1
|
Cheng CH, Chan PYS, Chen SY, Chen YH, Lu H, Liu CY. Trait anxiety negatively modulates the coupling of motor event-related desynchronization and event-related synchronization. BMC Psychiatry 2025; 25:447. [PMID: 40312350 PMCID: PMC12046696 DOI: 10.1186/s12888-025-06901-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/23/2025] [Indexed: 05/03/2025] Open
Abstract
BACKGROUND Recent neurophysiological studies showed that patients with psychiatric disorders demonstrated abnormalities in sensorimotor functions in addition to cognitive deficits. These findings intrigued us to investigate whether trait anxiety, a persistent inclination towards being anxious in multiple contexts, would affect motor cortical functions. Event-related desynchronization (ERD) and event-related synchronization (ERS) of α and β oscillations are associated with movement execution and movement termination, respectively. However, no study has comprehensively examined the effects of trait anxiety on motor ERD and ERS. Therefore, this study aimed to determine how trait anxiety influences these motor cortical oscillations. METHODS Twenty subjects (top 10% of the trait anxiety score distribution from 400 college students) with higher trait anxiety (HTA) and 20 subjects (bottom 10% of trait anxiety score distribution from the same sample) with lower trait anxiety (LTA) were recruited to perform a Go-Nogo task during electroencephalographic recordings. ERD and ERS of α and β oscillations to Go responses were compared between these two groups. The associations between ERD and ERS in each group were also examined. RESULTS Neither ERD nor ERS power changes were significantly different between LTA and HTA groups. Interestingly, a significant correlation between β ERD and α ERS/β ERS was found in the individuals with LTA; however, such functional coupling was not present in the individuals with HTA. CONCLUSION Trait anxiety negatively modulates the coupling of motor ERD and ERS.
Collapse
Affiliation(s)
- Chia-Hsiung Cheng
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan.
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan.
- Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
- Department of Neurology, Chang Gung Memorial Hospital, Kaohsiung, Taiwan.
| | - Pei-Ying S Chan
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Si-Yu Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Yu-Han Chen
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Hsinjie Lu
- Department of Occupational Therapy and Graduate Institute of Behavioral Sciences, Chang Gung University, No. 259, Wenhua 1st Rd, Taoyuan City , 333, Taiwan
- Laboratory of Brain Imaging and Neural Dynamics (BIND Lab), Chang Gung University, Taoyuan, Taiwan
| | - Chia-Yih Liu
- Department of Psychiatry, Chang Gung Memorial Hospital, Linkou, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
2
|
Mujunen T, Sompa U, Muñoz-Ruiz M, Monto E, Rissanen V, Ruuskanen H, Ahtiainen P, Piitulainen H. Early peripheral nerve impairments in type 1 diabetes are associated with cortical inhibition of ankle joint proprioceptive afference. Clin Neurophysiol 2025; 173:99-112. [PMID: 40090238 DOI: 10.1016/j.clinph.2025.02.277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/23/2024] [Accepted: 02/05/2025] [Indexed: 03/18/2025]
Abstract
OBJECTIVE Diabetic sensorimotor peripheral neuropathy (DSPN) is a common complication of type 1 diabetes mellitus (T1DM). However, it is still unclear how the cortical processing of proprioceptive afference is altered due to DSPN. METHODS Cortical responses to right and left ankle joint rotations were recorded with magnetoencephalography and pooled together in 20 T1DM participants and 20 healthy controls for source space comparisons. T1DM participants also underwent a lower limb nerve-conduction study to correlate peripheral nerve function with the cortical responses. RESULTS Primary sensorimotor (SM1) cortex activation was wider in T1DM patients during beta suppression, with no between-group differences in the response strength. However, stronger beta suppressions in T1DM patients were correlated with axon-loss in the peripheral sensory afferents (p < 0.05). Weaker beta rebounds and stronger SM1 evoked field amplitudes were associated with impaired conduction velocities in the mixed nerves (p < 0.05). Lastly, stronger SM1 beta power was associated with both demyelination and axon-loss in the lower limb sensory afferents (p < 0.05). CONCLUSIONS T1DM is accompanied with wider SM1 cortex activation to proprioceptive stimuli, and the early asymptomatic DSPN impairments are linked to increased levels of cortical inhibition. SIGNIFICANCE T1DM is associated with comprehensive central pathophysiology evident in early DSPN.
Collapse
Affiliation(s)
- Toni Mujunen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland.
| | - Urho Sompa
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Miguel Muñoz-Ruiz
- Department of Clinical Neurophysiology, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Elina Monto
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Valtteri Rissanen
- Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Heli Ruuskanen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Petteri Ahtiainen
- Department of Internal Medicine, Hospital Nova of Central Finland, Wellbeing Services County of Central Finland, FI-40620 Jyväskylä, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014 Jyväskylä, Finland; Center for Interdisciplinary Brain Research, University of Jyväskylä, PO Box 35, FI-40014 Jyväskylä, Finland
| |
Collapse
|
3
|
Zhang X, Huang M, Yuan X, Zhong X, Dai S, Wang Y, Zhang Q, Wongwitwichote K, Jiang C. Lifespan trajectories of motor control and neural oscillations: A systematic review of magnetoencephalography insights. Dev Cogn Neurosci 2025; 72:101529. [PMID: 39938146 PMCID: PMC11870221 DOI: 10.1016/j.dcn.2025.101529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025] Open
Abstract
Motor control (MC) evolves across the human lifespan, improving during childhood and adolescence, stabilizing in early adulthood, and declining in older age. These developmental and degenerative patterns are linked to neural oscillatory activity, which can be assessed via magnetoencephalography (MEG) to gain insights into motor planning, execution, termination, and command initiation. This review systematically examined age-related changes in MC and neural oscillations, centering on movement-related beta desynchronization (MRBD), post-movement beta rebound (PMBR), and movement-related gamma synchrony (MRGS). Following PRISMA guidelines, 17 cross-sectional studies were identified. The findings revealed significant enhancements in motor efficiency from childhood to adolescence, characterized by faster movement speed, shorter movement duration, weaker MRBD, and increased PMBR and MRGS. From adolescence to early adulthood, further improvements in motor performance were noted, accompanied by strengthened MRBD, PMBR, and a slight decline in MRGS. In older adults, motor performance deteriorates, presenting as slower movement and prolonged duration, alongside heightened resting beta power, elevated MRBD, and reduced PMBR. Alterations in MRGS remain insufficiently explored. Overall, MEG proves valuable for capturing neural dynamics underlying the development and decline of motor control across the lifespan. These findings underscore potential avenues for motor rehabilitation and cognitive interventions, particularly in aging populations.
Collapse
Affiliation(s)
- Xinbi Zhang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Mingming Huang
- School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Xiaoxia Yuan
- The School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Xiaoke Zhong
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou 350108, China
| | - Shengyu Dai
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Physical Education and Sport Science, Fujian Normal University, No. 18, Wulongjiang Middle Avenue, Shangjie Town, Minhou County, Fuzhou 350108, China
| | - Yingying Wang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Qiang Zhang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China
| | - Kanya Wongwitwichote
- The School of Sport, Exercise and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Changhao Jiang
- The Center of Neuroscience and Sports, Capital University of Physical Education and Sports, Beijing 100191, China; School of Kinesiology and Health, Capital University of Physical Education and Sports, Beijing 100191, China.
| |
Collapse
|
4
|
Nanbancha A, Limroongreungrat W, Samala M, Rattanakoch J, Guerra G, Niamsang W, Tharawadeepimuk K. Neural modifications of transtibial prosthesis (TTP) users: an event-related potentials study. J Neuroeng Rehabil 2025; 22:68. [PMID: 40140863 PMCID: PMC11938703 DOI: 10.1186/s12984-025-01606-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
BACKGROUND Individuals with lower-limb amputations are highly dependent upon prostheses to perform daily activities and adapt to environmental changes. Transtibial prosthesis (TTP) users in particular, experience greater challenges in motor control and demonstrate impaired cognitive functions, when compared to able-bodied persons. The identification of neural mechanisms underlying adaptation or compensation may contribute to the development and expansion of rehabilitation strategies. OBJECTIVE To examine neuroplasticity changes in transtibial amputees by analyzing event-related potentials (ERPs) obtained from Electroencephalogram (EEG) during Go/No-Go tasks to assess cognitive control and neural adaptations. METHODS Twenty-eight TTP users and twenty-eight able-bodied persons were recruited. EEG was recorded in eyes-open resting states, and ERPs during a Go/No-go task. RESULTS Our findings demonstrate that, during the resting-state, the TTP users group exhibited no significant differences in brain activity across regions. However, during Go/No-go task, an increase of N2 amplitude was observed, and significant reduction in the amplitude of P3 amplitude was noted when compared to able-bodied group. CONCLUSION These findings demonstrated neural modifications by individuals with transtibial amputation, particularly in relation to inhibitory control, which is essential for effective attentional control. Deficits in inhibitory control may interfere with decision-making processes, thereby impairing the execution of daily activities that require sustained attention and cognitive flexibility. Based on these findings of neural adaptions, it may be necessary to consider targeted interventions aimed at enhancing cognitive control and incorporating specific cortical training strategies for TTP users.
Collapse
Affiliation(s)
- Ampika Nanbancha
- College of Sports Science and Technology, Mahidol University, Nakhon Pathom, 73170, Thailand
| | | | - Manunchaya Samala
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Jutima Rattanakoch
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | - Gary Guerra
- Exercise and Sport Science Department, St. Mary's University, San Antonio, TX, 78228, USA
| | - Wisavaporn Niamsang
- Sirindhorn School of Prosthetics and Orthotics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, 10700, Thailand
| | | |
Collapse
|
5
|
Huang PJ, Arif Y, Rempe MP, Son JJ, John JA, McDonald KM, Petro NM, Garrison GM, Okelberry HJ, Kress KA, Picci G, Wilson TW. High-definition transcranial direct-current stimulation of left primary motor cortices modulates beta and gamma oscillations serving motor control. J Physiol 2025; 603:1627-1644. [PMID: 40009440 DOI: 10.1113/jp287085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 01/29/2025] [Indexed: 02/27/2025] Open
Abstract
Recent studies have linked non-invasive transcranial direct-current stimulation (tDCS) with altered neural processing near the site of stimulation and across a distributed network of brain regions, with some evidence for a possible therapeutic role. However, negative results also exist and the potential impacts on motor-related neural oscillations have rarely been studied. Herein, we applied high-definition tDCS to the left primary motor cortex of 62 healthy adults in three sessions (anodal, cathodal and sham). Participants then performed a motor task with two conditions (i.e. cognitive interference and no interference) during magnetoencephalography (MEG). The MEG data were imaged in the time-frequency domain and whole-brain, voxel-wise maps were probed for task condition and stimulation effects. Our results indicated the classic pattern of slower behavioural responses and stronger neural oscillations in frontal and parietal cortices during interference relative to no-interference trials. Importantly, we found task condition-by-stimulation interactions involving motor-related gamma oscillations, with weaker interference effects after cathodal stimulation relative to anodal and sham in the right prefrontal, left temporoparietal junction and left cerebellar cortices. Conversely, stronger gamma interference responses were found in the right motor and superior parietal cortices following anodal relative to cathodal and sham. Lastly, main effects of stimulation indicated stronger beta oscillations following anodal stimulation in the left supplementary motor area. Taken together, these data provide key mechanistic insight into the polarity-specific effects of tDCS on the neural oscillatory dynamics serving motor control. Such findings reflect the modulatory effects of tDCS on population-level neural oscillatory responses distant from the stimulation site. KEY POINTS: Neurophysiological studies have indicated that beta and gamma oscillations are critical to motor control and that their dynamics are modulated by higher-order features of the task. Recent investigations have shown that transcranial direct-current stimulation (tDCS) affects neural activity both locally and in brain regions distant from the stimulation site, but the mechanisms remain poorly understood. Sixty-two adults underwent anodal, cathodal and sham high-definition tDCS of the left motor cortices and completed a motor task with two levels of cognitive interference during magnetoencephalography (MEG). Task condition by stimulation-type interactions on movement-related gamma oscillations were observed across a distributed network of higher-order brain regions, including parietal cortices, right prefrontal and left temporoparietal junction. In sum, our results indicate polarity-specific effects on beta and gamma oscillations across a distributed network of brain regions that contribute to motor control in the context of interference and hold implications for understanding the therapeutic capacity of tDCS.
