DTI's spatial resolution, contrast, location, and inherent field inhomogeneities when imaging certain anatomical locations. Numerous efforts are underway to resolve these technical challenges and thus enable wider acceptance of DTI in peripheral nerve MRI.
Collapse
Affiliation(s)
- Daehyun Yoon
- Department of Radiology and Biomedical Imaging, School of Medicine, University of California at San Francisco, San Francisco, California
| | - Amelie M Lutz
- Department of Radiology, Kantonal Hospital Thurgau, Muensterlingen, Switzerland
| |
Collapse
|
39
|
Dall'Aglio L, Xu B, Tiemeier H, Muetzel RL. Longitudinal Associations Between White Matter Microstructure and Psychiatric Symptoms in Youth. J Am Acad Child Adolesc Psychiatry 2023; 62:1326-1339. [PMID: 37400062 DOI: 10.1016/j.jaac.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE Associations between psychiatric problems and white matter (WM) microstructure have been reported in youth. Yet, a deeper understanding of this relation has been hampered by a dearth of well-powered longitudinal studies and a lack of explicit examination of the bidirectional associations between brain and behavior. We investigated the temporal directionality of WM microstructure and psychiatric symptom associations in youth. METHOD In this observational study, we leveraged the world's largest single- and multi-site cohorts of neurodevelopment: the Generation R (GenR) and Adolescent Brain Cognitive Development Studies (ABCD) (total n scans = 11,400; total N = 5,700). We assessed psychiatric symptoms with the Child Behavioral Checklist as broad-band internalizing and externalizing scales, and as syndrome scales (eg, Anxious/Depressed). We quantified WM with diffusion tensor imaging (DTI), globally and at a tract level. We used cross-lagged panel models to test bidirectional associations of global and specific measures of psychopathology and WM microstructure, meta-analyzed results across cohorts, and used linear mixed-effects models for validation. RESULTS We did not identify any longitudinal associations of global WM microstructure with internalizing or externalizing problems across cohorts (confirmatory analyses) before, and after multiple testing corrections. We observed similar findings for longitudinal associations between tract-based microstructure with internalizing and externalizing symptoms, and for global WM microstructure with specific syndromes (exploratory analyses). Some cross-sectional associations surpassed multiple testing corrections in ABCD, but not in GenR. CONCLUSION Uni- or bi-directionality of longitudinal associations between WM and psychiatric symptoms were not robustly identified. We have proposed several explanations for these findings, including interindividual differences, the use of longitudinal approaches, and smaller effects than expected. STUDY REGISTRATION INFORMATION Bidirectionality Brain Function and Psychiatric Symptoms; https://doi.org/10.17605/OSF.IO/PNY92.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Bing Xu
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands
| | - Henning Tiemeier
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands; Harvard T. Chan School of Public Health, Boston, Massachusetts
| | - Ryan L Muetzel
- Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, Rotterdam, the Netherlands.
| |
Collapse
|
40
|
Akin O, Lema-Dopico A, Paudyal R, Konar AS, Chenevert TL, Malyarenko D, Hadjiiski L, Al-Ahmadie H, Goh AC, Bochner B, Rosenberg J, Schwartz LH, Shukla-Dave A. Multiparametric MRI in Era of Artificial Intelligence for Bladder Cancer Therapies. Cancers (Basel) 2023; 15:5468. [PMID: 38001728 PMCID: PMC10670574 DOI: 10.3390/cancers15225468] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
This review focuses on the principles, applications, and performance of mpMRI for bladder imaging. Quantitative imaging biomarkers (QIBs) derived from mpMRI are increasingly used in oncological applications, including tumor staging, prognosis, and assessment of treatment response. To standardize mpMRI acquisition and interpretation, an expert panel developed the Vesical Imaging-Reporting and Data System (VI-RADS). Many studies confirm the standardization and high degree of inter-reader agreement to discriminate muscle invasiveness in bladder cancer, supporting VI-RADS implementation in routine clinical practice. The standard MRI sequences for VI-RADS scoring are anatomical imaging, including T2w images, and physiological imaging with diffusion-weighted MRI (DW-MRI) and dynamic contrast-enhanced MRI (DCE-MRI). Physiological QIBs derived from analysis of DW- and DCE-MRI data and radiomic image features extracted from mpMRI images play an important role in bladder cancer. The current development of AI tools for analyzing mpMRI data and their potential impact on bladder imaging are surveyed. AI architectures are often implemented based on convolutional neural networks (CNNs), focusing on narrow/specific tasks. The application of AI can substantially impact bladder imaging clinical workflows; for example, manual tumor segmentation, which demands high time commitment and has inter-reader variability, can be replaced by an autosegmentation tool. The use of mpMRI and AI is projected to drive the field toward the personalized management of bladder cancer patients.
