1
|
Boukrina O, Madden EB, Sandroff BM, Cui X, Yamin A, Kong Y, Graves WW. Improving reading competence in aphasia with combined aerobic exercise and phono-motor treatment: Protocol for a randomized controlled trial. PLoS One 2025; 20:e0317210. [PMID: 39820216 PMCID: PMC11737671 DOI: 10.1371/journal.pone.0317210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/18/2024] [Indexed: 01/19/2025] Open
Abstract
Aphasia, a communication disorder caused primarily by left-hemisphere stroke, affects millions of individuals worldwide, with up to 70% experiencing significant reading impairments. These deficits negatively impact independence and quality of life, highlighting the need for effective treatments that target the cognitive and neural processes essential to reading recovery. This Randomized Clinical Trial (RCT) aims to test the efficacy of a combined intervention incorporating aerobic exercise training (AET) and phono-motor treatment (PMT) to enhance reading recovery in individuals with post-stroke aphasia. AET, known for its positive impact on cerebral blood flow (CBF) and oxygenation, is hypothesized to facilitate neuroplasticity when administered before PMT, an intensive therapy aimed at strengthening phonological processing. While most existing treatments focus on spoken language production, this study builds on evidence that PMT can also improve reading skills. The study is structured as a Phase I/II clinical trial and compares the effects of AET plus PMT to a control condition of stretching plus PMT on reading and other language outcomes including naming, auditory comprehension, and spontaneous speech. Additionally, it investigates the immediate and sustained impacts of the intervention on CBF, functional connectivity, and task-evoked brain activity. The central hypothesis posits that AET will increase CBF and, when combined with PMT, will lead to enhanced reading recovery, supporting treatment-induced plasticity. This trial represents one of the first large-scale interventions targeting post-stroke reading impairments and provides critical insights into the potential of combining AET with cognitive rehabilitation to improve language recovery in aphasia.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, United States of America
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
| | - Elizabeth B. Madden
- Department of Communication Science and Disorders, Florida State University, Tallahassee, FL, United States of America
| | - Brian M. Sandroff
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
- Center for Neuropsychology and Neuroscience Research, Kessler Foundation, East Hanover, NJ, United States of America
| | - Xiangqin Cui
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, United States of America
| | - Abubakar Yamin
- City University of New York (CUNY) School of Medicine, New York, NY, United States of America
| | - Yekyung Kong
- Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, United States of America
- Kessler Institute for Rehabilitation, West Orange, NJ, United States of America
| | - William W. Graves
- Psychology Department, Rutgers, The State University of New Jersey, Newark, NJ, United States of America
| |
Collapse
|
2
|
Kries J, De Clercq P, Gillis M, Vanthornhout J, Lemmens R, Francart T, Vandermosten M. Exploring neural tracking of acoustic and linguistic speech representations in individuals with post-stroke aphasia. Hum Brain Mapp 2024; 45:e26676. [PMID: 38798131 PMCID: PMC11128780 DOI: 10.1002/hbm.26676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 05/29/2024] Open
Abstract
Aphasia is a communication disorder that affects processing of language at different levels (e.g., acoustic, phonological, semantic). Recording brain activity via Electroencephalography while people listen to a continuous story allows to analyze brain responses to acoustic and linguistic properties of speech. When the neural activity aligns with these speech properties, it is referred to as neural tracking. Even though measuring neural tracking of speech may present an interesting approach to studying aphasia in an ecologically valid way, it has not yet been investigated in individuals with stroke-induced aphasia. Here, we explored processing of acoustic and linguistic speech representations in individuals with aphasia in the chronic phase after stroke and age-matched healthy controls. We found decreased neural tracking of acoustic speech representations (envelope and envelope onsets) in individuals with aphasia. In addition, word surprisal displayed decreased amplitudes in individuals with aphasia around 195 ms over frontal electrodes, although this effect was not corrected for multiple comparisons. These results show that there is potential to capture language processing impairments in individuals with aphasia by measuring neural tracking of continuous speech. However, more research is needed to validate these results. Nonetheless, this exploratory study shows that neural tracking of naturalistic, continuous speech presents a powerful approach to studying aphasia.
Collapse
Affiliation(s)
- Jill Kries
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
- Department of PsychologyStanford UniversityStanfordCaliforniaUSA
| | - Pieter De Clercq
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Marlies Gillis
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Jonas Vanthornhout
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Robin Lemmens
- Experimental Neurology, Department of NeurosciencesKU LeuvenLeuvenBelgium
- Laboratory of Neurobiology, VIB‐KU Leuven Center for Brain and Disease ResearchLeuvenBelgium
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Tom Francart
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
| | - Maaike Vandermosten
- Experimental Oto‐Rhino‐Laryngology, Department of Neurosciences, Leuven Brain InstituteKU LeuvenLeuvenBelgium
| |
Collapse
|
3
|
Whitaker AA, Waghmare S, Montgomery RN, Aaron SE, Eickmeyer SM, Vidoni ED, Billinger SA. Lower middle cerebral artery blood velocity during low-volume high-intensity interval exercise in chronic stroke. J Cereb Blood Flow Metab 2024; 44:627-640. [PMID: 37708242 PMCID: PMC11197145 DOI: 10.1177/0271678x231201472] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/16/2023]
Abstract
High-intensity interval training (HIIE) may present unique challenges to the cerebrovascular system in individuals post-stroke. We hypothesized lower middle cerebral artery blood velocity (MCAv) in individuals post-stroke: 1) during 10 minutes of HIIE, 2) immediately following HIIE, and 3) 30 minutes after HIIE, compared to age- and sex-matched controls (CON). We used a recumbent stepper submaximal exercise test to determine workloads for high-intensity and active recovery. Our low volume HIIE protocol consisted of 1-minute intervals for 10 minutes. During HIIE, we measured MCAv, mean arterial pressure (MAP), heart rate (HR), and end tidal carbon dioxide (PETCO2). We assessed carotid-femoral pulse wave velocity as a measure of arterial stiffness. Fifty participants completed the study (25 post-stroke, 76% ischemic, 32% moderate disability). Individuals post-stroke had lower MCAv during HIIE compared to CON (p = 0.03), which remained 30 minutes after HIIE. Individuals post-stroke had greater arterial stiffness (p = 0.01) which was moderately associated with a smaller MCAv responsiveness during HIIE (r = -0.44). No differences were found for MAP, HR, and PETCO2. This study suggests individuals post-stroke had a lower MCAv during HIIE compared to their peers, which remained during recovery up to 30 minutes. Arterial stiffness may contribute to the lower cerebrovascular responsiveness post-stroke.
Collapse
Affiliation(s)
- Alicen A Whitaker
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, USA
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Saniya Waghmare
- Department of Physical Therapy, Rehabilitation Science, and Athletic Training, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Robert N Montgomery
- Department of Biostatistics & Data Science, University of Kansas Medical Center, Kansas City, KS, USA
| | - Stacey E Aaron
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Sarah M Eickmeyer
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
| | - Sandra A Billinger
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer’s Disease Research Center, Fairway, KS, USA
- Department of Cell Biology and Physiology, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
4
|
Abbott N, Love T. Bridging the Divide: Brain and Behavior in Developmental Language Disorder. Brain Sci 2023; 13:1606. [PMID: 38002565 PMCID: PMC10670267 DOI: 10.3390/brainsci13111606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023] Open
Abstract
Developmental language disorder (DLD) is a heterogenous neurodevelopmental disorder that affects a child's ability to comprehend and/or produce spoken and/or written language, yet it cannot be attributed to hearing loss or overt neurological damage. It is widely believed that some combination of genetic, biological, and environmental factors influences brain and language development in this population, but it has been difficult to bridge theoretical accounts of DLD with neuroimaging findings, due to heterogeneity in language impairment profiles across individuals and inconsistent neuroimaging findings. Therefore, the purpose of this overview is two-fold: (1) to summarize the neuroimaging literature (while drawing on findings from other language-impaired populations, where appropriate); and (2) to briefly review the theoretical accounts of language impairment patterns in DLD, with the goal of bridging the disparate findings. As will be demonstrated with this overview, the current state of the field suggests that children with DLD have atypical brain volume, laterality, and activation/connectivity patterns in key language regions that likely contribute to language difficulties. However, the precise nature of these differences and the underlying neural mechanisms contributing to them remain an open area of investigation.
Collapse
Affiliation(s)
- Noelle Abbott
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| | - Tracy Love
- School of Speech, Language, and Hearing Sciences, San Diego State University, San Diego, CA 92182, USA;
- San Diego State University/University of California San Diego Joint Doctoral Program in Language and Communicative Disorders, San Diego, CA 92182, USA
| |
Collapse
|
5
|
Ivanova MV, Pappas I, Inglis B, Pracar AL, Herron TJ, Baldo JV, Kayser AS, D’Esposito M, Dronkers NF. Cerebral perfusion in post-stroke aphasia and its relationship to residual language abilities. Brain Commun 2023; 6:fcad252. [PMID: 38162898 PMCID: PMC10757451 DOI: 10.1093/braincomms/fcad252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 05/26/2023] [Accepted: 09/28/2023] [Indexed: 01/03/2024] Open
Abstract
Stroke alters blood flow to the brain resulting in damaged tissue and cell death. Moreover, the disruption of cerebral blood flow (perfusion) can be observed in areas surrounding and distal to the lesion. These structurally preserved but suboptimally perfused regions may also affect recovery. Thus, to better understand aphasia recovery, the relationship between cerebral perfusion and language needs to be systematically examined. In the current study, we aimed to evaluate (i) how stroke affects perfusion outside of lesioned areas in chronic aphasia and (ii) how perfusion in specific cortical areas and perilesional tissue relates to language outcomes in aphasia. We analysed perfusion data from a large sample of participants with chronic aphasia due to left hemisphere stroke (n = 43) and age-matched healthy controls (n = 25). We used anatomically defined regions of interest that covered the frontal, parietal, and temporal areas of the perisylvian cortex in both hemispheres, areas typically known to support language, along with several control regions not implicated in language processing. For the aphasia group, we also looked at three regions of interest in the perilesional tissue. We compared perfusion levels between the two groups and investigated the relationship between perfusion levels and language subtest scores while controlling for demographic and lesion variables. First, we observed that perfusion levels outside the lesioned areas were significantly reduced in frontal and parietal regions in the left hemisphere in people with aphasia compared to the control group, while no differences were observed for the right hemisphere regions. Second, we found that perfusion in the left temporal lobe (and most strongly in the posterior part of both superior and middle temporal gyri) and inferior parietal areas (supramarginal gyrus) was significantly related to residual expressive and receptive language abilities. In contrast, perfusion in the frontal regions did not show such a relationship; no relationship with language was also observed for perfusion levels in control areas and all right hemisphere regions. Third, perilesional perfusion was only marginally related to language production abilities. Cumulatively, the current findings demonstrate that blood flow is reduced beyond the lesion site in chronic aphasia and that hypoperfused neural tissue in critical temporoparietal language areas has a negative impact on behavioural outcomes. These results, using perfusion imaging, underscore the critical and general role that left hemisphere posterior temporal regions play in various expressive and receptive language abilities. Overall, the study highlights the importance of exploring perfusion measures in stroke.