Collapse
Affiliation(s)
- Peihan J Huang
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grant M Garrison
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kennedy A Kress
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| |
Collapse
|
6
|
Petro NM, Picci G, Webert LK, Schantell M, Son JJ, Ward TW, McDonald KM, Livermore CL, Killanin AD, Rice DL, Ende GC, Coutant AT, Steiner EL, Wilson TW. Interactive effects of social media use and puberty on resting-state cortical activity and mental health symptoms. Dev Cogn Neurosci 2025; 71:101479. [PMID: 39608108 PMCID: PMC11636332 DOI: 10.1016/j.dcn.2024.101479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024] Open
Abstract
Adolescence is a period of profound biopsychosocial development, with pubertally-driven neural reorganization as social demands increase in peer contexts. The explosive increase in social media access has fundamentally changed peer interactions among youth, creating an urgent need to understand its impact on neurobiological development and mental health. Extant literature indicates that using social media promotes social comparison and feedback seeking (SCFS) behaviors in youth, which portend increased risk for mental health disorders, but little is known about its impact on neurobiological development. We assessed social media behaviors, mental health symptoms, and spontaneous cortical activity using magnetoencephalography (MEG) in 80 typically developing youth (8-16 years) and tested how self-reported pubertal stage moderates their relationship. More mature adolescents who engaged in more SCFS showed weaker fusiform/parahippocampal alpha and medial prefrontal beta activity, and increased symptoms of anxiety and attention problems. Engaging in SCFS on social media during adolescence may thus relate to developmental differences in brain regions that undergo considerable development during puberty. These results are consistent with works indicating altered neurodevelopmental trajectories within association cortices surrounding the onset of many mental health disorders. Importantly, later pubertal stages may be most sensitive to the detrimental effects of social media use.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| | - Lauren K Webert
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Cooper L Livermore
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Abraham D Killanin
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace C Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Anna T Coutant
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Erica L Steiner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
7
|
Mao L, Che X, Wang J, Jiang X, Zhao Y, Zou L, Wei S, Pan S, Guo D, Zhu X, Hu D, Yang X, Chen Z, Wang D. Sub-acute stroke demonstrates altered beta oscillation and connectivity pattern in working memory. J Neuroeng Rehabil 2024; 21:212. [PMID: 39633420 PMCID: PMC11619298 DOI: 10.1186/s12984-024-01516-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/27/2024] [Indexed: 12/07/2024] Open
Abstract
INTRODUCTION Working memory (WM) is suggested to play a pivotal role in relearning and neural restoration during stroke rehabilitation. Using EEG, this study investigated the oscillatory mechanisms of WM in subacute stroke. METHODS This study included 48 first subacute stroke patients (26 good-recovery, 22 poor-recovery, based on prognosis after a 4-week period) and 24 matched health controls. We examined the oscillatory characteristics and functional connectivity of the 0-back WM paradigm and assessed their associations with prognosis. RESULTS Patients of poor recovery are characterised by a loss of significant beta rebound, beta-band connectivity, as well as impaired working memory speed and performances. Meanwhile, patients with good recovery have preserved these capacities to some extent. Our data further identified beta rebound to be closely associated with working memory speed and performances. CONCLUSIONS We provided novel findings that beta rebound and network connectivity as mechanistic evidence of impaired working memory in subacute stroke. These oscillatory features could potentially serve as a biomarker for brain stimulation technologies in stroke recovery.
Collapse
Affiliation(s)
- Lin Mao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xianwei Che
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, 310003, China
| | - Juehan Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Xiaorui Jiang
- Department of Rehabilitation Medicine, The First People's Hospital of Yuhang District, Hangzhou, 311100, China
| | - Yifan Zhao
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Liliang Zou
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuang Wei
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Shuyi Pan
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Dazhi Guo
- Department of Hyperbaric Oxygen, The Sixth Medical Center of PLA General Hospital, Beijing, 100142, China
| | - Xueqiong Zhu
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China
| | - Dongxia Hu
- Departments of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Nanchang University School of Medicine, Nanchang, 330038, China
| | - Xiaofeng Yang
- Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zuobing Chen
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| | - Daming Wang
- Departments of Physical Medicine and Rehabilitation, The First Affiliated Hospital, Zhejiang University School of Medicine, Building 6, 58 Chengzhan Road, Hangzhou, 310003, China.
| |
Collapse
|
8
|
Lorenc F, Dupuis L, Cassel R. Impairments of inhibitory neurons in amyotrophic lateral sclerosis and frontotemporal dementia. Neurobiol Dis 2024; 203:106748. [PMID: 39592063 DOI: 10.1016/j.nbd.2024.106748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/21/2024] [Accepted: 11/21/2024] [Indexed: 11/28/2024] Open
Abstract
Amyotrophic lateral sclerosis and frontotemporal dementia are two fatal neurodegenerative disorders. They are part of a pathophysiological continuum, displaying clinical, neuropathological, and genetic overlaps. There is compelling evidence that neuronal circuit dysfunction is an early feature of both diseases. Impaired neuronal excitability, imbalanced excitatory and inhibitory influences, and altered functional connectivity have been reported. These phenomena are likely due to combined alterations in the various cellular components involved in the functioning of neuronal networks. This review focuses on one of these cellular components: inhibitory neurons. We assess the evidence for inhibitory neuron impairments in amyotrophic lateral sclerosis and frontotemporal dementia, as well as the mechanisms leading to the loss of inhibition. We also discuss the contributions of these alterations to symptoms, and the potential therapeutic strategies for targeting inhibitory neuron deficits.
Collapse
Affiliation(s)
- Félicie Lorenc
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Luc Dupuis
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| | - Raphaelle Cassel
- Université de Strasbourg, INSERM, UMR-S 1329, Strasbourg Translational Neuroscience and Psychiatry, CRBS, Strasbourg, France.
| |
Collapse
|
9
|
Lu X, Franz EA, Robertson SP, Markie D. Aberrant connectivity of the lateralized readiness system in non-syndromic congenital mirror movements. Clin Neurophysiol 2024; 167:61-73. [PMID: 39293386 DOI: 10.1016/j.clinph.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/20/2024]
Abstract
OBJECTIVES Non-syndromic CMM has a complex phenotype. Abnormal corpus callosum and corticospinal tract processes are suggested mechanisms of the mirror movements. To further explore behavioural and neural phenotype(s) the present study tests the hypothesis that the response readiness network comprising supplementary motor area (SMA) and connections with motor cortex (M1) functions abnormally in CMM. METHODS Twelve participants with (non-syndromic) CMM and a control group (n = 28) were tested on a probabilistic Go-NoGo task while electroencephalography (EEG) was recorded to assess possible group differences in lateralized readiness of voluntary hand movements together with measures of SMA-M1 functional connectivity. RESULTS The CMM group demonstrated delayed lateralized readiness and stronger functional connectivity between left-brain SMA-M1 regions. Connectivity strength was correlated with measures of behavioural performance but not with extent of mirroring. CONCLUSIONS Abnormalities in brain processes upstream of movement output likely reflect neurocompensation as a result of lifelong experience with mirroring in CMM. SIGNIFICANCE These findings extend the known neural abnormalities in CMM to include brain networks upstream from those involved in motor output and raise the question of whether neurocompensatory plasticity might be involved.
Collapse
Affiliation(s)
- Xueyao Lu
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Elizabeth A Franz
- Action Brain and Cognition Lab, Department of Psychology, University of Otago, Dunedin, New Zealand.
| | - Stephen P Robertson
- Clinical Genetics Group, Department of Women's and Children's Health, University of Otago, Dunedin, New Zealand
| | - David Markie
- Department of Pathology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
10
|
Kurz MJ, Taylor BK, Heinrichs-Graham E, Spooner RK, Baker SE, Wilson TW. Motor practice related changes in the sensorimotor cortices of youth with cerebral palsy. Brain Commun 2024; 6:fcae332. [PMID: 39391334 PMCID: PMC11465084 DOI: 10.1093/braincomms/fcae332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
The altered sensorimotor cortical dynamics seen in youth with cerebral palsy appear to be tightly coupled with their motor performance errors and uncharacteristic mobility. Very few investigations have used these cortical dynamics as potential biomarkers to predict the extent of the motor performance changes that might be seen after physical therapy or in the design of new therapeutic interventions that target a youth's specific neurophysiological deficits. This cohort investigation was directed at evaluating the practice dependent changes in the sensorimotor cortical oscillations exhibited by youth with cerebral palsy as a step towards addressing this gap. We used magnetoencephalography to image the changes in the cortical oscillations before and after youth with cerebral palsy (N = 25; age = 15.2 ± 4.5 years; Gross Motor Function Classification Score Levels I-III) and neurotypical controls (N = 18; age = 14.6 ± 3.1 years) practiced a knee extension isometric target-matching task. Subsequently, structural equation modelling was used to assess the multivariate relationship between changes in beta (16-22 Hz) and gamma (66-82 Hz) oscillations and the motor performance after practice. The structural equation modelling results suggested youth with cerebral palsy who had a faster reaction time after practice tended to also have a stronger peri-movement beta oscillation in the sensorimotor cortices following practicing. The stronger beta oscillations were inferred to reflect greater certainty in the selected motor plan. The models also indicated that youth with cerebral palsy who overshot the targets less and matched the targets sooner tended to have a stronger execution-related gamma response in the sensorimotor cortices after practice. This stronger gamma response may represent improve activation of the sensorimotor neural generators and/or alterations in the GABAergic interneuron inhibitory-excitatory dynamics. These novel neurophysiological results provide a window on the potential neurological changes governing the practice-related outcomes in the context of the physical therapy.
Collapse
Affiliation(s)
- Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| | - Rachel K Spooner
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, College of Medicine, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
11
|
Rhodes E, Gaetz W, Marsden J, Hall SD. Post-Movement Beta Synchrony Inhibits Cortical Excitability. Brain Sci 2024; 14:970. [PMID: 39451984 PMCID: PMC11505688 DOI: 10.3390/brainsci14100970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/19/2024] [Accepted: 09/21/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND/OBJECTIVES This study investigates the relationship between movement-related beta synchrony and primary motor cortex (M1) excitability, focusing on the time-dependent inhibition of movement. Voluntary movement induces beta frequency (13-30 Hz) event-related desynchronisation (B-ERD) in M1, followed by post-movement beta rebound (PMBR). Although PMBR is linked to cortical inhibition, its temporal relationship with motor cortical excitability is unclear. This study aims to determine whether PMBR acts as a marker for post-movement inhibition by assessing motor-evoked potentials (MEPs) during distinct phases of the beta synchrony profile. METHODS Twenty-five right-handed participants (mean age: 24 years) were recruited. EMG data were recorded from the first dorsal interosseous muscle, and TMS was applied to the M1 motor hotspot to evoke MEPs. A reaction time task was used to elicit beta oscillations, with TMS delivered at participant-specific time points based on EEG-derived beta power envelopes. MEP amplitudes were compared across four phases: B-ERD, early PMBR, peak PMBR, and late PMBR. RESULTS Our findings demonstrate that MEP amplitude significantly increased during B-ERD compared to rest, indicating heightened cortical excitability. In contrast, MEPs recorded during peak PMBR were significantly reduced, suggesting cortical inhibition. While all three PMBR phases exhibited reduced cortical excitability, a trend toward amplitude-dependent inhibition was observed. CONCLUSIONS This study confirms that PMBR is linked to reduced cortical excitability, validating its role as a marker of motor cortical inhibition. These results enhance the understanding of beta oscillations in motor control and suggest that further research on altered PMBR could be crucial for understanding neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Edward Rhodes
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - William Gaetz
- Department of Radiology, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jonathan Marsden
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
- School of Health Professions, University of Plymouth, Plymouth PL6 8BH, UK
| | - Stephen D. Hall
- Brain Research & Imaging Centre, University of Plymouth, Plymouth PL4 8AA, UK; (E.R.); (J.M.)
| |
Collapse
|
12
|
Casula EP, Esposito R, Dezi S, Ortelli P, Sebastianelli L, Ferrazzoli D, Saltuari L, Pezzopane V, Borghi I, Rocchi L, Ajello V, Trinka E, Oliviero A, Koch G, Versace V. Reduced TMS-evoked EEG oscillatory activity in cortical motor regions in patients with post-COVID fatigue. Clin Neurophysiol 2024; 165:26-35. [PMID: 38943790 DOI: 10.1016/j.clinph.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/13/2024] [Accepted: 06/10/2024] [Indexed: 07/01/2024]
Abstract
OBJECTIVE Persistent fatigue is a major symptom of the so-called 'long-COVID syndrome', but the pathophysiological processes that cause it remain unclear. We hypothesized that fatigue after COVID-19 would be associated with altered cortical activity in premotor and motor regions. METHODS We used transcranial magnetic stimulation combined with EEG (TMS-EEG) to explore the neural oscillatory activity of the left primary motor area (l-M1) and supplementary motor area (SMA) in a group of sixteen post-COVID patients complaining of lingering fatigue as compared to a sample of age-matched healthy controls. Perceived fatigue was assessed with the Fatigue Severity Scale (FSS) and Fatigue Rating Scale (FRS). RESULTS Post-COVID patients showed a remarkable reduction of beta frequency in both areas. Correlation analysis exploring linear relation between neurophysiological and clinical measures revealed a significant inverse correlation between the individual level of beta oscillations evoked by TMS of SMA with the individual scores in the FRS (r(15) = -0.596; p = 0.012). CONCLUSIONS Post-COVID fatigue is associated with a reduction of TMS-evoked beta oscillatory activity in SMA. SIGNIFICANCE TMS-EEG could be used to identify early alterations of cortical oscillatory activity that could be related to the COVID impact in central fatigue.