Collapse
Affiliation(s)
- Oguz Akin
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alfonso Lema-Dopico
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Ramesh Paudyal
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | | | | | - Dariya Malyarenko
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lubomir Hadjiiski
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hikmat Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alvin C. Goh
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Bernard Bochner
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Rosenberg
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence H. Schwartz
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| | - Amita Shukla-Dave
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Medical Physics, Memorial Sloan Kettering Cancer, New York, NY 10065, USA
| |
Collapse
|
41
|
Unnikrishnan S, Karunamuni R, Salans MA, Gudipati S, Qian AS, Yu J, Connor M, Huynh-Le MP, Tibbs MD, Hermann G, Reyes A, Stasenko A, Seibert TM, McDonald CR, Hattangadi-Gluth JA. Dose-Dependent Atrophy in Bilateral Amygdalae and Nuclei After Brain Radiation Therapy and Its Association With Mood and Memory Outcomes on a Longitudinal Clinical Trial. Int J Radiat Oncol Biol Phys 2023; 117:834-845. [PMID: 37230430 DOI: 10.1016/j.ijrobp.2023.05.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/12/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023]
Abstract
PURPOSE Amygdalae are bilateral, almond-shaped structures located anterior to the hippocampi, critical to limbic system functions of emotional processing and memory consolidation. The amygdalae are heterogeneous, composed of multiple nuclei with distinct structural and functional properties. We prospectively assessed associations between longitudinal changes in amygdala morphometry, including component nuclei, and functional outcomes in patients with primary brain tumors receiving radiation therapy (RT). METHODS AND MATERIALS On a prospective longitudinal trial, 63 patients underwent high-resolution volumetric brain magnetic resonance imaging and testing for mood (Beck Depression Inventory and Beck Anxiety Inventory), memory (Brief Visuospatial Memory Test-Revised [BVMT] Total Recall and Delayed Recall; Hopkins Verbal Learning Test-Revised [HVLT] Total Recall and Delayed Recall), and health-related quality-of-life outcomes (Functional Assessment of Cancer Therapy-Brain Social/Family Well-Being and Emotional Well-Being) at baseline and 3, 6, and 12 months after RT. Amygdalae, including 8 nuclei, were autosegmented bilaterally using validated techniques. Linear mixed-effects models assessed longitudinal change in amygdalae and nuclei volumes and associations with dose and outcomes. Wilcoxon rank sum tests compared amygdala volume change between patient groups with worse and more stable outcomes at each time point. RESULTS Atrophy was found in the right amygdala at 6 months (P = .001) and the left amygdala at 12 months (P = .046). A higher dose was associated with atrophy of the left amygdala (P = .013) at 12 months. The right amygdala showed dose-dependent atrophy at 6 months (P = .016) and 12 months (P = .001). Worse BVMT-Total, HVLT-Total, and HVLT-Delayed performance was associated with smaller left lateral (P = .014, P = .004, and P = .007, respectively) and left basal (P = .034, P = .016, and P = .026, respectively) nuclei volumes. Increased anxiety at 6 months was associated with greater combined (P = .031) and right (P = .007) amygdala atrophy. Greater left amygdala atrophy (P = .038) was noted in patients with decreased emotional well-being at 12 months. CONCLUSIONS Bilateral amygdalae and nuclei undergo time- and dose-dependent atrophy after brain RT. Atrophy in amygdalae and specific nuclei was associated with poorer memory, mood, and emotional well-being. Amygdalae-sparing treatment planning may preserve neurocognitive and neuropsychiatric outcomes in this population.