Collapse
Affiliation(s)
- Maria V Ivanova
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Ioannis Pappas
- Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, USA
| | - Ben Inglis
- Henry H. Wheeler, Jr. Brain Imaging Center, University of California, Berkeley, CA 94720, USA
| | - Alexis L Pracar
- Department of Psychology, University of California, Berkeley, CA 94720, USA
| | - Timothy J Herron
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Juliana V Baldo
- Research Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Andrew S Kayser
- Division of Neurology, San Francisco VA Health Care System, San Francisco, CA 94121, USA
- Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Neurology Service, VA Northern California Health Care System, Martinez, CA 94553, USA
| | - Nina F Dronkers
- Department of Psychology, University of California, Berkeley, CA 94720, USA
- Depertment of Neurology, University of California, Davis, CA 95817, USA
| |
Collapse
|
6
|
Kandiah N. Cognitive Outcomes Poststroke: A Need for Better Insights into Mechanisms. Brain Connect 2023; 13:438-440. [PMID: 37782227 DOI: 10.1089/brain.2023.29054.editorial] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
Affiliation(s)
- Nagaendran Kandiah
- Associate Professor of Neuroscience and Mental Health, Nanyang Technological University, Singapore, Singapore
- Director, Dementia Research Centre (Singapore), LKC-Imperial Medical School, Nanyang Technological University, Singapore, Singapore
- Consultant Neurologist, National University Hospital, Singapore, Singapore
- Clinician Scientist, National Medical Research Council, Singapore, Singapore
| |
Collapse
|
7
|
Ivanova MV, Pappas I. Understanding recovery of language after stroke: insights from neurovascular MRI studies. FRONTIERS IN LANGUAGE SCIENCES 2023; 2:1163547. [PMID: 38162928 PMCID: PMC10757818 DOI: 10.3389/flang.2023.1163547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Stroke causes a disruption in blood flow to the brain that can lead to profound language impairments. Understanding the mechanisms of language recovery after stroke is crucial for the prognosis and effective rehabilitation of people with aphasia. While the role of injured brain structures and disruptions in functional connectivity have been extensively explored, the relationship between neurovascular measures and language recovery in both early and later stages has not received sufficient attention in the field. Fully functioning healthy brain tissue requires oxygen and nutrients to be delivered promptly via its blood supply. Persistent decreases in blood flow after a stroke to the remaining non-lesioned tissue have been shown to contribute to poor language recovery. The goal of the current paper is to critically examine stroke studies looking at the relationship between different neurovascular measures and language deficits and mechanisms of language recovery via changes in neurovascular metrics. Measures of perfusion or cerebral blood flow (CBF) and cerebrovascular reactivity (CVR) provide complementary approaches to understanding neurovascular mechanisms post stroke by capturing both cerebral metabolic demands and mechanical vascular properties. While CBF measures indicate the amount of blood delivered to a certain region and serve as a proxy for metabolic demands of that area, CVR indices reflect the ability of the vasculature to recruit blood flow in response to a shortage of oxygen, such as when one is holding their breath. Increases in CBF during recovery beyond the site of the lesion have been shown to promote language gains. Similarly, CVR changes, when collateral vessels are recruited to help reorganize the flow of blood in hypoperfused regions, have been related to functional recovery post stroke. In the current review, we highlight the main findings in the literature investigating neurovascular changes in stroke recovery with a particular emphasis on how language abilities can be affected by changes in CBF and CVR. We conclude by summarizing existing methodological challenges and knowledge gaps that need to be addressed in future work in this area, outlining a promising avenue of research.
Collapse
Affiliation(s)
- Maria V. Ivanova
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Ioannis Pappas
- USC Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
8
|
Shah-Basak P, Boukrina O, Li XR, Jebahi F, Kielar A. Targeted neurorehabilitation strategies in post-stroke aphasia. Restor Neurol Neurosci 2023; 41:129-191. [PMID: 37980575 PMCID: PMC10741339 DOI: 10.3233/rnn-231344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
BACKGROUND Aphasia is a debilitating language impairment, affecting millions of people worldwide. About 40% of stroke survivors develop chronic aphasia, resulting in life-long disability. OBJECTIVE This review examines extrinsic and intrinsic neuromodulation techniques, aimed at enhancing the effects of speech and language therapies in stroke survivors with aphasia. METHODS We discuss the available evidence supporting the use of transcranial direct current stimulation (tDCS), repetitive transcranial magnetic stimulation, and functional MRI (fMRI) real-time neurofeedback in aphasia rehabilitation. RESULTS This review systematically evaluates studies focusing on efficacy and implementation of specialized methods for post-treatment outcome optimization and transfer to functional skills. It considers stimulation target determination and various targeting approaches. The translation of neuromodulation interventions to clinical practice is explored, emphasizing generalization and functional communication. The review also covers real-time fMRI neurofeedback, discussing current evidence for efficacy and essential implementation parameters. Finally, we address future directions for neuromodulation research in aphasia. CONCLUSIONS This comprehensive review aims to serve as a resource for a broad audience of researchers and clinicians interested in incorporating neuromodulation for advancing aphasia care.
Collapse
Affiliation(s)
| | - Olga Boukrina
- Kessler Foundation, Center for Stroke Rehabilitation Research, West Orange, NJ, USA
| | - Xin Ran Li
- School of Medicine, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Fatima Jebahi
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - Aneta Kielar
- Department of Speech, Languageand Hearing Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
9
|
Firwana YMS, Zolkefley MKI, Mohamed Hatta HZ, Rowbin C, Che Mohd Nassir CMN, Hanafi MH, Abdullah MS, Keserci B, Lannin NA, Mustapha M. Regional cerebral blood perfusion changes in chronic stroke survivors as potential brain correlates of the functional outcome following gamified home-based rehabilitation (IntelliRehab)-a pilot study. J Neuroeng Rehabil 2022; 19:94. [PMID: 36002827 PMCID: PMC9404656 DOI: 10.1186/s12984-022-01072-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 08/18/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hospital-based stroke rehabilitation for stroke survivors in developing countries may be limited by staffing ratios and length of stay that could hamper recovery potential. Thus, a home-based, gamified rehabilitation system (i.e., IntelliRehab) was tested for its ability to increase cerebral blood flow (CBF), and the secondary impact of changes on the upper limb motor function and functional outcomes. OBJECTIVE To explore the effect of IntelliRehab on CBF in chronic stroke patients and its correlation with the upper limb motor function. METHODS Two-dimensional pulsed Arterial Spin Labelling (2D-pASL) was used to obtain CBF images of stable, chronic stroke subjects (n = 8) over 3-months intervention period. CBF alterations were mapped, and the detected differences were marked as regions of interest. Motor functions represented by Fugl-Meyer Upper Extremity Assessment (FMA) and Stroke Impact Scale (SIS) were used to assess the primary and secondary outcomes, respectively. RESULTS Regional CBF were significantly increased in right inferior temporal gyrus and left superior temporal white matter after 1-month (p = 0.044) and 3-months (p = 0.01) of rehabilitation, respectively. However, regional CBF in left middle fronto-orbital gyrus significantly declined after 1-month of rehabilitation (p = 0.012). Moreover, SIS-Q7 and FMA scores significantly increased after 1-month and 3-months of rehabilitation. There were no significant correlations, however, between CBF changes and upper limb motor function. CONCLUSIONS Participants demonstrated improved motor functions, supporting the benefit of using IntelliRehab as a tool for home-based rehabilitation. However, within-participant improvements may have limited potential that suggests the need for a timely administration of IntelliRehab to get the maximum capacity of improvement.
Collapse
Affiliation(s)
- Younis M S Firwana
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Khairul Izamil Zolkefley
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang, Kuantan, Malaysia
| | - Hasnetty Zuria Mohamed Hatta
- Rehabilitation Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Christina Rowbin
- Rehabilitation Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Che Mohd Nasril Che Mohd Nassir
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Kulliyyah of Islamic Revealed Knowledge and Human Sciences, International Islamic University Malaysia, Kuala Lumpur, Malaysia
| | - Muhammad Hafiz Hanafi
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.,Rehabilitation Unit, Hospital Universiti Sains Malaysia, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Mohd Shafie Abdullah
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Bilgin Keserci
- Department of Radiology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia
| | - Natasha A Lannin
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
10
|
Walenski M, Chen Y, Litcofsky KA, Caplan D, Kiran S, Rapp B, Parrish TB, Thompson CK. Perilesional Perfusion in Chronic Stroke-Induced Aphasia and Its Response to Behavioral Treatment Interventions. NEUROBIOLOGY OF LANGUAGE (CAMBRIDGE, MASS.) 2022; 3:345-363. [PMID: 35685084 PMCID: PMC9169892 DOI: 10.1162/nol_a_00068] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2022] [Indexed: 05/28/2023]
Abstract
Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments in chronic aphasia, particularly in perilesional tissue. Abnormal perfusion in this region may also serve as a biomarker for predicting functional improvements with behavioral treatment interventions. Using pseudo-continuous arterial spin labeling in magnetic resonance imaging (MRI), we examined perfusion in chronic aphasia, in perilesional rings in the left hemisphere and their right hemisphere homologues. In the left hemisphere we found a gradient pattern of decreasing perfusion closer to the lesion. The opposite pattern was found in the right hemisphere, with significantly increased perfusion close to the lesion homologue. Perfusion was also increased in the right hemisphere lesion homologue region relative to the surrounding tissue. We next examined changes in perfusion in two groups: one group who underwent MRI scanning before and after three months of a behavioral treatment intervention that led to significant language gains, and a second group who was scanned twice at a three-month interval without a treatment intervention. For both groups, there was no difference in perfusion over time in either the left or the right hemisphere. Moreover, within the treatment group pre-treatment perfusion scores did not predict treatment response; neither did pre-treatment perfusion predict post-treatment language performance. These results indicate that perfusion is chronically abnormal in both hemispheres, but chronically abnormal perfusion did not change in response to our behavioral treatment interventions, and did not predict responsiveness to language treatment.
Collapse
Affiliation(s)
- Matthew Walenski
- Department of Communication Sciences and Disorders, East Carolina University, Greenville, NC
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
| | - Yufen Chen
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - Kaitlyn A. Litcofsky
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| | - Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL
| |
Collapse
|
11
|
The Effectiveness of Transcranial Magnetic Stimulation (TMS) Paradigms as Treatment Options for Recovery of Language Deficits in Chronic Poststroke Aphasia. Behav Neurol 2022; 2022:7274115. [PMID: 35069929 PMCID: PMC8767406 DOI: 10.1155/2022/7274115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 12/18/2021] [Indexed: 11/29/2022] Open
Abstract
Background In an effort to boost aphasia recovery, modern rehabilitation, in addition to speech and language therapy (SALT), is increasingly incorporating noninvasive methods of brain stimulation. The present study is aimed at investigating the effectiveness of two paradigms of neuronavigated repetitive transcranial magnetic stimulation (rTMS): (i) 1 Hz rTMS and (ii) continuous theta burst stimulation (cTBS) each as a standalone treatment for chronic aphasia poststroke. Methods A single subject experimental design (SSED) trial was carried out in which six people with aphasia (PWA) were recruited, following a single left hemispheric stroke more than six months prior to the study. Three individuals were treated with 1 Hz rTMS, and the remaining three were treated with cTBS. In all cases, TMS was applied over the right pars triangularis (pTr). Language assessment, with standardized and functional measures, and cognitive evaluations were carried out at four time points: twice prior to treatment (baseline), one day immediately posttreatment, and at follow-up two months after treatment was terminated. Quality of life (QoL) was also assessed at baseline and two months posttreatment. In addition, one of the participants with severe global aphasia was followed up again one and two years posttherapy. Results For all participants, both rTMS paradigms (1 Hz rTMS and cTBS) generated trends towards improvement in several language skills (i.e., verbal receptive language, expressive language, and naming and reading) one day after treatment and/or two months after therapy. Rated QoL remained stable in three individuals, but for the other three, the communication scores of the QoL were reduced, while two of them also showed a decline in the psychological scores. The participant that was treated with cTBS and followed for up to two years showed that the significant improvement she had initially exhibited in comprehension and reading skills two months after TMS (1st follow-up) was sustained for at least up to two years. Conclusion From the current findings, it is suggested that inhibitory TMS over the right pTr has the potential to drive neuroplastic changes as a standalone treatment that facilitates language recovery in poststroke aphasia.
