1
|
Champagne AA, Coverdale NS, Skinner C, Schwarz BA, Glikstein R, Melkus G, Murray CI, Ramirez-Garcia G, Cook DJ. Longitudinal analysis highlights structural changes in grey- and white-matter within military personnel exposed to blast. Brain Inj 2025; 39:509-517. [PMID: 39729051 DOI: 10.1080/02699052.2024.2446948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/07/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
OBJECTIVE The purpose of this study was to determine whether gray matter volume and diffusion-based metrics in associated white matter changed in breachers who had neuroimaging performed at two timepoints. A secondary purpose was to compare these changes in a group who had a one-year interval between their imaging timepoints to a group that had a two-year interval between imaging. METHODS Between timepoints, clusters with significantly different gray matter volume were used as seeds for reconstruction of associated structural networks using diffusion metrics. RESULTS Of 92 eligible participants, 62 had imaging at two timepoints, 36 with a one-year interval between scans and 26 with a two-year interval between scans. A significant effect of time was documented in the midcingulate cortex, but there was no effect of timepoint (1 versus 2 years). The associated white matter in this cluster had three regions with differences in fractional anisotropy compared to baseline, while there was no effect of timepoint (1 versus 2 years). CONCLUSIONS This study provides preliminary evidence that military personnel involved in repetitive exposure to sub-concussive blast overpressures may experience changes to both gray matter and white matter structures.
Collapse
Affiliation(s)
- Allen A Champagne
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- School of Medicine, Queen's University, Kingston, Ontario, Canada
| | - Nicole S Coverdale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | - Rafael Glikstein
- Department of Radiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Gerd Melkus
- Brain and Mind Research Institute, Ottawa, Ontario, Canada
| | | | - Gabriel Ramirez-Garcia
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Departamento de Fisiologia, Facultad de Medicina, Universidad Nacional Autonoma de Mexico, Ciudad de Mexico, Mexico
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
- Department of Surgery, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
2
|
Zhang Q, Xu Y, Guo D, He H, Zhang Z, Wang X, Yu S. Classification of Irritable Bowel Syndrome Using Brain Functional Connectivity Strength and Machine Learning. Neurogastroenterol Motil 2025; 37:e14994. [PMID: 39752374 DOI: 10.1111/nmo.14994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 11/26/2024] [Accepted: 12/17/2024] [Indexed: 04/15/2025]
Abstract
BACKGROUND Irritable Bowel Syndrome (IBS) is a prevalent condition characterized by dysregulated brain-gut interactions. Despite its widespread impact, the brain mechanism of IBS remains incompletely understood, and there is a lack of objective diagnostic criteria and biomarkers. This study aims to investigate brain network alterations in IBS patients using the functional connectivity strength (FCS) method and to develop a support vector machine (SVM) classifier for distinguishing IBS patients from healthy controls (HCs). METHODS Thirty-one patients with IBS and thirty age and sex-matched HCs were enrolled in this study and underwent resting-state functional magnetic resonance imaging (fMRI) scans. We applied FCS to assess global brain functional connectivity changes in IBS patients. An SVM-based machine - learning approach was then used to evaluate whether the altered FCS regions could serve as fMRI-based markers for classifying IBS patients and HCs. RESULTS Compared to the HCs, patients with IBS showed significantly increased FCS in the left medial orbitofrontal cortex (mOFC) and decreased FCS in the bilateral cingulate cortex/precuneus (PCC/Pcu) and middle cingulate cortex (MCC). The machine-learning model achieved a classification accuracy of 91.9% in differentiating IBS patients from HCs. CONCLUSION These findings reveal a unique pattern of FCS alterations in brain areas governing pain regulation and emotional processing in IBS patients. The identified abnormal FCS features have the potential to serve as effective biomarkers for IBS classification. This study may contribute to a deeper understanding of the neural mechanisms of IBS and aid in its diagnosis in clinical practice.
Collapse
Affiliation(s)
- Qi Zhang
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yue Xu
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Dingbo Guo
- Department of Radiology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Hua He
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Zhen Zhang
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Xiaowan Wang
- Department of Anorectal Surgery, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Siyi Yu
- School of Acupuncture and Tuina, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
3
|
Jia Y, Song N, Ning Y, Zhu H, Dong L, Feng S, Jia H, Song M, Zheng S. Altered Self-Referential-Related Brain Regions in Depersonalization-Derealization Disorder. Brain Behav 2025; 15:e70314. [PMID: 39935045 PMCID: PMC11813808 DOI: 10.1002/brb3.70314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/23/2024] [Accepted: 01/12/2025] [Indexed: 02/13/2025] Open
Abstract
OBJECTIVE We aimed to explore the alteration in topology and network properties in self-referential-related brain regions of individuals with depersonalization-derealization disorders (DPD), using evidence from resting-state functional magnetic resonance imaging (rs-fMRI). METHODS We first determined the regions of interest (ROIs) using Neurosynth, based on which we conducted an ROI-wise functional connectivity search to create a self-referential-related network and performed a topographical analysis. We then compared the analyzed properties from the rs-fMRI of disordered individuals to those of healthy controls to generate differential properties, based on which we conducted a machine learning-based disease diagnostic model. RESULTS The study found significant changes in connectivity between brain regions associated with self-referential processing in individuals with DPD compared to healthy controls. Correlation analysis showed negative correlations between "unreality of surroundings" and connectivity between the left inferior frontal gyrus (IFG) pars orbitalis and left insula and between "perceptual alterations" and connectivity between the left pregenual and subgenual anterior cingulate cortex (ACC). Graph theoretical analysis revealed increased local and global efficiency but decreased characteristic path length. The accuracy of the classification model was 0.885, and the area under the curve was 0.928. CONCLUSIONS Individuals with DPD showed alterations in brain topography and changes in network properties within self-referential-related brain regions; specifically, the changes in cortical midline structures and insula could be related to the underlying mechanism of DPD, highlighting potential targets for future research and therapeutic strategies.
Collapse
Affiliation(s)
- Yuan Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Department of Science and Technology, Department of PsychologyBournemouth UniversityPooleUK
| | - Nan Song
- Xiamen Xianyue Hospital, Xianyue Hospital Affiliated with Xiamen Medical College, Fujian Psychiatric CenterFujian Clinical Research Center for Mental DisordersXiamenChina
| | - Yanzhe Ning
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Hong Zhu
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Linrui Dong
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Sitong Feng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Hongxiao Jia
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Mingkang Song
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| | - Sisi Zheng
- The National Clinical Research Center for Mental Disorders & Beijing Key Laboratory of Mental Disorders, Beijing Anding HospitalCapital Medical UniversityBeijingChina
- Advanced Innovation Center for Human Brain ProtectionCapital Medical UniversityBeijingChina
| |
Collapse
|
4
|
Zhang J, Chen D, Deming P, Srirangarajan T, Theriault J, Kragel PA, Hartley L, Lee KM, McVeigh K, Wager TD, Wald LL, Satpute AB, Quigley KS, Whitfield-Gabrieli S, Barrett LF, Bianciardi M. Cortical and subcortical mapping of the allostatic-interoceptive system in the human brain using 7 Tesla fMRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.07.20.548178. [PMID: 37546889 PMCID: PMC10401932 DOI: 10.1101/2023.07.20.548178] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The brain continuously anticipates the energetic needs of the body and prepares to meet those needs before they arise, called allostasis. In support of allostasis, the brain continually models the sensory state of the body, called interoception. We replicated and extended a large-scale system supporting allostasis and interoception in the human brain using ultra-high precision 7 Tesla functional magnetic resonance imaging (fMRI) (N = 90), improving the precision of subgenual and pregenual anterior cingulate topography combined with extensive brainstem nuclei mapping. We observed over 90% of the anatomical connections published in tract-tracing studies in non-human animals. The system also included regions of dense intrinsic connectivity broadly throughout the system, some of which were identified previously as part of the backbone of neural communication across the brain. These results strengthen previous evidence for a whole-brain system supporting the modeling and regulation of the internal milieu of the body.
Collapse
Affiliation(s)
- Jiahe Zhang
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Danlei Chen
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Philip Deming
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Jordan Theriault
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | | | - Ludger Hartley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kent M. Lee
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Kieran McVeigh
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Tor D. Wager
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755
| | - Lawrence L. Wald
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
| | - Ajay B. Satpute
- Department of Psychology, Northeastern University, Boston, MA 02115
| | - Karen S. Quigley
- Department of Psychology, Northeastern University, Boston, MA 02115
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA 02115
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02139
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA 02139
- Division of Sleep Medicine, Harvard University, Boston, MA
| |
Collapse
|
5
|
Choles CM, Archibald J, Ortiz O, MacMillan EL, Zölch N, Kramer JLK. Regional variations in cingulate cortex glutamate levels: a magnetic resonance spectroscopy study at 3 T. J Neurophysiol 2024; 132:1520-1529. [PMID: 39412567 DOI: 10.1152/jn.00139.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/22/2024] [Accepted: 10/09/2024] [Indexed: 11/13/2024] Open
Abstract
Regional variations in glutamate levels across the cingulate cortex, decreasing rostral to caudal, have been observed previously in healthy volunteers with proton magnetic resonance spectroscopy (1H-MRS) at 7 T. This study sought to explore cingulate cortex glutamate trends further by investigating whether a similar gradient could be detected at 3 T, the effect of sex, as well as whether individual variations gave rise to more than one regional glutamate pattern. 1H-MRS at 3 T [Phillips Elition; semi-localization by adiabatic selective refocusing, echo time (TE)/repetition time (TR) = 32/5,000] was acquired in four cingulate regions: the anterior, midanterior, midposterior, and posterior cortices, in 50 healthy participants (26 F) scanned at a fixed time of day and with controlled food intake. K-means clustering was used to characterize the presence of distinct regional patterns, which were then compared between sex and clusters. In addition, cortical thickness was compared between clusters and in relation to glutamate. Aligned with 7 T findings, we demonstrated that average glutamate levels decreased rostral to caudal in the healthy cingulate cortex. No effect of sex was found, suggesting similar resting glutamate levels in both sexes. Interestingly, the majority of participants were characterized by glutamate levels that did not significantly change across the cingulate (65%). Different regional patterns in cortical thickness between clusters offer further evidence into these distinct glutamate variations and suggest that both a neuroanatomical and a functional role may lead to these findings. This study provides a much-needed foundation for further research to determine the implications of neurotransmission patterns in health and disease.NEW & NOTEWORTHY In a large, sex-balanced sample of healthy individuals, we demonstrate that average regional differences (rostral to caudal) in cingulate cortex glutamate exist, using optimized experimental conditions and 3 T magnetic resonance spectroscopy techniques. Results align with observations from 7 T. A novel clustering approach was introduced to determine the number of patterns for glutamate in the healthy adult brain for the first time. These findings demonstrate that regional differences are detectable at 3 T when present and suggest the occurrence of multiple glutamate metabolism patterns in the cingulate.
Collapse
Affiliation(s)
- Cassandra M Choles
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jessica Archibald
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Experimental Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Oscar Ortiz
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
| | - Erin L MacMillan
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
- UBC MRI Research Centre, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), University of British Columbia, Vancouver, British Columbia, Canada
| | - Niklaus Zölch
- Institute of Forensic Medicine, Universität Zürich, Zürich, Switzerland
| | - John L K Kramer
- International Collaboration on Repair Discoveries (ICORD), Vancouver, British Columbia, Canada
- Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, British Columbia, Canada
- Djavad Mowafaghian Center for Brain Health (DMCH), University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Lin T, Rana M, Liu P, Polk R, Heemskerk A, Weisberg SM, Bowers D, Sitaram R, Ebner NC. Real-Time fMRI Neurofeedback Training of Selective Attention in Older Adults. Brain Sci 2024; 14:931. [PMID: 39335425 PMCID: PMC11430676 DOI: 10.3390/brainsci14090931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/29/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Selective attention declines with age, due to age-related functional changes in dorsal anterior cingulate cortex (dACC). Real-time functional magnetic resonance imaging (rtfMRI) neurofeedback has been used in young adults to train volitional control of brain activity, including in dACC. METHODS For the first time, this study used rtfMRI neurofeedback to train 19 young and 27 older adults in volitional up- or down-regulation of bilateral dACC during a selective attention task. RESULTS Older participants in the up-regulation condition (experimental group) showed greater reward points and dACC BOLD signal across training sessions, reflective of neurofeedback training success; and faster reaction time and better response accuracy, suggesting behavioral benefits on selective attention. These effects were not observed for older participants in the down-regulation condition (inverse condition control group), supporting specificity of volitional dACC up-regulation training in older adults. These effects were, unexpectedly, also not observed for young participants in the up-regulation condition (age control group), perhaps due to a lack of motivation to continue the training. CONCLUSIONS These findings provide promising first evidence of functional plasticity in dACC in late life via rtfMRI neurofeedback up-regulation training, enhancing selective attention, and demonstrate proof of concept of rtfMRI neurofeedback training in cognitive aging.
Collapse
Affiliation(s)
- Tian Lin
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Mohit Rana
- Institute of Biological and Medical Engineering, Department of Psychiatry and Section of Neuroscience, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile;
| | - Peiwei Liu
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Rebecca Polk
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Amber Heemskerk
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Steven M. Weisberg
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
| | - Dawn Bowers
- Department of Clinical and Health Psychology, University of Florida, Gainesville, FL 32610, USA;
| | | | - Natalie C. Ebner
- Department of Psychology, University of Florida, Gainesville, FL 32611, USA; (P.L.); (R.P.); (A.H.); (S.M.W.); (N.C.E.)