Collapse
Affiliation(s)
- Soumya Unnikrishnan
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Mia A Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Suma Gudipati
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Alexander S Qian
- University of California San Diego School of Medicine, La Jolla, California; Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Justin Yu
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | | | - Michelle D Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Gretchen Hermann
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Alena Stasenko
- Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Tyler M Seibert
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California
| | - Carrie R McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California; Department of Psychiatry, University of California San Diego, La Jolla, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, La Jolla, California.
| |
Collapse
|
42
|
Connor M, Salans M, Karunamuni R, Unnikrishnan S, Huynh-Le MP, Tibbs M, Qian A, Reyes A, Stasenko A, McDonald C, Moiseenko V, El-Naqa I, Hattangadi-Gluth JA. Fine Motor Skill Decline After Brain Radiation Therapy-A Multivariate Normal Tissue Complication Probability Study of a Prospective Trial. Int J Radiat Oncol Biol Phys 2023; 117:581-593. [PMID: 37150258 PMCID: PMC10911396 DOI: 10.1016/j.ijrobp.2023.04.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 03/20/2023] [Accepted: 04/29/2023] [Indexed: 05/09/2023]
Abstract
PURPOSE Brain radiation therapy can impair fine motor skills (FMS). Fine motor skills are essential for activities of daily living, enabling hand-eye coordination for manipulative movements. We developed normal tissue complication probability (NTCP) models for the decline in FMS after fractionated brain radiation therapy (RT). METHODS AND MATERIALS On a prospective trial, 44 patients with primary brain tumors received fractioned RT; underwent high-resolution volumetric magnetic resonance imaging, diffusion tensor imaging, and comprehensive FMS assessments (Delis-Kaplan Executive Function System Trail Making Test Motor Speed [DKEFS-MS]; and Grooved Pegboard dominant/nondominant hands) at baseline and 6 months postRT. Regions of interest subserving motor function (including cortex, superficial white matter, thalamus, basal ganglia, cerebellum, and white matter tracts) were autosegmented using validated methods and manually verified. Dosimetric and clinical variables were included in multivariate NTCP models using automated bootstrapped logistic regression, least absolute shrinkage and selection operator logistic regression, and random forests with nested cross-validation. RESULTS Half of the patients showed a decline on grooved pegboard test of nondominant hands, 17 of 42 (40.4%) on grooved pegboard test of -dominant hands, and 11 of 44 (25%) on DKEFS-MS. Automated bootstrapped logistic regression selected a 1-term model including maximum dose to dominant postcentral white matter. The least absolute shrinkage and selection operator logistic regression selected this term and steroid use. The top 5 variables in the random forest were all dosimetric: maximum dose to dominant thalamus, mean dose to dominant caudate, mean and maximum dose to the dominant corticospinal tract, and maximum dose to dominant postcentral white matter. This technique performed best with an area under the curve of 0.69 (95% CI, 0.68-0.70) on nested cross-validation. CONCLUSIONS We present the first NTCP models for FMS impairment after brain RT. Dose to several supratentorial motor-associated regions of interest correlated with a decline in dominant-hand fine motor dexterity in patients with primary brain tumors in multivariate models, outperforming clinical variables. These data can guide prospective fine motor-sparing strategies for brain RT.
Collapse
Affiliation(s)
- Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Mia Salans
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Alexander Qian
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California San Diego, San Diego, California
| | - Carrie McDonald
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California; Department of Psychiatry, University of California San Diego, San Diego, California
| | - Vitali Moiseenko
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California
| | - Issam El-Naqa
- Department of Radiation Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California San Diego, San Diego, California.