Collapse
|
12
|
Cerebral blood flow and cognitive outcome after pediatric stroke in the middle cerebral artery. Sci Rep 2021; 11:19421. [PMID: 34593847 PMCID: PMC8484584 DOI: 10.1038/s41598-021-98309-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 09/07/2021] [Indexed: 01/06/2023] Open
Abstract
Adaptive recovery of cerebral perfusion after pediatric arterial ischemic stroke (AIS) is sought to be crucial for sustainable rehabilitation of cognitive functions. We therefore examined cerebral blood flow (CBF) in the chronic stage after stroke and its association with cognitive outcome in patients after pediatric AIS. This cross-sectional study investigated CBF and cognitive functions in 14 patients (age 13.5 ± 4.4 years) after pediatric AIS in the middle cerebral artery (time since AIS was at least 2 years prior to assessment) when compared with 36 healthy controls (aged 13.8 ± 4.3 years). Cognitive functions were assessed with neuropsychological tests, CBF was measured with arterial spin labeled imaging in the anterior, middle, and posterior cerebral artery (ACA, MCA, PCA). Patients had significantly lower IQ scores and poorer cognitive functions compared to healthy controls (p < 0.026) but mean performance was within the normal range in all cognitive domains. Arterial spin labeled imaging revealed significantly lower CBF in the ipsilesional MCA and PCA in patients compared to healthy controls. Further, we found significantly higher interhemispheric perfusion imbalance in the MCA in patients compared to controls. Higher interhemispheric perfusion imbalance in the MCA was significantly associated with lower working memory performance. Our findings revealed that even years after a pediatric stroke in the MCA, reduced ipsilesional cerebral blood flow occurs in the MCA and PCA and that interhemispheric imbalance is associated with cognitive performance. Thus, our data suggest that cerebral hypoperfusion might underlie some of the variability observed in long-term outcome after pediatric stroke.
Collapse
|
13
|
Predicting language recovery in post-stroke aphasia using behavior and functional MRI. Sci Rep 2021; 11:8419. [PMID: 33875733 PMCID: PMC8055660 DOI: 10.1038/s41598-021-88022-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/22/2021] [Indexed: 11/22/2022] Open
Abstract
Language outcomes after speech and language therapy in post-stroke aphasia are challenging to predict. This study examines behavioral language measures and resting state fMRI (rsfMRI) as predictors of treatment outcome. Fifty-seven patients with chronic aphasia were recruited and treated for one of three aphasia impairments: anomia, agrammatism, or dysgraphia. Treatment effect was measured by performance on a treatment-specific language measure, assessed before and after three months of language therapy. Each patient also underwent an additional 27 language assessments and a rsfMRI scan at baseline. Patient scans were decomposed into 20 components by group independent component analysis, and the fractional amplitude of low-frequency fluctuations (fALFF) was calculated for each component time series. Post-treatment performance was modelled with elastic net regression, using pre-treatment performance and either behavioral language measures or fALFF imaging predictors. Analysis showed strong performance for behavioral measures in anomia (R2 = 0.948, n = 28) and for fALFF predictors in agrammatism (R2 = 0.876, n = 11) and dysgraphia (R2 = 0.822, n = 18). Models of language outcomes after treatment trained using rsfMRI features may outperform models trained using behavioral language measures in some patient populations. This suggests that rsfMRI may have prognostic value for aphasia therapy outcomes.
Collapse
|
14
|
ASL perfusion in acute ischemic stroke: The value of CBF in outcome prediction. Clin Neurol Neurosurg 2020; 194:105908. [DOI: 10.1016/j.clineuro.2020.105908] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 05/08/2020] [Accepted: 05/09/2020] [Indexed: 11/21/2022]
|
15
|
Thompson CK. Neurocognitive Recovery of Sentence Processing in Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2019; 62:3947-3972. [PMID: 31756151 PMCID: PMC7203523 DOI: 10.1044/2019_jslhr-l-rsnp-19-0219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 08/20/2019] [Accepted: 09/09/2019] [Indexed: 05/04/2023]
Abstract
Purpose Reorganization of language networks in aphasia takes advantage of the facts that (a) the brain is an organ of plasticity, with neuronal changes occurring throughout the life span, including following brain damage; (b) plasticity is highly experience dependent; and (c) as with any learning system, language reorganization involves a synergistic interplay between organism-intrinsic (i.e., cognitive and brain) and organism-extrinsic (i.e., environmental) variables. A major goal for clinical treatment of aphasia is to be able to prescribe treatment and predict its outcome based on the neurocognitive deficit profiles of individual patients. This review article summarizes the results of research examining the neurocognitive effects of psycholinguistically based treatment (i.e., Treatment of Underlying Forms; Thompson & Shapiro, 2005) for sentence processing impairments in individuals with chronic agrammatic aphasia resulting from stroke and primary progressive aphasia and addresses both behavioral and brain variables related to successful treatment outcomes. The influences of lesion volume and location, perfusion (blood flow), and resting-state neural activity on language recovery are also discussed as related to recovery of agrammatism and other language impairments. Based on these and other data, principles for promoting neuroplasticity of language networks are presented. Conclusions Sentence processing treatment results in improved comprehension and production of complex syntactic structures in chronic agrammatism and generalization to less complex, linguistically related structures in chronic agrammatism. Patients also show treatment-induced shifts toward normal-like online sentence processing routines (based on eye movement data) and changes in neural recruitment patterns (based on functional neuroimaging), with posttreatment activation of regions overlapping with those within sentence processing and dorsal attention networks engaged by neurotypical adults performing the same task. These findings provide compelling evidence that treatment focused on principles of neuroplasticity promotes neurocognitive recovery in chronic agrammatic aphasia. Presentation Videohttps://doi.org/10.23641/asha.10257587.
Collapse
Affiliation(s)
- Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Department of Neurology and Mesulam Cognitive Neurology and Alzheimer's Disease Center, Northwestern University, Evanston/Chicago, IL
| |
Collapse
|
16
|
Boukrina O, Kucukboyaci NE, Dobryakova E. Considerations of power and sample size in rehabilitation research. Int J Psychophysiol 2019; 154:6-14. [PMID: 31655185 DOI: 10.1016/j.ijpsycho.2019.08.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 05/22/2019] [Accepted: 08/23/2019] [Indexed: 01/26/2023]
Abstract
With the current emphasis on power and reproducibility, pressures are rising to increase sample sizes in rehabilitation research in order to reflect more accurate effect estimation and generalizable results. The conventional way of increasing power by enrolling more participants is less feasible in some fields of research. In particular, rehabilitation research faces considerable challenges in achieving this goal. We describe the specific challenges to increasing power by recruiting large sample sizes and obtaining large effects in rehabilitation research. Specifically, we discuss how variability within clinical populations, lack of common standards for selecting appropriate control groups; potentially reduced reliability of measurements of brain function in individuals recovering from a brain injury; biases involved in a priori effect size estimation, and higher budgetary and staffing requirements can influence considerations of sample and effect size in rehabilitation. We also describe solutions to these challenges, such as increased sampling per participant, improving experimental control, appropriate analyses, transparent result reporting and using innovative ways of harnessing the inherent variability of clinical populations. These solutions can improve statistical power and produce reliable and valid results even in the face of limited availability of large samples.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - N Erkut Kucukboyaci
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA
| | - Ekaterina Dobryakova
- Center for Traumatic Brain Injury Research, Kessler Foundation, East Hanover, NJ, USA; Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
17
|
Leistner R, Everts R, Federspiel A, Kornfeld S, Slavova N, Steiner L, Wiest R, Steinlin M, Grunt S. Cerebral blood flow imbalance is associated with motor outcome after pediatric arterial ischemic stroke. PLoS One 2019; 14:e0223584. [PMID: 31603919 PMCID: PMC6788710 DOI: 10.1371/journal.pone.0223584] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 09/24/2019] [Indexed: 12/30/2022] Open
Abstract
Cerebral hemodynamics after arterial ischemic stroke (AIS) in children are largely unknown. This study aims to explore long-term cerebral perfusion balance of vital tissue and its relation to motor outcome after childhood AIS. Patients diagnosed with childhood AIS (≤16 years at diagnosis, time since stroke ≥2 years) and typically developing peers were examined. Hemiparesis was classified according to the Pediatric Stroke Outcome Measure. Manual ability was assessed using the ABILHAND-Kids questionnaire. Cerebral blood flow was measured by arterial spin labeling and analyzed in the following brain regions: the hemispheres, the territory of the anterior cerebral artery (ACA), the middle cerebral artery (MCA), and in subregions of the MCA territory (MCA anterior, middle, posterior). To assess cerebral perfusion balance, laterality indices were calculated using cerebral blood flow in the ipsi- and contralesional hemisphere. Laterality indices were compared between stroke patients with and without hemiparesis, and peers. Twenty participants diagnosed with AIS were included (12 boys, 8 girls; mean age 14.46±4.96 years; time since stroke 8.08±3.62 years); 9 (45%) were diagnosed with hemiparesis. Additionally, 47 typically developing peers (21 boys, 26 girls; mean age 14.24±5.42 years) were studied. Laterality indices were higher in stroke patients and oriented to the contralesional hemisphere in all brain regions except the ACA territory and MCA posterior subregion. This was significantly different from peers, who showed balanced laterality indices. There was a significant correlation between laterality indices and manual ability, except in the ACA territory. AIS is associated with long-term alterations of cerebral blood flow in vital tissue, even in patients without hemiparesis. The degree of imbalance of cerebral perfusion in children after AIS is associated with manual ability.
Collapse
Affiliation(s)
- Rebekka Leistner
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Regula Everts
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- Department of Diabetes, Endocrinology, Clinical Nutrition and Metabolism, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- * E-mail:
| | - Andrea Federspiel
- Psychiatric Neuroimaging Unit, Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Salome Kornfeld
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Nedelina Slavova
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Leonie Steiner
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Department of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Maja Steinlin
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Sebastian Grunt
- Division of Neuropediatrics, Development and Rehabilitation, University Children’s Hospital, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
18
|
Cannella R, Sparacia G, Lo Re V, Oddo E, Mamone G, Miraglia R. Advanced magnetic resonance imaging of cortical laminar necrosis in patients with stroke. Neuroradiol J 2019; 32:431-437. [PMID: 31566507 DOI: 10.1177/1971400919876621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
PURPOSE The aim of this study was to assess the novel advanced magnetic resonance imaging findings of acute stage cortical laminar necrosis developing after complicated cardiovascular or abdominal surgery. MATERIALS AND METHODS This institutional review board-approved study included patients with postoperative stroke due to cortical laminar necrosis imaged with magnetic resonance in the acute stage. Brain magnetic resonance imaging examinations were obtained on a 3T magnetic resonance scanner within 48 hours of the neurological symptoms, including diffusion-weighted images (b value, 1000 s/mm2) and arterial spin labelling using a pseudo-continuous arterial spin labelling method in four patients. Conventional and advanced magnetic resonance images were analysed to assess the imaging features in acute stage cortical laminar necrosis. RESULTS The final population consisted of 14 patients (seven men and seven women, mean age 61 years, range 32-79 years) diagnosed with stroke and acute phase cortical laminar necrosis. All the patients presented with cortical lesions showing restricted diffusion on diffusion-weighted images and hypointensity on the apparent diffusion coefficient map. Cortical hyperintensity on T2-weighted or fluid-attenuated inversion recovery images was found in three (21%) and six (43%) patients, respectively. Reduced perfusion was noted in three out of four patients imaged with arterial spin labelling, while in one case no corresponding perfusion abnormality was noted on the arterial spin labelling maps. Arterial spin labelling abnormalities were much more extensive than diffusion restriction in two patients, and they were associated with a poor outcome. CONCLUSION Cortical hyperintense abnormalities on diffusion-weighted imaging may be the only sign of developing cortical laminar necrosis injury. The acquisition of arterial spin labelling helps to identify perfusion alterations and the extension of the ischaemic injury.