- Center for Cognitive Aging and Memory, McKnight Brain Institute, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
7
|
Cui W, Chen B, He J, Fan G, Wang S. Dynamic functional network connectivity in children with profound bilateral congenital sensorineural hearing loss. Pediatr Radiol 2024; 54:1738-1747. [PMID: 39134864 DOI: 10.1007/s00247-024-06022-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 09/07/2024]
Abstract
BACKGROUND Functional magnetic resonance imaging (fMRI) studies have revealed extensive functional reorganization in patients with sensorineural hearing loss (SNHL). However, almost no study focuses on the dynamic functional connectivity after hearing loss. OBJECTIVE This study aimed to investigate dynamic functional connectivity changes in children with profound bilateral congenital SNHL under the age of 3 years. MATERIALS AND METHODS Thirty-two children with profound bilateral congenital SNHL and 24 children with normal hearing were recruited for the present study. Independent component analysis identified 18 independent components composing five resting-state networks. A sliding window approach was used to acquire dynamic functional matrices. Three states were identified using the k-means algorithm. Then, the differences in temporal properties and the variance of network efficiency between groups were compared. RESULTS The children with SNHL showed longer mean dwell time and decreased functional connectivity between the auditory network and sensorimotor network in state 3 (P < 0.05), which was characterized by relatively stronger functional connectivity between high-order resting-state networks and motion and perception networks. There was no difference in the variance of network efficiency. CONCLUSIONS These results indicated the functional reorganization due to hearing loss. This study also provided new perspectives for understanding the state-dependent connectivity patterns in children with SNHL.
Collapse
Affiliation(s)
- Wenzhuo Cui
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Boyu Chen
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Jiachuan He
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China
| | - Shanshan Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
8
|
van der Meulen M, Rischer KM, González Roldán AM, Terrasa JL, Montoya P, Anton F. Age-related differences in functional connectivity associated with pain modulation. Neurobiol Aging 2024; 140:1-11. [PMID: 38691941 DOI: 10.1016/j.neurobiolaging.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/03/2024]
Abstract
Growing evidence suggests that aging is associated with impaired endogenous pain modulation, and that this likely underlies the increased transition from acute to chronic pain in older individuals. Resting-state functional connectivity (rsFC) offers a valuable tool to examine the neural mechanisms behind these age-related changes in pain modulation. RsFC studies generally observe decreased within-network connectivity due to aging, but its relevance for pain modulation remains unknown. We compared rsFC within a set of brain regions involved in pain modulation between young and older adults and explored the relationship with the efficacy of distraction from pain. This revealed several age-related increases and decreases in connectivity strength. Importantly, we found a significant association between lower pain relief and decreased strength of three connections in older adults, namely between the periaqueductal gray and right insula, between the anterior cingulate cortex (ACC) and right insula, and between the ACC and left amygdala. These findings suggest that the functional integrity of the pain control system is critical for effective pain modulation, and that its function is compromised by aging.
Collapse
Affiliation(s)
- Marian van der Meulen
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg.
| | - Katharina M Rischer
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| | - Ana María González Roldán
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Juan Lorenzo Terrasa
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Pedro Montoya
- Cognitive and Affective Neuroscience and Clinical Psychology, University of the Balearic Islands, Palma, Spain
| | - Fernand Anton
- Department of Behavioural and Cognitive Sciences, University of Luxembourg, Luxembourg
| |
Collapse
|
9
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus type shapes the topology of cellular functional networks in mouse visual cortex. Nat Commun 2024; 15:5753. [PMID: 38982078 PMCID: PMC11233648 DOI: 10.1038/s41467-024-49704-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 06/13/2024] [Indexed: 07/11/2024] Open
Abstract
On the timescale of sensory processing, neuronal networks have relatively fixed anatomical connectivity, while functional interactions between neurons can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed single-cell resolution electrophysiological data from the Allen Institute, with simultaneous recordings of stimulus-evoked activity from neurons across 6 different regions of mouse visual cortex. Comparing the functional connectivity patterns during different stimulus types, we made several nontrivial observations: (1) while the frequencies of different functional motifs were preserved across stimuli, the identities of the neurons within those motifs changed; (2) the degree to which functional modules are contained within a single brain region increases with stimulus complexity. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University, Toronto, ON M3J 1P3, ON, Canada.
- Learning in Machines and Brains Program, CIFAR, Toronto, ON M5G 1M1, ON, Canada.
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, PR China.
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, PR China.
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
- School of Mathematics, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
10
|
Chen G, Wang W, Wu H, Zhao X, Kang X, Ren J, Zhang J, Sun Y, He J, Sun S, Zhong Z, Shang D, Fan M, Cheng J, Zhang D, Su C, Lin J. Disrupted topological properties of structural brain networks present a glutamatergic neuropathophysiology in people with narcolepsy. Sleep 2024; 47:zsae002. [PMID: 38173348 DOI: 10.1093/sleep/zsae002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/18/2023] [Indexed: 01/05/2024] Open
Abstract
STUDY OBJECTIVES Growing evidences have documented various abnormalities of the white matter bundles in people with narcolepsy. We sought to evaluate topological properties of brain structural networks, and their association with symptoms and neuropathophysiological features in people with narcolepsy. METHODS Diffusion tensor imaging was conducted for people with narcolepsy (n = 30) and matched healthy controls as well as symptoms assessment. Structural connectivity for each participant was generated to analyze global and regional topological properties and their correlations with narcoleptic features. Further human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. RESULTS A wide and dramatic decrease in structural connectivities was observed in people with narcolepsy, with descending network degree and global efficiency. These metrics were not only correlated with sleep latency and awakening features, but also reflected alterations of sleep macrostructure in people with narcolepsy. Network-based statistics identified a small hyperenhanced subnetwork of cingulate gyrus that was closely related to rapid eye movement sleep behavior disorder (RBD) in narcolepsy. Further imaging genetics analysis suggested glutamatergic signatures were responsible for the preferential vulnerability of connectivity alterations in people with narcolepsy, while additional PET/SPECT data verified that structural alteration was significantly correlated with metabotropic glutamate receptor 5 (mGlutR5) and N-methyl-D-aspartate receptor (NMDA). CONCLUSIONS People with narcolepsy endured a remarkable decrease in the structural architecture, which was not only closely related to narcolepsy symptoms but also glutamatergic signatures.
Collapse
Affiliation(s)
- Guoyan Chen
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Haoyang Wu
- Basic Medicine School, Air Force Medical University, Xi'an, China
| | - Xianchao Zhao
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Jiafeng Ren
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jun Zhang
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Yingzhi Sun
- Department of Radiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiaxiu He
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Shihui Sun
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Zhao Zhong
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Danqing Shang
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Mengmeng Fan
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jinxiang Cheng
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Dan Zhang
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Changjun Su
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
| | - Jiaji Lin
- Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, China
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, Beijing, China
| |
Collapse
|
11
|
Potvin-Desrochers A, Atri A, Clouette J, Hepple RT, Taivassalo T, Paquette C. Resting-state Functional Connectivity of the Motor and Cognitive Areas is Preserved in Masters Athletes. Neuroscience 2024; 546:53-62. [PMID: 38522662 DOI: 10.1016/j.neuroscience.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 03/16/2024] [Accepted: 03/19/2024] [Indexed: 03/26/2024]
Abstract
Aging is characterized by a decline in physical and cognitive functions, often resulting in decreased quality of life. Physical activity has been suggested to potentially slow down various aspects of the aging process, a theory that has been supported by studies of Masters Athletes (MA). For example, MA usually have better cognitive and physical functions than age-matched sedentary and healthy older adults (OA), making them a valuable model to gain insights into mechanisms that promote physical and cognitive function with aging. The purpose of this study was to identify differences in resting-state functional connectivity (rs-FC) of motor and cognitive regions between MA and OA and determine if these differences in the resting brain are associated with differences in cognitive and physical performance between groups. Fifteen MA (9 males) and 12 age-matched OA (six males) were included. rs-FC images were compared to identify significant between-groups differences in brain connectivity. There was higher connectivity between the cognitive and motor networks for the OA group, whereas the MA group had stronger connectivity between different regions within the same network, both for the cognitive and the motor networks. These results are in line with the literature suggesting that aging reduces the segregation between functional networks and causes regions within the same network to be less strongly connected. High-level physical activity practiced by the MA most likely contributes to attenuating aging-related changes in brain functional connectivity, preserving clearer boundaries between different functional networks, which may ultimately favor maintenance of efficient cognitive and sensorimotor processing.
Collapse
Affiliation(s)
- Alexandra Potvin-Desrochers
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada; Integrated Program in Neuroscience (IPN), McGill University, 1033 Pine Ave, Montreal, Quebec, Canada
| | - Alisha Atri
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada
| | - Julien Clouette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada
| | - Russell T Hepple
- Department of Physical Therapy, University of Florida, 101 Newell Dr, Gainesville, FL, USA; Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, USA
| | - Tanja Taivassalo
- Department of Physiology and Functional Genomics, University of Florida, 1600 SW Archer Rd, Gainesville, FL, USA
| | - Caroline Paquette
- Department of Kinesiology and Physical Education, McGill University, 475 Pine Ave., Montreal, Quebec, Canada; Jewish Rehabilitation Hospital Site of CISSS-Laval and Research Site of the Montreal Centre for Interdisciplinary Research in Rehabilitation (CRIR), 3205 Place Alton-Goldbloom, Laval, Quebec, Canada; Integrated Program in Neuroscience (IPN), McGill University, 1033 Pine Ave, Montreal, Quebec, Canada.
| |
Collapse
|
12
|
Zhang L, Ding Y, Li T, Li H, Liu F, Li P, Zhao J, Lv D, Lang B, Guo W. Similar imaging changes and their relations to genetic profiles in bipolar disorder across different clinical stages. Psychiatry Res 2024; 335:115868. [PMID: 38554494 DOI: 10.1016/j.psychres.2024.115868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 04/01/2024]
Abstract
Bipolar disorder (BD) across different clinical stages may present shared and distinct changes in brain activity. We aimed to reveal the neuroimaging homogeneity and heterogeneity of BD and its relationship with clinical variables and genetic variations. In present study, we conducted fractional amplitude of low-frequency fluctuations (fALFF), functional connectivity (FC) and genetic neuroimaging association analyses with 32 depressed, 26 manic, 35 euthymic BD patients and 87 healthy controls (HCs). Significant differences were found in the bilateral pre/subgenual anterior cingulate cortex (ACC) across the four groups, and all bipolar patients exhibited decreased fALFF values in the ACC when compared to HCs. Furthermore, positive associations were significantly observed between fALFF values in the pre/subgenual ACC and participants' cognitive functioning. No significant changes were found in ACC-based FC. We identified fALFF-alteration-related genes in BD, with enrichment in biological progress including synaptic and ion transmission. Taken together, abnormal activity in ACC is a characteristic change associated with BD, regardless of specific mood stages, serving as a potential neuroimaging feature in BD patients. Our genetic neuroimaging association analysis highlights possible heterogeneity in biological processes that could be responsible for different clinical stages in BD.
Collapse
Affiliation(s)
- Leyi Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Yudan Ding
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Tingting Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Huabing Li
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, China
| | - Feng Liu
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Ping Li
- Department of Psychiatry, Qiqihar Medical University, Qiqihar, Heilongjiang 161006, China
| | - Jingping Zhao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Dongsheng Lv
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China; Center of Mental Health, Inner Mongolia Autonomous Region, Hohhot 010010, China.
| | - Bing Lang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China
| | - Wenbin Guo
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha 410011, Hunan, China.