| |
Collapse
|
43
|
Gerussi T, Graïc JM, Peruffo A, Behroozi M, Schlaffke L, Huggenberger S, Güntürkün O, Cozzi B. The prefrontal cortex of the bottlenose dolphin (Tursiops truncatus Montagu, 1821): a tractography study and comparison with the human. Brain Struct Funct 2023; 228:1963-1976. [PMID: 37660322 PMCID: PMC10517040 DOI: 10.1007/s00429-023-02699-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/21/2023] [Indexed: 09/05/2023]
Abstract
Cetaceans are well known for their remarkable cognitive abilities including self-recognition, sound imitation and decision making. In other mammals, the prefrontal cortex (PFC) takes a key role in such cognitive feats. In cetaceans, however, a PFC could up to now not be discerned based on its usual topography. Classical in vivo methods like tract tracing are legally not possible to perform in Cetacea, leaving diffusion-weighted imaging (DWI) as the most viable alternative. This is the first investigation focussed on the identification of the cetacean PFC homologue. In our study, we applied the constrained spherical deconvolution (CSD) algorithm on 3 T DWI scans of three formalin-fixed brains of bottlenose dolphins (Tursiops truncatus) and compared the obtained results to human brains, using the same methodology. We first identified fibres related to the medio-dorsal thalamic nuclei (MD) and then seeded the obtained putative PFC in the dolphin as well as the known PFC in humans. Our results outlined the dolphin PFC in areas not previously studied, in the cranio-lateral, ectolateral and opercular gyri, and furthermore demonstrated a similar connectivity pattern between the human and dolphin PFC. The antero-lateral rotation of the PFC, like in other areas, might be the result of the telescoping process which occurred in these animals during evolution.
Collapse
Affiliation(s)
- Tommaso Gerussi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy.
| | - Jean-Marie Graïc
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Antonella Peruffo
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| | - Mehdi Behroozi
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Lara Schlaffke
- Department of Neurology, BG-University Hospital Bergmannsheil, Ruhr-University Bochum, Bürkle-de-La-Camp-Platz 1, 44789, Bochum, Germany
| | - Stefan Huggenberger
- Institute of Anatomy and Clinical Morphology, Witten/Herdecke University, Alfred-Herrhausen-Straße 50, 58448, Witten, Germany
| | - Onur Güntürkün
- Department of Biopsychology, Institute of Cognitive Neuroscience, Faculty of Psychology, Ruhr-University Bochum, 44801, Bochum, Germany
- Research Center One Health Ruhr, Research Alliance Ruhr, Ruhr-University Bochum, Bochum, Germany
| | - Bruno Cozzi
- Department of Comparative Biomedicine and Food Science (BCA), University of Padua, Legnaro, Italy
| |
Collapse
|
44
|
Robinson SD, Bachrata B, Eckstein K, Bollmann S, Bollmann S, Hodono S, Cloos M, Tourell M, Jin J, O'Brien K, Reutens DC, Trattnig S, Enzinger C, Barth M. Improved dynamic distortion correction for fMRI using single-echo EPI and a readout-reversed first image (REFILL). Hum Brain Mapp 2023; 44:5095-5112. [PMID: 37548414 PMCID: PMC10502646 DOI: 10.1002/hbm.26440] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 06/01/2023] [Accepted: 07/12/2023] [Indexed: 08/08/2023] Open
Abstract
The boundaries between tissues with different magnetic susceptibilities generate inhomogeneities in the main magnetic field which change over time due to motion, respiration and system instabilities. The dynamically changing field can be measured from the phase of the fMRI data and corrected. However, methods for doing so need multi-echo data, time-consuming reference scans and/or involve error-prone processing steps, such as phase unwrapping, which are difficult to implement robustly on the MRI host. The improved dynamic distortion correction method we propose is based on the phase of the single-echo EPI data acquired for fMRI, phase offsets calculated from a triple-echo, bipolar reference scan of circa 3-10 s duration using a method which avoids the need for phase unwrapping and an additional correction derived from one EPI volume in which the readout direction is reversed. This Reverse-Encoded First Image and Low resoLution reference scan (REFILL) approach is shown to accurately measure B0 as it changes due to shim, motion and respiration, even with large dynamic changes to the field at 7 T, where it led to a > 20% increase in time-series signal to noise ratio compared to data corrected with the classic static approach. fMRI results from REFILL-corrected data were free of stimulus-correlated distortion artefacts seen when data were corrected with static field mapping. The method is insensitive to shim changes and eddy current differences between the reference scan and the fMRI time series, and employs calculation steps that are simple and robust, allowing most data processing to be performed in real time on the scanner image reconstruction computer. These improvements make it feasible to routinely perform dynamic distortion correction in fMRI.