Collapse
Affiliation(s)
- Roberto Cannella
- Radiology Service, Biomedicina, Neuroscienze e Diagnostica avanzata (BIND) Department, University of Palermo, Italy
| | - Gianvincenzo Sparacia
- Radiology Service, Biomedicina, Neuroscienze e Diagnostica avanzata (BIND) Department, University of Palermo, Italy.,Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Via Ernesto Tricomi 5, 90127, Palermo, Italy
| | - Elisa Oddo
- Radiology Service, Biomedicina, Neuroscienze e Diagnostica avanzata (BIND) Department, University of Palermo, Italy
| | - Giuseppe Mamone
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Italy
| | - Roberto Miraglia
- Radiology Service, Department of Diagnostic and Therapeutic Services, Mediterranean Institute for Transplantation and Advanced Specialized Therapies (IRCCS-ISMETT), Italy
| |
Collapse
|
19
|
Sagnier S, Sibon I. The new insights into human brain imaging after stroke. J Neurosci Res 2019; 100:1171-1181. [PMID: 31498491 DOI: 10.1002/jnr.24525] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 08/22/2019] [Accepted: 08/28/2019] [Indexed: 12/16/2022]
Abstract
Over the last two decades, developments of human brain stroke imaging have raised several questions about the place of new MRI biomarkers in the acute management of stroke and the prediction of poststroke outcome. Recent studies have demonstrated the main role of perfusion-weighted imaging in the identification of the best cerebral perfusion profile for a better response after reperfusion therapies in acute ischemic stroke. A major issue remains the early prediction of stroke outcome. While voxel-based lesion-symptom mapping emphasized the influence of stroke location, the analysis of the brain parenchyma underpinning the stroke lesion showed the relevance of prestroke cerebral status, including cortical atrophy, white matter integrity, or presence of chronic cortical cerebral microinfarcts. Moreover, besides the evaluation of the visually abnormal brain tissue, the analysis of normal-appearing brain parenchyma using diffusion tensor imaging and magnetization transfer imaging or spectroscopy offered new biomarkers to improve the prediction of the prognosis and new targets to follow in therapeutic trials. The aim of this review was to depict the main new radiological biomarkers reported in the last two decades that will provide a more thorough prediction of functional, motor, and neuropsychological outcome following the stroke. These new developments in neuroimaging might be a cornerstone in the emerging personalized medicine for stroke patients.
Collapse
Affiliation(s)
- Sharmila Sagnier
- UMR-5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-vasculaire, Bordeaux, France
| | - Igor Sibon
- UMR-5287 CNRS, Université de Bordeaux, EPHE PSL Research University, Bordeaux, France.,CHU de Bordeaux, Unité Neuro-vasculaire, Bordeaux, France
| |
Collapse
|
20
|
Boukrina O, Barrett AM, Graves WW. Cerebral perfusion of the left reading network predicts recovery of reading in subacute to chronic stroke. Hum Brain Mapp 2019; 40:5301-5314. [PMID: 31452284 PMCID: PMC6864894 DOI: 10.1002/hbm.24773] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 01/13/2023] Open
Abstract
Better understanding of cerebral blood flow (CBF) perfusion in stroke recovery can help inform decisions about optimal timing and targets of restorative treatments. In this study, we examined the relationship between cerebral perfusion and recovery from stroke‐induced reading deficits. Left stroke patients were tested with a noninvasive CBF measure (arterial spin labeling) <5 weeks post‐stroke, and a subset had follow up testing >3 months post‐stroke. We measured blood flow perfusion within the left and right sides of the brain, in areas surrounding the lesion, and areas belonging to the reading network. Two hypotheses were tested. The first was that recovery of reading function depends on increased perfusion around the stroke lesion. This hypothesis was not supported by our findings. The second hypothesis was that increased perfusion of intact areas within the reading circuit is tightly coupled with recovery. Our findings are consistent with this hypothesis. Specifically, higher perfusion in the left reading network measured during the subacute stroke period predicted better reading ability and phonology competence in the chronic period. In contrast, higher perfusion of the right homologous regions was associated with decreased reading accuracy and phonology competence in the subacute and chronic periods. These findings suggest that recovery of reading and language competence may rely on improved blood flow in the reading network of the language‐dominant hemisphere.
Collapse
Affiliation(s)
- Olga Boukrina
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, New Jersey.,Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, New Jersey
| | - A M Barrett
- Center for Stroke Rehabilitation Research, Kessler Foundation, West Orange, New Jersey.,Department of Physical Medicine and Rehabilitation, Rutgers-New Jersey Medical School, Newark, New Jersey.,Kessler Institute for Rehabilitation, West Orange, New Jersey
| | - William W Graves
- Department of Psychology, Rutgers, The State University of New Jersey, Newark, New Jersey
| |
Collapse
|
21
|
Kiran S, Thompson CK. Neuroplasticity of Language Networks in Aphasia: Advances, Updates, and Future Challenges. Front Neurol 2019; 10:295. [PMID: 31001187 PMCID: PMC6454116 DOI: 10.3389/fneur.2019.00295] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 03/06/2019] [Indexed: 11/13/2022] Open
Abstract
Researchers have sought to understand how language is processed in the brain, how brain damage affects language abilities, and what can be expected during the recovery period since the early 19th century. In this review, we first discuss mechanisms of damage and plasticity in the post-stroke brain, both in the acute and the chronic phase of recovery. We then review factors that are associated with recovery. First, we review organism intrinsic variables such as age, lesion volume and location and structural integrity that influence language recovery. Next, we review organism extrinsic factors such as treatment that influence language recovery. Here, we discuss recent advances in our understanding of language recovery and highlight recent work that emphasizes a network perspective of language recovery. Finally, we propose our interpretation of the principles of neuroplasticity, originally proposed by Kleim and Jones (1) in the context of extant literature in aphasia recovery and rehabilitation. Ultimately, we encourage researchers to propose sophisticated intervention studies that bring us closer to the goal of providing precision treatment for patients with aphasia and a better understanding of the neural mechanisms that underlie successful neuroplasticity.
Collapse
Affiliation(s)
- Swathi Kiran
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, United States
| | - Cynthia K. Thompson
- Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, United States
- Department of Neurology, The Cognitive Neurology and Alzheimer's Disease Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
22
|
Wang C, Miao P, Liu J, Wei S, Guo Y, Li Z, Zheng D, Cheng J. Cerebral blood flow features in chronic subcortical stroke: Lesion location-dependent study. Brain Res 2019; 1706:177-183. [DOI: 10.1016/j.brainres.2018.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 11/07/2018] [Accepted: 11/08/2018] [Indexed: 02/07/2023]
|
23
|
Abnormal Functional Connectivity Density in Post-Stroke Aphasia. Brain Topogr 2018; 32:271-282. [DOI: 10.1007/s10548-018-0681-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 10/03/2018] [Indexed: 12/17/2022]
|
24
|
Larivière S, Ward NS, Boudrias MH. Disrupted functional network integrity and flexibility after stroke: Relation to motor impairments. NEUROIMAGE-CLINICAL 2018; 19:883-891. [PMID: 29946512 PMCID: PMC6008503 DOI: 10.1016/j.nicl.2018.06.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 05/17/2018] [Accepted: 06/07/2018] [Indexed: 12/21/2022]
Abstract
Previous studies investigating brain activation present during upper limb movement after stroke have greatly detailed activity alterations in the ipsi- and contralesional primary motor cortices (M1). Despite considerable interest in M1, investigations into the integration and coordination of large-scale functional networks subserving motor, sensory, and cognitive control after stroke remain scarce. The purpose of this study was to assess non-static functional connectivity within whole-brain networks involved in the production of isometric, visually-paced hand grips. Seventeen stroke patients and 24 healthy controls underwent functional MRI while performing a series of 50 isometric hand grips with their affected hand (stroke patients) or dominant hand (control subjects). We used task-based multivariate functional connectivity to derive spatial and temporal information of whole-brain networks specifically underlying hand movement. This technique has the advantage of extracting within-network commonalities across groups and identifying connectivity differences between these groups. We further used a nonparametric statistical approach to identify group differences in regional activity within these task-specific networks and assess whether such alterations were related to the degree of motor impairment in stroke patients. Our whole-brain multivariate analysis revealed group differences in two networks: (1) a motor network, including pre- and postcentral gyri, dorsal and ventral premotor cortices, as well as supplementary motor area, in which stroke patients showed reduced task-related activation compared to controls, and (2) a default-mode network (DMN), including the posterior cingulate cortex, precuneus, and medial prefrontal cortex, in which patients showed less deactivation than controls. Within-network group differences revealed decreased activity in ipsilesional primary sensorimotor cortex in stroke patients, which also positively correlated with lower levels of motor impairment. Moreover, the temporal information extracted from the functional networks revealed that stroke patients did not show a reciprocal DMN deactivation peak following activation of their motor network. This finding suggests that allocation of functional resources to motor areas during hand movement may impair their ability to efficiently switch from one network to another. Taken together, our study expands our understanding of functional reorganization during motor recovery after a stroke, and suggests that modulation of ipsilesional sensorimotor activity may increase the integrity of a whole-brain motor network, contribute to better motor performance, and optimize network flexibility. We assessed connectivity in task-based brain networks underlying hand movement. We compared network properties between stroke patients and healthy controls. Stroke patients have altered default-mode and motor network connectivity. Patients also showed poorer motor performance and impaired network flexibility.
Collapse
Affiliation(s)
- Sara Larivière
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montréal, Qc, Canada; Department of Neurology and Neurosurgery, McGill University, Montréal, Qc, Canada
| | - Nick S Ward
- Sobell Department of Motor Neuroscience, Institute of Neurology, University College, London, UK
| | - Marie-Hélène Boudrias
- School of Physical and Occupational Therapy, McGill University, Montréal, Qc, Canada; Center for Interdisciplinary Research in Rehabilitation of Greater Montreal (CRIR), Montréal, Qc, Canada.
| |
Collapse
|
25
|
Boukrina O, Chiaravalloti ND, Dobryakova E. Editorial: Investigating Brain Activity After Acquired and Traumatic Brain Injury: Applications of Functional MRI. Front Neurol 2018; 9:365. [PMID: 29872422 PMCID: PMC5972273 DOI: 10.3389/fneur.2018.00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/07/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Olga Boukrina
- Stroke, Kessler Foundation, West Orange, NJ, United States
| | - Nancy D Chiaravalloti
- Neuropsychology and Neuroscience, Kessler Foundation, West Orange, NJ, United States
| | | |
Collapse
|
26
|
Jezzard P, Chappell MA, Okell TW. Arterial spin labeling for the measurement of cerebral perfusion and angiography. J Cereb Blood Flow Metab 2018; 38:603-626. [PMID: 29168667 PMCID: PMC5888859 DOI: 10.1177/0271678x17743240] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Arterial spin labeling (ASL) is an MRI technique that was first proposed a quarter of a century ago. It offers the prospect of non-invasive quantitative measurement of cerebral perfusion, making it potentially very useful for research and clinical studies, particularly where multiple longitudinal measurements are required. However, it has suffered from a number of challenges, including a relatively low signal-to-noise ratio, and a confusing number of sequence variants, thus hindering its clinical uptake. Recently, however, there has been a consensus adoption of an accepted acquisition and analysis framework for ASL, and thus a better penetration onto clinical MRI scanners. Here, we review the basic concepts in ASL and describe the current state-of-the-art acquisition and analysis approaches, and the versatility of the method to perform both quantitative cerebral perfusion measurement, along with quantitative cerebral angiographic measurement.