Collapse
Affiliation(s)
- Elias P Casula
- Department of System Medicine, University of Tor Vergata, Via Cracovia 50, 00133, Rome, Italy; Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Romina Esposito
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Sabrina Dezi
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria
| | - Valentina Pezzopane
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Ilaria Borghi
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy
| | - Lorenzo Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Via Università 40, 09124 Cagliari, Italy
| | - Valentina Ajello
- Department of Cardiac Anesthesia, University of Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Eugen Trinka
- Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Neuroscience Institute, Christian Doppler University Hospital, Paracelsus Medical University and Center for Cognitive Neuroscience, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria; Karl Landsteiner Institute of Neurorehabilitation and Space Neurology, Julius Raab-Promenade 49/1, 3100 St. Pölten, Salzburg, Austria
| | - Antonio Oliviero
- FENNSI Group, Hospital Nacional de Parapléjicos, SESCAM, FINCA DE, Carr. de la Peraleda, S/N, 45004 Toledo, Spain; Center for Clinical Neuroscience, Hospital Los Madroños, M-501 Km 17, 900 - 28690 Brunete, Spain
| | - Giacomo Koch
- Experimental Neuropsychophysiology Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina 354, 00179, Rome, Italy; Department of Neuroscience and Rehabilitation, University of Ferrara, Via Ludovico Ariosto 35, 44121 Ferrara, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA), Vipiteno-Sterzing, Italy, Teaching Hospital of the Paracelsus Medical Unversity (PMU), Salzburg, Austria; Teaching Hospital of the Paracelsus Medical University (PMU), Salzburg, Austria; Department of Neurology, Neurocritical Care and Neurorehabilitation, Christian Doppler University Hospital, Centre for Cognitive Neuroscience, Paracelsus Medical University, Member of the European Reference Network EpiCARE, Salzburg, Ignaz-Harrer-Straße 79, 5020 Salzburg, Austria.
| |
Collapse
|
13
|
Peng J, Zikereya T, Shao Z, Shi K. The neuromechanical of Beta-band corticomuscular coupling within the human motor system. Front Neurosci 2024; 18:1441002. [PMID: 39211436 PMCID: PMC11358111 DOI: 10.3389/fnins.2024.1441002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Beta-band activity in the sensorimotor cortex is considered a potential biomarker for evaluating motor functions. The intricate connection between the brain and muscle (corticomuscular coherence), especially in beta band, was found to be modulated by multiple motor demands. This coherence also showed abnormality in motion-related disorders. However, although there has been a substantial accumulation of experimental evidence, the neural mechanisms underlie corticomuscular coupling in beta band are not yet fully clear, and some are still a matter of controversy. In this review, we summarized the findings on the impact of Beta-band corticomuscular coherence to multiple conditions (sports, exercise training, injury recovery, human functional restoration, neurodegenerative diseases, age-related changes, cognitive functions, pain and fatigue, and clinical applications), and pointed out several future directions for the scientific questions currently unsolved. In conclusion, an in-depth study of Beta-band corticomuscular coupling not only elucidates the neural mechanisms of motor control but also offers new insights and methodologies for the diagnosis and treatment of motor rehabilitation and related disorders. Understanding these mechanisms can lead to personalized neuromodulation strategies and real-time neurofeedback systems, optimizing interventions based on individual neurophysiological profiles. This personalized approach has the potential to significantly improve therapeutic outcomes and athletic performance by addressing the unique needs of each individual.
Collapse
Affiliation(s)
| | | | | | - Kaixuan Shi
- Physical Education Department, China University of Geosciences Beijing, Beijing, China
| |
Collapse
|
14
|
Zhang L, Bao K, Liao Y. Enhanced Post-Movement Beta Rebound: Unraveling the Impact of Preplanned Sequential Actions. J Mot Behav 2024; 56:727-737. [PMID: 39138969 DOI: 10.1080/00222895.2024.2384886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 07/16/2024] [Accepted: 07/20/2024] [Indexed: 08/15/2024]
Abstract
The Post-Movement Beta Rebound (PMBR) is the increase in beta-band power after voluntary movement ends, but its specific role in cognitive processing is unclear. Current theory links PMBR with updates to internal models, mental frameworks that help anticipate and react to sensory feedback. However, research has not explored how reactivating a preexisting action plan, another source for internal model updates, might affect PMBR intensity. To address this gap, we recruited 20 participants (mean age 18.55 ± 0.51; 12 females) for an experiment involving isolated (single-step) or sequential (two-step) motor tasks based on predetermined cues. We compared PMBR after single-step movements with PMBR after the first movement in two-step tasks to assess the influence of a subsequent action on the PMBR power associated with the first action. The results show a significant increase in PMBR magnitude after the first movement in sequential tasks compared to the second action and the isolated movements. Notably, this increase is more pronounced for right-hand movements, suggesting lateralized brain activity in the left hemisphere. These findings indicate that PMBR is influenced not only by external stimuli but also by internal cognitive processes such as working memory. This insight enhances our understanding of PMBR's role in motor control, emphasizing the integration of both external and internal information.
Collapse
Affiliation(s)
- Lingli Zhang
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Kaige Bao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| | - Yu Liao
- School of Education, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
15
|
Anil K, Ganis G, Freeman JA, Marsden J, Hall SD. Exploring the Feasibility of Bidirectional Control of Beta Oscillatory Power in Healthy Controls as a Potential Intervention for Parkinson's Disease Movement Impairment. SENSORS (BASEL, SWITZERLAND) 2024; 24:5107. [PMID: 39204803 PMCID: PMC11358931 DOI: 10.3390/s24165107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Neurofeedback (NF) is a promising intervention for improvements in motor performance in Parkinson's disease. This NF pilot study in healthy participants aimed to achieve the following: (1) determine participants' ability to bi-directionally modulate sensorimotor beta power and (2) determine the effect of NF on movement performance. A real-time EEG-NF protocol was used to train participants to increase and decrease their individual motor cortex beta power amplitude, using a within-subject double-blind sham-controlled approach. Movement was assessed using a Go/No-go task. Participants completed the NASA Task Load Index and provided verbal feedback of the NF task difficulty. All 17 participants (median age = 38 (19-65); 10 females) reliably reduced sensorimotor beta power. No participant could reliably increase their beta activity. Participants reported that the NF task was challenging, particularly increasing beta. A modest but significant increase in reaction time correlated with a reduction in beta power only in the real condition. Findings suggest that beta power control difficulty varies by modulation direction, affecting participant perceptions. A correlation between beta power reduction and reaction times only in the real condition suggests that intentional beta power reduction may shorten reaction times. Future research should examine the minimum beta threshold for meaningful motor improvements, and the relationship between EEG mechanisms and NF learning to optimise NF outcomes.
Collapse
Affiliation(s)
- Krithika Anil
- School of Health Professions, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
| | - Giorgio Ganis
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
- School of Psychology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| | - Jennifer A. Freeman
- Peninsula Allied Health Centre, School of Health Professions, University of Plymouth, Derriford Road, Plymouth PL6 8BH, UK
| | - Jonathan Marsden
- School of Health Professions, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK;
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
| | - Stephen D. Hall
- Brain Research and Imaging Centre, Faculty of Health, University of Plymouth, Research Way, Plymouth PL6 8BU, UK; (G.G.); (S.D.H.)
- School of Psychology, University of Plymouth, Drake Circus, Plymouth PL4 8AA, UK
| |
Collapse
|
16
|
Orui J, Shiraiwa K, Tazaki F, Inoue T, Ueda M, Ueno K, Naito Y, Ishii R. Psychophysiological and interpersonal effects of parallel group crafting: a multimodal study using EEG and ECG. Sci Rep 2024; 14:17883. [PMID: 39095523 PMCID: PMC11297208 DOI: 10.1038/s41598-024-68980-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024] Open
Abstract
In occupational therapy, crafts and groups are used as therapeutic tools, but their electrophysiological effects have not been well described. This study aimed to investigate the effects of group crafting on the physiological synchrony (PS) of dyadic heartbeats and on the autonomic activity and electroencephalogram (EEG) of individuals. In this cross-sectional study, individuals' EEG and dyadic electrocardiogram (ECG) were measured during the task in a variety of conditions. The three conditions were alone, parallel, nonparallel. Autonomic activity from the subjects' ECG, PS from the dyadic ECG, and current source density from exact Low Resolution Brain Electromagnetic Tomography (eLORETA) from subjects' EEG were analyzed. Measurements from 30 healthy young adults showed that the parallel condition significantly increased subjects' parasympathetic activity and dyadic PS. Parallel condition and frontal midline theta influenced parasympathetic activity, whereas parasympathetic activity was not associated with PS. Dyadic lag value were correlated with frontal delta, beta, and gamma activity. The results suggest that crafting in parallel groups increases parasympathetic activity and PS through different mechanisms, despite the absence of direct interaction. They also explain the electrophysiological evidence for the use of crafts and groups in psychiatric occupational therapy, such as increased relaxation and PS.
Collapse
Affiliation(s)
- Junya Orui
- Department of Health Science, Osaka Health Science University, 1-9-27 Tenma, Kita-Ku, Osaka, Osaka, 530-0043, Japan
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keigo Shiraiwa
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Fumie Tazaki
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan
| | - Takao Inoue
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Masaya Ueda
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Keita Ueno
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Yasuo Naito
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan
| | - Ryouhei Ishii
- Department of Occupational Therapy, Osaka Metropolitan University Graduate School of Rehabilitation Science, 3-7-30, Habikino, Osaka, 583-8555, Japan.
- Department of Rehabilitation, Osaka Kawasaki Rehabilitation University, 158 Mizuma, Kaizuka, Osaka, 597-0104, Japan.
- Department of Psychiatry, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
17
|
Petro NM, Rempe MP, Schantell M, Ku V, Srinivas AN, O’Neill J, Kubat ME, Bares SH, May-Weeks PE, Wilson TW. Spontaneous cortical activity is altered in persons with HIV and related to domain-specific cognitive function. Brain Commun 2024; 6:fcae228. [PMID: 39035415 PMCID: PMC11258575 DOI: 10.1093/braincomms/fcae228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 07/23/2024] Open
Abstract
Whilst the average lifespan of persons with HIV now approximates that of the general population, these individuals are at a much higher risk of developing cognitive impairment with ∼35-70% experiencing at least subtle cognitive deficits. Previous works suggest that HIV impacts both low-level primary sensory regions and higher-level association cortices. Notably, multiple neuroHIV studies have reported elevated levels of spontaneous cortical activity during the pre-stimulus baseline period of task-based experiments, but only a few have examined such activity during resting-state conditions. In the current study, we examined such spontaneous cortical activity using magnetoencephalography in 79 persons with HIV and 83 demographically matched seronegative controls and related this neural activity to performance on neuropsychological assessments of cognitive function. Consistent with previous works, persons with HIV exhibited stronger spontaneous gamma activity, particularly in inferior parietal, prefrontal and superior temporal cortices. In addition, serostatus moderated the relationship between spontaneous beta activity and attention, motor and processing speed scores, with controls but not persons with HIV showing stronger beta activity with better performance. The current results suggest that HIV predominantly impacts spontaneous activity in association cortices, consistent with alterations in higher-order brain function, and may be attributable to deficient GABAergic signalling, given its known role in the generation of gamma and beta oscillations. Overall, these effects align with previous studies showing aberrant spontaneous activity in persons with HIV and provide a critical new linkage to domain-specific cognitive dysfunction.
Collapse
Affiliation(s)
- Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE 68198, USA
| | - Vivian Ku
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Advika N Srinivas
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
| | - Jennifer O’Neill
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Maureen E Kubat
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | - Sara H Bares
- Department of Internal Medicine, Division of Infectious Diseases, UNMC, Omaha, NE 68198, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA
- Department of Pharmacology and Neuroscience, Creighton University, Omaha, NE 68178, USA
| |
Collapse
|
18
|
Paci M, Cardellicchio P, Di Luzio P, Perrucci MG, Ferri F, Costantini M. When the heart inhibits the brain: Cardiac phases modulate short-interval intracortical inhibition. iScience 2024; 27:109140. [PMID: 38414850 PMCID: PMC10897847 DOI: 10.1016/j.isci.2024.109140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/18/2023] [Accepted: 02/01/2024] [Indexed: 02/29/2024] Open
Abstract
The phasic cardiovascular activity influences the central nervous system through the systolic baroreceptor inputs, inducing widespread inhibitory effects on behavior. Through transcranial magnetic stimulation (TMS) delivered during resting-state over the left primary motor cortex and across the different cardiac phases, we measured corticospinal excitability (CSE) and distinct indices of intracortical motor inhibition: short (SICI) and long (LICI) interval, corresponding to GABAA and GABAB neurotransmission, respectively. We found a significant effect of the cardiac phase on short-intracortical inhibition, without any influence on LICI. Specifically, SICI was stronger at systole compared to diastole. These results show a tight relationship between the cardiac cycle and the inhibitory neurotransmission within M1, and in particular with GABAA-ergic-mediated motor inhibition. We hypothesize that this process requires greater motor control via the gating mechanism and that this, in turn, needs to be recalibrated through the modulation of intracortical inhibition.