Collapse
Affiliation(s)
- Simon Daniel Robinson
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Department of NeurologyMedical University of GrazGrazAustria
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
| | - Beata Bachrata
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
- Karl Landsteiner Institute for Clinical Molecular MR in Musculoskeletal ImagingViennaAustria
- Department of Medical EngineeringCarinthia University of Applied SciencesKlagenfurtAustria
| | - Korbinian Eckstein
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | - Saskia Bollmann
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Steffen Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - Shota Hodono
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Martijn Cloos
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Monique Tourell
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- Siemens Healthcare Pty Ltd.BrisbaneAustralia
| | - Jin Jin
- Siemens Healthcare Pty Ltd.BrisbaneAustralia
| | | | - David C. Reutens
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- ARC Training Centre for Innovation in Biomedical Imaging Technology (CIBIT)The University of QueenslandBrisbaneAustralia
| | - Siegfried Trattnig
- High Field MR Centre, Department of Biomedical Imaging and Image‐Guided TherapyMedical University of ViennaViennaAustria
| | | | - Markus Barth
- Centre of Advanced ImagingUniversity of QueenslandBrisbaneAustralia
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| |
Collapse
|
45
|
Liang R, Schwendner M, Grziwotz M, Wiestler B, Wostrack M, Meyer B, Krieg SM, Ille S. Improving tractography in brainstem cavernoma patients by distortion correction. BRAIN & SPINE 2023; 3:102685. [PMID: 38021010 PMCID: PMC10668098 DOI: 10.1016/j.bas.2023.102685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 12/01/2023]
Abstract
Introduction The resection of brainstem cerebral cavernous malformations (CCM) harbors the risk of damaging the corticospinal tract (CST) and other major tracts. Hence, visualization of eloquent fiber tracts supports pre- and intraoperative planning. However, diffusion tensor imaging fiber tracking at brainstem level suffers from distortion due to field inhomogeneities and eddy currents by steep diffusion gradients. Research question This study aims to analyze the effect of distortion correction for CST tractography in brainstem CCM patients. Material and methods 25 patients who underwent resection of brainstem CCM were enrolled, 24 suffered from hemorrhage. We performed an anatomically based tractography of the CST with a mean minimal fractional anisotropy of 0.22 ± 0.04 before and after cranial distortion correction (CDC). Accuracy was measured by anatomical plausibility and aberrant fibers. Results CDC led to a more precise CST tractography, further approximating its assumed anatomical localization in all cases. CDC resulted in a significantly more ventral location of the CST of 1.5 ± 0.6 mm (6.1 ± 2.7 mm before CDC vs. 4.6 ± 2.1 mm after CDC; p < .0001) as measured by the distance to the basilar artery and of 1.7 ± 0.6 mm (8.9 ± 2.7 mm vs. 7.2 ± 2.1 mm; p < .0001) in relation to the clivus. Aberrant fibers were reduced by CDC in 44% of cases. We found a mean difference in CST volume of 0.6 ± 0.8 ccm. We could not detect motor deficits after resection of irregular fibers. Discussion and conclusion CDC effectively corrects tractography for distortion at brainstem level, especially in patients suffering from brainstem CCM, further approximating its actual anatomical localization.
Collapse
Affiliation(s)
- Raimunde Liang
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maximilian Schwendner
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Marc Grziwotz
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, Klinikum Rechts der Isar, School of Medicine, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Maria Wostrack
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Bernhard Meyer
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sandro M. Krieg
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| | - Sebastian Ille
- Department of Neurosurgery, Klinikum Rechts der Isar, Technische Universität München, Ismaninger Str. 22, 81675, Munich, Germany
| |
Collapse
|
46
|
Malekian V, Graedel NN, Hickling A, Aghaeifar A, Dymerska B, Corbin N, Josephs O, Maguire EA, Callaghan MF. Mitigating susceptibility-induced distortions in high-resolution 3DEPI fMRI at 7T. Neuroimage 2023; 279:120294. [PMID: 37517572 PMCID: PMC10951962 DOI: 10.1016/j.neuroimage.2023.120294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/08/2023] [Accepted: 07/22/2023] [Indexed: 08/01/2023] Open
Abstract
Geometric distortion is a major limiting factor for spatial specificity in high-resolution fMRI using EPI readouts and is exacerbated at higher field strengths due to increased B0 field inhomogeneity. Prominent correction schemes are based on B0 field-mapping or acquiring reverse phase-encoded (reversed-PE) data. However, to date, comparisons of these techniques in the context of fMRI have only been performed on 2DEPI data, either at lower field or lower resolution. In this study, we investigate distortion compensation in the context of sub-millimetre 3DEPI data at 7T. B0 field-mapping and reversed-PE distortion correction techniques were applied to both partial coverage BOLD-weighted and whole brain MT-weighted 3DEPI data with matched distortion. Qualitative assessment showed overall improvement in cortical alignment for both correction techniques in both 3DEPI fMRI and whole-brain MT-3DEPI datasets. The distortion-corrected MT-3DEPI images were quantitatively evaluated by comparing cortical alignment with an anatomical reference using dice coefficient (DC) and correlation ratio (CR) measures. These showed that B0 field-mapping and reversed-PE methods both improved correspondence between the MT-3DEPI and anatomical data, with more substantial improvements consistently obtained using the reversed-PE approach. Regional analyses demonstrated that the largest benefit of distortion correction, and in particular of the reversed-PE approach, occurred in frontal and temporal regions where susceptibility-induced distortions are known to be greatest, but had not led to complete signal dropout. In conclusion, distortion correction based on reversed-PE data has shown the greater capacity for achieving faithful alignment with anatomical data in the context of high-resolution fMRI at 7T using 3DEPI.