| |
Collapse
|
13
|
Lin J, Kang X, Zhou J, Zhang D, Hu J, Lu H, Pan L, Lou X. Profiling functional networks identify activation of corticostriatal connectivity in ET patients after MRgFUS thalamotomy. Neuroimage Clin 2024; 42:103605. [PMID: 38640802 PMCID: PMC11053244 DOI: 10.1016/j.nicl.2024.103605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/22/2024] [Accepted: 04/13/2024] [Indexed: 04/21/2024]
Abstract
BACKGROUND MR-guided focused ultrasound (MRgFUS) thalamotomy is a novel and effective treatment for medication-refractory tremor in essential tremor (ET), but how the brain responds to this deliberate lesion is not clear. OBJECTIVE The current study aimed to evaluate the immediate and longitudinal alterations of functional networks after MRgFUS thalamotomy. METHODS We retrospectively obtained preoperative and postoperative 30-day, 90-day, and 180-day data of 31 ET patients subjected with MRgFUS thalamotomy from 2018 to 2020. Their archived resting-state functional MRI data were used for functional network comparison as well as graph-theory metrics analysis. Both partial least squares (PLS) regression and linear regression were conducted to associate functional features to tremor symptoms. RESULTS MRgFUS thalamotomy dramatically abolished tremors, while global functional network only sustained immediate fluctuation within one week after the surgery. Network-based statistics have identified a long-term enhanced corticostriatal subnetwork by comparison between 180-day and preoperative data (P = 0.019). Within this subnetwork, network degree, global efficiency and transitivity were significantly recovered in ET patients right after MRgFUS thalamotomy compared to the pre-operative timepoint (P < 0.05), as well as hemisphere lateralization (P < 0.001). The PLS main component significantly accounted for 33.68 % and 34.16 % of the total variances of hand tremor score and clinical rating scale for tremor (CRST)-total score (P = 0.037 and 0.027). Network transitivity of this subnetwork could serve as a reliable biomarker for hand tremor score control prediction at 180-day after the surgery (β = 2.94, P = 0.03). CONCLUSION MRgFUS thalamotomy promoted corticostriatal connectivity activation correlated with tremor improvement in ET patient after MRgFUS thalamotomy.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China; Department of Neurology, The Second Affiliated Hospital of Air Force Medical University, Xi'an, 710038, China
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100876, China
| | - Jiayou Zhou
- Department of Neurosurgery, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Jianxing Hu
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Haoxuan Lu
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital/Medical School of Chinese PLA, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
14
|
Zhou L, Yang W, Liu Y, Li J, Zhao M, Liu G, Zhang J. Correlations between cognitive reserve, gray matter, and cerebrospinal fluid volume in healthy elders and mild cognitive impairment patients. Front Neurol 2024; 15:1355546. [PMID: 38497043 PMCID: PMC10941649 DOI: 10.3389/fneur.2024.1355546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/21/2024] [Indexed: 03/19/2024] Open
Abstract
Objective To explore the effect of cognitive reserve (CR) on brain volume and cerebrospinal fluid (CSF) in patients with mild cognitive impairment (MCI) and healthy elders (HE). Methods 31 HE and 50 MCI patients were collected in this study to obtain structural MRI, cognitive function, and composite CR scores. Educational attainment, leisure time, and working activity ratings from two groups were used to generate cognitive reserve index questionnaire (CRIq) scores. The different volumes of brain regions and CSF were obtained using uAI research portal in both groups, which were taken as the regions of interest (ROI), the correlation analysis between ROIs and CRIq scores were conducted. Results The scores of CRIq, CRIq-leisure time, and CRIq-education in HE group were significantly higher than patients in MCI group, and the montreal cognitive assessment (MoCA) and minimum mental state examination (MMSE) scores were positively correlated with the CRIq, CRIq-education in both groups, and were positively correlated with CRIq-leisure time in MCI group. The scores of auditory verbal learning test (AVLT) and verbal fluency test (VFT) were also positively correlated with CRIq, CRIq-leisure time, and CRIq-education in MCI group, but the score of AVLT was only positively correlated with CRIq in HE group. Moreover, in MCI group, the volume of the right middle cingulate cortex and the right parahippocampal gyrus were negatively correlated with the CRIq, and the volume of CSF, peripheral CSF, and third ventricle were positively correlated with the CRIq-leisure time score. The result of mediation analysis suggested that right parahippocampal gryus mediated the main effect of the relationship between CRIq and MoCA score in MCI group. Conclusion People with higher CR show better levels of cognitive function, and MCI patients with higher CR showed more severe volume atrophy of the right middle cingulate cortex and the right parahippocampal gyrus, but more CSF at a given level of global cognition.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Wenxia Yang
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Yang Liu
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jiachen Li
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Second Clinical Medical School, Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Mengmeng Zhao
- Shanghai United Imaging Intelligence, Shanghai, China
| | - Guangyao Liu
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| | - Jing Zhang
- Department of Magnetic Resonance, The Second Hospital of Lanzhou University, Lanzhou, China
- Gansu Province Clinical Research Center for Functional and Molecular Imaging, Lanzhou, China
| |
Collapse
|
15
|
Zhang D, Huang Y, Liu S, Gao J, Liu W, Liu W, Ai K, Lei X, Zhang X. Structural and functional connectivity alteration patterns of the cingulate gyrus in Type 2 diabetes. Ann Clin Transl Neurol 2023; 10:2305-2315. [PMID: 37822294 PMCID: PMC10723245 DOI: 10.1002/acn3.51918] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 08/22/2023] [Accepted: 09/08/2023] [Indexed: 10/13/2023] Open
Abstract
OBJECTIVE We aimed to reveal the role of structural and functional alterations of cingulate gyrus in early cognitive impairment in Type 2 diabetes mellitus (T2DM) patients. METHODS Fifty-six T2DM patients and 60 healthy controls (HCs) underwent a neuropsychological assessment and sagittal three-dimensional T1-weighted and resting-state functional MRI. Differences in the cortical thickness of the cingulate cortex and the functional connectivity (FC) of the nine subregions of the cingulate gyrus and the whole brain were compared between T2DM patients and HCs. Correlation analysis was performed between cortex thickness and FC and the participants' clinical/cognitive variables. RESULTS The cortical thickness of the cingulate gyrus was not significantly different between T2DM patients and HCs. However, the T2DM patients showed significantly lower FC between the pregenual ACC (pACC) and the bilateral hippocampus, significantly higher FC between the pACC and bilateral lateral prefrontal cortex (LPFC) and left precentral gyrus, and significantly lower FC between the retrosplenial cortex (RSC) and right cerebellar Crus I. The FC between the pACC and the left hippocampus was negatively correlated with the FC between the pACC and LPFC (r = -0.306, p = 0.022). INTERPRETATION The pACC and the RSC show dysfunctional connectivity before the appearance of structural abnormalities in T2DM patients. Abnormal FC of the pACC with the bilateral hippocampus and LPFC may imply a neural compensatory mechanism for memory function. These findings provide valuable information and new directions for possible interventions for the T2DM-related cognitive impairment.
Collapse
Affiliation(s)
- Dongsheng Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Yang Huang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Shasha Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Jie Gao
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Weirui Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Wanting Liu
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Kai Ai
- Department of Clinical SciencePhilips HealthcareXi'an710000China
| | - Xiaoyan Lei
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| | - Xiaoling Zhang
- Department of MRIShaanxi Provincial People's HospitalXi'an710068China
| |
Collapse
|
16
|
Tang D, Zylberberg J, Jia X, Choi H. Stimulus-dependent functional network topology in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.03.547364. [PMID: 37461471 PMCID: PMC10349950 DOI: 10.1101/2023.07.03.547364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Information is processed by networks of neurons in the brain. On the timescale of sensory processing, those neuronal networks have relatively fixed anatomical connectivity, while functional connectivity, which defines the interactions between neurons, can vary depending on the ongoing activity of the neurons within the network. We thus hypothesized that different types of stimuli, which drive different neuronal activities in the network, could lead those networks to display stimulus-dependent functional connectivity patterns. To test this hypothesis, we analyzed electrophysiological data from the Allen Brain Observatory, which utilized Neuropixels probes to simultaneously record stimulus-evoked activity from hundreds of neurons across 6 different regions of mouse visual cortex. The recordings had single-cell resolution and high temporal fidelity, enabling us to determine fine-scale functional connectivity. Comparing the functional connectivity patterns observed when different stimuli were presented to the mice, we made several nontrivial observations. First, while the frequencies of different connectivity motifs (i.e., the patterns of connectivity between triplets of neurons) were preserved across stimuli, the identities of the neurons within those motifs changed. This means that functional connectivity dynamically changes along with the input stimulus, but does so in a way that preserves the motif frequencies. Secondly, we found that the degree to which functional modules are contained within a single brain region (as opposed to being distributed between regions) increases with increasing stimulus complexity. This suggests a mechanism for how the brain could dynamically alter its computations based on its inputs. Altogether, our work reveals unexpected stimulus-dependence to the way groups of neurons interact to process incoming sensory information.
Collapse
Affiliation(s)
- Disheng Tang
- School of Life Sciences, Tsinghua University
- Quantitative Biosciences Program, Georgia Institute of Technology
- IDG/McGovern Institute for Brain Research, Tsinghua University
| | - Joel Zylberberg
- Department of Physics and Astronomy, and Centre for Vision Research, York University
- Learning in Machines and Brains Program, CIFAR
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| | - Xiaoxuan Jia
- School of Life Sciences, Tsinghua University
- IDG/McGovern Institute for Brain Research, Tsinghua University
- Tsinghua–Peking Center for Life Sciences
- Allen Institute for Brain Science
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| | - Hannah Choi
- Quantitative Biosciences Program, Georgia Institute of Technology
- School of Mathematics, Georgia Institute of Technology
- These authors jointly supervised this work: Joel Zylberberg, Xiaoxuan Jia, Hannah Choi
| |
Collapse
|
17
|
Chen X, Li W. Relationship between temporal dynamics of intrinsic brain activity and motor function remodeling in patients with acute BGIS. Front Neurosci 2023; 17:1154018. [PMID: 37469836 PMCID: PMC10353616 DOI: 10.3389/fnins.2023.1154018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/24/2023] [Indexed: 07/21/2023] Open
Abstract
Background patients with acute basal ganglia ischemic stroke (BGIS) show changes in local brain activity represented by the amplitude of low-frequency fluctuation (ALFF), but the time-varying characteristics of this local nerve activity are still unclear. This study aimed to investigate the abnormal time-varying local brain activity of patients with acute BGIS by using the ALFF method combined with the sliding-window approach. Methods In this study, 34 patients with acute BGIS with motor dysfunction and 44 healthy controls (HCs) were recruited. The dynamic amplitude of low-frequency fluctuation (dALFF) was employed to detect the alterations in brain activity induced by acute BGIS patients. A two-sample t-test comparison was performed to compare the dALFF value between the two groups and a Spearman correlation analysis was conducted to assess the relationship between the local brain activity abnormalities and clinical characteristics. Results Compared with HCs, the activity of neurons in the left temporal pole (TP), parahippocampal gyrus (paraHIP), middle occipital gyrus (MOG), dorsolateral superior frontal gyrus (SFGdl), medial cingulate cortex (MCC), right rectus, precuneus (PCu) and right cerebellum crus1 were significantly increased in patients with BGIS. In addition, we found that there was a negative correlation (r = -0.458, p = 0.007) between the dALFF value of the right rectus and the scores of the National Institutes of Health Stroke Scale (NIHSS), and a positive correlation (r = 0.488, 0.499, p < 0.05) with the scores of the Barthel Index scale (BI) and the Fugl Meyer motor function assessment (FMA). ROC analysis results demonstrated that the area under the curves (AUC) of the right rectus was 0.880, p<0.001. Conclusion The pattern of intrinsic brain activity variability was altered in patients with acute BGIS compared with HCs. The abnormal dALFF variability might be a potential tool to assess motor function in patients with acute BGIS and potentially inform the diagnosis of this disease.
Collapse
|
18
|
Shen Y, Cai H, Mo F, Yao S, Yu Y, Zhu J. Functional connectivity gradients of the cingulate cortex. Commun Biol 2023; 6:650. [PMID: 37337086 PMCID: PMC10279697 DOI: 10.1038/s42003-023-05029-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/08/2023] [Indexed: 06/21/2023] Open
Abstract
Heterogeneity of the cingulate cortex is evident in multiple dimensions including anatomy, function, connectivity, and involvement in networks and diseases. Using the recently developed functional connectivity gradient approach and resting-state functional MRI data, we found three functional connectivity gradients that captured distinct dimensions of cingulate hierarchical organization. The principal gradient exhibited a radiating organization with transitions from the middle toward both anterior and posterior parts of the cingulate cortex and was related to canonical functional networks and corresponding behavioral domains. The second gradient showed an anterior-posterior axis across the cingulate cortex and had prominent geometric distance dependence. The third gradient displayed a marked differentiation of subgenual and caudal middle with other parts of the cingulate cortex and was associated with cortical morphology. Aside from providing an updated framework for understanding the multifaceted nature of cingulate heterogeneity, the observed hierarchical organization of the cingulate cortex may constitute a novel research agenda with potential applications in basic and clinical neuroscience.
Collapse
Affiliation(s)
- Yuhao Shen
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Huanhuan Cai
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Fan Mo
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Shanwen Yao
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China
| | - Yongqiang Yu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| | - Jiajia Zhu
- Department of Radiology, The First Affiliated Hospital of Anhui Medical University, 230022, Hefei, China.
- Research Center of Clinical Medical Imaging, Anhui Province, 230032, Hefei, China.
- Anhui Provincial Institute of Translational Medicine, 230032, Hefei, China.
| |
Collapse
|
19
|
Petrescu C, Petrescu DM, Marian G, Focseneanu BE, Iliuta FP, Ciobanu CA, Papacocea S, Ciobanu AM. Neurological Soft Signs in Schizophrenia, a Picture of the Knowledge in the Last Decade: A Scoping Review. Healthcare (Basel) 2023; 11:1471. [PMID: 37239757 PMCID: PMC10217815 DOI: 10.3390/healthcare11101471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Neurological Soft Signs (NSS) are subtle neurological abnormalities that are more common in schizophrenia patients than in healthy individuals and have been regularly observed in neuroleptic-naive first-episode patients, supporting the hypothesis that they are an intrinsic component of schizophrenia. (2) Methods: a review of articles published in the last ten years (from January 2013 to January 2023) was carried out on articles published in ScienceDirect and PubMed, by following the PRISMA Statement extension for scoping reviews (PRISMA-ScR), which evaluated the impact of NSS in correlation with the symptomatology, neuroleptic treatment, and the cerebral structural changes of patients with schizophrenia. (3) Results: thirty articles were included, among them twelve included MRI structural evaluation and four studies with a longitudinal design. (4) Conclusions: interest in researching NSS has increased in recent years, but questions remain about their origin and relationship to schizophrenia symptoms, thus this study aims to fill in information gaps in the hope that future research will help provide individualized treatment. It is suggested that NSS in schizophrenia might have an inherited genetic relationship pattern, thus being in line with a trait viewpoint. Most of the research revealed that schizophrenia patients had higher NSS scores than healthy controls, however, they were rather similar to their first-degree relatives, thus, also arguing in favor of a trait perspective. The greatest improvement in scores is seen in those with a remitting course, as shown by declining NSS ratings concurrent with symptomatology.