Collapse
Affiliation(s)
- Mario Paci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Pasquale Cardellicchio
- IIT@UniFe Center for Translational Neurophysiology, Istituto Italiano di Tecnologia, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
- Physical Medicine and Rehabilitation Unit, IRCCS Istituto Giannina Gaslini, Genoa, Italy
- Department of Neuroscience and Rehabilitation, Section of Physiology, Università di Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Paolo Di Luzio
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Mauro Gianni Perrucci
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Science, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| | - Marcello Costantini
- Institute for Advanced Biomedical Technologies - ITAB, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
- Department of Psychological, Health, and Territorial Sciences, University G. D’Annunzio, Chieti-Pescara, Chieti, Italy
| |
Collapse
|
19
|
Illman M, Jaatela J, Vallinoja J, Nurmi T, Mäenpää H, Piitulainen H. Altered excitation-inhibition balance in the primary sensorimotor cortex to proprioceptive hand stimulation in cerebral palsy. Clin Neurophysiol 2024; 157:25-36. [PMID: 38039924 DOI: 10.1016/j.clinph.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 10/13/2023] [Accepted: 10/27/2023] [Indexed: 12/03/2023]
Abstract
OBJECTIVE Our objective was to clarify the primary sensorimotor (SM1) cortex excitatory and inhibitory alterations in hemiplegic (HP) and diplegic (DP) cerebral palsy (CP) by quantifying SM1 cortex beta power suppression and rebound with magnetoencephalography (MEG). METHODS MEG was recorded from 16 HP and 12 DP adolescents, and their 32 healthy controls during proprioceptive stimulation of the index fingers evoked by a movement actuator. The related beta power changes were computed with Temporal Spectral Evolution (TSE). Peak strengths of beta suppression and rebound were determined from representative channels over the SM1 cortex. RESULTS Beta suppression was stronger contralateral to the stimulus and rebound was weaker ipsilateral to the stimulation in DP compared to controls. Beta modulation strengths did not differ significantly between HP and the control group. CONCLUSIONS The emphasized beta suppression in DP suggests less efficient proprioceptive processing in the SM1 contralateral to the stimulation. Their weak rebound further indicates reduced intra- and/or interhemispheric cortical inhibition, which is a potential neuronal mechanism for their bilateral motor impairments. SIGNIFICANCE The excitation-inhibition balance of the SM1 cortex related to proprioception is impaired in diplegic CP. Therefore, the cortical and behavioral proprioceptive deficits should be better diagnosed and considered to better target individualized effective rehabilitation in CP.
Collapse
Affiliation(s)
- Mia Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Aalto NeuroImaging, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland.
| | - Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland
| | - Helena Mäenpää
- Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, P.O.BOX 35, FI-40014 Jyväskylä, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, P.O.BOX 12200, FI-00760 AALTO, Espoo, Finland; Pediatric Neurology, New Children's Hospital, University of Helsinki and Helsinki University Hospital, FI-00029 Helsinki, Finland
| |
Collapse
|
20
|
Ward TW, Springer SD, Schantell M, John JA, Horne LK, Coutant AT, Okelberry HJ, Willett MP, Johnson HJ, Killanin AD, Heinrichs‐Graham E, Wilson TW. Regular cannabis use alters the neural dynamics serving complex motor control. Hum Brain Mapp 2023; 44:6511-6522. [PMID: 37955378 PMCID: PMC10681654 DOI: 10.1002/hbm.26527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/01/2023] [Accepted: 10/08/2023] [Indexed: 11/14/2023] Open
Abstract
Cannabis is the most widely used recreational drug in the United States and regular use has been linked to deficits in attention and memory. However, the effects of regular use on motor control are less understood, with some studies showing deficits and others indicating normal performance. Eighteen users and 23 nonusers performed a motor sequencing task during high-density magnetoencephalography (MEG). The MEG data was transformed into the time-frequency domain and beta responses (16-24 Hz) during motor planning and execution phases were imaged separately using a beamformer approach. Whole-brain maps were examined for group (cannabis user/nonuser) and time window (planning/execution) effects. As expected, there were no group differences in task performance (e.g., reaction time, accuracy, etc.). Regular cannabis users exhibited stronger beta oscillations in the contralateral primary motor cortex compared to nonusers during the execution phase of the motor sequences, but not during the motor planning phase. Similar group-by-time window interactions were observed in the left superior parietal, right inferior frontal cortices, right posterior insular cortex, and the bilateral motor cortex. We observed differences in the neural dynamics serving motor control in regular cannabis users compared to nonusers, suggesting regular users may employ compensatory processing in both primary motor and higher-order motor cortices to maintain adequate task performance. Future studies will need to examine more complex motor control tasks to ascertain whether this putative compensatory activity eventually becomes exhausted and behavioral differences emerge.
Collapse
Affiliation(s)
- Thomas W. Ward
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Seth D. Springer
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Mikki Schantell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Jason A. John
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Lucy K. Horne
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Anna T. Coutant
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hannah J. Okelberry
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Madelyn P. Willett
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Hallie J. Johnson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Abraham D. Killanin
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Elizabeth Heinrichs‐Graham
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology & NeuroscienceCreighton UniversityOmahaNebraskaUSA
- College of MedicineUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| |
Collapse
|
21
|
Caruso VC, Wray AH, Lescht E, Chang SE. Neural oscillatory activity and connectivity in children who stutter during a non-speech motor task. J Neurodev Disord 2023; 15:40. [PMID: 37964200 PMCID: PMC10647051 DOI: 10.1186/s11689-023-09507-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
BACKGROUND Neural motor control rests on the dynamic interaction of cortical and subcortical regions, which is reflected in the modulation of oscillatory activity and connectivity in multiple frequency bands. Motor control is thought to be compromised in developmental stuttering, particularly involving circuits in the left hemisphere that support speech, movement initiation, and timing control. However, to date, evidence comes from adult studies, with a limited understanding of motor processes in childhood, closer to the onset of stuttering. METHODS We investigated the neural control of movement initiation in children who stutter and children who do not stutter by evaluating transient changes in EEG oscillatory activity (power, phase locking to button press) and connectivity (phase synchronization) during a simple button press motor task. We compared temporal changes in these oscillatory dynamics between the left and right hemispheres and between children who stutter and children who do not stutter, using mixed-model analysis of variance. RESULTS We found reduced modulation of left hemisphere oscillatory power, phase locking to button press and phase connectivity in children who stutter compared to children who do not stutter, consistent with previous findings of dysfunction within the left sensorimotor circuits. Interhemispheric connectivity was weaker at lower frequencies (delta, theta) and stronger in the beta band in children who stutter than in children who do not stutter. CONCLUSIONS Taken together, these findings indicate weaker engagement of the contralateral left motor network in children who stutter even during low-demand non-speech tasks, and suggest that the right hemisphere might be recruited to support sensorimotor processing in childhood stuttering. Differences in oscillatory dynamics occurred despite comparable task performance between groups, indicating that an altered balance of cortical activity might be a core aspect of stuttering, observable during normal motor behavior.
Collapse
Affiliation(s)
- Valeria C Caruso
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA.
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA.
| | - Amanda Hampton Wray
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Erica Lescht
- Department of Communication Science & Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Soo-Eun Chang
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
- Department of Communication Disorders, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
22
|
Wimmer J, Rösch SA, Schmidt R, Hilbert A. Neurofeedback strategies in binge-eating disorder as predictors of EEG-neurofeedback regulation success. Front Hum Neurosci 2023; 17:1234085. [PMID: 38021247 PMCID: PMC10645064 DOI: 10.3389/fnhum.2023.1234085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Treatment options such as neurofeedback (NF) that directly target the link between aberrant brain activity patterns and dysfunctional eating behaviors in binge-eating disorder (BED) are emerging. However, virtually nothing is known about mental strategies used to modulate food-specific brain activity and the associated brain-based or subjective success of specific strategies. This study firstly investigated the use of mental strategies in response to individually appetitive food cues in adults with BED and overweight or obesity based on a randomized-controlled trial providing electroencephalography (EEG)- or real-time functional near-infrared spectroscopy (rtfNIRS)-NF to BED. Methods Strategy reports written by participants were classified with qualitative content analysis. Additionally, the mental strategies employed by the N = 23 patients who received EEG-NF targeting the reduction of fronto-central high beta activity were analyzed quantitatively through their link with subjective and EEG-NF regulation success. Results The following eight categories, ordered by frequency in descending order, were found: "Behavior," "Imagination," "Emotion," "Distraction," "Thought," "Concentration," "Self-Talk" and "No Strategy." Linear mixed models revealed "Imagination," "Behavior," and "Thought" strategies as positive predictors of EEG-NF regulation success (defined as high beta activity during regulation beneath the baseline), and "Concentration" as a negative predictor of subjective (i.e., self-reported) NF regulation success. Discussion In conclusion, our study offers a classification system that may be used in future studies assessing strategy use for regulating food-related responses in patients with BED and associated overweight/obesity, providing valuable information on potential benefits of specific strategies and transferability to situations outside the NF treatment.
Collapse
Affiliation(s)
- Jytte Wimmer
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Sarah Alica Rösch
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
- International Max Planck Research School NeuroCom, Leipzig, Germany
| | - Ricarda Schmidt
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| | - Anja Hilbert
- Integrated Research and Treatment Center Adiposity Diseases, Behavioral Medicine Research Unit, Leipzig University Medical Center, Leipzig, Germany
| |
Collapse
|
23
|
Hamel R, Pearson J, Sifi L, Patel D, Hinder MR, Jenkinson N, Galea JM. The intracortical excitability changes underlying the enhancing effects of rewards and punishments on motor performance. Brain Stimul 2023; 16:1462-1475. [PMID: 37777109 DOI: 10.1016/j.brs.2023.09.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023] Open
Abstract
Monetary rewards and punishments enhance motor performance and are associated with corticospinal excitability (CSE) increases within the motor cortex (M1) during movement preparation. However, such CSE changes have unclear origins. Based on converging evidence, one possibility is that they stem from increased glutamatergic (GLUTergic) facilitation and/or decreased type A gamma-aminobutyric acid (GABAA)-mediated inhibition within M1. To investigate this, paired-pulse transcranial magnetic stimulation was used over the left M1 to evaluate intracortical facilitation (ICF) and short intracortical inhibition (SICI), indirect assays of GLUTergic activity and GABAA-mediated inhibition, in an index finger muscle during the preparation of sequences initiated by either the right index or little finger. Behaviourally, rewards and punishments enhanced both reaction and movement time. During movement preparation, regardless of rewards or punishments, ICF increased when the index finger initiated sequences, whereas SICI decreased when both the index and little fingers initiated sequences. This finding suggests that GLUTergic activity increases in a finger-specific manner whilst GABAA-mediated inhibition decreases in a finger-unspecific manner during preparation. In parallel, both rewards and punishments non-specifically increased ICF, but only rewards non-specifically decreased SICI as compared to neutral. This suggests that to enhance performance rewards both increase GLUTergic activity and decrease GABAA-mediated inhibition, whereas punishments selectively increase GLUTergic activity. A control experiment revealed that such changes were not observed post-movement as participants processed reward and punishment feedback, indicating they were selective to movement preparation. Collectively, these results map the intracortical excitability changes in M1 by which incentives enhance motor performance.
Collapse
Affiliation(s)
- R Hamel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom; School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom.
| | - J Pearson
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - L Sifi
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - D Patel
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - M R Hinder
- School of Psychological Sciences, University of Tasmania, Hobart, Australia
| | - N Jenkinson
- School of Sport, Exercise, and Rehabilitation, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - J M Galea
- School of Psychology, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
24
|
Sasaki R, Kojima S, Otsuru N, Yokota H, Saito K, Shirozu H, Onishi H. Beta resting-state functional connectivity predicts tactile spatial acuity. Cereb Cortex 2023; 33:9514-9523. [PMID: 37344255 PMCID: PMC10431746 DOI: 10.1093/cercor/bhad221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/23/2023] Open
Abstract
Tactile perception is a complex phenomenon that is processed by multiple cortical regions via the primary somatosensory cortex (S1). Although somatosensory gating in the S1 using paired-pulse stimulation can predict tactile performance, the functional relevance of cortico-cortical connections to tactile perception remains unclear. We investigated the mechanisms by which corticocortical and local networks predict tactile spatial acuity in 42 adults using magnetoencephalography (MEG). Resting-state MEG was recorded with the eyes open, whereas evoked responses were assessed using single- and paired-pulse electrical stimulation. Source data were used to estimate the S1-seed resting-state functional connectivity (rs-FC) in the whole brain and the evoked response in the S1. Two-point discrimination threshold was assessed using a custom-made device. The beta rs-FC revealed a negative correlation between the discrimination threshold and S1-superior parietal lobule, S1-inferior parietal lobule, and S1-superior temporal gyrus connection (all P < 0.049); strong connectivity was associated with better performance. Somatosensory gating of N20m was also negatively correlated with the discrimination threshold (P = 0.015), with weak gating associated with better performance. This is the first study to demonstrate that specific beta corticocortical networks functionally support tactile spatial acuity as well as the local inhibitory network.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Sho Kojima
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Naofumi Otsuru
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hirotake Yokota
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Kei Saito
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| | - Hiroshi Shirozu
- Department of Functional Neurosurgery, National Hospital Organization Nishiniigata Chuo Hospital, 1-14-1 Masago, Nishi-Ku, Niigata City, Niigata 950-2085, Japan
| | - Hideaki Onishi
- Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
- Department of Physical Therapy, Niigata University of Health and Welfare, 1398 Shimami-cho, Kita-Ku, Niigata City, Niigata 950-3198, Japan
| |
Collapse
|
25
|
Bergwell H, Trevarrow MP, Heinrichs-Graham E, Reelfs A, Ott LR, Penhale SH, Wilson TW, Kurz MJ. Aberrant age-related alterations in spontaneous cortical activity in participants with cerebral palsy. Front Neurol 2023; 14:1163964. [PMID: 37521295 PMCID: PMC10374009 DOI: 10.3389/fneur.2023.1163964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 06/22/2023] [Indexed: 08/01/2023] Open
Abstract
Introduction Cerebral Palsy (CP) is the most common neurodevelopmental motor disability, resulting in life-long sensory, perception and motor impairments. Moreover, these impairments appear to drastically worsen as the population with CP transitions from adolescents to adulthood, although the underlying neurophysiological mechanisms remain poorly understood. Methods We began to address this knowledge gap by utilizing magnetoencephalographic (MEG) brain imaging to study how the amplitude of spontaneous cortical activity (i.e., resting state) is altered during this transition period in a cohort of 38 individuals with spastic diplegic CP (Age range = 9.80-47.50 years, 20 females) and 67 neurotypical controls (NT) (Age range = 9.08-49.40 years, Females = 27). MEG data from a five-minute eyes closed resting-state paradigm were source imaged, and the power within the delta (2-4 Hz), theta (5-7 Hz), alpha (8-12 Hz), beta (15-29 Hz), and gamma (30-59 Hz) frequency bands were computed. Results For both groups, the delta and theta spontaneous power decreased in the bilateral temporoparietal and superior parietal regions with age, while alpha, beta, and gamma band spontaneous power increased in temporoparietal, frontoparietal and premotor regions with age. We also found a significant group x age interaction, such that participants with CP demonstrated significantly less age-related increases in the spontaneous beta activity in the bilateral sensorimotor cortices compared to NT controls. Discussion Overall, these results demonstrate that the spontaneous neural activity in individuals with CP has an altered trajectory when transitioning from adolescents to adulthood. We suggest that these differences in spontaneous cortical activity may play a critical role in the aberrant motor actions seen in this patient group, and may provide a neurophysiological marker for assessing the effectiveness of current treatment strategies that are directed at improving the mobility and sensorimotor impairments seen in individuals with CP.