Collapse
Affiliation(s)
- Peter Jezzard
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | | | - Thomas W Okell
- 1 Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| |
Collapse
|
27
|
de la Torre JC. Are Major Dementias Triggered by Poor Blood Flow to the Brain? Theoretical Considerations. J Alzheimers Dis 2018; 57:353-371. [PMID: 28211814 DOI: 10.3233/jad-161266] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
There is growing evidence that chronic brain hypoperfusion plays a central role in the development of Alzheimer's disease (AD) long before dyscognitive symptoms or amyloid-β accumulation in the brain appear. This commentary proposes that dementia with Lewy bodies (DLB), frontotemporal dementia (FTD), and Creutzfeldt-Jakob disease (CJD) may also develop from chronic brain hypoperfusion following a similar but not identical neurometabolic breakdown as AD. The argument to support this conclusion is that chronic brain hypoperfusion, which is found at the early stages of the three dementias reviewed here, will reduce oxygen delivery and lower oxidative phosphorylation promoting a steady decline in the synthesis of the cell energy fuel adenosine triphosphate (ATP). This process is known to lead to oxidative stress. Virtually all neurodegenerative diseases, including FTD, DLB, and CJD, are characterized by oxidative stress that promotes inclusion bodies which differ in structure, location, and origin, as well as which neurological disorder they typify. Inclusion bodies have one thing in common; they are known to diminish autophagic activity, the protective intracellular degradative process that removes malformed proteins, protein aggregates, and damaged subcellular organelles that can disrupt neuronal homeostasis. Neurons are dependent on autophagy for their normal function and survival. When autophagic activity is diminished or impaired in neurons, high levels of unfolded or misfolded proteins overwhelm and downregulate the neuroprotective activity of unfolded protein response which is unable to get rid of dysfunctional organelles such as damaged mitochondria and malformed proteins at the synapse. The endpoint of this neuropathologic process results in damaged synapses, impaired neurotransmission, cognitive decline, and dementia.
Collapse
|
28
|
Miao P, Wang C, Li P, Wei S, Deng C, Zheng D, Cheng J. Altered gray matter volume, cerebral blood flow and functional connectivity in chronic stroke patients. Neurosci Lett 2017; 662:331-338. [PMID: 28919535 DOI: 10.1016/j.neulet.2017.05.066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 05/26/2017] [Accepted: 05/30/2017] [Indexed: 01/07/2023]
Abstract
It is entangled connections and intensive functional interactions between cortex and subcortical structures that enable our brain to perform delicate movement, and poses plasticity to recover from stroke. However, it is still unclear how cortical structures and functions change in well-recovered patients from subcortical infarctions in motor pathway. In order to reveal neuroplasticity underlying well-recovered stroke patients, both structural (gray matter volume, GMV) and functional reorganizations (cerebral blood flow, CBF and resting-state functional connectivity, rsFC) were investigated by using multi-modal MRI. Our results showed that well-recovered stroke patients exhibited significantly increased GMV in contralesional supplementary motor area (SMA), increased CBFs in contralesional superior frontal gyrus (SFG) and supramarginal gyrus (SMG) irrespective of GMV correction. Furthermore, our results showed increased rsFC between contralesional middle temporal gyrus (MTG) and SMG. Negative correlations between CBF increases and behavior test scores were also observed, suggesting neural mechanism underlying clinical improvement. Our results suggested that neuroplasticity after chronic stroke showed in both structural and functional levels, and correlation between CBF change and clinical test suggested possible biomarker for stroke recovery.
Collapse
Affiliation(s)
- Peifang Miao
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Caihong Wang
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Peng Li
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Sen Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunshan Deng
- Section on Cognitive Neurophysiology and Imaging, Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20192, USA
| | | | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
29
|
Hong X, Lu ZK, Teh I, Nasrallah FA, Teo WP, Ang KK, Phua KS, Guan C, Chew E, Chuang KH. Brain plasticity following MI-BCI training combined with tDCS in a randomized trial in chronic subcortical stroke subjects: a preliminary study. Sci Rep 2017; 7:9222. [PMID: 28835651 PMCID: PMC5569072 DOI: 10.1038/s41598-017-08928-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Brain-computer interface-assisted motor imagery (MI-BCI) or transcranial direct current stimulation (tDCS) has been used in stroke rehabilitation, though their combinatory effect is unknown. We investigated brain plasticity following a combined MI-BCI and tDCS intervention in chronic subcortical stroke patients with unilateral upper limb disability. Nineteen patients were randomized into tDCS and sham-tDCS groups. Diffusion and perfusion MRI, and transcranial magnetic stimulation were used to study structural connectivity, cerebral blood flow (CBF), and corticospinal excitability, respectively, before and 4 weeks after the 2-week intervention. After quality control, thirteen subjects were included in the CBF analysis. Eleven healthy controls underwent 2 sessions of MRI for reproducibility study. Whereas motor performance showed comparable improvement, long-lasting neuroplasticity can only be detected in the tDCS group, where white matter integrity in the ipsilesional corticospinal tract and bilateral corpus callosum was increased but sensorimotor CBF was decreased, particularly in the ipsilesional side. CBF change in the bilateral parietal cortices also correlated with motor function improvement, consistent with the increased white matter integrity in the corpus callosum connecting these regions, suggesting an involvement of interhemispheric interaction. The preliminary results indicate that tDCS may facilitate neuroplasticity and suggest the potential for refining rehabilitation strategies for stroke patients.
Collapse
Affiliation(s)
- Xin Hong
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, 11 Biopolis Way, #02-02 Helios, Singapore, 138667, Singapore
| | - Zhong Kang Lu
- Institute for Infocomm Research, Agency for Science Technology and Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Irvin Teh
- Clinical Imaging Research Center, Agency for Science Technology and Research, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore
- Wellcome Trust Centre for Human Genetics, Roosevelt Drive, Oxford, OX3 7BN, UK
| | - Fatima Ali Nasrallah
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, 11 Biopolis Way, #02-02 Helios, Singapore, 138667, Singapore
- Queensland Brain Institute, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Wei Peng Teo
- Division of Neurology, National University Hospital System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, 221 Burwood Highway, Burwood, VIC 3125, Australia
| | - Kai Keng Ang
- Institute for Infocomm Research, Agency for Science Technology and Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Kok Soon Phua
- Institute for Infocomm Research, Agency for Science Technology and Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, 138632, Singapore
| | - Cuntai Guan
- Institute for Infocomm Research, Agency for Science Technology and Research, 1 Fusionopolis Way, #21-01 Connexis (South Tower), Singapore, 138632, Singapore
- School of Computer Science and Engineering, Nanynag Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Effie Chew
- Division of Neurology, National University Hospital System, 5 Lower Kent Ridge Road, Singapore, 119074, Singapore.
- Yong Loo Lin School of Medicine, National University of Singapore, NUHS Tower Block, Level 11, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| | - Kai-Hsiang Chuang
- Singapore Bioimaging Consortium, Agency for Science Technology and Research, 11 Biopolis Way, #02-02 Helios, Singapore, 138667, Singapore.
- Clinical Imaging Research Center, Agency for Science Technology and Research, Centre for Translational Medicine (MD6), 14 Medical Drive, #B1-01, Singapore, 117599, Singapore.
- Queensland Brain Institute and Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
30
|
Wierenga CE, Bischoff-Grethe A, Rasmusson G, Bailer UF, Berner LA, Liu TT, Kaye WH. Aberrant Cerebral Blood Flow in Response to Hunger and Satiety in Women Remitted from Anorexia Nervosa. Front Nutr 2017; 4:32. [PMID: 28770207 PMCID: PMC5515860 DOI: 10.3389/fnut.2017.00032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 07/03/2017] [Indexed: 12/20/2022] Open
Abstract
The etiology of pathological eating in anorexia nervosa (AN) remains poorly understood. Cerebral blood flow (CBF) is an indirect marker of neuronal function. In healthy adults, fasting increases CBF, reflecting increased delivery of oxygen and glucose to support brain metabolism. This study investigated whether women remitted from restricting-type AN (RAN) have altered CBF in response to hunger that may indicate homeostatic dysregulation contributing to their ability to restrict food. We compared resting CBF measured with pulsed arterial spin labeling in 21 RAN and 16 healthy comparison women (CW) when hungry (after a 16-h fast) and after a meal. Only remitted subjects were examined to avoid the confounding effects of malnutrition on brain function. Compared to CW, RAN demonstrated a reduced difference in the Hungry − Fed CBF contrast in the right ventral striatum, right subgenual anterior cingulate cortex (pcorr < 0.05) and left posterior insula (punc < 0.05); RAN had decreased CBF when hungry versus fed, whereas CW had increased CBF when hungry versus fed. Moreover, decreased CBF when hungry in the left insula was associated with greater hunger ratings on the fasted day for RAN. This represents the first study to show that women remitted from AN have aberrant resting neurovascular function in homeostatic neural circuitry in response to hunger. Regions involved in homeostatic regulation showed group differences in the Hungry − Fed contrast, suggesting altered cellular energy metabolism in this circuitry that may reduce motivation to eat.
Collapse
Affiliation(s)
- Christina E Wierenga
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Amanda Bischoff-Grethe
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Grace Rasmusson
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Ursula F Bailer
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States.,Division of Biological Psychiatry, Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Laura A Berner
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| | - Thomas T Liu
- Department of Radiology, University of California San Diego, La Jolla, CA, United States
| | - Walter H Kaye
- Department of Psychiatry, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
31
|
Domi T, Vossough A, Stence NV, Felling RJ, Leung J, Krishnan P, Watson CG, Grant PE, Kassner A. The Potential for Advanced Magnetic Resonance Neuroimaging Techniques in Pediatric Stroke Research. Pediatr Neurol 2017; 69:24-36. [PMID: 28237248 DOI: 10.1016/j.pediatrneurol.2016.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/23/2016] [Accepted: 12/24/2016] [Indexed: 02/07/2023]
Abstract
BACKGROUND This article was written to provide clinicians and researchers with an overview of a number of advanced neuroimaging techniques in an effort to promote increased utility and the design of future studies using advanced neuroimaging in childhood stroke. The current capabilities of advanced magnetic resonance imaging techniques provide the opportunity to build on our knowledge of the consequences of stroke on the developing brain. These capabilities include providing information about the physiology, metabolism, structure, and function of the brain that are not routinely evaluated in the clinical setting. METHODS During the Proceedings of the Stroke Imaging Laboratory for Children Workshop in Toronto in June 2015, a subgroup of clinicians and imaging researchers discussed how the application of advanced neuroimaging techniques could further our understanding of the mechanisms of stroke injury and repair in the pediatric population. This subgroup was established based on their interest and commitment to design collaborative, advanced neuroimaging studies in the pediatric stroke population. RESULTS In working toward this goal, we first sought to describe here the magnetic resonance imaging techniques that are currently available for use, and how they have been applied in other stroke populations (e.g., adult and perinatal stroke). CONCLUSIONS With the continued improvement in advanced neuroimaging techniques, including shorter acquisition times, there is an opportunity to apply these techniques to their full potential in the research setting and learn more about the effects of stroke in the developing brain.