Collapse
Affiliation(s)
- Cristian Petrescu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| | - Diana M. Petrescu
- Neurology Clinic Fundeni Clinical Institute, 022328 Bucharest, Romania;
| | - Gabriela Marian
- Academy of Romanian Scientists, 050045 Bucharest, Romania;
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Brindusa E. Focseneanu
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
- Department of Psychiatry and Psychology, Titu Maiorescu University of Medicine, 040441 Bucharest, Romania
| | - Floris Petru Iliuta
- Department of Psychiatry and Psychology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | | | - Serban Papacocea
- Department of Neurosurgery, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
| | - Adela M. Ciobanu
- Department of Psychiatry, Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania;
- Department of Psychiatry, Prof. Dr. Alexandru Obregia Clinical Hospital of Psychiatry, 041914 Bucharest, Romania;
| |
Collapse
|
20
|
Liu Y, Yu Q, Cheng L, Chen J, Gao J, Liu Y, Lin X, Wang X, Hou Z. The parcellation of cingulate cortex in neonatal period based on resting-state functional MRI. Cereb Cortex 2023; 33:2548-2558. [PMID: 35689654 DOI: 10.1093/cercor/bhac225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/14/2022] Open
Abstract
The human cingulate cortex (CC) is a complex region that is characterized by heterogeneous cytoarchitecture, connectivity, and function, and it is associated with various cognitive functions. The adult CC has been divided into various subregions, and this subdivision is highly consistent with its functional differentiation. However, only a few studies have focused on the function of neonatal CC. The aim of this study was to describe the cingulate segregation and the functional connectivity of each subdivision in full-term neonates (n = 60) based on resting-state functional magnetic resonance imaging. The neonatal CC was divided into three subregions, and each subregion showed specific connectivity patterns. The anterior cingulate cortex was mainly correlated with brain regions related to the salience (affected) network and default mode network (DMN), the midcingulate cortex was related to motor areas, and the posterior cingulate cortex was coupled with DMN. Moreover, we found that the cingulate subregions showed distinct functional profiles with major brain networks, which were defined using independent component analysis, and exhibited functional lateralization. This study provided new insights into the understanding of the functional specialization of neonatal CC, and these findings may have significant clinical implications, especially in predicting neurological disorder.
Collapse
Affiliation(s)
- Yanyan Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Qiaowen Yu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Luqi Cheng
- School of Life and Environmental Sciences, Guilin University of Electronic Technology, Guilin 541004, China
| | - Jinge Chen
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Jie Gao
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Yujia Liu
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
| | - Xiangtao Lin
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Ximing Wang
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| | - Zhongyu Hou
- Department of Medical Imaging, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Jinan, Shandong 250014, China
- Department of Medical Imaging, Shandong Provincial Hospital, Shandong University, Jinan, Shandong 250014, China
| |
Collapse
|
21
|
Budak M, Bayraktaroglu Z, Hanoglu L. The effects of repetitive transcranial magnetic stimulation and aerobic exercise on cognition, balance and functional brain networks in patients with Alzheimer's disease. Cogn Neurodyn 2023; 17:39-61. [PMID: 36704634 PMCID: PMC9871139 DOI: 10.1007/s11571-022-09818-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/20/2022] [Accepted: 05/02/2022] [Indexed: 01/29/2023] Open
Abstract
The purpose of this study was to investigate the effects of high-frequency repetitive Transcranial Magnetic Stimulation (rTMS) and aerobic exercises (AE) in addition to the pharmacological therapy (PT) in Alzheimer's Disease (AD). Twenty-seven patients with AD aged ≥ 60 years were included in the study and divided into 3 groups (rTMS, AE and control). All groups received PT. rTMS group (n = 10) received 20 Hz rTMS over dorsolateral prefrontal cortex (dlPFC) bilaterally and AE group (n = 9) received the structured moderate-intensity AE for 5 consecutive days/week over 2 weeks. Control group (n = 8) only received PT. Cognition, balance, mobility, quality of life (QoL), and resting state functional brain activity were evaluated one week before and one week after the interventions. (ClinicalTrials.gov ID:NCT05102045). Significant improvements were found in executive functions, behavior, and QoL in the rTMS group, in balance and mobility in the AE group, and in the visual memory and behavior in the control group (p < 0.05). Significant differences were found in the behavior in favor of the rTMS group, and balance in favor of the AE group (p < 0.05). There was a significant increase in activation on middle temporal gyrus, intra calcarine, central opercular cortex, superior parietal lobule, and paracingulate cortex in Default Mode Network (DMN) in the rTMS group (p < 0.05). High-frequency rTMS over bilateral dlPFC may improve executive functions and behavior and lead to increased activation in DMN, structured moderate-intensity AE may improve balance and mobility, and PT may improve memory and behaviour compared to pretreatment in AD.
Collapse
Affiliation(s)
- Miray Budak
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physical Therapy and Rehabilitation, Institute of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
- Department of Ergotherapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| | - Zubeyir Bayraktaroglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Physiology, International School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Lutfu Hanoglu
- Functional Imaging and Cognitive-Affective Neuroscience Lab (fINCAN), Research Institute for Health Sciences and Technologies (SABITA), Istanbul Medipol University, Istanbul, Turkey
- Department of Neurology, School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
22
|
Gradone AM, Champion G, McGregor KM, Nocera JR, Barber SJ, Krishnamurthy LC, Dotson VM. Rostral anterior cingulate connectivity in older adults with subthreshold depressive symptoms: A preliminary study. AGING BRAIN 2022; 3:100059. [PMID: 36911261 PMCID: PMC9997166 DOI: 10.1016/j.nbas.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/07/2022] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Subthreshold depressive symptoms are highly prevalent among older adults and are associated with numerous health risks including cognitive decline and decreased physical health. One brain region central to neuroanatomical models of depressive disorders is the anterior cingulate cortex (ACC). The rostral portion of the ACC-comprised of the pregenual ACC and subgenual ACC-is implicated in emotion control and reward processing. The goal of the current study was to examine how functional connectivity in subregions of the rostral ACC relate to depressive symptoms, measured by the Beck Depression Inventory-Second Edition, in an ethnically diverse sample of 28 community-dwelling older adults. Based on meta-analyses of previous studies in primarily young adults with clinical depression, we hypothesized that greater depressive symptoms would be associated with primarily increased resting-state functional connectivity from both the subgenual ACC and pregenual ACC to default mode network regions and the dorsolateral PFC. We instead found that higher depressive symptoms were associated with lower functional connectivity of the ACC to the dorsolateral PFC and regions within the default mode network, including from the subgenual ACC to the dorsolateral PFC and anterior cingulate and from the pregenual ACC to the middle cingulate gyrus. This preliminary study highlights brain alterations at subthreshold levels of depressive symptoms in older adults, which could serve as targets for interventions.
Collapse
Affiliation(s)
- Andrew M. Gradone
- Department of Psychology, Georgia State University, Atlanta, GA, United States
| | - Gabriell Champion
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
| | - Keith M. McGregor
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Birmingham VA Geriatrics Research Education and Clinical Center, Birmingham, AL, United States
- University of Alabama –Birmingham, School of Health Professions, Department of Clinical and Diagnostic Sciences, Birmingham, United States
| | - Joe R. Nocera
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Neurology, Emory University, Atlanta, GA, United States
- Division of Physical Therapy, Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
| | - Sarah J. Barber
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Gerontology Institute, Georgia State University, Atlanta, GA, United States
| | - Lisa C. Krishnamurthy
- VA Rehabilitation Research & Development Center for Visual and Neurocognitive Rehabilitation, Atlanta VA Health Care System, Decatur, GA, United States
- Department of Physics & Astronomy, Georgia State University, Atlanta, GA, United States
- Department of Radiology and Imaging Sciences, Emory University, Atlanta, GA, United States
| | - Vonetta M. Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, United States
- Gerontology Institute, Georgia State University, Atlanta, GA, United States
| |
Collapse
|
23
|
Sonkusare S, Qiong D, Zhao Y, Liu W, Yang R, Mandali A, Manssuer L, Zhang C, Cao C, Sun B, Zhan S, Voon V. Frequency dependent emotion differentiation and directional coupling in amygdala, orbitofrontal and medial prefrontal cortex network with intracranial recordings. Mol Psychiatry 2022; 28:1636-1646. [PMID: 36460724 DOI: 10.1038/s41380-022-01883-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/04/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
The amygdala, orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) form a crucial part of the emotion circuit, yet their emotion induced responses and interactions have been poorly investigated with direct intracranial recordings. Such high-fidelity signals can uncover precise spectral dynamics and frequency differences in valence processing allowing novel insights on neuromodulation. Here, leveraging the unique spatio-temporal advantages of intracranial electroencephalography (iEEG) from a cohort of 35 patients with intractable epilepsy (with 71 contacts in amygdala, 31 in OFC and 43 in mPFC), we assessed the spectral dynamics and interactions between the amygdala, OFC and mPFC during an emotional picture viewing task. Task induced activity showed greater broadband gamma activity in the negative condition compared to positive condition in all the three regions. Similarly, beta activity was increased in the negative condition in the amygdala and OFC while decreased in mPFC. Furthermore, beta activity of amygdala showed significant negative association with valence ratings. Critically, model-based computational analyses revealed unidirectional connectivity from mPFC to the amygdala and bidirectional communication between OFC-amygdala and OFC-mPFC. Our findings provide direct neurophysiological evidence for a much-posited model of top-down influence of mPFC over amygdala and a bidirectional influence between OFC and the amygdala. Altogether, in a relatively large sample size with human intracranial neuronal recordings, we highlight valence-dependent spectral dynamics and dyadic coupling within the amygdala-mPFC-OFC network with implications for potential targeted neuromodulation in emotion processing.
Collapse
Affiliation(s)
- Saurabh Sonkusare
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Ding Qiong
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Yijie Zhao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.,Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China
| | - Wei Liu
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruoqi Yang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Alekhya Mandali
- Department of Psychiatry, University of Cambridge, Cambridge, UK.,Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK.,MRC Brain Network Dynamics Unit, University of Oxford, Oxford, UK
| | - Luis Manssuer
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Psychiatry, University of Cambridge, Cambridge, UK.,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Chencheng Zhang
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunyan Cao
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bomin Sun
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shikun Zhan
- Department of Neurosurgery, Centre for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Valerie Voon
- Department of Psychiatry, University of Cambridge, Cambridge, UK. .,Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
| |
Collapse
|
24
|
He J, Wang D, Ban M, Kong L, Xiao Q, Yuan F, Zhu X. Regional metabolic heterogeneity in anterior cingulate cortex in major depressive disorder: A multi-voxel 1H magnetic resonance spectroscopy study. J Affect Disord 2022; 318:263-271. [PMID: 36087788 DOI: 10.1016/j.jad.2022.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/29/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND Previous studies have shown major depressive disorder (MDD) is associated with altered neuro-metabolites in the anterior cingulate cortex (ACC). However, the regional metabolic heterogeneity in the ACC in individuals with MDD remains unclear. METHODS We recruited 59 first-episode, treatment-naive young adults with MDD and 50 healthy controls who underwent multi-voxel 1H-MRS scanning at 3 T (Tesla) with voxels placed in the ACC, which was divided into two subregions, pregenual ACC (pACC) and anterior midcingulate cortex (aMCC). Between and within-subjects metabolite concentration variations were analyzed with SPSS. RESULTS Compared with control subjects, patients with MDD exhibited higher glutamate (Glu) and glutamine (Gln) levels in the pACC and higher myo-inositol (MI) level in the aMCC. We observed higher Glu and Gln levels and lower N-acetyl-aspartate (NAA) level in the pACC than those in the aMCC in both MDD and healthy control (HC) groups. More importantly, the metabolite concentration gradients of Glu, Gln and NAA were more pronounced in MDD patients relative to HCs. In the MDD group, the MI level in the aMCC positively correlated with the age of onset. LIMITATIONS The use of the relative concentration of metabolites constitutes a key study limitation. CONCLUSIONS We observed inconsistent alterations and distribution of neuro-metabolites concentration in the pACC and aMCC, revealing regional metabolic heterogeneity of ACC in first-episode, treatment-naive young individuals with MDD. These results provided new evidence for abnormal neuro-metabolites of ACC in the pathophysiology of MDD and suggested that pACC and aMCC might play different roles in MDD.
Collapse
Affiliation(s)
- Jincheng He
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Dongcui Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Meiting Ban
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Lingyu Kong
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Qian Xiao
- Mental Health Centre, Xiangya Hospital, Central South University, Changsha, China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Xueling Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
25
|
Togo M, Matsumoto R, Usami K, Kobayashi K, Takeyama H, Nakae T, Shimotake A, Kikuchi T, Yoshida K, Matsuhashi M, Kunieda T, Miyamoto S, Takahashi R, Ikeda A. Distinct connectivity patterns in human medial parietal cortices: Evidence from standardized connectivity map using cortico-cortical evoked potential. Neuroimage 2022; 263:119639. [PMID: 36155245 DOI: 10.1016/j.neuroimage.2022.119639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 11/21/2022] Open
Abstract
The medial parietal cortices are components of the default mode network (DMN), which are active in the resting state. The medial parietal cortices include the precuneus and the dorsal posterior cingulate cortex (dPCC). Few studies have mentioned differences in the connectivity in the medial parietal cortices, and these differences have not yet been precisely elucidated. Electrophysiological connectivity is essential for understanding cortical function or functional differences. Since little is known about electrophysiological connections from the medial parietal cortices in humans, we evaluated distinct connectivity patterns in the medial parietal cortices by constructing a standardized connectivity map using cortico-cortical evoked potential (CCEP). This study included nine patients with partial epilepsy or a brain tumor who underwent chronic intracranial electrode placement covering the medial parietal cortices. Single-pulse electrical stimuli were delivered to the medial parietal cortices (38 pairs of electrodes). Responses were standardized using the z-score of the baseline activity, and a response density map was constructed in the Montreal Neurological Institutes (MNI) space. The precuneus tended to connect with the inferior parietal lobule (IPL), the occipital cortex, superior parietal lobule (SPL), and the dorsal premotor area (PMd) (the four most active regions, in descending order), while the dPCC tended to connect to the middle cingulate cortex, SPL, precuneus, and IPL. The connectivity pattern differs significantly between the precuneus and dPCC stimulation (p<0.05). Regarding each part of the medial parietal cortices, the distributions of parts of CCEP responses resembled those of the functional connectivity database. Based on how the dPCC was connected to the medial frontal area, SPL, and IPL, its connectivity pattern could not be explained by DMN alone, but suggested a mixture of DMN and the frontoparietal cognitive network. These findings improve our understanding of the connectivity profile within the medial parietal cortices. The electrophysiological connectivity is the basis of propagation of electrical activities in patients with epilepsy. In addition, it helps us to better understand the epileptic network arising from the medial parietal cortices.
