1
|
Pelegrino ADF, Attarha M, Toussaint PJ, Ouellet L, Grant SJ, Van Vleet T, de Villers-Sidani E. Cholinergic neurotransmission in the anterior cingulate cortex is associated with cognitive performance in healthy older adults: Baseline characteristics of the Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise (INHANCE) trial. NEUROIMAGE. REPORTS 2025; 5:100234. [PMID: 40191405 PMCID: PMC11970925 DOI: 10.1016/j.ynirp.2025.100234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Aging is associated with dysfunction in the cholinergic system, including degeneration of basal forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive performance in healthy older adults who underwent neuropsychological assessment and FEOBV PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the anterior cingulate cortex-the primary region of interest-as well as in the striatum, posterior cingulate cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was positively correlated with cognitive performance on the NIH EXAMINER Executive Composite Score. These findings suggest that [18F] FEOBV PET imaging can be used as a reliable biomarker to assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity of the basal forebrain may help maintain cognitive function and protect against age-related cognitive decline.
Collapse
Affiliation(s)
- Ana de Figueiredo Pelegrino
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Mouna Attarha
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Paule-Joanne Toussaint
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Lydia Ouellet
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| | - Sarah-Jane Grant
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Thomas Van Vleet
- Posit Science Corporation, 160 Pine St Suite 200, San Francisco, CA, 94111, United States
| | - Etienne de Villers-Sidani
- McGill University, Montreal Neurological Institute and Hospital, 3801 University Street, Montréal, Quebec, H3A 2B4, Canada
| |
Collapse
|
2
|
Boccalini C, Perani D, Garibotto V. Memory network and cognitive reserve are associated with preserved and stimulated cholinergic neurotransmission. HANDBOOK OF CLINICAL NEUROLOGY 2025; 211:137-153. [PMID: 40340058 DOI: 10.1016/b978-0-443-19088-9.00014-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The cholinergic system plays a central role in cognition and neural function, and, in Alzheimer disease (AD) and Lewy body disease (LBD), it has profound implications for cognitive impairment and dementia. The cholinergic forebrain pathway, innervating the neocortex and limbic system, is crucial for learning, memory, and other essential aspects of cognition and plays a wider role in promoting neuronal plasticity. Given the neuroplasticity processes characterizing the cholinergic regions, this system may be sensitive to modulatory phenomena such as cognitive reserve (CR). The concept of CR has been introduced to account for the fact that individual clinical presentation might be milder than expected based on neuropathology. This mismatch can be explained by individual brain reserve (BR) buildup on life experiences, lifestyles, and neurobiologic factors that are associated with resilience. Sparse findings exist suggesting that the CR might result in an increased or preserved function of the cholinergic system in AD patients, and compensatory mechanisms in the early stages of LBD. The limited availability of effective treatment for neurodegenerative dementia emphasizes the importance of CR and BR, as they play a major role in delaying or slowing disease onset and progression. This chapter will describe the involvement of the cholinergic system in neurodegenerative diseases and the tools for the in vivo assessment, focusing specifically on the evidence suggesting the possibility of its modulation by CR.
Collapse
Affiliation(s)
- Cecilia Boccalini
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy; Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Daniela Perani
- Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy; Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Valentina Garibotto
- Laboratory of Neuroimaging and Innovative Molecular Tracers (NIMTlab), Faculty of Medicine, University of Geneva, Geneva, Switzerland; Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospitals, Geneva, Switzerland; CIBM Center for Biomedical Imaging, Geneva, Switzerland.