Collapse
Affiliation(s)
- Vahid Malekian
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK.
| | - Nadine N Graedel
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Alice Hickling
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Ali Aghaeifar
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK; MR Research Collaborations, Siemens Healthcare Limited, Frimley, UK
| | - Barbara Dymerska
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Nadège Corbin
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK; Centre de Résonance Magnétique des Systèmes Biologiques, CNRS-University Bordeaux, Bordeaux, France
| | - Oliver Josephs
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| | - Martina F Callaghan
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, UK
| |
Collapse
|
47
|
Li Z, Miller KL, Andersson JLR, Zhang J, Liu S, Guo H, Wu W. Sampling strategies and integrated reconstruction for reducing distortion and boundary slice aliasing in high-resolution 3D diffusion MRI. Magn Reson Med 2023; 90:1484-1501. [PMID: 37317708 PMCID: PMC10952965 DOI: 10.1002/mrm.29741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/14/2023] [Accepted: 05/17/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE To develop a new method for high-fidelity, high-resolution 3D multi-slab diffusion MRI with minimal distortion and boundary slice aliasing. METHODS Our method modifies 3D multi-slab imaging to integrate blip-reversed acquisitions for distortion correction and oversampling in the slice direction (kz ) for reducing boundary slice aliasing. Our aim is to achieve robust acceleration to keep the scan time the same as conventional 3D multi-slab acquisitions, in which data are acquired with a single direction of blip traversal and without kz -oversampling. We employ a two-stage reconstruction. In the first stage, the blip-up/down images are respectively reconstructed and analyzed to produce a field map for each diffusion direction. In the second stage, the blip-reversed data and the field map are incorporated into a joint reconstruction to produce images that are corrected for distortion and boundary slice aliasing. RESULTS We conducted experiments at 7T in six healthy subjects. Stage 1 reconstruction produces images from highly under-sampled data (R = 7.2) with sufficient quality to provide accurate field map estimation. Stage 2 joint reconstruction substantially reduces distortion artifacts with comparable quality to fully-sampled blip-reversed results (2.4× scan time). Whole-brain in-vivo results acquired at 1.22 mm and 1.05 mm isotropic resolutions demonstrate improved anatomical fidelity compared to conventional 3D multi-slab imaging. Data demonstrate good reliability and reproducibility of the proposed method over multiple subjects. CONCLUSION The proposed acquisition and reconstruction framework provide major reductions in distortion and boundary slice aliasing for 3D multi-slab diffusion MRI without increasing the scan time, which can potentially produce high-quality, high-resolution diffusion MRI.