Collapse
Affiliation(s)
- Masaya Togo
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan
| | - Riki Matsumoto
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan; Division of Neurology, Kobe University Graduate School of Medicine, 7-5-2 Kusunoki-cho, Chuo-ku, Kobe, 650-0017, Japan.
| | - Kiyohide Usami
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Katsuya Kobayashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Hirofumi Takeyama
- Department of Respiratory Care and Sleep Control Medicine, Kyoto University Graduate School of Medicine, Japan; Department of Neurology, Japanese Red Cross Otsu Hospital, Japan
| | - Takuro Nakae
- Department of Neurosurgery, Shiga General Hospital, Japan
| | - Akihiro Shimotake
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Takayuki Kikuchi
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Kazumichi Yoshida
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Masao Matsuhashi
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takeharu Kunieda
- Department of Neurosurgery, Ehime University Graduate School of Medicine, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Kyoto University Graduate School of Medicine, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Japan
| | - Akio Ikeda
- Departments of Epilepsy, Movement Disorders and Physiology, Kyoto University Graduate School of Medicine, 54 Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
26
|
Zhang M, Yang F, Fan H, Fan F, Wang Z, Xiang H, Huang W, Tan Y, Tan S, Hong LE. Increased connectivity of insula sub-regions correlates with emotional dysregulation in patients with first-episode schizophrenia. Psychiatry Res Neuroimaging 2022; 326:111535. [PMID: 36084435 DOI: 10.1016/j.pscychresns.2022.111535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 08/05/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022]
Abstract
Dysfunctional insula is crucial in the development of social cognition deficits, especially emotional dysregulation in patients with schizophrenia. However, function networks of insula sub-regions in schizophrenia are rarely investigated. In this study, functional connectivity between insula sub-regions and whole-brain voxels and its relationship with social cognition ability were investigated in patients with first-episode schizophrenia (FES). This study included 47 patients with FES and 47 healthy controls (HCs). Resting-state functional connectivity (rsFC) was assessed using a seed-based approach, and social cognition was measured by the "managing emotions" branch of the Mayer-Salovey-Caruso Emotional Intelligence Test. Differences in rsFC of insula sub-regions between the two groups were examined. Patients with FES showed increased rsFC between the left anterior insula (AI) and the right inferior frontal gyrus or the right anterior middle cingulate cortex (aMCC) and between the right middle insula and the right aMCC. Moreover, the increased AI-aMCC connectivity correlated negatively with the "managing emotion" scores in patients. This study highlights the altered functional connectivity of insula sub-regions and its correlation with emotional dysregulation in patients with FES. Our findings provide some insights into underlying neuropathological mechanisms associated with emotional regulation deficiency in patients with schizophrenia.
Collapse
Affiliation(s)
- Meng Zhang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Hong Xiang
- Chongqing University Three Gorges Hospital, Chongqing 404000, China
| | - Wenqian Huang
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing 100096, China.
| | - L Elliot Hong
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21288, United States of America
| |
Collapse
|
27
|
Rodríguez-Nieto G, Mercadillo RE, Pasaye EH, Barrios FA. Affective and cognitive brain-networks are differently integrated in women and men while experiencing compassion. Front Psychol 2022; 13:992935. [PMID: 36176793 PMCID: PMC9513369 DOI: 10.3389/fpsyg.2022.992935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 08/24/2022] [Indexed: 11/13/2022] Open
Abstract
Different theoretical models have proposed cognitive and affective components in empathy and moral judgments encompassing compassion. Furthermore, gender differences in psychological and neural functions involving empathic and moral processing, as well as compassionate experiences, have been reported. However, the neurobiological function regarding affective and cognitive integration underlying compassion and gender-associated differences has not been investigated. In this study, we aimed to examine the interaction between cognitive and emotional components through functional connectivity analyzes and to explore gender differences for the recruitment and interaction of these components. Thirty-six healthy participants (21–56 years; 21 women) were exposed to social images in an fMRI session to judge whether the stimuli elicited compassion. The results showed a different connectivity pattern for women and men of the insular cortex, the dorsomedial prefrontal cortex (dmPFC), the orbitofrontal cortex (OFC), and the cingulate cortex. The integration of affective and cognitive components follows a complex functional connectivity pattern that is different for both genders. These differences may indicate that men largely make compassionate judgments based on contextual information, while women tend to notably take internal and introspective processes into account. Women and men can use different affective and cognitive routes that could converge in similar learning of moral values, empathic experiences and compassionate acts.
Collapse
Affiliation(s)
- Geraldine Rodríguez-Nieto
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Biomedical Sciences Group, KU Leuven, Leuven, Belgium
| | - Roberto E. Mercadillo
- Unidad Iztapalapa, Universidad Autónoma Metropolitana, México City, Mexico
- Consejo Nacional de Ciencia y Tecnología, México City, Mexico
- *Correspondence: Roberto E. Mercadillo, ,
| | - Erick H. Pasaye
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
| | - Fernando A. Barrios
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Queretaro, Mexico
- Fernando A. Barrios,
| |
Collapse
|
28
|
Shin H, Suma D, He B. Closed-loop motor imagery EEG simulation for brain-computer interfaces. Front Hum Neurosci 2022; 16:951591. [PMID: 36061506 PMCID: PMC9428352 DOI: 10.3389/fnhum.2022.951591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
In a brain-computer interface (BCI) system, the testing of decoding algorithms, tasks, and their parameters is critical for optimizing performance. However, conducting human experiments can be costly and time-consuming, especially when investigating broad sets of parameters. Attempts to utilize previously collected data in offline analysis lack a co-adaptive feedback loop between the system and the user present online, limiting the applicability of the conclusions obtained to real-world uses of BCI. As such, a number of studies have attempted to address this cost-wise middle ground between offline and live experimentation with real-time neural activity simulators. We present one such system which generates motor imagery electroencephalography (EEG) via forward modeling and novel motor intention encoding models for conducting sensorimotor rhythm (SMR)-based continuous cursor control experiments in a closed-loop setting. We use the proposed simulator with 10 healthy human subjects to test the effect of three decoder and task parameters across 10 different values. Our simulated approach produces similar statistical conclusions to those produced during parallel, paired, online experimentation, but in 55% of the time. Notably, both online and simulated experimentation expressed a positive effect of cursor velocity limit on performance regardless of subject average performance, supporting the idea of relaxing constraints on cursor gain in online continuous cursor control. We demonstrate the merits of our closed-loop motor imagery EEG simulation, and provide an open-source framework to the community for closed-loop SMR-based BCI studies in the future. All code including the simulator have been made available on GitHub.
Collapse
|
29
|
Szeszko PR, Bierer LM, Bader HN, Chu KW, Tang CY, Murphy KM, Hazlett EA, Flory JD, Yehuda R. Cingulate and hippocampal subregion abnormalities in combat-exposed veterans with PTSD. J Affect Disord 2022; 311:432-439. [PMID: 35598747 DOI: 10.1016/j.jad.2022.05.081] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 05/02/2022] [Accepted: 05/15/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND The hippocampus and cingulate gyrus are strongly interconnected brain regions that have been implicated in the neurobiology of post-traumatic stress disorder (PTSD). These brain structures are comprised of functionally distinct subregions that may contribute to the expression of PTSD symptoms or associated cardio-metabolic markers, but have not been well investigated in prior studies. METHODS Two divisions of the cingulate cortex (i.e., rostral and caudal) and 11 hippocampal subregions were investigated in 22 male combat-exposed veterans with PTSD and 22 male trauma-exposed veteran controls (TC). Cardio-metabolic measures included cholesterol, body mass index, and mean arterial pressure. RESULTS Individuals with PTSD had less caudal cingulate area compared to TC even after controlling for caudal cingulate thickness. Total hippocampus volume was lower in PTSD compared to TC, accounted for by differences in CA1-CA4, granule cell layer of the dentate gyrus, molecular layer, and subiculum. Individuals with PTSD had higher mean arterial pressure compared to TC, which correlated with hippocampus volume only in the PTSD group. LIMITATIONS Sample size, cross-sectional analysis, no control for medications and findings limited to males. CONCLUSIONS These data demonstrate preferential involvement of caudal cingulate area (vs. thickness) and hippocampus subregions in PTSD. The inverse association between hippocampus volume and mean arterial pressure may contribute to accelerated aging known to be associated with PTSD.
Collapse
Affiliation(s)
- Philip R Szeszko
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Linda M Bierer
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Heather N Bader
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - King-Wai Chu
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Cheuk Y Tang
- Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA; Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katharine M Murphy
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Erin A Hazlett
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mental Illness Research, Education, and Clinical Center (MIRECC), James J. Peters VA Medical Center, Bronx, NY, USA
| | - Janine D Flory
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rachel Yehuda
- Mental Health Patient Care Center, James J. Peters Veterans Affairs Medical Center, Bronx, NY, USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
30
|
Gibson BC, Claus ED, Sanguinetti J, Witkiewitz K, Clark VP. A review of functional brain differences predicting relapse in substance use disorder: Actionable targets for new methods of noninvasive brain stimulation. Neurosci Biobehav Rev 2022; 141:104821. [PMID: 35970417 DOI: 10.1016/j.neubiorev.2022.104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/17/2022]
Abstract
Neuroimaging studies have identified a variety of brain regions whose activity predicts substance use (i.e., relapse) in patients with substance use disorder (SUD), suggesting that malfunctioning brain networks may exacerbate relapse. However, this knowledge has not yet led to a marked improvement in treatment outcomes. Noninvasive brain stimulation (NIBS) has shown some potential for treating SUDs, and a new generation of NIBS technologies offers the possibility of selectively altering activity in both superficial and deep brain structures implicated in SUDs. The goal of the current review was to identify deeper brain structures involved in relapse to SUD and give an account of innovative methods of NIBS that might be used to target them. Included studies measured fMRI in currently abstinent SUD patients and tracked treatment outcomes, and fMRI results were organized with the framework of the Addictions Neuroclinical Assessment (ANA). Four brain structures were consistently implicated: the anterior and posterior cingulate cortices, ventral striatum and insula. These four deeper brain structures may be appropriate future targets for the treatment of SUD using these innovative NIBS technologies.
Collapse
Affiliation(s)
- Benjamin C Gibson
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA
| | - Eric D Claus
- Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jay Sanguinetti
- The Center for Consciousness Studies, University of Arizona, Tucson, AZ 85719, USA
| | - Katie Witkiewitz
- Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Vincent P Clark
- Psychology Clinical Neuroscience Center, Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; Department of Psychology, University of New Mexico, Albuquerque, NM 87131, USA; The Mind Research Network/Lovelace Biomedical and Environmental Research Institute, Albuquerque, NM 87106, USA.
| |
Collapse
|
31
|
Fan X, Ren H, Bu C, Lu Z, Wei Y, Xu F, Fu L, Ma L, Kong C, Wang T, Zhang Y, Liu Q, Huang W, Bu H, Yuan J. Alterations in local activity and functional connectivity in patients with postherpetic neuralgia after short-term spinal cord stimulation. Front Mol Neurosci 2022; 15:938280. [PMID: 36034501 PMCID: PMC9405669 DOI: 10.3389/fnmol.2022.938280] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/13/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionThe efficacy of short-term spinal cord stimulation (stSCS) as a treatment for neuropathic pain in patients with postherpetic neuralgia (PHN) has already been validated. However, the potential alterations in brain functionality that are induced by such treatment have yet to be completely elucidated.MethodsThis study use resting-state functional magnetic resonance imaging (rs-fMRI) to detect the changes in regional homogeneity (ReHo) and degree centrality (DC) related to stimulator-induced pain relief in patients with PHN. A total of 10 patients with PHN underwent an MRI protocol at baseline and after stSCS. Alterations in ReHo and DC were then compared between baseline and after stSCS. We investigated the relationship between clinical parameters and functional changes in the brain.ResultsClinical parameters on pain, emotion, and sleep quality were correlated with ReHo and DC. ReHo and DC were significantly altered in the middle temporal gyrus, precuneus, superior frontal gyrus, supramarginal gyrus, inferior parietal lobule, rolandic operculum, middle occipital gyrus, superior parietal gyrus, and the precentral gyrus after stSCS. A significant correlation was detected between ReHo changes in the middle occipital gyrus, precuneus, inferior parietal gyrus, and changes in pain, emotion, and sleep quality. A significant negative correlation was detected between DC changes in the middle temporal gyrus, rolandic operculum, supramarginal gyrus, precuneus, inferior parietal gyrus, and changes in pain, emotion, and sleep quality.ConclusionThis study found that stSCS is able to induce ReHo and DC changes in patients with PHN, thus suggesting that stSCS can change brain function to alleviate pain, sleep, and emotional disorder.
Collapse
Affiliation(s)
- Xiaochong Fan
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Xiaochong Fan
| | - Huan Ren
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunxiao Bu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhongyuan Lu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fuxing Xu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lijun Fu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Letian Ma
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Cunlong Kong
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Tao Wang
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingying Liu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenqi Huang
- Department of Anesthesiology, The First Affiliated Hospital Sun Yat-sen University, Guangzhou, China
| | - Huilian Bu
- Department of Pain Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingjing Yuan
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- *Correspondence: Jingjing Yuan
| |
Collapse
|
32
|
Bröhl F, Keitel A, Kayser C. MEG Activity in Visual and Auditory Cortices Represents Acoustic Speech-Related Information during Silent Lip Reading. eNeuro 2022; 9:ENEURO.0209-22.2022. [PMID: 35728955 PMCID: PMC9239847 DOI: 10.1523/eneuro.0209-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/21/2022] Open
Abstract
Speech is an intrinsically multisensory signal, and seeing the speaker's lips forms a cornerstone of communication in acoustically impoverished environments. Still, it remains unclear how the brain exploits visual speech for comprehension. Previous work debated whether lip signals are mainly processed along the auditory pathways or whether the visual system directly implements speech-related processes. To probe this, we systematically characterized dynamic representations of multiple acoustic and visual speech-derived features in source localized MEG recordings that were obtained while participants listened to speech or viewed silent speech. Using a mutual-information framework we provide a comprehensive assessment of how well temporal and occipital cortices reflect the physically presented signals and unique aspects of acoustic features that were physically absent but may be critical for comprehension. Our results demonstrate that both cortices feature a functionally specific form of multisensory restoration: during lip reading, they reflect unheard acoustic features, independent of co-existing representations of the visible lip movements. This restoration emphasizes the unheard pitch signature in occipital cortex and the speech envelope in temporal cortex and is predictive of lip-reading performance. These findings suggest that when seeing the speaker's lips, the brain engages both visual and auditory pathways to support comprehension by exploiting multisensory correspondences between lip movements and spectro-temporal acoustic cues.