Collapse
Affiliation(s)
- Trish Domi
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Arastoo Vossough
- Department of Radiology, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicholas V Stence
- Department of Radiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Ryan J Felling
- Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Pediatrics, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jackie Leung
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Pradeep Krishnan
- Department of Neuroradiology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Christopher G Watson
- Department of Computational Neuroscience, Division of Graduate Medical Sciences, Boston University School of Medicine, Boston, Massachusetts; Department of Neurology, Boston Children's Hospital, Boston, Massachusetts
| | - P Ellen Grant
- Division of Newborn Medicine, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts; Division of Newborn Medicine, Department of Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Andrea Kassner
- Department of Physiology, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Experimental Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
32
|
Thompson CK, Walenski M, Chen Y, Caplan D, Kiran S, Rapp B, Grunewald K, Nunez M, Zinbarg R, Parrish TB. Intrahemispheric Perfusion in Chronic Stroke-Induced Aphasia. Neural Plast 2017; 2017:2361691. [PMID: 28357141 PMCID: PMC5357554 DOI: 10.1155/2017/2361691] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/17/2017] [Accepted: 01/26/2017] [Indexed: 01/12/2023] Open
Abstract
Stroke-induced alterations in cerebral blood flow (perfusion) may contribute to functional language impairments and recovery in chronic aphasia. Using MRI, we examined perfusion in the right and left hemispheres of 35 aphasic and 16 healthy control participants. Across 76 regions (38 per hemisphere), no significant between-subjects differences were found in the left, whereas blood flow in the right was increased in the aphasic compared to the control participants. Region-of-interest (ROI) analyses showed a varied pattern of hypo- and hyperperfused regions across hemispheres in the aphasic participants; however, there were no significant correlations between perfusion values and language abilities in these regions. These patterns may reflect autoregulatory changes in blood flow following stroke and/or increases in general cognitive effort, rather than maladaptive language processing. We also examined blood flow in perilesional tissue, finding the greatest hypoperfusion close to the lesion (within 0-6 mm), with greater hypoperfusion in this region compared to more distal regions. In addition, hypoperfusion in this region was significantly correlated with language impairment. These findings underscore the need to consider cerebral perfusion as a factor contributing to language deficits in chronic aphasia as well as recovery of language function.
Collapse
Affiliation(s)
- Cynthia K. Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - Matthew Walenski
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - YuFen Chen
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Kristin Grunewald
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Mia Nunez
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Richard Zinbarg
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Todd B. Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA
- Department of Radiology, Feinberg School of Medicine, Northwestern University, Evanston, IL, USA
| |
Collapse
|
33
|
de la Torre JC. Treating cognitive impairment with transcranial low level laser therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:149-155. [PMID: 28219828 DOI: 10.1016/j.jphotobiol.2017.02.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 01/10/2017] [Accepted: 02/11/2017] [Indexed: 10/20/2022]
Abstract
This report examines the potential of low level laser therapy (LLLT) to alter brain cell function and neurometabolic pathways using red or near infrared (NIR) wavelengths transcranially for the prevention and treatment of cognitive impairment. Although laser therapy on human tissue has been used for a number of medical conditions since the late 1960s, it is only recently that several clinical studies have shown its value in raising neurometabolic energy levels that can improve cerebral hemodynamics and cognitive abilities in humans. The rationale for this approach, as indicated in this report, is supported by growing evidence that neurodegenerative damage and cognitive impairment during advanced aging is accelerated or triggered by a neuronal energy crisis generated by brain hypoperfusion. We have previously proposed that chronic brain hypoperfusion in the elderly can worsen in the presence of one or more vascular risk factors, including hypertension, cardiac disease, atherosclerosis and diabetes type 2. Although many unanswered questions remain, boosting neurometabolic activity through non-invasive transcranial laser biostimulation of neuronal mitochondria may be a valuable tool in preventing or delaying age-related cognitive decline that can lead to dementia, including its two major subtypes, Alzheimer's and vascular dementia. The technology to achieve significant improvement of cognitive dysfunction using LLLT or variations of this technique is moving fast and may signal a new chapter in the treatment and prevention of neurocognitive disorders.
Collapse
Affiliation(s)
- Jack C de la Torre
- Department of Psychology, University of Texas at Austin, 1 University Station, Austin, TX 78712-0187, United States.
| |
Collapse
|
34
|
Robson H, Specht K, Beaumont H, Parkes LM, Sage K, Lambon Ralph MA, Zahn R. Arterial spin labelling shows functional depression of non-lesion tissue in chronic Wernicke's aphasia. Cortex 2016; 92:249-260. [PMID: 28525836 PMCID: PMC5480775 DOI: 10.1016/j.cortex.2016.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/15/2016] [Accepted: 11/02/2016] [Indexed: 11/23/2022]
Abstract
Behavioural impairment post-stroke is a consequence of structural damage and altered functional network dynamics. Hypoperfusion of intact neural tissue is frequently observed in acute stroke, indicating reduced functional capacity of regions outside the lesion. However, cerebral blood flow (CBF) is rarely investigated in chronic stroke. This study investigated CBF in individuals with chronic Wernicke's aphasia (WA) and examined the relationship between lesion, CBF and neuropsychological impairment. Arterial spin labelling CBF imaging and structural MRIs were collected in 12 individuals with chronic WA and 13 age-matched control participants. Joint independent component analysis (jICA) investigated the relationship between structural lesion and hypoperfusion. Partial correlations explored the relationship between lesion, hypoperfusion and language measures. Joint ICA revealed significant differences between the control and WA groups reflecting a large area of structural lesion in the left posterior hemisphere and an associated area of hypoperfusion extending into grey matter surrounding the lesion. Small regions of remote cortical hypoperfusion were observed, ipsilateral and contralateral to the lesion. Significant correlations were observed between the neuropsychological measures (naming, repetition, reading and semantic association) and the jICA component of interest in the WA group. Additional ROI analyses found a relationship between perfusion surrounding the core lesion and the same neuropsychological measures. This study found that core language impairments in chronic WA are associated with a combination of structural lesion and abnormal perfusion in non-lesioned tissue. This indicates that post-stroke impairments are due to a wider disruption of neural function than observable on structural T1w MRI.
Collapse
Affiliation(s)
- Holly Robson
- Department of Psychology and Clinical Language Sciences, University of Reading, UK.
| | - Karsten Specht
- Department of Biological and Medical Psychology, University of Bergen, Norway; Department of Clinical Engineering, Haukeland University Hospital, Bergen, Norway
| | | | - Laura M Parkes
- Centre for Imaging Science, Institute of Population Health, University of Manchester, UK
| | - Karen Sage
- Centre for Health and Social Care Research, Sheffield Hallam University, Sheffield, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, School Psychological Sciences, University of Manchester, UK
| | - Roland Zahn
- Department of Psychological Medicine, Kings College London, UK
| |
Collapse
|
35
|
Deverdun J, Akbaraly TN, Charroud C, Abdennour M, Brickman AM, Chemouny S, Steffener J, Portet F, Bonafe A, Stern Y, Ritchie K, Molino F, Le Bars E, Menjot de Champfleur N. Mean arterial pressure change associated with cerebral blood flow in healthy older adults. Neurobiol Aging 2016; 46:49-57. [DOI: 10.1016/j.neurobiolaging.2016.05.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 05/06/2016] [Accepted: 05/11/2016] [Indexed: 11/25/2022]
|
36
|
The pathophysiological role of astrocytic endothelin-1. Prog Neurobiol 2016; 144:88-102. [DOI: 10.1016/j.pneurobio.2016.04.009] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 03/23/2016] [Accepted: 04/25/2016] [Indexed: 12/13/2022]
|
37
|
Kielar A, Deschamps T, Chu RKO, Jokel R, Khatamian YB, Chen JJ, Meltzer JA. Identifying Dysfunctional Cortex: Dissociable Effects of Stroke and Aging on Resting State Dynamics in MEG and fMRI. Front Aging Neurosci 2016; 8:40. [PMID: 26973515 PMCID: PMC4776400 DOI: 10.3389/fnagi.2016.00040] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 02/15/2016] [Indexed: 11/13/2022] Open
Abstract
Spontaneous signals in neuroimaging data may provide information on cortical health in disease and aging, but the relative sensitivity of different approaches is unknown. In the present study, we compared different but complementary indicators of neural dynamics in resting-state MEG and BOLD fMRI, and their relationship with blood flow. Participants included patients with post-stroke aphasia, age-matched controls, and young adults. The complexity of brain activity at rest was quantified in MEG using spectral analysis and multiscale entropy (MSE) measures, whereas BOLD variability was quantified as the standard deviation (SDBOLD), mean squared successive difference (MSSD), and sample entropy of the BOLD time series. We sought to assess the utility of signal variability and complexity measures as markers of age-related changes in healthy adults and perilesional dysfunction in chronic stroke. The results indicate that reduced BOLD variability is a robust finding in aging, whereas MEG measures are more sensitive to the cortical abnormalities associated with stroke. Furthermore, reduced complexity of MEG signals in perilesional tissue were correlated with hypoperfusion as assessed with arterial spin labeling (ASL), while no such relationship was apparent with BOLD variability. These findings suggest that MEG signal complexity offers a sensitive index of neural dysfunction in perilesional tissue in chronic stroke, and that these effects are clearly distinguishable from those associated with healthy aging.
Collapse
Affiliation(s)
- Aneta Kielar
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
| | - Tiffany Deschamps
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
| | - Ron K. O. Chu
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Psychology, University of TorontoToronto, ON, Canada
| | - Regina Jokel
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada
| | | | - Jean J. Chen
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Medical Biophysics, University of TorontoToronto, ON, Canada
- Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest Health SciencesToronto, ON, Canada
- Department of Psychology, University of TorontoToronto, ON, Canada
- Department of Speech-Language Pathology, University of TorontoToronto, ON, Canada
- Canadian Partnership for Stroke RecoveryOttawa, ON, Canada
| |
Collapse
|
38
|
A neuroradiologist's guide to arterial spin labeling MRI in clinical practice. Neuroradiology 2015; 57:1181-202. [PMID: 26351201 PMCID: PMC4648972 DOI: 10.1007/s00234-015-1571-z] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 08/05/2015] [Indexed: 01/01/2023]
Abstract
Arterial spin labeling (ASL) is a non-invasive MRI technique to measure cerebral blood flow (CBF). This review provides a practical guide and overview of the clinical applications of ASL of the brain, as well its potential pitfalls. The technical and physiological background is also addressed. At present, main areas of interest are cerebrovascular disease, dementia and neuro-oncology. In cerebrovascular disease, ASL is of particular interest owing to its quantitative nature and its capability to determine cerebral arterial territories. In acute stroke, the source of the collateral blood supply in the penumbra may be visualised. In chronic cerebrovascular disease, the extent and severity of compromised cerebral perfusion can be visualised, which may be used to guide therapeutic or preventative intervention. ASL has potential for the detection and follow-up of arteriovenous malformations. In the workup of dementia patients, ASL is proposed as a diagnostic alternative to PET. It can easily be added to the routinely performed structural MRI examination. In patients with established Alzheimer’s disease and frontotemporal dementia, hypoperfusion patterns are seen that are similar to hypometabolism patterns seen with PET. Studies on ASL in brain tumour imaging indicate a high correlation between areas of increased CBF as measured with ASL and increased cerebral blood volume as measured with dynamic susceptibility contrast-enhanced perfusion imaging. Major advantages of ASL for brain tumour imaging are the fact that CBF measurements are not influenced by breakdown of the blood–brain barrier, as well as its quantitative nature, facilitating multicentre and longitudinal studies.