Collapse
Affiliation(s)
- Hannah Bergwell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Michael P. Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, United States
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, United States
| |
Collapse
|
26
|
Xia Y, Sun H, Hua L, Dai Z, Wang X, Tang H, Han Y, Du Y, Zhou H, Zou H, Yao Z, Lu Q. Spontaneous beta power, motor-related beta power and cortical thickness in major depressive disorder with psychomotor disturbance. Neuroimage Clin 2023; 38:103433. [PMID: 37216848 PMCID: PMC10209543 DOI: 10.1016/j.nicl.2023.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/05/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023]
Abstract
INTRODUCTION The psychomotor disturbance is a common symptom in patients with major depressive disorder (MDD). The neurological mechanisms of psychomotor disturbance are intricate, involving alterations in the structure and function of motor-related regions. However, the relationship among changes in the spontaneous activity, motor-related activity, local cortical thickness, and psychomotor function remains unclear. METHOD A total of 140 patients with MDD and 68 healthy controls performed a simple right-hand visuomotor task during magnetoencephalography (MEG) scanning. All patients were divided into two groups according to the presence of psychomotor slowing. Spontaneous beta power, movement-related beta desynchronization (MRBD), absolute beta power during movement and cortical characteristics in the bilateral primary motor cortex were compared using general linear models with the group as a fixed effect and age as a covariate. Finally, the moderated mediation model was tested to examine the relationship between brain metrics with group differences and psychomotor performance. RESULTS The patients with psychomotor slowing showed higher spontaneous beta power, movement-related beta desynchronization and absolute beta power during movement than patients without psychomotor slowing. Compared with the other two groups, significant decreases were found in cortical thickness of the left primary motor cortex in patients with psychomotor slowing. Our moderated mediation model showed that the increased spontaneous beta power indirectly affected impaired psychomotor performance by abnormal MRBD, and the indirect effects were moderated by cortical thickness. CONCLUSION These results suggest that patients with MDD have aberrant cortical beta activity at rest and during movement, combined with abnormal cortical thickness, contributing to the psychomotor disturbance observed in this patient population.
Collapse
Affiliation(s)
- Yi Xia
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Sun
- Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Lingling Hua
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Zhongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Xiaoqin Wang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hao Tang
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yinglin Han
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yishan Du
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Hongliang Zhou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haowen Zou
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China
| | - Zhijian Yao
- Department of Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing 210029, China; School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing 210093, China.
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing 210096, China; Child Development and Learning Science, Key Laboratory of Ministry of Education, Southeast University, Nanjing 210096, China.
| |
Collapse
|
27
|
Inamoto T, Ueda M, Ueno K, Shiroma C, Morita R, Naito Y, Ishii R. Motor-Related Mu/Beta Rhythm in Older Adults: A Comprehensive Review. Brain Sci 2023; 13:brainsci13050751. [PMID: 37239223 DOI: 10.3390/brainsci13050751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 04/23/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Mu rhythm, also known as the mu wave, occurs on sensorimotor cortex activity at rest, and the frequency range is defined as 8-13Hz, the same frequency as the alpha band. Mu rhythm is a cortical oscillation that can be recorded from the scalp over the primary sensorimotor cortex by electroencephalogram (EEG) and magnetoencephalography (MEG). The subjects of previous mu/beta rhythm studies ranged widely from infants to young and older adults. Furthermore, these subjects were not only healthy people but also patients with various neurological and psychiatric diseases. However, very few studies have referred to the effect of mu/beta rhythm with aging, and there was no literature review about this theme. It is important to review the details of the characteristics of mu/beta rhythm activity in older adults compared with young adults, focusing on age-related mu rhythm changes. By comprehensive review, we found that, compared with young adults, older adults showed mu/beta activity change in four characteristics during voluntary movement, increased event-related desynchronization (ERD), earlier beginning and later end, symmetric pattern of ERD and increased recruitment of cortical areas, and substantially reduced beta event-related desynchronization (ERS). It was also found that mu/beta rhythm patterns of action observation were changing with aging. Future work is needed in order to investigate not only the localization but also the network of mu/beta rhythm in older adults.
Collapse
Affiliation(s)
- Takashi Inamoto
- Graduate School of Comprehensive Rehabilitation, Osaka Prefecture University, Osaka 583-8555, Japan
- Faculty of Health Sciences, Kansai University of Health Sciences, Osaka 590-0482, Japan
| | - Masaya Ueda
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Keita Ueno
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - China Shiroma
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Rin Morita
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Yasuo Naito
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
| | - Ryouhei Ishii
- Graduate School of Rehabilitation Science, Osaka Metropolitan University, Osaka 583-8555, Japan
- Department of Psychiatry, Osaka University Graduate School of Medicine, Suita 565-0871, Japan
| |
Collapse
|
28
|
Guerra A, Colella D, Cannavacciuolo A, Giangrosso M, Paparella G, Fabbrini G, Berardelli A, Bologna M. Short-term plasticity of the motor cortex compensates for bradykinesia in Parkinson's disease. Neurobiol Dis 2023; 182:106137. [PMID: 37120094 DOI: 10.1016/j.nbd.2023.106137] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
Patients with Parkinson's disease (PD) show impaired short-term potentiation (STP) mechanisms in the primary motor cortex (M1). However, the role played by this neurophysiological abnormality in bradykinesia pathophysiology is unknown. In this study, we used a multimodal neuromodulation approach to test whether defective STP contributes to bradykinesia. We evaluated STP by measuring motor-evoked potential facilitation during 5 Hz-repetitive transcranial magnetic stimulation (rTMS) and assessed repetitive finger tapping movements through kinematic techniques. Also, we used transcranial alternating current stimulation (tACS) to drive M1 oscillations and experimentally modulate bradykinesia. STP was assessed during tACS delivered at beta (β) and gamma (γ) frequency, and during sham-tACS. Data were compared to those recorded in a group of healthy subjects. In PD, we found that STP was impaired during sham- and γ-tACS, while it was restored during β-tACS. Importantly, the degree of STP impairment was associated with the severity of movement slowness and amplitude reduction. Moreover, β-tACS-related improvements in STP were linked to changes in movement slowness and intracortical GABA-A-ergic inhibition during stimulation, as assessed by short-interval intracortical inhibition (SICI). Patients with prominent STP amelioration had greater SICI reduction (cortical disinhibition) and less slowness worsening during β-tACS. Dopaminergic medications did not modify β-tACS effects. These data demonstrate that abnormal STP processes are involved in bradykinesia pathophysiology and return to normal levels when β oscillations increase. STP changes are likely mediated by modifications in GABA-A-ergic intracortical circuits and may represent a compensatory mechanism against β-induced bradykinesia in PD.
Collapse
Affiliation(s)
- Andrea Guerra
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Donato Colella
- Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | | | | | | | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy
| | - Matteo Bologna
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Human Neurosciences, Sapienza University of Rome, Rome 00185, Italy.
| |
Collapse
|
29
|
Mykland MS, Uglem M, Bjørk MH, Matre D, Sand T, Omland PM. Effects of insufficient sleep on sensorimotor processing in migraine: A randomised, blinded crossover study of event related beta oscillations. Cephalalgia 2023; 43:3331024221148398. [PMID: 36786371 DOI: 10.1177/03331024221148398] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
BACKGROUND Migraine has a largely unexplained connection with sleep and is possibly related to a dysfunction of thalamocortical systems and cortical inhibition. In this study we investigate the effect of insufficient sleep on cortical sensorimotor processing in migraine. METHODS We recorded electroencephalography during a sensorimotor task from 46 interictal migraineurs and 28 controls after two nights of eight-hour habitual sleep and after two nights of four-hour restricted sleep. We compared changes in beta oscillations of the sensorimotor cortex after the two sleep conditions between migraineurs, controls and subgroups differentiating migraine subjects usually having attacks starting during sleep and not during sleep. We included preictal and postictal recordings in a secondary analysis of temporal changes in relation to attacks. RESULTS Interictally, we discovered lower beta synchronisation after sleep restriction in sleep related migraine compared to non-sleep related migraine (p=0.006) and controls (p=0.01). No differences were seen between controls and the total migraine group in the interictal phase. After migraine attacks, we observed lower beta synchronisation (p<0.001) and higher beta desynchronisation (p=0.002) after sleep restriction closer to the end of the attack compared to later after the attack. CONCLUSION The subgroup with sleep related migraine had lower sensorimotor beta synchronisation after sleep restriction, possibly related to dysfunctional GABAergic inhibitory systems. Sufficient sleep during or immediately after migraine attacks may be of importance for maintaining normal cortical excitability.
Collapse
Affiliation(s)
- Martin Syvertsen Mykland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Martin Uglem
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Marte-Helene Bjørk
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
- Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Dagfinn Matre
- Division of Research, National Institute of Occupational Health, Oslo, Norway
| | - Trond Sand
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| | - Petter Moe Omland
- Department of Neuromedicine and Movement Science, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Neurology and Clinical Neurophysiology, St. Olavs Hospital, Trondheim, Norway
- Norwegian Headache Research Centre (NorHEAD), Trondheim, Norway
| |
Collapse
|
30
|
Giustiniani A, Danesin L, Bozzetto B, Macina A, Benavides-Varela S, Burgio F. Functional changes in brain oscillations in dementia: a review. Rev Neurosci 2023; 34:25-47. [PMID: 35724724 DOI: 10.1515/revneuro-2022-0010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 05/16/2022] [Indexed: 01/11/2023]
Abstract
A growing body of evidence indicates that several characteristics of electroencephalography (EEG) and magnetoencephalography (MEG) play a functional role in cognition and could be linked to the progression of cognitive decline in some neurological diseases such as dementia. The present paper reviews previous studies investigating changes in brain oscillations associated to the most common types of dementia, namely Alzheimer's disease (AD), frontotemporal degeneration (FTD), and vascular dementia (VaD), with the aim of identifying pathology-specific patterns of alterations and supporting differential diagnosis in clinical practice. The included studies analysed changes in frequency power, functional connectivity, and event-related potentials, as well as the relationship between electrophysiological changes and cognitive deficits. Current evidence suggests that an increase in slow wave activity (i.e., theta and delta) as well as a general reduction in the power of faster frequency bands (i.e., alpha and beta) characterizes AD, VaD, and FTD. Additionally, compared to healthy controls, AD exhibits alteration in latencies and amplitudes of the most common event related potentials. In the reviewed studies, these changes generally correlate with performances in many cognitive tests. In conclusion, particularly in AD, neurophysiological changes can be reliable early markers of dementia.
Collapse
Affiliation(s)
| | - Laura Danesin
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| | | | - AnnaRita Macina
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy
| | - Silvia Benavides-Varela
- Department of Developmental Psychology and Socialization, University of Padua, via Venezia 8, 35131 Padova, Italy.,Department of Neuroscience, University of Padova, 35128 Padova, Italy.,Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
| | - Francesca Burgio
- IRCCS San Camillo Hospital, via Alberoni 70, 30126 Venice, Italy
| |
Collapse
|
31
|
Fung MH, Heinrichs-Graham E, Taylor BK, Frenzel MR, Eastman JA, Wang YP, Calhoun VD, Stephen JM, Wilson TW. The development of sensorimotor cortical oscillations is mediated by pubertal testosterone. Neuroimage 2022; 264:119745. [PMID: 36368502 DOI: 10.1016/j.neuroimage.2022.119745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022] Open
Abstract
Puberty is a period of substantial hormonal fluctuations, and pubertal hormones can modulate structural and functional changes in the developing brain. Many previous studies have characterized the neural oscillatory responses serving movement, which include a beta event-related desynchronization (ERD) preceding movement onset, gamma and theta responses coinciding with movement execution, and a post-movement beta-rebound (PMBR) response following movement offset. While a few studies have investigated the developmental trajectories of these neural oscillations serving motor control, the impact of pubertal hormone levels on the maturation of these dynamics has not yet been examined. Since the timing and tempo of puberty varies greatly between individuals, pubertal hormones may uniquely impact the maturation of motor cortical oscillations distinct from other developmental metrics, such as age. In the current study we quantified these oscillations using magnetoencephalography (MEG) and utilized chronological age and measures of endogenous testosterone as indices of development during the transition from childhood to adolescence in 69 youths. Mediation analyses revealed complex maturation patterns for the beta ERD, in which testosterone predicted both spontaneous baseline and ERD power through direct and indirect effects. Age, but not pubertal hormones, predicted motor-related theta, and no relationships between oscillatory responses and developmental metrics were found for gamma or PMBR responses. These findings provide novel insight into how pubertal hormones affect motor-related oscillations, and highlight the continued development of motor cortical dynamics throughout the pubertal period.