| |
Collapse
|
3
|
de Figueiredo Pelegrino A, Attarha M, Toussaint PJ, Ouellet L, Grant SJ, Van Vleet T, de Villers-Sidani E. Cholinergic neurotransmission in the anterior cingulate cortex is associated with cognitive performance in healthy older adults: Baseline characteristics of the Improving Neurological Health in Aging via Neuroplasticity-based Computerized Exercise (INHANCE) trial. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.10.30.24316439. [PMID: 39574863 PMCID: PMC11581060 DOI: 10.1101/2024.10.30.24316439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Aging is associated with dysfunction in the cholinergic system, including degeneration of basal forebrain cholinergic terminals that innervate the cortex, which directly contributes to age- and disease-related cognitive decline. In this study, we used [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) positron emission tomography (PET) imaging to assess the effect of age on cholinergic terminal integrity in predefined regions of interest and its relationship to cognitive performance in healthy older adults who underwent neuropsychological assessment and FEOBV PET brain imaging. Our results showed age-related reductions in FEOBV binding, particularly in the anterior cingulate cortex-our primary region of interest-as well as in the striatum, posterior cingulate cortex, and primary auditory cortex. Notably, FEOBV binding in the anterior cingulate cortex was positively correlated with cognitive performance on the NIH EXAMINER Executive Composite Score. These findings suggest that [18F]FEOBV PET imaging can be used as a reliable biomarker to assess cholinergic changes in the human brain and indicate that preserving the cholinergic integrity of the basal forebrain may help maintain cognitive function and protect against age-related cognitive decline.
Collapse
|
4
|
Slingerland S, van der Zee S, Carli G, Slomp AC, Boertien JM, d’Angremont E, Bohnen NI, Albin RL, van Laar T. Cholinergic innervation topography in GBA-associated de novo Parkinson's disease patients. Brain 2024; 147:900-910. [PMID: 37748026 PMCID: PMC10907081 DOI: 10.1093/brain/awad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/23/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
The most common genetic risk factors for Parkinson's disease are GBA1 mutations, encoding the lysosomal enzyme glucocerebrosidase. Patients with GBA1 mutations (GBA-PD) exhibit earlier age of onset and faster disease progression with more severe cognitive impairments, postural instability and gait problems. These GBA-PD features suggest more severe cholinergic system pathologies. PET imaging with the vesicular acetylcholine transporter ligand 18F-F-fluoroethoxybenzovesamicol (18F-FEOBV PET) provides the opportunity to investigate cholinergic changes and their relationship to clinical features in GBA-PD. The study investigated 123 newly diagnosed, treatment-naïve Parkinson's disease subjects-with confirmed presynaptic dopaminergic deficits on PET imaging. Whole-gene GBA1 sequencing of saliva samples was performed to evaluate GBA1 variants. Patients underwent extensive neuropsychological assessment of all cognitive domains, motor evaluation with the Unified Parkinson's Disease Rating Scale, brain MRI, dopaminergic PET to measure striatal-to-occipital ratios of the putamen and 18F-FEOBV PET. We investigated differences in regional cholinergic innervation between GBA-PD carriers and non-GBA1 mutation carriers (non-GBA-PD), using voxel-wise and volume of interest-based approaches. The degree of overlap between t-maps from two-sample t-test models was quantified using the Dice similarity coefficient. Seventeen (13.8%) subjects had a GBA1 mutation. No significant differences were found in clinical features and dopaminergic ratios between GBA-PD and non-GBA-PD at diagnosis. Lower 18F-FEOBV binding was found in both the GBA-PD and non-GBA-PD groups compared to controls. Dice (P < 0.05, cluster size 100) showed good overlap (0.7326) between the GBA-PD and non-GBA-PD maps. GBA-PD patients showed more widespread reduction in 18F-FEOBV binding than non-GBA-PD when compared to controls in occipital, parietal, temporal and frontal cortices (P < 0.05, FDR-corrected). In volume of interest analyses (Bonferroni corrected), the left parahippocampal gyrus was more affected in GBA-PD. De novo GBA-PD show a distinct topography of regional cholinergic terminal ligand binding. Although the Parkinson's disease groups were not distinguishable clinically, in comparison to healthy controls, GBA-PD showed more extensive cholinergic denervation compared to non-GBA-PD. A larger group is needed to validate these findings. Our results suggest that de novo GBA-PD and non-GBA-PD show differential patterns of cholinergic system changes before clinical phenotypic differences between carriers versus non-carrier groups are observable.