Collapse
|
39
|
Aizman I, Vinodkumar D, McGrogan M, Bates D. Cell Injury-Induced Release of Fibroblast Growth Factor 2: Relevance to Intracerebral Mesenchymal Stromal Cell Transplantations. Stem Cells Dev 2015; 24:1623-34. [PMID: 25873141 PMCID: PMC4499789 DOI: 10.1089/scd.2015.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Beneficial effects of intracerebral transplantation of mesenchymal stromal cells (MSC) and their derivatives are believed to be mediated mostly by factors produced by engrafted cells. However, the mesenchymal cell engraftment rate is low, and the majority of grafted cells disappear within a short post-transplantation period. Here, we hypothesize that dying transplanted cells can affect surrounding tissues by releasing their active intracellular components. To elucidate the type, amounts, and potency of these putative intracellular factors, freeze/thaw extracts of MSC or their derivatives were tested in enzyme-linked immunosorbent assays and bioassays. We found that fibroblast growth factor (FGF)2 and FGF1, but not vascular endothelial growth factor and monocyte chemoattractant protein 1 levels were high in extracts despite being low in conditioned media. Extracts induced concentration-dependent proliferation of rat cortical neural progenitor cells and human umbilical vein endothelial cells; these proliferative responses were specifically blocked by FGF2-neutralizing antibody. In the neuropoiesis assay with rat cortical cells, both MSC extracts and killed cells induced expression of nestin, but not astrocyte differentiation. However, suspensions of killed cells strongly potentiated the astrogenic effects of live MSC. In transplantation-relevant MSC injury models (peripheral blood cell-mediated cytotoxicity and high cell density plating), MSC death coincided with the release of intracellular FGF2. The data showed that MSC contain a major depot of active FGF2 that is released upon cell injury and is capable of acutely stimulating neuropoiesis and angiogenesis. We therefore propose that both dying and surviving grafted MSC contribute to tissue regeneration.
Collapse
Affiliation(s)
- Irina Aizman
- 1 Department of Research, SanBio, Inc. , Mountain View, California
| | | | - Michael McGrogan
- 2 Department of Production Development, SanBio, Inc. , Mountain View, California
| | - Damien Bates
- 1 Department of Research, SanBio, Inc. , Mountain View, California
| |
Collapse
|
40
|
Bergfeldt U, Jonsson T, Bergfeldt L, Julin P. Cortical activation changes and improved motor function in stroke patients after focal spasticity therapy--an interventional study applying repeated fMRI. BMC Neurol 2015; 15:52. [PMID: 25884323 PMCID: PMC4450484 DOI: 10.1186/s12883-015-0306-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2013] [Accepted: 03/13/2015] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Impaired dominant hand function in stroke patients is a common clinical problem. Functional improvement after focal spasticity therapy is well documented but knowledge about central correlates is sparse. Brain activity was therefore followed during therapy with repeated functional magnetic resonance imaging (fMRI). The purpose was to analyse motor function and central nervous system (CNS) correlates in response to a standardized motor task in stroke patients after a comprehensive focal spasticity therapy. METHODS Six consecutive first-time chronic stroke patients [4 women; mean age (SD) 66 (10) years] with right-sided hand paresis and spasticity were studied. Peripheral effects after focal spasticity management including intramuscular botulinum toxin type A (BoNT-A) injections were assessed on 3 occasions (baseline, 6 and 12 weeks) with functional tests. Brain effects were assessed on the same occasions by fMRI blood oxygen level dependent (BOLD) technique during a standardized motor task focusing on the motor and pre-motor cortex (Brodmann areas, BA4a, BA4p & BA6). For reference 10 healthy individuals [5 women; mean age (SD) of 51(8) years], were studied twice with ≥ 6 weeks interval. RESULTS After therapy there was a significant reduction in spasticity and functional improvement in 5 of 6 patients. In response to the motor task there was a ~1.5 - 3% increase in brain activity in the motor and pre-motor cortex. At baseline, this increase was larger in the non-injured (ipsilateral) than in the contralateral hemisphere. Compared with healthy subjects the patients showed a significantly (2-4.5 times) higher brain activity, especially on the ipsilateral side. After therapy, there was a larger decrease in the ipsilateral and a minor decrease in the contralateral response, i.e. a clear lateralization of left-to-right in a normalizing direction in all areas. CONCLUSIONS Comprehensive focal spasticity management was also in this study associated with brain reorganization in a "normalizing" left/right lateralization direction in addition to improved motor function. Furthermore, quantification of BOLD intensity in specified BAs showed reduced neuronal "over-activity" in the injured brain after therapy.
Collapse
Affiliation(s)
- Ulla Bergfeldt
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden.
- Present address: Center for Advanced Reconstruction of Extremities, Sahlgrenska University Hospital/Moelndal, House U1, 5th floor, SE- 431 80, Moelndal, Sweden.
| | - Tomas Jonsson
- SMILE, Stockholm Medical Imaging Laboratory, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.
- Department of Diagnostic Medical Physics, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Lennart Bergfeldt
- Department of Molecular & Clinical Medicine/Cardiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| | - Per Julin
- Division of Rehabilitation Medicine, Department of Clinical Sciences, Danderyd University Hospital, Karolinska Institutet, Stockholm, Sweden.
- SMILE, Stockholm Medical Imaging Laboratory, Karolinska University Hospital Huddinge, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
41
|
Bonakdarpour B, Beeson P, DeMarco A, Rapcsak S. Variability in blood oxygen level dependent (BOLD) signal in patients with stroke-induced and primary progressive aphasia. Neuroimage Clin 2015; 8:87-94. [PMID: 26106531 PMCID: PMC4473284 DOI: 10.1016/j.nicl.2015.03.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2014] [Revised: 02/27/2015] [Accepted: 03/18/2015] [Indexed: 12/04/2022]
Abstract
Although fMRI is increasingly used to assess language-related brain activation in patients with aphasia, few studies have examined the hemodynamic response function (HRF) in perilesional, and contralesional areas of the brain. In addition, the relationship between HRF abnormalities and other variables such as lesion size and severity of aphasia has not been explored. The objective of this study was to investigate changes in HRF signal during language-related neural activation in patients with stroke-induced aphasia (SA). We also examined the status of the HRF in patients with aphasia due to nonvascular etiology, namely, primary progressive aphasia (PPA). Five right handed SA patients, three PPA patients, and five healthy individuals participated in the study. Structural damage was quantified with T1-weighted MR images. Functional MR imaging was performed with long trial event-related design and an overt naming task to measure BOLD signal time to peak (TTP) and percent signal change (ΔS). In SA patients, the average HRF TTP was significantly delayed in the left hemisphere regions involved in naming compared to healthy participants and PPA patients. However, ΔS was not different in SA patients compared to the other two groups. Delay in HRF TTP in the left hemisphere naming network of SA patients was correlated with lesion size and showed a negative correlation with global language function. There were no significant differences in the HRF TTP and ΔS in the right hemisphere homologues of the naming network or in the left and the right occipital control regions across the three groups. In PPA patients, HRF had a normal pattern. Our results indicate that abnormal task-related HRF is primarily found in the left hemisphere language network of SA patients and raise the possibility that abnormal physiology superimposed on structural damage may contribute to the clinical deficit. Follow-up investigations in a larger sample of age-matched healthy individuals, SA, and PPA patients will be needed to further confirm and extend our findings.
Collapse
Affiliation(s)
- B. Bonakdarpour
- Cognitive Neurology and Alzheimer Disease Center, Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - P.M. Beeson
- Department of Speech, Language and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - A.T. DeMarco
- Department of Speech, Language and Hearing Sciences, University of Arizona, Tucson, AZ, USA
| | - S.Z. Rapcsak
- Department of Speech, Language and Hearing Sciences, University of Arizona, Tucson, AZ, USA
- Department of Neurology, University of Arizona, Tucson, USA
- Southern Arizona VA Health Care System, Tucson, AZ, USA
| |
Collapse
|
42
|
Guo L, Zhang Q, Ding L, Liu K, Ding K, Jiang C, Liu C, Li K, Cui L. Pseudo-continuous arterial spin labeling quantifies cerebral blood flow in patients with acute ischemic stroke and chronic lacunar stroke. Clin Neurol Neurosurg 2014; 125:229-36. [DOI: 10.1016/j.clineuro.2014.08.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 01/25/2014] [Accepted: 08/04/2014] [Indexed: 11/25/2022]
|
43
|
Nation DA, Wierenga CE, Clark LR, Dev SI, Stricker NH, Jak AJ, Salmon DP, Delano-Wood L, Bangen KJ, Rissman RA, Liu TT, Bondi MW. Cortical and subcortical cerebrovascular resistance index in mild cognitive impairment and Alzheimer's disease. J Alzheimers Dis 2014; 36:689-98. [PMID: 23666173 DOI: 10.3233/jad-130086] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Reduced regional cerebral blood flow (rCBF) is a well-established finding in Alzheimer's disease (AD), although fewer studies have examined the role of increased regional cerebrovascular resistance. By calculating the ratio of mean arterial pressure to rCBF, it is possible to estimate an index of regional cerebrovascular resistance (CVRi) that may be a sensitive measure of occult cerebrovascular disease. OBJECTIVE To compare probable AD patients to mild cognitive impairment (MCI) and normal control (NC) participants on CVRi, the ratio of mean arterial pressure to rCBF. METHODS Eighty-one participants (12 AD, 23 MCI, 46 NC) were compared on CVRi using voxel-wise analyses. Region-of-interest analyses examined correlations between subcortical CVRi and both cognition and white matter lesion (WML) volume. RESULTS Voxel-wise analyses revealed CVRi elevation in AD relative to NCs (subcortical, medial temporal, posterior cingulate, precuneus, inferior parietal, superior temporal) and MCI (subcortical, posterior cingulate). MCI participants exhibited intermediate CVRi values within cortical and medial temporal areas. Significant CVRi clusters were larger and more widespread than those of parallel CBF analyses. Among MCI and AD participants, subcortical CVRi elevation was associated with lower Dementia Rating Scale score (r = -0.52, p = 0.001, for both thalamus and caudate), and caudate CVRi correlated with WML volume (r = 0.45, p = 0.001). CONCLUSIONS Cortical and subcortical CVRi is elevated in AD, particularly within the caudate and thalamus, where it is associated with decreased cognitive performance and increased WMLs. Findings suggest CVRi may play a role in cognitive decline and cerebrovascular disease in MCI and AD.