Collapse
Affiliation(s)
- Felix Bröhl
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Anne Keitel
- Psychology, University of Dundee, Dundee DD1 4HN, United Kingdom
| | - Christoph Kayser
- Department for Cognitive Neuroscience, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
33
|
Navarro-Cebrián A, Fischer J. Precise functional connections between the dorsal anterior cingulate cortex and areas recruited for physical inference. Eur J Neurosci 2022; 56:3660-3673. [PMID: 35441423 PMCID: PMC9544738 DOI: 10.1111/ejn.15670] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 04/08/2022] [Indexed: 11/28/2022]
Abstract
Recent work has identified brain areas that are engaged when people predict how the physical behavior of the world will unfold - an ability termed intuitive physics. Among the many unanswered questions about the neural mechanisms of intuitive physics is where the key inputs come from: which brain regions connect up with intuitive physics processes to regulate when and how they are engaged in service of our goals? In the present work, we targeted the dorsal anterior cingulate cortex (dACC) for study based on characteristics that make it well-positioned to regulate intuitive physics processes. The dACC is richly interconnected with frontoparietal regions and is implicated in mapping contexts to actions, a process that would benefit from physical predictions to indicate which action(s) would produce the desired physical outcomes. We collected resting state functional MRI data in seventeen participants and used independent task-related runs to find the pattern of activity during a physical inference task in each individual participant. We found that the strongest resting state functional connections of the dACC not only aligned well with physical inference-related activity at the group level, it also mirrored individual differences in the positioning of physics-related activity across participants. Our results suggest that the dACC might be a key structure for regulating the engagement of intuitive physics processes in the brain.
Collapse
Affiliation(s)
- Ana Navarro-Cebrián
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA.,Department of Psychology, University of Maryland, College Park, MD, USA
| | - Jason Fischer
- Department of Psychological and Brain Sciences, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
34
|
McIntosh RC, Lobo J, Paparozzi J, Goodman Z, Kornfeld S, Nomi J. Neutrophil to lymphocyte ratio is a transdiagnostic biomarker of depression and structural and functional brain alterations in older adults. J Neuroimmunol 2022; 365:577831. [PMID: 35217366 PMCID: PMC11092564 DOI: 10.1016/j.jneuroim.2022.577831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/30/2022]
Abstract
The neutrophil to lymphocyte ratio (N:L) is an emergent transdiagnostic biomarker shown to predict peripheral inflammation as well as neuropsychiatric impairment. The afferent signaling of inflammation to the central nervous system has been implicated in the pathophysiology of sickness behavior and depression. Here, the N:L was compared to structural and functional limbic alterations found concomitant with depression within a geriatric cohort. Venous blood was collected for a complete blood count, and magnetic resonance imaging as well as phenotypic data were collected from the 66 community-dwelling older adults (aged 65-86 years). The N:L was regressed on gray matter volume and resting-state functional connectivity (rsFC) of the subgenual anterior cingulate (sgACC). Thresholded parameter estimates were extracted from structural and functional brain scans and bivariate associations tested with scores on the geriatric depression scale. Greater N:L predicted lower volume of hypothalamus and rsFC of sgACC with ventromedial prefrontal cortex. Both parameters were correlated (p < 0.05) with greater symptomology in those reporting moderate to severe levels of depression. These findings support the N:L as a transdiagnostic biomarker of limbic alteration underpinning mood disturbance in non-treated older adults.
Collapse
Affiliation(s)
- Roger C McIntosh
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America.
| | - Judith Lobo
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jeremy Paparozzi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Zach Goodman
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Salome Kornfeld
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| | - Jason Nomi
- Department of Psychology, University of Miami, Coral Gables, FL 33124, United States of America
| |
Collapse
|
35
|
Mao Y, Chen C, Falahpour M, MacNiven KH, Heit G, Sharma V, Alataris K, Liu TT. Effects of Sub-threshold Transcutaneous Auricular Vagus Nerve Stimulation on Cingulate Cortex and Insula Resting-state Functional Connectivity. Front Hum Neurosci 2022; 16:862443. [PMID: 35496068 PMCID: PMC9048677 DOI: 10.3389/fnhum.2022.862443] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/23/2022] [Indexed: 11/13/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive alternative to vagus nerve stimulation (VNS) with implantable devices, has shown promise in treating disorders such as depression, migraine, and insomnia. Studies of these disorders with resting-state functional magnetic resonance imaging (MRI) (rsfMRI) have found sustained changes in resting-state functional connectivity (rsFC) in patients treated with low frequency (1-20 Hz) taVNS. A recent study has reported reductions in pain scores in patients with rheumatoid arthritis after a 12-week treatment of high-frequency (20 kHz) sub-threshold taVNS. However, no studies to date have examined the effects of high-frequency sub-threshold taVNS on rsFC. The objective of this study was to determine whether high-frequency sub-threshold taVNS induces changes in rsFC using seed regions from the cingulate cortex and insula, brain regions that play a key role in interoception and processing of pain. With a single-blind placebo-controlled repeated measures experimental design, rsfMRI scans were acquired before and after 15 min of either sub-threshold taVNS treatment or a sham control. Significant taVNS-related changes in functional connections to the cingulate cortex were detected between the anterior cingulate cortex and right superior temporal gyrus and between the midcingulate cortex and right inferior parietal lobule. In addition, significant changes in functional connections to the insula were detected between the posterior insula and right precuneus and between the anterior insula and right cuneus gyrus. These results suggest that high-frequency sub-threshold taVNS can lead to sustained effects on the rsFC of brain regions involved in interoception and processing of pain in a cohort of healthy subjects. This study lays the foundation for future rsfMRI studies of high-frequency sub-threshold taVNS in clinical populations.
Collapse
Affiliation(s)
- Yixiang Mao
- Center for Functional MRI, University of California San Diego, La Jolla, CA, United States
| | - Conan Chen
- Center for Functional MRI, University of California San Diego, La Jolla, CA, United States
| | - Maryam Falahpour
- Center for Functional MRI, University of California San Diego, La Jolla, CA, United States
| | - Kelly H. MacNiven
- Department of Psychology, Stanford University, Stanford, CA, United States
- Nēsos Corporation, Redwood City, CA, United States
| | - Gary Heit
- Nēsos Corporation, Redwood City, CA, United States
- Department of Neurosurgery, Hue University of Medicine and Pharmacy, Hue, Vietnam
| | - Vivek Sharma
- Nēsos Corporation, Redwood City, CA, United States
| | | | - Thomas T. Liu
- Center for Functional MRI, University of California San Diego, La Jolla, CA, United States
- Departments of Radiology, Psychiatry, and Bioengineering, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
36
|
Li M, Danyeli LV, Colic L, Wagner G, Smesny S, Chand T, Di X, Biswal BB, Kaufmann J, Reichenbach JR, Speck O, Walter M, Sen ZD. The differential association between local neurotransmitter levels and whole-brain resting-state functional connectivity in two distinct cingulate cortex subregions. Hum Brain Mapp 2022; 43:2833-2844. [PMID: 35234321 PMCID: PMC9120566 DOI: 10.1002/hbm.25819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen R Reichenbach
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany.,Michael Stifel Center Jena for Data-Driven & Simulation Science (MSCJ), Jena, Germany.,Center of Medical Optics and Photonics (CeMOP), Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| |
Collapse
|
37
|
Izadi-Najafabadi S, Rinat S, Zwicker JG. Brain functional connectivity in children with developmental coordination disorder following rehabilitation intervention. Pediatr Res 2022; 91:1459-1468. [PMID: 33934120 PMCID: PMC9197764 DOI: 10.1038/s41390-021-01517-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Children with developmental coordination disorder (DCD) show improved motor function after Cognitive Orientation to Occupational Performance (CO-OP) intervention; however, the neural basis for these improvements is unknown. METHODS In this randomized waitlist-controlled trial, 78 children with DCD (with/without ADHD) were randomly assigned to either a treatment or waitlist group and underwent three resting-state MRI scans over six months. The treatment group received intervention between the first and second scan; the waitlist group received intervention between the second and third scan. RESULTS After CO-OP intervention, children with DCD [13 male, 8 female; mean (SD) age: 10.0 (1.7) years] showed increased functional connectivity between the default mode network and right anterior cingulate gyrus (p < 0.01). Additional gains were noted at follow-up three months after the intervention, with greater functional connectivity between the dorsal attention network and precentral gyrus (p < 0.02). However, children with DCD + ADHD [18 male, 1 female; mean (SD) age: 10.0 (1.14) years] did not show brain changes following CO-OP. CONCLUSION For children with DCD, increased functional connectivity in networks associated with self-, emotion-, and attention-regulation may underlie motor skill improvements observed after CO-OP intervention. Modifications to the CO-OP protocol may be required to induce similar brain changes in children with DCD + ADHD. IMPACT This study provides neuroscientific evidence for the Cognitive Orientation to Occupational Performance (CO-OP) approach as an effective rehabilitation intervention to induce brain and behavioral changes in children with DCD. While children with DCD ± ADHD showed improved motor function after CO-OP, only children with DCD showed brain changes after intervention. Children with DCD showed increased functional connectivity in networks associated with self-, emotion-, and attention-regulation after the intervention. Treatment modifications may be required to induce similar brain changes in children with DCD + ADHD. Pediatricians are encouraged to refer children with DCD with and without ADHD for CO-OP intervention to improve their motor skills.
Collapse
Affiliation(s)
- Sara Izadi-Najafabadi
- grid.17091.3e0000 0001 2288 9830Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute, Vancouver, Canada
| | - Shie Rinat
- grid.17091.3e0000 0001 2288 9830Graduate Programs in Rehabilitation Sciences, University of British Columbia, Vancouver, Canada
| | - Jill G. Zwicker
- grid.414137.40000 0001 0684 7788BC Children’s Hospital Research Institute, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Occupational Science & Occupational Therapy, University of British Columbia, Vancouver, Canada ,grid.17091.3e0000 0001 2288 9830Department of Pediatrics, University of British Columbia, Vancouver, Canada ,grid.414137.40000 0001 0684 7788Sunny Hill Health Centre at BC Children’s Hospital, Vancouver, Canada ,grid.25073.330000 0004 1936 8227CanChild Centre for Childhood Disability Research, Hamilton, Canada
| |
Collapse
|
38
|
Smith AT. Cortical visual area CSv as a cingulate motor area: a sensorimotor interface for the control of locomotion. Brain Struct Funct 2021; 226:2931-2950. [PMID: 34240236 PMCID: PMC8541968 DOI: 10.1007/s00429-021-02325-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/17/2021] [Indexed: 12/26/2022]
Abstract
The response properties, connectivity and function of the cingulate sulcus visual area (CSv) are reviewed. Cortical area CSv has been identified in both human and macaque brains. It has similar response properties and connectivity in the two species. It is situated bilaterally in the cingulate sulcus close to an established group of medial motor/premotor areas. It has strong connectivity with these areas, particularly the cingulate motor areas and the supplementary motor area, suggesting that it is involved in motor control. CSv is active during visual stimulation but only if that stimulation is indicative of self-motion. It is also active during vestibular stimulation and connectivity data suggest that it receives proprioceptive input. Connectivity with topographically organized somatosensory and motor regions strongly emphasizes the legs over the arms. Together these properties suggest that CSv provides a key interface between the sensory and motor systems in the control of locomotion. It is likely that its role involves online control and adjustment of ongoing locomotory movements, including obstacle avoidance and maintaining the intended trajectory. It is proposed that CSv is best seen as part of the cingulate motor complex. In the human case, a modification of the influential scheme of Picard and Strick (Picard and Strick, Cereb Cortex 6:342-353, 1996) is proposed to reflect this.
Collapse
Affiliation(s)
- Andrew T Smith
- Department of Psychology, Royal Holloway, University of London, Egham, TW20 0EX, UK.
| |
Collapse
|
39
|
Boccadoro S, Wagels L, Puiu AA, Votinov M, Weidler C, Veselinovic T, Demko Z, Raine A, Neuner I. A meta-analysis on shared and distinct neural correlates of the decision-making underlying altruistic and retaliatory punishment. Hum Brain Mapp 2021; 42:5547-5562. [PMID: 34415078 PMCID: PMC8559514 DOI: 10.1002/hbm.25635] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 12/14/2022] Open
Abstract
Individuals who violate social norms will most likely face social punishment sanctions. Those sanctions are based on different motivation aspects, depending on the context. Altruistic punishment occurs if punishment aims to re‐establish the social norms even at cost for the punisher. Retaliatory punishment is driven by anger or spite and aims to harm the other. While neuroimaging research highlighted the neural networks supporting decision‐making in both types of punishment in isolation, it remains unclear whether they rely on the same or distinct neural systems. We ran an activation likelihood estimation meta‐analysis on functional magnetic resonance imaging data on 24 altruistic and 19 retaliatory punishment studies to investigate the neural correlates of decision‐making underlying social punishment and whether altruistic and retaliatory punishments share similar brain networks. Social punishment reliably activated the bilateral insula, inferior frontal gyrus, midcingulate cortex (MCC), and superior and medial frontal gyri. This network largely overlapped with activation clusters found for altruistic punishment. However, retaliatory punishment revealed only one cluster in a posterior part of the MCC, which was not recruited in altruistic punishment. Our results support previous models on social punishment and highlight differential involvement of the MCC in altruistic and retaliatory punishments, reflecting the underlying different motivations.