Collapse
Affiliation(s)
- Madison H Fung
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Brittany K Taylor
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Michaela R Frenzel
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Jacob A Eastman
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA; Mind Research Network, Albuquerque, NM, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
32
|
Peter J, Ferraioli F, Mathew D, George S, Chan C, Alalade T, Salcedo SA, Saed S, Tatti E, Quartarone A, Ghilardi MF. Movement-related beta ERD and ERS abnormalities in neuropsychiatric disorders. Front Neurosci 2022; 16:1045715. [PMID: 36507340 PMCID: PMC9726921 DOI: 10.3389/fnins.2022.1045715] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Movement-related oscillations in the beta range (from 13 to 30 Hz) have been observed over sensorimotor areas with power decrease (i.e., event-related desynchronization, ERD) during motor planning and execution followed by an increase (i.e., event-related synchronization, ERS) after the movement's end. These phenomena occur during active, passive, imaged, and observed movements. Several electrophysiology studies have used beta ERD and ERS as functional indices of sensorimotor integrity, primarily in diseases affecting the motor system. Recent literature also highlights other characteristics of beta ERD and ERS, implying their role in processes not strictly related to motor function. Here we review studies about movement-related ERD and ERS in diseases characterized by motor dysfunction, including Parkinson's disease, dystonia, stroke, amyotrophic lateral sclerosis, cerebral palsy, and multiple sclerosis. We also review changes of beta ERD and ERS reported in physiological aging, Alzheimer's disease, and schizophrenia, three conditions without overt motor symptoms. The review of these works shows that ERD and ERS abnormalities are present across the spectrum of the examined pathologies as well as development and aging. They further suggest that cognition and movement are tightly related processes that may share common mechanisms regulated by beta modulation. Future studies with a multimodal approach are warranted to understand not only the specific topographical dynamics of movement-related beta modulation but also the general meaning of beta frequency changes occurring in relation to movement and cognitive processes at large. Such an approach will provide the foundation to devise and implement novel therapeutic approaches to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Jaime Peter
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Francesca Ferraioli
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Dave Mathew
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shaina George
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Cameron Chan
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Tomisin Alalade
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Sheilla A. Salcedo
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Shannon Saed
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States
| | - Elisa Tatti
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,*Correspondence: Elisa Tatti,
| | - Angelo Quartarone
- IRCCS Centro Neurolesi Bonino Pulejo-Piemonte, Messina, Italy,Angelo Quartarone,
| | - M. Felice Ghilardi
- Department of Molecular, Cellular and Biomedical Sciences, CUNY School of Medicine, New York, NY, United States,M. Felice Ghilardi,
| |
Collapse
|
33
|
Rempe MP, Lew BJ, Embury CM, Christopher-Hayes NJ, Schantell M, Wilson TW. Spontaneous sensorimotor beta power and cortical thickness uniquely predict motor function in healthy aging. Neuroimage 2022; 263:119651. [PMID: 36206940 PMCID: PMC10071137 DOI: 10.1016/j.neuroimage.2022.119651] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 09/23/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Spontaneous beta activity in the primary motor cortices has been shown to increase in amplitude with advancing age, and that such increases are tightly coupled to stronger motor-related beta oscillations during movement planning. However, the relationship between these age-related changes in spontaneous beta in the motor cortices, local cortical thickness, and overall motor function remains unclear. METHODS We collected resting-state magnetoencephalography (MEG), high-resolution structural MRI, and motor function scores using a neuropsychological battery from 126 healthy adults (56 female; age range = 22-72 years). MEG data were source-imaged and a whole-brain vertex-wise regression model was used to assess age-related differences in spontaneous beta power across the cortex. Cortical thickness was computed from the structural MRI data and local beta power and cortical thickness values were extracted from the sensorimotor cortices. To determine the unique contribution of age, spontaneous beta power, and cortical thickness to the prediction of motor function, a hierarchical regression approach was used. RESULTS There was an increase in spontaneous beta power with age across the cortex, with the strongest increase being centered on the sensorimotor cortices. Sensorimotor cortical thickness was not related to spontaneous beta power, above and beyond age. Interestingly, both cortical thickness and spontaneous beta power in sensorimotor regions each uniquely contributed to the prediction of motor function when controlling for age. DISCUSSION This multimodal study showed that cortical thickness and spontaneous beta activity in the sensorimotor cortices have dissociable contributions to motor function across the adult lifespan. These findings highlight the complexity of interactions between structure and function and the importance of understanding these interactions in order to advance our understanding of healthy aging and disease.
Collapse
Affiliation(s)
- Maggie P Rempe
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Brandon J Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Christine M Embury
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Psychology, University of Nebraska - Omaha (UNO), Omaha, NE, USA
| | - Nicholas J Christopher-Hayes
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Mind and Brain, University of California - Davis, Davis, CA, USA
| | - Mikki Schantell
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
34
|
Cassidy JM, Mark JI, Cramer SC. Functional connectivity drives stroke recovery: shifting the paradigm from correlation to causation. Brain 2022; 145:1211-1228. [PMID: 34932786 PMCID: PMC9630718 DOI: 10.1093/brain/awab469] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 11/14/2022] Open
Abstract
Stroke is a leading cause of disability, with deficits encompassing multiple functional domains. The heterogeneity underlying stroke poses significant challenges in the prediction of post-stroke recovery, prompting the development of neuroimaging-based biomarkers. Structural neuroimaging measurements, particularly those reflecting corticospinal tract injury, are well-documented in the literature as potential biomarker candidates of post-stroke motor recovery. Consistent with the view of stroke as a 'circuitopathy', functional neuroimaging measures probing functional connectivity may also prove informative in post-stroke recovery. An important step in the development of biomarkers based on functional neural network connectivity is the establishment of causality between connectivity and post-stroke recovery. Current evidence predominantly involves statistical correlations between connectivity measures and post-stroke behavioural status, either cross-sectionally or serially over time. However, the advancement of functional connectivity application in stroke depends on devising experiments that infer causality. In 1965, Sir Austin Bradford Hill introduced nine viewpoints to consider when determining the causality of an association: (i) strength; (ii) consistency; (iii) specificity; (iv) temporality; (v) biological gradient; (vi) plausibility; (vii) coherence; (viii) experiment; and (ix) analogy. Collectively referred to as the Bradford Hill Criteria, these points have been widely adopted in epidemiology. In this review, we assert the value of implementing Bradford Hill's framework to stroke rehabilitation and neuroimaging. We focus on the role of neural network connectivity measurements acquired from task-oriented and resting-state functional MRI, EEG, magnetoencephalography and functional near-infrared spectroscopy in describing and predicting post-stroke behavioural status and recovery. We also identify research opportunities within each Bradford Hill tenet to shift the experimental paradigm from correlation to causation.
Collapse
Affiliation(s)
- Jessica M Cassidy
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jasper I Mark
- Department of Allied Health Sciences, Division of Physical Therapy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Steven C Cramer
- Department of Neurology, University of California, Los Angeles; and California Rehabilitation Institute, Los Angeles, CA, USA
| |
Collapse
|
35
|
Heise KF, Rueda-Delgado L, Chalavi S, King BR, Monteiro TS, Edden RAE, Mantini D, Swinnen SP. The interaction between endogenous GABA, functional connectivity, and behavioral flexibility is critically altered with advanced age. Commun Biol 2022; 5:426. [PMID: 35523951 PMCID: PMC9076638 DOI: 10.1038/s42003-022-03378-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 04/19/2022] [Indexed: 01/16/2023] Open
Abstract
The flexible adjustment of ongoing behavior challenges the nervous system's dynamic control mechanisms and has shown to be specifically susceptible to age-related decline. Previous work links endogenous gamma-aminobutyric acid (GABA) with behavioral efficiency across perceptual and cognitive domains, with potentially the strongest impact on those behaviors that require a high level of dynamic control. Our analysis integrated behavior and modulation of interhemispheric phase-based connectivity during dynamic motor-state transitions with endogenous GABA concentration in adult human volunteers. We provide converging evidence for age-related differences in the preferred state of endogenous GABA concentration for more flexible behavior. We suggest that the increased interhemispheric connectivity observed in the older participants represents a compensatory neural mechanism caused by phase-entrainment in homotopic motor cortices. This mechanism appears to be most relevant in the presence of a less optimal tuning of the inhibitory tone as observed during healthy aging to uphold the required flexibility of behavioral action. Future work needs to validate the relevance of this interplay between neural connectivity and GABAergic inhibition for other domains of flexible human behavior.
Collapse
Affiliation(s)
- Kirstin-Friederike Heise
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium.
- KU Leuven Brain Institute, Leuven, Belgium.
| | - Laura Rueda-Delgado
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- School of Psychology, Trinity College Dublin, Dublin, 2, Ireland
| | - Sima Chalavi
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Bradley R King
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
- Department of Health & Kinesiology, College of Health, University of Utah, Salt Lake City, UT, USA
| | - Thiago Santos Monteiro
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| | - Richard A E Edden
- The Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Dante Mantini
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- Brain Imaging and Neural Dynamics Research Group, IRCCS San Camillo Hospital, Venice, Italy
| | - Stephan P Swinnen
- Department of Movement Sciences, Movement Control and Neuroplasticity Research Group, KU Leuven, Leuven, Belgium
- KU Leuven Brain Institute, Leuven, Belgium
| |
Collapse
|
36
|
Bergwell H, Trevarrow M, Corr B, Baker S, Reelfs H, Wilson TW, Moreau NG, Kurz MJ. Power training alters somatosensory cortical activity of youth with cerebral palsy. Ann Clin Transl Neurol 2022; 9:659-668. [PMID: 35297546 PMCID: PMC9082383 DOI: 10.1002/acn3.51545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 02/23/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
OBJECTIVE Our prior magnetoencephalographic (MEG) investigations demonstrate that persons with cerebral palsy (CP) have weaker somatosensory cortical activity than neurotypical (NT) controls, which is associated with reduced muscular strength and mobility. Power training can improve lower extremity isokinetic strength, muscular power, and walking performance of youth with CP. Potentially, these clinically relevant improvements are partially driven by changes in somatosensory processing. The objective of this investigation was to determine if power training has complementary changes in muscular function and somatosensory cortical activity in youth with CP. METHODS A cohort of youth with CP (N = 11; age = 15.90 ± 1.1 years) and NT controls (N = 10; Age = 15.93 ± 2.48 years) participated in this investigation. Youth with CP underwent 24 power training sessions. Pre-post bilateral leg press 1-repetition maximum (1RM), peak power production, 10-m walking speed, and distance walked 1-min were used as outcome measures. MEG neuroimaging assessed the changes in somatosensory cortical activity while at rest. NT controls only underwent a baseline MEG assessment. RESULTS Youth with CP had a 56% increase in 1RM (p < 0.001), a 33% increase in peak power production (p = 0.019), and a 4% improvement in 1-min walk (p = 0.029). Notably, there was a 46% increase in somatosensory cortical activity (p = 0.02). INTERPRETATION These results are the first to show that power training is associated with improvements in muscular function, walking performance, and the resting somatosensory cortical activity in individuals with CP. This treatment approach might be advantageous due to the potential to promote cortical and muscular plasticity, which appear to have carryover effects for improved walking performance.