Collapse
Affiliation(s)
- Daniel A Nation
- Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Mirasol RV, Bokkers RPH, Hernandez DA, Merino JG, Luby M, Warach S, Latour LL. Assessing reperfusion with whole-brain arterial spin labeling: a noninvasive alternative to gadolinium. Stroke 2014; 45:456-61. [PMID: 24385278 DOI: 10.1161/strokeaha.113.004001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Arterial spin labeling (ASL) is a perfusion imaging technique that does not require gadolinium. The study aimed to assess the reliability of ASL for evaluating reperfusion in acute ischemic stroke in comparison with dynamic susceptibility contrast (DSC) imaging. METHODS The study included 24 patients with acute ischemic stroke on admission and 24-hour follow-up ASL and DSC scans. Two readers rated images for interpretability and evidence of reperfusion. Cohen unweighted κ was used to assess (1) inter-rater reliability between readers for determining interpretability and the presence of reperfusion, (2) agreement between ASL and DSC for determining reperfusion for individual raters, and (3) agreement between ASL and DSC for determining reperfusion after consensus. RESULTS Inter-rater reliability for both ASL and DSC was moderate to good (κ of 0.67 versus 0.55, respectively). Reader 1 rated 16 patients as having interpretable ASL and DSC when compared with 15 patients for reader 2. The κ between ASL and DSC for determining reperfusion was 0.50 for reader 1 and 0.595 for reader 2. After consensus, 18 ASL and 17 DSC image sets were rated interpretable for reperfusion and 13 had both interpretable ASL and DSC scans, yielding a κ for assessment of reperfusion of 0.8. CONCLUSIONS Inter-rater reliability of ASL and DSC was moderate to good. Agreement between ASL and DSC for determining reperfusion was moderate for each individual rater and increased substantially after consensus. ASL is a noninvasive and practical alternative to DSC for reperfusion assessments in patients with confirmed acute ischemic stroke.
Collapse
Affiliation(s)
- Raymond V Mirasol
- From the Section on Stroke Diagnostics and Therapeutics, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD (R.V.M., D.A.H., J.G.M., M.L., S.W., L.L.L.); Department of Neurobiology, Care Sciences and Society, Division of Neurodegeneration, The Karolinska Institute, Stockholm, Sweden (R.V.M.); Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands (R.P.H.B.); Department of Radiology, Gelre Hospitals, Apeldoorn, The Netherlands (R.P.H.B.); Research Scholars Program, Howard Hughes Medical Institute, Bethesda, MD (R.V.M.); Department of Neurology and Neurotherapeutics, Seton/UT Southwestern Clinical Research Institute of Austin, UT Southwestern Medical Center, TX (S.W.); and Johns Hopkins Community Physicians, Bethesda, MD (J.G.M.)
| | | | | | | | | | | | | |
Collapse
|
45
|
Alosco ML, Gunstad J, Jerskey BA, Xu X, Clark US, Hassenstab J, Cote DM, Walsh EG, Labbe DR, Hoge R, Cohen RA, Sweet LH. The adverse effects of reduced cerebral perfusion on cognition and brain structure in older adults with cardiovascular disease. Brain Behav 2013; 3:626-36. [PMID: 24363966 PMCID: PMC3868168 DOI: 10.1002/brb3.171] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 06/30/2013] [Accepted: 08/11/2013] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND It is well established that aging and vascular processes interact to disrupt cerebral hemodynamics in older adults. However, the independent effects of cerebral perfusion on neurocognitive function among older adults remain poorly understood. We examined the associations among cerebral perfusion, cognitive function, and brain structure in older adults with varying degrees of vascular disease using perfusion magnetic resonance imaging (MRI) arterial spin labeling (ASL). MATERIALS AND METHODS 52 older adults underwent neuroimaging and were administered the Mini Mental State Examination (MMSE), the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS), and measures of attention/executive function. ASL and T1-weighted MRI were used to quantify total brain perfusion, total brain volume (TBV), and cortical thickness. RESULTS Regression analyses showed reduced total brain perfusion was associated with poorer performance on the MMSE, RBANS total index, immediate and delayed memory composites, and Trail Making Test B. Reduced frontal lobe perfusion was associated with worse executive and memory function. A similar pattern emerged between temporal lobe perfusion and immediate memory. Regression analyses revealed that decreased total brain perfusion was associated with smaller TBV and mean cortical thickness. Regional effects of reduced total cerebral perfusion were found on temporal and parietal lobe volumes and frontal and temporal cortical thickness. DISCUSSION Reduced cerebral perfusion is independently associated with poorer cognition, smaller TBV, and reduced cortical thickness in older adults. CONCLUSION Prospective studies are needed to clarify patterns of cognitive decline and brain atrophy associated with cerebral hypoperfusion.
Collapse
Affiliation(s)
| | - John Gunstad
- Department of Psychology, Kent State University Kent, Ohio
| | - Beth A Jerskey
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University Providence, Rhode Island
| | - Xiaomeng Xu
- Department of Psychology, Idaho State University Pocatello, Idaho
| | - Uraina S Clark
- Department of Neurology, Icahn School of Medicine at Mount Sinai New York, NY
| | - Jason Hassenstab
- Department of Neurology, Washington University at St. Louis St. Louis, Missouri
| | | | - Edward G Walsh
- Department of Neuroscience, Brown University Providence, Rhode Island
| | - Donald R Labbe
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University Providence, Rhode Island
| | - Richard Hoge
- Department of Physiology, Université de Montréal Montréal, Quebec, Canada
| | - Ronald A Cohen
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University Providence, Rhode Island ; Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida Gainesville, Florida
| | - Lawrence H Sweet
- Department of Psychiatry and Human Behavior, Alpert Medical School of Brown University Providence, Rhode Island ; Butler Hospital Providence, Rhode Island ; Department of Psychology, University of Georgia Athens, Georgia
| |
Collapse
|
46
|
Altered cerebral perfusion in executive, affective, and motor networks during adolescent depression. J Am Acad Child Adolesc Psychiatry 2013; 52:1076-1091.e2. [PMID: 24074474 PMCID: PMC3825460 DOI: 10.1016/j.jaac.2013.07.008] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 05/11/2013] [Accepted: 07/19/2013] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Although substantial literature has reported regional cerebral blood flow (rCBF) abnormalities in adults with depression, these studies commonly necessitated the injection of radioisotopes into subjects. The recent development of arterial spin labeling (ASL), however, allows noninvasive measurements of rCBF. Currently, no published ASL studies have examined cerebral perfusion in adolescents with depression. Thus, the aim of the present study was to examine baseline cerebral perfusion in adolescent depression using a newly developed ASL technique: pseudocontinuous arterial spin labeling (PCASL). METHOD A total of 25 medication-naive adolescents (13-17 years of age) diagnosed with major depressive disorder (MDD) and 26 well-matched control subjects underwent functional magnetic resonance imaging. Baseline rCBF was measured via a novel PCASL method that optimizes tagging efficiency. RESULTS Voxel-based whole brain analyses revealed significant frontal, limbic, paralimbic, and cingulate hypoperfusion in the group with depression (p < .05, corrected). Hyperperfusion was also observed within the subcallosal cingulate, putamen, and fusiform gyrus (p < .05, corrected). Similarly, region-of-interest analyses revealed amygdalar and insular hypoperfusion in the group with depression, as well as hyperperfusion in the putamen and superior insula (p < .05, corrected). CONCLUSIONS Adolescents with depression and healthy adolescents appear to differ on rCBF in executive, affective, and motor networks. Dysfunction in these regions may contribute to the cognitive, emotional, and psychomotor symptoms commonly present in adolescent depression. These findings point to possible biomarkers for adolescent depression that could inform early interventions and treatments, and establishes a methodology for using PCASL to noninvasively measure rCBF in clinical and healthy adolescent populations.
Collapse
|
47
|
Wierenga CE, Clark LR, Dev SI, Shin DD, Jurick SM, Rissman RA, Liu TT, Bondi MW. Interaction of age and APOE genotype on cerebral blood flow at rest. J Alzheimers Dis 2013; 34:921-35. [PMID: 23302659 DOI: 10.3233/jad-121897] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
We investigated the impact of APOE genotype on cerebral blood flow (CBF) in older and younger adults. Forty cognitively normal older adults (16 ε4 carriers, 24 non-ε4 carriers) and 30 younger adults (15 ε4 carriers, 15 non-ε4 carriers) completed a resting-state whole-brain pulsed arterial spin labeling magnetic resonance scan. Main effects of aging were demonstrated wherein older adults had decreased gray matter CBF corrected for partial volume effects compared to younger adults in widespread brain regions. Main effects of APOE genotype were also observed wherein ε4 carriers displayed greater CBF in the left lingual gyrus and precuneus than non-carriers. An interaction between age and APOE genotype in the left anterior cingulate cortex (ACC) was characterized by reduced CBF in older ε4 carriers and increased CBF in young ε4 carriers. Increased CBF in the left ACC resulting from the interaction of age group and APOE genotype was positively correlated with executive functioning in young ε4 adults (r = 0.61, p = 0.04). Results demonstrate APOE genotype differentially impacts cerebrovascular function across the lifespan and may modify the relationship between CBF and cognition. Findings may partially support suggestions that the gene exerts antagonistic pleiotropic effects.
Collapse
Affiliation(s)
- Christina E Wierenga
- Research Service, Veterans Affairs San Diego Healthcare System, San Diego, CA, USA.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
Evidence is growing that vascular risk factors (VRFs) for Alzheimer's disease (AD) affect cerebral hemodynamics to launch a cascade of cellular and molecular changes that initiate cognitive deficits and eventual progression of AD. Neuroimaging studies have reported VRFs for AD to be accurate predictors of cognitive decline and dementia. In regions that participate in higher cognitive function, middle temporal, posterior cingulate, inferior parietal and precuneus regions, and neuroimaging studies indicate an association involving VRFs, cerebral hypoperfusion, and cognitive decline in elderly individuals who develop AD. The VRF can be present in cognitively intact individuals for decades before mild cognitive deficits or neuropathological signs are manifested. In that sense, they may be "ticking time bombs" before cognitive function is demolished. Preventive intervention of modifiable VRF may delay or block progression of AD. Intervention could target cerebral blood flow (CBF), since most VRFs act to lower CBF in aging individuals by promoting cerebrovascular dysfunction.
Collapse
|
49
|
Kiran S. What is the nature of poststroke language recovery and reorganization? ISRN NEUROLOGY 2012; 2012:786872. [PMID: 23320190 PMCID: PMC3540797 DOI: 10.5402/2012/786872] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Accepted: 11/05/2012] [Indexed: 12/16/2022]
Abstract
This review focuses on three main topics related to the nature of poststroke language recovery and reorganization. The first topic pertains to the nature of anatomical and physiological substrates in the infarcted hemisphere in poststroke aphasia, including the nature of the hemodynamic response in patients with poststroke aphasia, the nature of the peri-infarct tissue, and the neuronal plasticity potential in the infarcted hemisphere. The second section of the paper reviews the current neuroimaging evidence for language recovery in the acute, subacute, and chronic stages of recovery. The third and final section examines changes in connectivity as a function of recovery in poststroke aphasia, specifically in terms of changes in white matter connectivity, changes in functional effective connectivity, and changes in resting state connectivity after stroke. While much progress has been made in our understanding of language recovery, more work needs to be done. Future studies will need to examine whether reorganization of language in poststroke aphasia corresponds to a tighter, more coherent, and efficient network of residual and new regions in the brain. Answering these questions will go a long way towards being able to predict which patients are likely to recover and may benefit from future rehabilitation.
Collapse
Affiliation(s)
- Swathi Kiran
- Department of Speech, Language, and Hearing Sciences, Sargent College of Health & Rehabilitation Sciences, Boston University, 635 Commonwealth Avenue, Boston, MA 02215, USA ; Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
50
|
Apostolova I, Wunder A, Dirnagl U, Michel R, Stemmer N, Lukas M, Derlin T, Gregor-Mamoudou B, Goldschmidt J, Brenner W, Buchert R. Brain perfusion SPECT in the mouse: Normal pattern according to gender and age. Neuroimage 2012; 63:1807-17. [DOI: 10.1016/j.neuroimage.2012.08.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 08/12/2012] [Accepted: 08/15/2012] [Indexed: 11/29/2022] Open
|