Collapse
Affiliation(s)
- Sara Boccadoro
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Lisa Wagels
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Andrei A Puiu
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Mikhail Votinov
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Jülich, Germany
| | - Carmen Weidler
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Tanja Veselinovic
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany
| | - Zachary Demko
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Adrian Raine
- Departments of Criminology, Psychiatry, and Psychology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Irene Neuner
- Departments of Psychiatry, Psychotherapy, and Psychosomatics, School of Medicine, RWTH Aachen University, Aachen, Germany.,Institute of Neuroscience and Medicine (INM-4), Forschungszentrum Jülich, Jülich, Germany.,JARA-BRAIN - Translational Medicine, Aachen, Germany
| |
Collapse
|
40
|
Lopez-Gamundi P, Yao YW, Chong TTJ, Heekeren HR, Mas-Herrero E, Marco-Pallarés J. The neural basis of effort valuation: A meta-analysis of functional magnetic resonance imaging studies. Neurosci Biobehav Rev 2021; 131:1275-1287. [PMID: 34710515 DOI: 10.1016/j.neubiorev.2021.10.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/19/2021] [Accepted: 10/22/2021] [Indexed: 11/30/2022]
Abstract
Choosing how much effort to expend is critical for everyday decisions. While several neuroimaging studies have examined effort-based decision-making, results have been highly heterogeneous, leaving unclear which brain regions process effort-related costs and integrate them with rewards. We conducted two meta-analyses of functional magnetic resonance imaging data to examine consistent neural correlates of effort demands (23 studies, 15 maps, 549 participants) and net value (15 studies, 11 maps, 428 participants). The pre-supplementary motor area (pre-SMA) scaled positively with pure effort demand, whereas the ventromedial prefrontal cortex (vmPFC) showed the opposite effect. Moreover, regions that have been previously implicated in value integration in other cost domains, such as the vmPFC and ventral striatum, were consistently involved in signaling net value. The opposite response patterns of the pre-SMA and vmPFC imply that they are differentially involved in the representation of effort costs and value integration. These findings provide conclusive evidence that the vmPFC is a central node for net value computation and reveal potential brain targets to treat motivation-related disorders.
Collapse
Affiliation(s)
- Paula Lopez-Gamundi
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain.
| | - Yuan-Wei Yao
- Department of Education and Psychology, Freie Universität Berlin, Berlin, 14159, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, 10117, Germany.
| | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Victoria, 3800, Australia
| | - Hauke R Heekeren
- Department of Education and Psychology, Freie Universität Berlin, Berlin, 14159, Germany; Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, 10117, Germany
| | - Ernest Mas-Herrero
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain
| | - Josep Marco-Pallarés
- Department of Cognition, Development and Educational Psychology, Institute of Neurosciences, University of Barcelona, Passeig de la Vall d'Hebron, 171, 08035 Barcelona, Spain; Cognition and Brain Plasticity Unit, Bellvitge Biomedical Research Institute (IDIBELL), C/ Feixa Llarga, s/n - Pavelló de Govern - Edifici Modular, 08907 Hospitalet de Llobregat, Spain
| |
Collapse
|
41
|
Lin J, Kang X, Xiong Y, Zhang D, Zong R, Yu X, Pan L, Lou X. Convergent structural network and gene signatures for MRgFUS thalamotomy in patients with Parkinson's disease. Neuroimage 2021; 243:118550. [PMID: 34481084 DOI: 10.1016/j.neuroimage.2021.118550] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/07/2021] [Accepted: 09/01/2021] [Indexed: 12/30/2022] Open
Abstract
MRgFUS has just been made available for the 1.7 million Parkinson's disease patients in China. Despite its non-invasive and rapid therapeutic advantages for involuntary tremor, some concerns have emerged about outcomes variability, non-specificity, and side-effects, as little is known about its impact on the long-term plasticity of brain structure. We sought to dissect the characteristics of long-term changes in brain structure caused by MRgFUS lesion and explored potential biological mechanisms. One-year multimodal imaging follow-ups were conducted for nine tremor-dominant Parkinson's disease patients undergoing unilateral MRgFUS thalamotomy. A structural connectivity map was generated for each patient to analyze dynamic changes in brain structure. The human brain transcriptome was extracted and spatially registered for connectivity vulnerability. Genetic functional enrichment analysis was performed and further clarified using in vivo emission computed tomography data. MRgFUS not only abolished tremors but also significantly disrupted the brain network topology. Network-based statistics identified a U-shape MRgFUS-sensitive subnetwork reflective of hand tremor recovery and surgical process, accompanied by relevant cerebral blood flow and gray matter alteration. Using human brain gene expression data, we observed that dopaminergic signatures were responsible for the preferential vulnerability associated with these architectural alterations. Additional PET/SPECT data not only validated these gene signatures, but also suggested that structural alteration was significantly correlated with D1 and D2 receptors, DAT, and F-DOPA measures. There was a long-term dynamic loop between structural alteration and dopaminergic signature for MRgFUS thalamotomy, which may be closely related to the long-term improvements in clinical tremor.
Collapse
Affiliation(s)
- Jiaji Lin
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xiaopeng Kang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100876, China; Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China
| | - Yongqin Xiong
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Dekang Zhang
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Rui Zong
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Xinguang Yu
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China
| | - Longsheng Pan
- Department of Neurosurgery, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| | - Xin Lou
- Department of Radiology, Chinese PLA General Hospital, No.28 Fuxing Road, Beijing, 100853, China.
| |
Collapse
|
42
|
Sivasathiaseelan H, Marshall CR, Benhamou E, van Leeuwen JEP, Bond RL, Russell LL, Greaves C, Moore KM, Hardy CJD, Frost C, Rohrer JD, Scott SK, Warren JD. Laughter as a paradigm of socio-emotional signal processing in dementia. Cortex 2021; 142:186-203. [PMID: 34273798 PMCID: PMC8438290 DOI: 10.1016/j.cortex.2021.05.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 04/01/2021] [Accepted: 05/21/2021] [Indexed: 11/03/2022]
Abstract
Laughter is a fundamental communicative signal in our relations with other people and is used to convey a diverse repertoire of social and emotional information. It is therefore potentially a useful probe of impaired socio-emotional signal processing in neurodegenerative diseases. Here we investigated the cognitive and affective processing of laughter in forty-seven patients representing all major syndromes of frontotemporal dementia, a disease spectrum characterised by severe socio-emotional dysfunction (twenty-two with behavioural variant frontotemporal dementia, twelve with semantic variant primary progressive aphasia, thirteen with nonfluent-agrammatic variant primary progressive aphasia), in relation to fifteen patients with typical amnestic Alzheimer's disease and twenty healthy age-matched individuals. We assessed cognitive labelling (identification) and valence rating (affective evaluation) of samples of spontaneous (mirthful and hostile) and volitional (posed) laughter versus two auditory control conditions (a synthetic laughter-like stimulus and spoken numbers). Neuroanatomical associations of laughter processing were assessed using voxel-based morphometry of patients' brain MR images. While all dementia syndromes were associated with impaired identification of laughter subtypes relative to healthy controls, this was significantly more severe overall in frontotemporal dementia than in Alzheimer's disease and particularly in the behavioural and semantic variants, which also showed abnormal affective evaluation of laughter. Over the patient cohort, laughter identification accuracy was correlated with measures of daily-life socio-emotional functioning. Certain striking syndromic signatures emerged, including enhanced liking for hostile laughter in behavioural variant frontotemporal dementia, impaired processing of synthetic laughter in the nonfluent-agrammatic variant (consistent with a generic complex auditory perceptual deficit) and enhanced liking for numbers ('numerophilia') in the semantic variant. Across the patient cohort, overall laughter identification accuracy correlated with regional grey matter in a core network encompassing inferior frontal and cingulo-insular cortices; and more specific correlates of laughter identification accuracy were delineated in cortical regions mediating affective disambiguation (identification of hostile and posed laughter in orbitofrontal cortex) and authenticity (social intent) decoding (identification of mirthful and posed laughter in anteromedial prefrontal cortex) (all p < .05 after correction for multiple voxel-wise comparisons over the whole brain). These findings reveal a rich diversity of cognitive and affective laughter phenotypes in canonical dementia syndromes and suggest that laughter is an informative probe of neural mechanisms underpinning socio-emotional dysfunction in neurodegenerative disease.
Collapse
Affiliation(s)
- Harri Sivasathiaseelan
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom.
| | - Charles R Marshall
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Preventive Neurology Unit, Wolfson Institute of Preventive Medicine, Queen Mary University of London, London, United Kingdom
| | - Elia Benhamou
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Janneke E P van Leeuwen
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Rebecca L Bond
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Caroline Greaves
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Katrina M Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris J D Hardy
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Chris Frost
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom; Department of Medical Statistics, Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Jason D Warren
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, London, United Kingdom
| |
Collapse
|
43
|
Siegel-Ramsay JE, Romaniuk L, Whalley HC, Roberts N, Branigan H, Stanfield AC, Lawrie SM, Dauvermann MR. Glutamate and functional connectivity - support for the excitatory-inhibitory imbalance hypothesis in autism spectrum disorders. Psychiatry Res Neuroimaging 2021; 313:111302. [PMID: 34030047 DOI: 10.1016/j.pscychresns.2021.111302] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/30/2021] [Accepted: 05/07/2021] [Indexed: 12/24/2022]
Abstract
It has been proposed that the Glutamate (Glu) system is implicated in autism spectrum disorders (ASD) via an imbalance between excitatory and inhibitory brain circuits, which impacts on brain function. Here, we investigated the excitatory-inhibitory imbalance theory by measuring Glu-concentrations and the relationship with resting-state function. Nineteen adult males with ASD and 19 age and sex-matched healthy controls (HC) (23 - 58 years) underwent Proton Magnetic Resonance Spectroscopy of the dorsal anterior cingulate cortex (dACC) and resting-state functional Magnetic Resonance Imaging (fMRI). Glu and Glx concentrations were compared between groups. Seed-based functional connectivity was analyzed with a priori seeds of the right and left dACC. Finally, metabolite concentrations were related to functional connectivity coefficients and compared between both groups. Individuals with ASD showed significantly negative associations between increased Glx concentrations and reduced functional connectivity between the dACC and insular, limbic and parietal regions. In contrast, HC displayed a positive relationship between the same metabolite and connectivity measures. We provided new evidence to support the excitatory-inhibitory imbalance theory, where excitatory Glx concentrations were related to functional dysconnectivity in ASD. Future research is needed to investigate large-scale functional networks in association with both excitatory and inhibitory metabolites in subpopulations of ASD.
Collapse
Affiliation(s)
- Jennifer E Siegel-Ramsay
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Department of Psychiatry and Behavioral Science, University of Texas, Austin, United States
| | - Liana Romaniuk
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Heather C Whalley
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Neil Roberts
- Centre for Reproductive Health (CRH), School of Clinical Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Holly Branigan
- School of Psychology, University of Edinburgh, Edinburgh, United Kingdom
| | - Andrew C Stanfield
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom; Patrick Wild Centre, University of Edinburgh, Edinburgh, United Kingdom
| | - Stephen M Lawrie
- Division of Psychiatry, University of Edinburgh, Edinburgh, United Kingdom
| | - Maria R Dauvermann
- Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, United Kingdom; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, United States.
| |
Collapse
|
44
|
Feng N, Gao M, Wu J, Yang G, Piao R, Liu P. Higher inter-hemispheric homotopic connectivity in lifelong premature ejaculation patients: a pilot resting-state fMRI study. Quant Imaging Med Surg 2021; 11:3234-3243. [PMID: 34249649 DOI: 10.21037/qims-20-1103] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
Background Lifelong premature ejaculation (PE) is one common male sexual dysfunction and is implicated in widespread structural and functional abnormalities of bilateral hemispheres. However, whether the inter-hemisphere functional connectivity (FC) of lifelong PE patients was altered still remain unclear. Methods Thirty-four lifelong PE patients and 30 healthy controls (HCs) were enrolled in this study and all underwent T1-weighted and resting-state functional MRI (fMRI) scan. The voxel-mirrored homotopic connectivity (VMHC) measure and independent sample t-test were applied to examine the alterations of VMHC values in the patients relative to HCs with the significant threshold at P<0.05, false discovery rates corrected. Correlation analysis was adopted to calculate the relationships between the imaging results and clinical characteristics of patients (P<0.05, Bonferroni corrected). Receiver operating characteristic (ROC) curve analysis was performed to investigate the possible biomarkers for distinguishing the patients from the HCs using the VMHC values of inter-group differences. Results The results revealed that compared with HCs, lifelong PE patients had higher VMHC values in the precentral gyrus (PG), primary somatosensory cortex (S1), supplementary motor area (SMA), precuneus, middle temporal cortex (MTC), superior temporal pole (STP), thalamus, caudate and middle cingulate cortex (MCC). Correlation analysis showed that the mean VMHC values in the S1 negatively correlated with intravaginal ejaculation latency time (IELT) in the patient group. Furthermore, the caudate revealed the well classification power from the ROC analysis. Conclusions The present study showed the abnormal inter-hemisphere interaction and integration of information involved in ejaculation inhibitory control, sensorimotor mediation and self-reference processing including the thalamus, caudate, MCC, widespread parietal cortex and temporal cortex in lifelong PE patients compared with HCs. Correlation analysis and ROC analysis revealed the importance of S1 and caudate in lifelong PE. Notably, the ROC result of caudate might show the core roles of caudate played in the pathophysiology of lifelong PE.