Collapse
Affiliation(s)
- Sofie Slingerland
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Sygrid van der Zee
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Giulia Carli
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Anne C Slomp
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
- Department of Neurology, Division of Clinical Neuropsychology, University of Groningen, University Medical Center, 9713 GZ Groningen, The Netherlands
| | - Jeffrey M Boertien
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Emile d’Angremont
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Teus van Laar
- Department of Neurology, University of Groningen, University Medical Center Groningen, 9713 GZ Groningen, The Netherlands
| |
Collapse
|
5
|
Vercouillie J, Buron F, Sérrière S, Rodrigues N, Gulhan Z, Chartier A, Chicheri G, Marzag H, Oury A, Percina N, Bodard S, Ben Othman R, Busson J, Suzenet F, Guilloteau D, Marchivie M, Emond P, Routier S, Chalon S. Development and preclinical evaluation of [18F]FBVM as a new potent PET tracer for vesicular acetylcholine transporter. Eur J Med Chem 2022; 244:114794. [DOI: 10.1016/j.ejmech.2022.114794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/13/2022] [Accepted: 09/23/2022] [Indexed: 11/30/2022]
|
6
|
Aghourian M, Aumont É, Grothe MJ, Soucy JP, Rosa-Neto P, Bedard MA. FEOBV-PET to quantify cortical cholinergic denervation in AD: Relationship to basal forebrain volumetry. J Neuroimaging 2021; 31:1077-1081. [PMID: 34462992 DOI: 10.1111/jon.12921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Fluorine-18-fluoroethoxybenzovesamicol([18 F]-FEOBV) is a PET radiotracer previously used in neurodegenerative diseases to quantify brain cholinergic denervation. The current exploratory study aimed at verifying the reliability of such an approach in Alzheimer's disease (AD) by demonstrating its concordance with MRI volumetry of the cholinergic basal forebrain (ChBF). METHODS The sample included 12 participants evenly divided between healthy volunteers and patients with AD. All participants underwent MRI ChBF volumetry and PET imaging with [18 F]-FEOBV. Comparisons were made between the two groups, and partial correlations were performed in the AD patients between [18 F]-FEOBV uptake in specific cortical regions of interest (ROIs) and volumetry of the corresponding ChBF subareas, which include the nucleus basalis of Meynert (Ch4), and the medial septum/vertical limb of the diagonal band of Broca (Ch1/2). RESULTS Patients with AD showed both lower ChBF-Ch4 volumetric values and lower [18 F]-FEOBV cortical uptake than healthy volunteers. Volumes of the Ch4 subdivision were significantly correlated with the [18 F]-FEOBV uptake values observed in the relevant ROIs. Volumes of the Ch1/2, which remains relatively unaffected in AD, did not correlate with [18 F]-FEOBV uptake in the hippocampus, nor in any cortical area. CONCLUSION These results suggest that cortical cholinergic denervation as measured with [18 F]-FEOBV PET is proportional to ChBF atrophy measured by MRI-based volumetry, further supporting the reliability and validity of [18 F]-FEOBV PET to quantify cholinergic degeneration in AD.
Collapse
Affiliation(s)
- Meghmik Aghourian
- Cognitive Pharmacology Research Unit, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Étienne Aumont
- Cognitive Pharmacology Research Unit, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Michel J Grothe
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/CSIC/Universidad de Sevilla, Seville, Spain.,DZNE, German Center for Neurodegenerative Diseases, Rostock, Germany
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| | - Pedro Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada.,Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marc-André Bedard
- Cognitive Pharmacology Research Unit, Université du Québec à Montréal (UQAM), Montreal, Quebec, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, Quebec, Canada
| |
Collapse
|
7
|
Sarter M, Avila C, Kucinski A, Donovan E. Make a Left Turn: Cortico-Striatal Circuitry Mediating the Attentional Control of Complex Movements. Mov Disord 2021; 36:535-546. [PMID: 33615556 DOI: 10.1002/mds.28532] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 01/21/2021] [Accepted: 01/25/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND In movement disorders such as Parkinson's disease (PD), cholinergic signaling is disrupted by the loss of basal forebrain cholinergic neurons, as well as aberrant activity in striatal cholinergic interneurons (ChIs). Several lines of evidence suggest that gait imbalance, a key disabling symptom of PD, may be driven by alterations in high-level frontal cortical and cortico-striatal processing more typically associated with cognitive dysfunction. METHODS Here we describe the corticostriatal circuitry that mediates the cognitive-motor interactions underlying such complex movement control. The ability to navigate