Collapse
Affiliation(s)
- Hannah Bergwell
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Mike Trevarrow
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Brad Corr
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Sarah Baker
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
| | - Heidi Reelfs
- Department of Physical Therapy, Munroe‐Meyer InstituteUniversity of Nebraska Medical CenterOmahaNebraskaUSA
| | - Tony W. Wilson
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology and Neuroscience, School of MedicineCreighton UniversityOmahaNebraskaUSA
| | - Noelle G. Moreau
- Department of Physical Therapy, School of Allied Health ProfessionsLouisiana State UniversityNew OrleansLouisianaUSA
| | - Max J. Kurz
- Institute for Human NeuroscienceBoys Town National Research HospitalBoys TownNebraskaUSA
- Department of Pharmacology and Neuroscience, School of MedicineCreighton UniversityOmahaNebraskaUSA
| |
Collapse
|
37
|
Trevarrow MP, Reelfs A, Ott LR, Penhale SH, Lew BJ, Goeller J, Wilson TW, Kurz MJ. Altered spontaneous cortical activity predicts pain perception in individuals with cerebral palsy. Brain Commun 2022; 4:fcac087. [PMID: 35441137 PMCID: PMC9014448 DOI: 10.1093/braincomms/fcac087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/13/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
Cerebral palsy is the most common paediatric neurological disorder and results in extensive impairment to the sensorimotor system. However, these individuals also experience increased pain perception, resulting in decreased quality of life. In the present study, we utilized magnetoencephalographic brain imaging to examine whether alterations in spontaneous neural activity predict the level of pain experienced in a cohort of 38 individuals with spastic diplegic cerebral palsy and 67 neurotypical controls. Participants completed 5 min of an eyes closed resting-state paradigm while undergoing a magnetoencephalography recording. The magnetoencephalographic data were then source imaged, and the power within the delta (2–4 Hz), theta (5–7 Hz), alpha (8–12 Hz), beta (15–29 Hz), low gamma (30–59 Hz) and high gamma (60–90 Hz) frequency bands were computed. The resulting power spectral density maps were analysed vertex-wise to identify differences in spontaneous activity between groups. Our findings indicated that spontaneous cortical activity was altered in the participants with cerebral palsy in the delta, alpha, beta, low gamma and high gamma bands across the occipital, frontal and secondary somatosensory cortical areas (all pFWE < 0.05). Furthermore, we also found that the altered beta band spontaneous activity in the secondary somatosensory cortices predicted heightened pain perception in the individuals with cerebral palsy (P = 0.039). Overall, these results demonstrate that spontaneous cortical activity within individuals with cerebral palsy is altered in comparison to their neurotypical peers and may predict increased pain perception in this patient population. Potentially, changes in spontaneous resting-state activity may be utilized to measure the effectiveness of current treatment approaches that are directed at reducing the pain experienced by individuals with cerebral palsy.
Collapse
Affiliation(s)
- Michael P. Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Lauren R. Ott
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Samantha H. Penhale
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Brandon J. Lew
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Jessica Goeller
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Max J. Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
38
|
Neural correlates of texture perception during active touch. Behav Brain Res 2022; 429:113908. [DOI: 10.1016/j.bbr.2022.113908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
|
39
|
Hagan MA, Pesaran B. Modulation of inhibitory communication coordinates looking and reaching. Nature 2022; 604:708-713. [PMID: 35444285 PMCID: PMC9124440 DOI: 10.1038/s41586-022-04631-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 03/11/2022] [Indexed: 11/09/2022]
Abstract
Looking and reaching are controlled by different brain regions and are coordinated during natural behaviour1. Understanding how flexible, natural behaviours such as coordinated looking and reaching are controlled depends on understanding how neurons in different regions of the brain communicate2. Neural coherence in a gamma-frequency (40-90 Hz) band has been implicated in excitatory multiregional communication3. Inhibitory control mechanisms are also required to flexibly control behaviour4, but little is known about how neurons in one region transiently suppress individual neurons in another to support behaviour. How neuronal firing in a sender region transiently suppresses firing in a receiver region remains poorly understood. Here we study inhibitory communication during a flexible, natural behaviour, termed gaze anchoring, in which saccades are transiently inhibited by coordinated reaches. During gaze anchoring, we found that neurons in the reach region of the posterior parietal cortex can inhibit neuronal firing in the parietal saccade region to suppress eye movements and improve reach accuracy. Suppression is transient, only present around the coordinated reach, and greatest when reach neurons fire spikes with respect to beta-frequency (15-25 Hz) activity, not gamma-frequency activity. Our work provides evidence in the activity of single neurons for a novel mechanism of inhibitory communication in which beta-frequency neural coherence transiently inhibits multiregional communication to flexibly coordinate natural behaviour.
Collapse
Affiliation(s)
- Maureen A Hagan
- Department of Physiology and Neuroscience Program, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- Center for Neural Science, New York University, New York, NY, USA
| | - Bijan Pesaran
- Center for Neural Science, New York University, New York, NY, USA.
| |
Collapse
|
40
|
Val66et Polymorphism Is Associated with Altered Motor-Related Oscillatory Activity in Youth with Cerebral Palsy. Brain Sci 2022; 12:brainsci12040435. [PMID: 35447966 PMCID: PMC9027490 DOI: 10.3390/brainsci12040435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 01/27/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in the capacity for neuroplastic change. A single nucleotide polymorphism of the BDNF gene is well known to alter the activity-dependent release of the protein and may impact the capacity for neuroplastic change. Numerous studies have shown altered sensorimotor beta event-related desynchronization (ERD) responses in youth with cerebral palsy (CP), which is thought to be directly related to motor planning. The objective of the current investigation was to use magnetoencephalography (MEG) to evaluate whether the BDNF genotype affects the strength of the sensorimotor beta ERD seen in youth with CP while youth with CP performed a leg isometric target matching task. In addition, we collected saliva samples and used polymerase chain reaction (PCR) amplification to determine the status of the amino acid fragment containing codon 66 of the BDNF gene. Our genotyping results identified that 25% of the youth with CP had a Val66Met or Met66Met polymorphism at codon 66 of the BDNF gene. Furthermore, we identified that the beta ERD was stronger in youth with CP who had the Val66Met or Met66Met polymorphism in comparison to those without the polymorphism (p = 0.042). Overall, these novel findings suggest that a polymorphism at the BDNF gene may alter sensorimotor cortical oscillations in youth with CP.
Collapse
|
41
|
Trevarrow MP, Reelfs A, Baker SE, Hoffman RM, Wilson TW, Kurz MJ. Spinal cord microstructural changes are connected with the aberrant sensorimotor cortical oscillatory activity in adults with cerebral palsy. Sci Rep 2022; 12:4807. [PMID: 35314729 PMCID: PMC8938462 DOI: 10.1038/s41598-022-08741-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 02/21/2022] [Indexed: 11/20/2022] Open
Abstract
Previous animal models have illustrated that reduced cortical activity in the developing brain has cascading activity-dependent effects on the microstructural organization of the spinal cord. A limited number of studies have attempted to translate these findings to humans with cerebral palsy (CP). Essentially, the aberrations in sensorimotor cortical activity in those with CP could have an adverse effect on the spinal cord microstructure. To investigate this knowledge gap, we utilized magnetoencephalographic (MEG) brain imaging to quantify motor-related oscillatory activity in fourteen adults with CP and sixteen neurotypical (NT) controls. A subset of these participants also underwent cervical-thoracic spinal cord MRI. Our results showed that the strength of the peri-movement beta desynchronization and the post-movement beta rebound were each weaker in the adults with CP relative to the controls, and these weakened responses were associated with poorer task performance. Additionally, our results showed that the strength of the peri-movement beta response was associated with the total cross-sectional area of the spinal cord and the white matter cross-sectional area. Altogether these results suggest that the altered sensorimotor cortical activity seen in CP may result in activity-dependent plastic changes within the spinal cord microstructure, which could ultimately contribute to the sensorimotor deficits seen in this population.
Collapse
Affiliation(s)
- Michael P Trevarrow
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Anna Reelfs
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Sarah E Baker
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA
| | - Max J Kurz
- Institute for Human Neuroscience, Boys Town National Research Hospital, 14090 Mother Teresa Lane, Boys Town, NE, 68010, USA.
| |
Collapse
|
42
|
Suzuki M, Tanaka S, Gomez-Tames J, Okabe T, Cho K, Iso N, Hirata A. Nonequivalent After-Effects of Alternating Current Stimulation on Motor Cortex Oscillation and Inhibition: Simulation and Experimental Study. Brain Sci 2022; 12:brainsci12020195. [PMID: 35203958 PMCID: PMC8870173 DOI: 10.3390/brainsci12020195] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/28/2022] [Accepted: 01/28/2022] [Indexed: 02/01/2023] Open
Abstract
The effects of transcranial alternating current stimulation (tACS) frequency on brain oscillations and cortical excitability are still controversial. Therefore, this study investigated how different tACS frequencies differentially modulate cortical oscillation and inhibition. To do so, we first determined the optimal positioning of tACS electrodes through an electric field simulation constructed from magnetic resonance images. Seven electrode configurations were tested on the electric field of the precentral gyrus (hand motor area). We determined that the Cz-CP1 configuration was optimal, as it resulted in higher electric field values and minimized the intra-individual differences in the electric field. Therefore, tACS was delivered to the hand motor area through this arrangement at a fixed frequency of 10 Hz (alpha-tACS) or 20 Hz (beta-tACS) with a peak-to-peak amplitude of 0.6 mA for 20 min. We found that alpha- and beta-tACS resulted in larger alpha and beta oscillations, respectively, compared with the oscillations observed after sham-tACS. In addition, alpha- and beta-tACS decreased the amplitudes of conditioned motor evoked potentials and increased alpha and beta activity, respectively. Correspondingly, alpha- and beta-tACSs enhanced cortical inhibition. These results show that tACS frequency differentially affects motor cortex oscillation and inhibition.
Collapse
Affiliation(s)
- Makoto Suzuki
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
- Correspondence: ; Tel.: +81-42-955-6074
| | - Satoshi Tanaka
- Laboratory of Psychology, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu 431-3192, Shizuoka, Japan;
| | - Jose Gomez-Tames
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| | - Takuhiro Okabe
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Kilchoon Cho
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Naoki Iso
- Faculty of Health Sciences, Tokyo Kasei University, 2-15-1 Inariyama, Sayama 350-1398, Saitama, Japan; (T.O.); (K.C.); (N.I.)
| | - Akimasa Hirata
- Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan; (J.G.-T.); (A.H.)
- Center of Biomedical Physics and Information Technology, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Aichi, Japan
| |
Collapse
|
43
|
Illman MJ, Laaksonen K, Jousmäki V, Forss N, Piitulainen H. Reproducibility of Rolandic beta rhythm modulation in MEG and EEG. J Neurophysiol 2022; 127:559-570. [PMID: 35044809 PMCID: PMC8858683 DOI: 10.1152/jn.00267.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The Rolandic beta rhythm, at ∼20 Hz, is generated in the somatosensory and motor cortices and is modulated by motor activity and sensory stimuli, causing a short lasting suppression that is followed by a rebound of the beta rhythm. The rebound reflects inhibitory changes in the primary sensorimotor (SMI) cortex, and thus it has been used as a biomarker to follow the recovery of patients with acute stroke. The longitudinal stability of beta rhythm modulation is a prerequisite for its use in long-term follow-ups. We quantified the reproducibility of beta rhythm modulation in healthy subjects in a 1-year-longitudinal study both for MEG and EEG at T0, 1 month (T1-month, n = 8) and 1 year (T1-year, n = 19). The beta rhythm (13–25 Hz) was modulated by fixed tactile and proprioceptive stimulations of the index fingers. The relative peak strengths of beta suppression and rebound did not differ significantly between the sessions, and intersession reproducibility was good or excellent according to intraclass correlation-coefficient values (0.70–0.96) both in MEG and EEG. Our results indicate that the beta rhythm modulation to tactile and proprioceptive stimulation is well reproducible within 1 year. These results support the use of beta modulation as a biomarker in long-term follow-up studies, e.g., to quantify the functional state of the SMI cortex during rehabilitation and drug interventions in various neurological impairments. NEW & NOTEWORTHY The present study demonstrates that beta rhythm modulation is highly reproducible in a group of healthy subjects within a year. Hence, it can be reliably used as a biomarker in longitudinal follow-up studies in different neurological patient groups to reflect changes in the functional state of the sensorimotor cortex.
Collapse
Affiliation(s)
- Mia Johanna Illman
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland
| | - Kristina Laaksonen
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Veikko Jousmäki
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Aalto NeuroImaging, Aalto University School of Science, Aalto, Espoo, Finland
| | - Nina Forss
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland.,Department of Neurology, Helsinki University Hospital and Clinical Neurosciences, Neurology, University of Helsinki, Helsinki, Finland
| | - Harri Piitulainen
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä, Finland.,Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Aalto, Espoo, Finland
| |
Collapse
|
44
|
Ulloa JL. The Control of Movements via Motor Gamma Oscillations. Front Hum Neurosci 2022; 15:787157. [PMID: 35111006 PMCID: PMC8802912 DOI: 10.3389/fnhum.2021.787157] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/22/2021] [Indexed: 01/07/2023] Open
Abstract
The ability to perform movements is vital for our daily life. Our actions are embedded in a complex environment where we need to deal efficiently in the face of unforeseen events. Neural oscillations play an important role in basic sensorimotor processes related to the execution and preparation of movements. In this review, I will describe the state of the art regarding the role of motor gamma oscillations in the control of movements. Experimental evidence from electrophysiological studies has shown that motor gamma oscillations accomplish a range of functions in motor control beyond merely signaling the execution of movements. However, these additional aspects associated with motor gamma oscillation remain to be fully clarified. Future work on different spatial, temporal and spectral scales is required to further understand the implications of gamma oscillations in motor control.
Collapse
Affiliation(s)
- José Luis Ulloa
- Programa de Investigación Asociativa (PIA) en Ciencias Cognitivas, Centro de Investigación en Ciencias Cognitivas (CICC), Facultad de Psicología, Universidad de Talca, Talca, Chile
| |
Collapse
|
45
|
Busboom M, Corr B, Reelfs A, Trevarrow M, Reelfs H, Baker S, Bergwell H, Wilson TW, Moreau NG, Kurz MJ. Therapeutic Lower Extremity Power Training Alters the Sensorimotor Cortical Activity of Individuals with Cerebral Palsy. Arch Rehabil Res Clin Transl 2022; 4:100180. [PMID: 35282149 PMCID: PMC8904886 DOI: 10.1016/j.arrct.2022.100180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Individuals with cerebral palsy underwent therapeutic power training. Magnetoencephalography brain imaging was used to assess the neurophysiological changes. Clinical assessments included leg extension strength, power, and mobility. After therapy, participants with cerebral palsy had improved sensorimotor cortical activity. Participants also had improved leg extension strength, power, and mobility.