Collapse
Affiliation(s)
- Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Karla L. Miller
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Jesper L. R. Andersson
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| | - Jieying Zhang
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
| | - Simin Liu
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
| | - Hua Guo
- Center for Biomedical Imaging Research, Department of Biomedical Engineering, School of MedicineTsinghua UniversityBeijingChina
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical NeurosciencesUniversity of OxfordOxfordUK
| |
Collapse
|
48
|
Andreassen MMS, Loubrie S, Tong MW, Fang L, Seibert TM, Wallace AM, Zare S, Ojeda-Fournier H, Kuperman J, Hahn M, Jerome NP, Bathen TF, Rodríguez-Soto AE, Dale AM, Rakow-Penner R. Restriction spectrum imaging with elastic image registration for automated evaluation of response to neoadjuvant therapy in breast cancer. Front Oncol 2023; 13:1237720. [PMID: 37781199 PMCID: PMC10541212 DOI: 10.3389/fonc.2023.1237720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/08/2023] [Indexed: 10/03/2023] Open
Abstract
Purpose Dynamic contrast-enhanced MRI (DCE) and apparent diffusion coefficient (ADC) are currently used to evaluate treatment response of breast cancer. The purpose of the current study was to evaluate the three-component Restriction Spectrum Imaging model (RSI3C), a recent diffusion-weighted MRI (DWI)-based tumor classification method, combined with elastic image registration, to automatically monitor breast tumor size throughout neoadjuvant therapy. Experimental design Breast cancer patients (n=27) underwent multi-parametric 3T MRI at four time points during treatment. Elastically-registered DWI images were used to generate an automatic RSI3C response classifier, assessed against manual DCE tumor size measurements and mean ADC values. Predictions of therapy response during treatment and residual tumor post-treatment were assessed using non-pathological complete response (non-pCR) as an endpoint. Results Ten patients experienced pCR. Prediction of non-pCR using ROC AUC (95% CI) for change in measured tumor size from pre-treatment time point to early-treatment time point was 0.65 (0.38-0.92) for the RSI3C classifier, 0.64 (0.36-0.91) for DCE, and 0.45 (0.16-0.75) for change in mean ADC. Sensitivity for detection of residual disease post-treatment was 0.71 (0.44-0.90) for the RSI3C classifier, compared to 0.88 (0.64-0.99) for DCE and 0.76 (0.50-0.93) for ADC. Specificity was 0.90 (0.56-1.00) for the RSI3C classifier, 0.70 (0.35-0.93) for DCE, and 0.50 (0.19-0.81) for ADC. Conclusion The automatic RSI3C classifier with elastic image registration suggested prediction of response to treatment after only three weeks, and showed performance comparable to DCE for assessment of residual tumor post-therapy. RSI3C may guide clinical decision-making and enable tailored treatment regimens and cost-efficient evaluation of neoadjuvant therapy of breast cancer.
Collapse
Affiliation(s)
- Maren M. Sjaastad Andreassen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Oncology, Vestre Viken, Drammen, Norway
| | - Stephane Loubrie
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Michelle W. Tong
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| | - Lauren Fang
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Tyler M. Seibert
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Anne M. Wallace
- Department of Surgery, University of California, San Diego, La Jolla, CA, United States
| | - Somaye Zare
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Haydee Ojeda-Fournier
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Joshua Kuperman
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Michael Hahn
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Neil P. Jerome
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Tone F. Bathen
- Department of Circulation and Medical Imaging, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Radiology and Nuclear Medicine, St. Olav’s University Hospital, Trondheim, Norway
| | - Ana E. Rodríguez-Soto
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Anders M. Dale
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Rebecca Rakow-Penner
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
49
|
Sjöholm T, Tarai S, Malmberg F, Strand R, Korenyushkin A, Enblad G, Ahlström H, Kullberg J. A whole-body diffusion MRI normal atlas: development, evaluation and initial use. Cancer Imaging 2023; 23:87. [PMID: 37710346 PMCID: PMC10503210 DOI: 10.1186/s40644-023-00603-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/28/2023] [Indexed: 09/16/2023] Open
Abstract