Collapse
Affiliation(s)
- Nana Feng
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ming Gao
- Xi'an Daxing Hospital of Shaanxi University of Chinese Medicine, Xi'an, China.,Department of Andrology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiayu Wu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Guang Yang
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Ruiqing Piao
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| | - Peng Liu
- Life Science Research Center, School of Life Science and Technology, Xidian University, Xi'an, China.,Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, China
| |
Collapse
|
45
|
Devoto F, Zapparoli L, Spinelli G, Scotti G, Paulesu E. How the harm of drugs and their availability affect brain reactions to drug cues: a meta-analysis of 64 neuroimaging activation studies. Transl Psychiatry 2020; 10:429. [PMID: 33318467 PMCID: PMC7736294 DOI: 10.1038/s41398-020-01115-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 11/06/2020] [Accepted: 11/18/2020] [Indexed: 01/02/2023] Open
Abstract
Visual drug cues are powerful triggers of craving in drug abusers contributing to enduring addiction. According to previous qualitative reviews, the response of the orbitofrontal cortex to such cues is sensitive to whether subjects are seeking treatment. Here we re-evaluate this proposal and assessed whether the nature of the drug matters. To this end, we performed a quantitative meta-analysis of 64 neuroimaging studies on drug-cue reactivity across legal (nicotine, alcohol) or illegal substances (cocaine, heroin). We used the ALE algorithm and a hierarchical clustering analysis followed by a cluster composition statistical analysis to assess the association of brain clusters with the nature of the substance, treatment status, and their interaction. Visual drug cues activate the mesocorticolimbic system and more so in abusers of illegal substances, suggesting that the illegal substances considered induce a deeper sensitization of the reward circuitry. Treatment status had a different modulatory role for legal and illegal substance abusers in anterior cingulate and orbitofrontal areas involved in inter-temporal decision making. The class of the substance and the treatment status are crucial and interacting factors that modulate the neural reactivity to drug cues. The orbitofrontal cortex is not sensitive to the treatment status per se, rather to the interaction of these factors. We discuss that these varying effects might be mediated by internal predispositions such as the intention to quit from drugs and external contingencies such as the daily life environmental availability of the drugs, the ease of getting them and the time frame of potential reward through drug consumption.
Collapse
Affiliation(s)
- F. Devoto
- grid.7563.70000 0001 2174 1754Department of Psychology and PhD Program in Neuroscience of the School of Medicine and Surgery, University of Milano-Bicocca, Milan, Italy
| | - L. Zapparoli
- grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - G. Spinelli
- grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - G. Scotti
- grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - E. Paulesu
- grid.7563.70000 0001 2174 1754Department of Psychology, University of Milano-Bicocca, Milan, Italy ,fMRI Unit, IRCCS Orthopedic Institute Galeazzi, Milan, Italy
| |
Collapse
|
46
|
Wittfoth D, Pfeiffer A, Bohne M, Lanfermann H, Wittfoth M. Emotion regulation through bifocal processing of fear inducing and disgust inducing stimuli. BMC Neurosci 2020; 21:47. [PMID: 33225884 PMCID: PMC7681990 DOI: 10.1186/s12868-020-00597-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 10/22/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND We present first-time evidence for the immediate neural and behavioral effects of bifocal emotional processing via visualized tapping for two different types of negative emotions (fear and disgust) in a sample of healthy participants. RESULTS Independent of stimulus type, neural activation in the amygdala is increased during regulation, while activation in the ventral anterior cingulate cortex is decreased. Behavioral responses, as well as lateral and medial occipital regions and the dorsolateral prefrontal cortex show differential regulatory effects with respect to stimulus type. CONCLUSIONS Our findings suggest that emotion regulation through bifocal processing has a neural and behavioral signature that is distinct from previously investigated emotion regulation strategies. They support theoretical models of facilitated access to and processing of emotions during bifocal processing and suggest differential neural and behavioral effects for various types of negative emotions.
Collapse
Affiliation(s)
- Dina Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany.
| | - Antonia Pfeiffer
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Michael Bohne
- Fortbildungsinstitut für PEP, Tiedgestrasse 5, Hannover, Germany
| | - Heinrich Lanfermann
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Matthias Wittfoth
- Institut für Diagnostische und Interventionelle Neuroradiologie, Medizinische Hochschule Hannover, Hannover, Germany
| |
Collapse
|
47
|
Zhu W, Huang H, Yang S, Luo X, Zhu W, Xu S, Meng Q, Zuo C, Zhao K, Liu H, Liu Y, Wang W. Dysfunctional Architecture Underlies White Matter Hyperintensities with and without Cognitive Impairment. J Alzheimers Dis 2020; 71:461-476. [PMID: 31403946 DOI: 10.3233/jad-190174] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND White matter hyperintensities (WMH) are common in older adults and are associated with cognitive decline. However, little is known about the functional changes underlying cognitive decline in WMH subjects. OBJECTIVES To investigate whole-brain functional connectivity (FC) underpinnings of cognitive decline in WMH subjects using univariate and multivariate analyses. METHODS Twenty-three WMH subjects with mild cognitive impairment (WMH-MCI), 43 WMH subjects with no cognitive impairment (WMH-nCI), and 55 healthy controls underwent resting-state functional MRI scans. Whole-brain FC was calculated using the fine-grained human Brainnetome Atlas, followed by performance of between-group comparisons and FC-cognition correlation analysis. A multivariate analysis using support vector machine (SVM) was performed to classify WMH-MCI and WMH-nCI subjects based on FC. RESULTS Both the WMH-MCI and WMH-nCI subjects exhibited characteristic impaired FC patterns. Markedly reduced FC involving subcortical nuclei and cortical hub regions of cognitive networks, especially the cingulate cortex, was identified in the WMH-MCI patients. In the WMH-MCI group, several connections involving the cingulate cortex were associated with cognitive decline. The exploratory mediation analyses indicated that FC alterations could partially explain the association between WMH and cognition. Furthermore, an SVM classifier based on FC distinguished WMH-MCI and WMH-nCI subjects with 78.8% accuracy. Connections that contributed most to the classification showed a similar distribution as the connections identified in the univariate analysis. CONCLUSIONS This study provides a new window into the pathophysiology of cognitive impairment in WMH subjects and offer a novel and potential approach for early detection of the cognitive impairment in WMH subjects at the individual level.
Collapse
Affiliation(s)
- Wenhao Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao Huang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqi Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiang Luo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shabei Xu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qi Meng
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chengchao Zuo
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Zhao
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Information Science and Engineering, Shandong Normal University, Ji'nan, China
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Yong Liu
- Brainnetome Center, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Artificial Intelligence, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
48
|
Fitzgerald JM, Belleau EL, Ehret LE, Trevino C, Brasel KJ, Larson C, deRoon-Cassini T. DACC Resting State Functional Connectivity as a Predictor of Pain Symptoms Following Motor Vehicle Crash: A Preliminary Investigation. THE JOURNAL OF PAIN 2020; 22:171-179. [PMID: 32736035 DOI: 10.1016/j.jpain.2020.07.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 03/26/2020] [Accepted: 07/25/2020] [Indexed: 12/25/2022]
Abstract
There is significant heterogeneity in pain outcomes following motor vehicle crashes (MVCs), such that a sizeable portion of individuals develop symptoms of chronic pain months after injury while others recover. Despite variable outcomes, the pathogenesis of chronic pain is currently unclear. Previous neuroimaging work implicates the dorsal anterior cingulate cortex (dACC) in adaptive control of pain, while prior resting state functional magnetic resonance imaging studies find increased functional connectivity (FC) between the dACC and regions involved in pain processing in those with chronic pain. Hyper-connectivity of the dACC to regions that mediate pain response may therefore relate to pain severity. The present study completed rsfMRI scans on N = 22 survivors of MVCs collected within 2 weeks of the incident to test whole-brain dACC-FC as a predictor of pain severity 6 months later. At 2 weeks, pain symptoms were predicted by positive connectivity between the dACC and the premotor cortex. Controlling for pain symptoms at 2 weeks, pain symptoms at 6 months were predicted by negative connectivity between the dACC and the precuneus. Previous research implicates the precuneus in the individual subjective awareness of pain. Given a relatively small sample size, approximately half of which did not experience chronic pain at 6 months, findings warrant replication. Nevertheless, this study provides preliminary evidence of enhanced dACC connectivity with motor regions and decreased connectivity with pain processing regions as immediate and prospective predictors of pain following MVC. PERSPECTIVE: This article presents evidence of distinct neural vulnerabilities that predict chronic pain in MVC survivors based on whole-brain connectivity with the dorsal anterior cingulate cortex.
Collapse
Affiliation(s)
| | - Emily L Belleau
- Department of Psychiatry, McLean Hospital, Belmont, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | | | - Colleen Trevino
- Division of Trauma & Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Christine Larson
- Department of Psychology, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin
| | - Terri deRoon-Cassini
- Division of Trauma & Critical Care, Department of Surgery, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
49
|
Sha Z, Versace A, Edmiston EK, Fournier J, Graur S, Greenberg T, Santos JPL, Chase HW, Stiffler RS, Bonar L, Hudak R, Yendiki A, Greenberg BD, Rasmussen S, Liu H, Quirk G, Haber S, Phillips ML. Functional disruption in prefrontal-striatal network in obsessive-compulsive disorder. Psychiatry Res Neuroimaging 2020; 300:111081. [PMID: 32344156 PMCID: PMC7266720 DOI: 10.1016/j.pscychresns.2020.111081] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 03/30/2020] [Accepted: 03/31/2020] [Indexed: 01/09/2023]
Abstract
Obsessive-compulsive disorder (OCD) is characterized by intrusive thoughts and repetitive, compulsive behaviors. While a cortico-striatal-limbic network has been implicated in the pathophysiology of OCD, the neural correlates of this network in OCD are not well understood. In this study, we examined resting state functional connectivity among regions within the cortico-striatal-limbic OCD neural network, including the rostral anterior cingulate cortex, dorsolateral prefrontal cortex, ventrolateral prefrontal cortex, orbitofrontal cortex, ventromedial prefrontal cortex, amygdala, thalamus and caudate, in 44 OCD and 43 healthy participants. We then examined relationships between OCD neural network connectivity and OCD symptom severity in OCD participants. OCD relative to healthy participants showed significantly greater connectivity between the left caudate and bilateral dorsolateral prefrontal cortex. We also found a positive correlation between left caudate-bilateral dorsolateral prefrontal cortex connectivity and depression scores in OCD participants, such that greater positive connectivity was associated with more severe symptoms. This study makes a significant contribution to our understanding of functional networks and their relationship with depression in OCD.
Collapse
Affiliation(s)
- Zhiqiang Sha
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amelia Versace
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - E Kale Edmiston
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jay Fournier
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Simona Graur
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tsafrir Greenberg
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - João Paulo Lima Santos
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Henry W Chase
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Richelle S Stiffler
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lisa Bonar
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Robert Hudak
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anastasia Yendiki
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Benjamin D Greenberg
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Steven Rasmussen
- Department of Psychiatry and Human Behavior, Brown Medical School, Butler Hospital, Providence, RI, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Gregory Quirk
- Departments of Psychiatry and Anatomy & Neurobiology, University of Puerto Rico School of Medicine, San Juan, Puerto Rico, USA
| | - Suzanne Haber
- Department of Pharmacology and Physiology, University of Rochester Medical Center, Rochester, New York 14642, USA
| | - Mary L Phillips
- Department of Psychiatry, Western Psychiatric Institute and Clinic, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
50
|
Dégeilh F, Beauchamp MH, Leblanc É, Daneault V, Bernier A. Socioeconomic Status in Infancy and the Developing Brain: Functional Connectivity of the Hippocampus and Amygdala. Dev Neurosci 2020; 41:327-340. [PMID: 32516794 DOI: 10.1159/000507616] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 03/31/2020] [Indexed: 01/10/2023] Open
Abstract
The development of the hippocampus and amygdala is particularly sensitive to environmental factors, including socioeconomic status (SES). Studies that have investigated associations between SES and brain development markers have rarely focused on connectivity. Accordingly, this longitudinal study examined whether SES in infancy (parental education and income-to-needs ratio) predicts the functional connectivity of the hippocampus and amygdala in late childhood, and in turn whether functional connectivity is associated with child socioemotional adjustment in a middle-class sample. SES indices were measured when children (n = 28) were 7 months old. When children were 10 years of age, they underwent a resting-state functional magnetic resonance imaging exam, and their school teachers completed a questionnaire assessing child socioemotional adjustment. Whole-brain regression analyses, including left and right hippocampi and amygdalae as seeds and SES indices as predictors, revealed that higher parental education predicted stronger functional connectivity between the left and right hippocampi and the right amygdala with the dorsal anterior cingulate cortex, and between the left amygdala and bilateral angular gyrus, after accounting for child age and sex. In turn, the connectivity of these regions was associated with higher child prosocial behavior. These findings contribute to the emerging literature suggesting that SES is associated with variability in the neural substrates of social abilities in children.
Collapse
Affiliation(s)
- Fanny Dégeilh
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Sainte-Justine Research Center, Montreal, Québec, Canada
| | - Miriam H Beauchamp
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Sainte-Justine Research Center, Montreal, Québec, Canada
| | - Élizabel Leblanc
- Department of Psychology, University of Montreal, Montreal, Québec, Canada
| | - Véronique Daneault
- Department of Psychology, University of Montreal, Montreal, Québec, Canada.,Functional Neuroimaging Unit, Montreal Geriatric University Institute, Montreal, Québec, Canada.,Center for Advanced Research in Sleep Medicine, Montreal Sacré-Coeur Hospital, Montreal, Québec, Canada
| | - Annie Bernier
- Department of Psychology, University of Montreal, Montreal, Québec, Canada,
| |
Collapse
|