Objective To utilize magnetoencephalographic (MEG) brain imaging to examine potential changes in sensorimotor cortical oscillations after therapeutic power training in individuals with cerebral palsy (CP). Design Cohort. Setting Academic medical center. Participants Individuals with CP (N=11; age=15.9±1.1 years; Gross Motor Function Classification System I- III) and neurotypical controls (NTs; N=16; age=14.6±0.8 years). Interventions Participants with CP underwent 24 (8 weeks; 3 days a week) sessions of high-velocity lower extremity power training on a leg press. The NTs underwent single baseline MEG assessments. Main Outcome Measures Pre-post bilateral leg press 1-repetition maximum and peak power production were used to assess the muscular performance changes. The 10-m walk and 1-minute walk tests were used to assess mobility changes. During MEG recordings, participants used their right leg to complete a goal-directed isometric target-matching task. Advanced beamforming methods were subsequently used to image the strength of the sensorimotor beta oscillatory power. Results Before the therapeutic power training, the participants with CP had stronger beta sensorimotor cortical oscillations compared with the NT controls. However, the beta sensorimotor cortical oscillations were weaker and approximated the controls after the participants with CP completed the therapeutic power training protocol. There also was a link between the amount of improvement in leg peak power production and the amount of reduction in sensorimotor cortical oscillations seen after therapy. Conclusions Therapeutic power training appears to optimize the sensorimotor cortical oscillations of individuals with CP, and these neuroplastic changes partly contribute to improvements in the leg peak power production of individuals with CP. Therapeutic power training might provide the key ingredients for beneficial neuroplastic change.
Collapse
|
46
|
Pixa NH, Hübner L, Kutz DF, Voelcker-Rehage C. A Single Bout of High-Intensity Cardiovascular Exercise Does Not Enhance Motor Performance and Learning of a Visuomotor Force Modulation Task, but Triggers Ipsilateral Task-Related EEG Activity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:12512. [PMID: 34886237 PMCID: PMC8657224 DOI: 10.3390/ijerph182312512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022]
Abstract
Acute cardiovascular exercise (aCE) seems to be a promising strategy to improve motor performance and learning. However, results are heterogeneous, and the related neurophysiological mechanisms are not well understood. Oscillatory brain activitiy, such as task-related power (TRPow) in the alpha and beta frequencies, are known neural signatures of motor activity. Here, we tested the effects of aCE on motor performance and learning, along with corresponding modulations in EEG TRPow over the sensorimotor cortex. Forty-five right-handed participants (aged 18-34 years) practiced a visuomotor force-matching (FM) task after either high-intensity (HEG), low-intensity (LEG), or no exercise (control group, CG). Motor performance was assessed immediately, 15 min, 30 min, and 24 h after aCE/control. EEG was measured during the FM task. Results of frequentist and Bayesian statistics revealed that high- and low-intensity aCE had no effect at the behavioral level, adding to the previous mixed results. Interestingly, EEG analyses showed an effect of aCE on the ipsilateral sensorimotor cortex, with a stronger decrease in β-TRPow 15 min after exercise in both groups compared to the CG. Overall, aCE applied before motor practice increased ipsilateral sensorimotor activity, while motor learning was not affected; it remains to be seen whether aCE might affect motor learning in the long run.
Collapse
Affiliation(s)
- Nils Henrik Pixa
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Lena Hübner
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| | - Dieter F. Kutz
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, 48149 Münster, Germany; (D.F.K.); (C.V.-R.)
- Institute of Human Movement Science and Health, Faculty of Behavioral and Social Sciences, Chemnitz University of Technology, 09107 Chemnitz, Germany;
| |
Collapse
|
47
|
GABAergic Modulation in Movement Related Oscillatory Activity: A Review of the Effect Pharmacologically and with Aging. Tremor Other Hyperkinet Mov (N Y) 2021; 11:48. [PMID: 34824891 PMCID: PMC8588888 DOI: 10.5334/tohm.655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/26/2021] [Indexed: 11/20/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous inhibitory neurotransmitter critical to the control of movement both cortically and subcortically. Modulation of GABA can alter the characteristic rest as well as movement-related oscillatory activity in the alpha (8-12 Hz), beta (13-30 Hz, and gamma (60-90 Hz) frequencies, but the specific mechanisms by which GABAergic modulation can modify these well-described changes remains unclear. Through pharmacologic GABAergic modulation and evaluation across the age spectrum, the contributions of GABA to these characteristic oscillatory activities are beginning to be understood. Here, we review how baseline GABA signaling plays a key role in motor networks and in cortical oscillations detected by scalp electroencephalography and magnetoencephalography. We also discuss the data showing specific alterations to baseline movement related oscillatory changes from pharmacologic intervention on GABAergic tone as well as with healthy aging. These data provide greater insight into the physiology of movement and may help improve future development of novel therapeutics for patients who suffer from movement disorders.
Collapse
|
48
|
Saxena N, Muthukumaraswamy SD, Richmond L, Babic A, Singh KD, Hall JE, Wise RG, Shaw AD. A comparison of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation on visual and motor cortical oscillations, using magnetoencephalography. Neuroimage 2021; 245:118659. [PMID: 34767940 PMCID: PMC9227747 DOI: 10.1016/j.neuroimage.2021.118659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/22/2021] [Accepted: 10/14/2021] [Indexed: 11/18/2022] Open
Abstract
Studying changes in cortical oscillations can help elucidate the mechanistic link between receptor physiology and the clinical effects of anaesthetic drugs. Propofol, a GABA-ergic drug produces divergent effects on visual cortical activity: increasing induced gamma-band responses (GBR) while decreasing evoked responses. Dexmedetomidine, an α2- adrenergic agonist, differs from GABA-ergic sedatives both mechanistically and clinically as it allows easy arousability from deep sedation with less cognitive side-effects. Here we use magnetoencephalography (MEG) to characterize and compare the effects of GABA-ergic (propofol) and non-GABA-ergic (dexmedetomidine) sedation, on visual and motor cortical oscillations. Sixteen male participants received target-controlled infusions of propofol and dexmedetomidine, producing mild-sedation, in a placebo-controlled, cross-over study. MEG data was collected during a combined visuomotor task. The key findings were that propofol significantly enhanced visual stimulus induced GBR (44% increase in amplitude) while dexmedetomidine decreased it (40%). Propofol also decreased the amplitudes of the Mv100 (visual M100) (27%) and Mv150 (52%) visual evoked fields (VEF), whilst dexmedetomidine had no effect on these. During the motor task, neither drug had any significant effect on movement related gamma synchrony (MRGS), movement related beta de-synchronisation (MRBD) or Mm100 (movement-related M100) movement-related evoked fields (MEF), although dexmedetomidine slowed the Mm300. Dexmedetomidine increased (92%) post-movement beta synchronisation/rebound (PMBR) power while propofol reduced it (70%, statistically non- significant). Overall, dexmedetomidine and propofol, at equi-sedative doses, produce contrasting effects on visual induced GBR, VEF, PMBR and MEF. These findings provide a mechanistic link between the known receptor physiology of these sedative drugs with their known clinical effects and may be used to explore mechanisms of other anaesthetic drugs on human consciousness.
Collapse
Affiliation(s)
- Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, United Kingdom.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand; School of Psychology, Faculty of Medical and Health Sciences, Auckland University, Auckland 1123, New Zealand
| | - Lewys Richmond
- Department of Anaesthetics, Morriston Hospital, Swansea, SA6 6NL, United Kingdom
| | - Adele Babic
- Department of Anaesthetics, Royal Gwent Hospital, Newport, NP20 2UB, United Kingdom
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom
| | - Judith E Hall
- Department of Anaesthetics, Intensive Care and Pain Medicine, School of Medicine, Cardiff University, Cardiff CF14 4XW, United Kingdom
| | - Richard G Wise
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Institute for Advanced Biomedical Technologies, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy; Department of Neuroscience, Imaging and Clinical Sciences, "G. D'Annunzio University" of Chieti-Pescara, 66100, Chieti, Italy
| | - Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, United Kingdom; Department of Psychology, University of Exeter, United Kingdom
| |
Collapse
|
49
|
Neural oscillatory activity serving sensorimotor control is predicted by superoxide-sensitive mitochondrial redox environments. Proc Natl Acad Sci U S A 2021; 118:2104569118. [PMID: 34686594 PMCID: PMC8639326 DOI: 10.1073/pnas.2104569118] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2021] [Indexed: 11/18/2022] Open
Abstract
Mitochondrial integrity and associated redox profiles have long been revered as key contributors to a host of age- and disease-related pathologies, which eventually lead to neuronal and behavioral dysfunction in the sensorimotor and other systems. However, the precise role of the mitochondrial redox environment in human sensorimotor brain systems and motor behavior remains poorly understood. Herein, we provide evidence for a strong predictive capacity of superoxide and its scavenger, superoxide dismutase, on the neural oscillatory dynamics serving motor planning and execution above and beyond the effects of mitochondrial respiratory capacities alone. Importantly, these data provide insight regarding the impact of the redox environment on the population-level neural oscillations that serve motor function in healthy humans. Motor control requires a coordinated ensemble of spatiotemporally precise neural oscillations across a distributed motor network, particularly in the beta range (15 to 30 Hz) to successfully plan and execute volitional actions. While substantial evidence implicates beta activity as critical to motor control, the molecular processes supporting these microcircuits and their inherent oscillatory dynamics remain poorly understood. Among these processes are mitochondrial integrity and the associated redox environments, although their direct impact on human neurophysiological function is unknown. Herein, 40 healthy adults completed a motor sequence paradigm during magnetoencephalography (MEG). MEG data were imaged in the time–frequency domain using a beamformer to evaluate beta oscillatory profiles during distinct phases of motor control (i.e., planning and execution) and subsequent behavior. To comprehensively quantify features of the mitochondrial redox environment, we used state-of-the-art systems biology approaches including Seahorse Analyzer to assess mitochondrial respiration and electron paramagnetic resonance spectroscopy to measure superoxide levels in whole blood as well as antioxidant activity assays. Using structural equation modeling, we tested the relationship between mitochondrial function and sensorimotor brain-behavior dynamics through alterations in the redox environment (e.g., generation of superoxide and alteration in antioxidant defenses). Our results indicated that superoxide-sensitive but not hydrogen peroxide–sensitive features of the redox environment had direct and mediating effects on the bioenergetic–neural pathways serving motor performance in healthy adults. Importantly, our results suggest that alterations in the redox environment may directly impact behavior above and beyond mitochondrial respiratory capacities alone and further may be effective targets for age- and disease-related declines in cognitive–motor function.
Collapse
|
50
|
Palmer JA, Kesar TM, Wolf SL, Borich MR. Motor Cortical Network Flexibility is Associated With Biomechanical Walking Impairment in Chronic Stroke. Neurorehabil Neural Repair 2021; 35:1065-1075. [PMID: 34570636 DOI: 10.1177/15459683211046272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The inability to flexibly modulate motor behavior with changes in task demand or environmental context is a pervasive feature of motor impairment and dysfunctional mobility after stroke. Objective: The purpose of this study was to test the reactive and modulatory capacity of lower-limb primary motor cortical (M1) networks using electroencephalography (EEG) measures of cortical activity evoked by transcranial magnetic stimulation (TMS) and to evaluate their associations with clinical and biomechanical measures of walking function in chronic stroke. Methods: TMS assessments of motor cortex excitability were performed during rest and active ipsilateral plantarflexion in chronic stroke and age-matched controls. TMS-evoked motor cortical network interactions were quantified with simultaneous EEG as the post-TMS (0-300 ms) beta (15-30 Hz) coherence between electrodes overlying M1 bilaterally. We compared TMS-evoked coherence between groups during rest and active conditions and tested associations with poststroke motor impairment, paretic propulsive gait deficits, and the presence of paretic leg motor evoked potentials (MEPs). Results: Stroke (n = 14, 66 ± 9 years, F = 4) showed lower TMS-evoked cortical coherence and activity-dependent modulation compared to controls (n = 9, 68 ± 6 years, F = 3). Blunted reactivity and atypical modulation of TMS-evoked coherence were associated with lower paretic ankle moments for propulsive force generation during walking and absent paretic MEPs. Conclusions: Impaired flexibility of motor cortical networks to react to TMS and modulate during motor activity is distinctly associated with paretic limb biomechanical walking impairment, and may provide useful insight into the neuromechanistic underpinnings of chronic post-stroke mobility deficits.
Collapse
Affiliation(s)
- Jacqueline A Palmer
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| | - Trisha M Kesar
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| | - Steven L Wolf
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA.,Atlanta VA Visual and Neurocognitive Center of Excellence, Decatur, GA, USA
| | - Michael R Borich
- Division of Physical Therapy, Department of Rehabilitation Medicine, 12239Emory University, Atlanta, GA, USA
| |
Collapse
|