BACKGROUND Statistical atlases can provide population-based descriptions of healthy volunteers and/or patients and can be used for region- and voxel-based analysis. This work aims to develop whole-body diffusion atlases of healthy volunteers scanned at 1.5T and 3T. Further aims include evaluating the atlases by establishing whole-body Apparent Diffusion Coefficient (ADC) values of healthy tissues and including healthy tissue deviations in an automated tumour segmentation task. METHODS Multi-station whole-body Diffusion Weighted Imaging (DWI) and water-fat Magnetic Resonance Imaging (MRI) of healthy volunteers (n = 45) were acquired at 1.5T (n = 38) and/or 3T (n = 29), with test-retest imaging for five subjects per scanner. Using deformable image registration, whole-body MRI data was registered and composed into normal atlases. Healthy tissue ADCmean was manually measured for ten tissues, with test-retest percentage Repeatability Coefficient (%RC), and effect of age, sex and scanner assessed. Voxel-wise whole-body analyses using the normal atlases were studied with ADC correlation analyses and an automated tumour segmentation task. For the latter, lymphoma patient MRI scans (n = 40) with and without information about healthy tissue deviations were entered into a 3D U-Net architecture. RESULTS Sex- and Body Mass Index (BMI)-stratified whole-body high b-value DWI and ADC normal atlases were created at 1.5T and 3T. %RC of healthy tissue ADCmean varied depending on tissue assessed (4-48% at 1.5T, 6-70% at 3T). Scanner differences in ADCmean were visualised in Bland-Altman analyses of dually scanned subjects. Sex differences were measurable for liver, muscle and bone at 1.5T, and muscle at 3T. Volume of Interest (VOI)-based multiple linear regression, and voxel-based correlations in normal atlas space, showed that age and ADC were negatively associated for liver and bone at 1.5T, and positively associated with brain tissue at 1.5T and 3T. Adding voxel-wise information about healthy tissue deviations in an automated tumour segmentation task gave numerical improvements in the segmentation metrics Dice score, sensitivity and precision. CONCLUSIONS Whole-body DWI and ADC normal atlases were created at 1.5T and 3T, and applied in whole-body voxel-wise analyses.
Collapse
Affiliation(s)
- Therese Sjöholm
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Sambit Tarai
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Filip Malmberg
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | - Robin Strand
- Department of Information Technology, Uppsala University, Uppsala, Sweden
| | | | - Gunilla Enblad
- Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| | - Håkan Ahlström
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Antaros Medical AB, Mölndal, Sweden
| | - Joel Kullberg
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden.
- Antaros Medical AB, Mölndal, Sweden.
| |
Collapse
|
50
|
Namaky N, Swearingen HR, Winter J, Bozzay M, Primack JM, Philip NS, Barredo J. Suicidal thoughts and behaviours among military veterans: protocol for a prospective, observational, neuroimaging study. BMJ Open 2023; 13:e070654. [PMID: 37586858 PMCID: PMC10432662 DOI: 10.1136/bmjopen-2022-070654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/01/2023] [Indexed: 08/18/2023] Open
Abstract
INTRODUCTION This study's overarching goal is to examine the relationship between brain circuits and suicidal thoughts and behaviours (STBs) in a transdiagnostic sample of US military veterans. Because STBs have been linked with maladaptive decision-making and disorders linked to impulsivity, this investigation focuses on valence and inhibitory control circuits. METHODS AND ANALYSIS In this prospective, observational study, we will collect functional MRI (fMRI), cognitive and clinical data from 136 veterans (target sample size) recruited from the Providence VA Health System (PVAHS): 68 with STBs and 68 matched controls. Behavioural data will be collected using standardised measures of STBs, psychiatric symptoms, cognition, functioning and medical history. Neuroimaging data will include structural, task and resting fMRI. We will conduct follow-up interviews and assessments at 6, 12 and 24 months post-enrolment. Primary analyses will compare data from veterans with and without STBs and will also evaluate whether activation and connectivity within circuits of valence and inhibition covary with historical and prospective patterns of suicidal ideation and behaviour. ETHICS AND DISSEMINATION The PVAHS Institutional Review Board approved this study (2018-051). Written informed consent will be obtained from all participants. Findings from this study will be published in peer-reviewed journals and presented at local, regional, national and international conferences.Nauder Namaky, Ph.D.* nauder_namaky@brown.edu.
Collapse
Affiliation(s)
- Nauder Namaky
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Hannah R Swearingen
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Jake Winter
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Melanie Bozzay
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- Psychiatry and Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Jennifer M Primack
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA Long Term Services and Support Center of Innovation, Providence, Rhode Island, USA
| | - Noah S Philip
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| | - Jennifer Barredo
- Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
- VA RR&D Center for Neurorestoration and Neurotechnology, Providence, Rhode Island, USA
| |
Collapse
|