dynamic, obstacle-rich environments requires the continuous integration of information about the environment with movement selection and sequencing. The cortical-attentional processing of extero- and interoceptive cues requires modulation by cholinergic activity to guide striatal movement control. Cue-derived information is "transferred" to striatal circuitry primarily via fronto-striatal glutamatergic projections. RESULT Evidence from parkinsonian fallers and from a rodent model reproducing the dual cholinergic-dopaminergic losses observed in these patients supports the main hypotheses derived from this neuronal circuitry-guided conceptualization of parkinsonian falls. Furthermore, in the striatum, ChIs constitute a particularly critical node for the integration of cortical with midbrain dopaminergic afferents and thus for cues to control movements. CONCLUSION Procholinergic treatments that enhance or rescue cortical and striatal mechanisms may improve complex movement control in parkinsonian fallers and perhaps also in older persons suffering from gait disorders and a propensity for falls. © 2021 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Martin Sarter
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Cassandra Avila
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Aaron Kucinski
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Eryn Donovan
- Department of Psychology & Neuroscience Program, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Saint-Georges Z, Zayed VK, Dinelle K, Cassidy C, Soucy JP, Massarweh G, Rotstein B, Nery PB, Guimond S, deKemp R, Tuominen L. First-in-human imaging and kinetic analysis of vesicular acetylcholine transporter density in the heart using [ 18F]FEOBV PET. J Nucl Cardiol 2021; 28:50-54. [PMID: 32909238 PMCID: PMC7921026 DOI: 10.1007/s12350-020-02323-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 07/28/2020] [Indexed: 11/09/2022]
Abstract
In contrast to cardiac sympathetic activity which can be assessed with established PET tracers, there are currently no suitable radioligands to measure cardiac parasympathetic (cholinergic) activity. A radioligand able to measure cardiac cholinergic activity would be an invaluable clinical and research tool since cholinergic dysfunction has been associated with a wide array of pathologies (e.g., chronic heart failure, myocardial infarction, arrythmias). [18F]Fluoroethoxybenzovesamicol (FEOBV) is a cholinergic radiotracer that has been extensively validated in the brain. Whether FEOBV PET can be used to assess cholinergic activity in the heart is not known. Hence, this study aimed to evaluate the properties of FEOBV for cardiac PET imaging and cholinergic activity mapping. PET data were collected for 40 minutes after injection of 230 ± 50 MBq of FEOBV in four healthy participants (1 female; Age: 37 ± 10; BMI: 25 ± 2). Dynamic LV time activity curves were fitted with Logan graphical, 1-tissue compartment, and 2-tissue compartment models, yielding similar distribution volume estimates for each participant. Our initial data show that FEOBV PET has favorable tracer kinetics for quantification of cholinergic activity and is a promising new method for assessing parasympathetic function in the heart.
Collapse
Affiliation(s)
- Zacharie Saint-Georges
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada.
| | - Vanessa K Zayed
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Katie Dinelle
- Brain Imaging Centre, The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Clifford Cassidy
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
| | - Jean-Paul Soucy
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Gassan Massarweh
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Benjamin Rotstein
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Pablo B Nery
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Synthia Guimond
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychoeducation and Psychology, Université du Québec en Outaouais, Gatineau, QC, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| | - Robert deKemp
- University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Lauri Tuominen
- The Royal's Institute of Mental Health Research, Ottawa, ON, Canada
- Department of Psychiatry, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
9
|
Spatial topography of the basal forebrain cholinergic projections: Organization and vulnerability to degeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:159-173. [PMID: 34225960 DOI: 10.1016/b978-0-12-819975-6.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The basal forebrain (BF) cholinergic system constitutes a heterogeneous cluster of large projection neurons that innervate the entire cortical mantle and amygdala. Cholinergic neuromodulation plays a critical role in regulating cognition and behavior, as well as maintenance of cellular homeostasis. Decades of postmortem histology research have demonstrated that the BF cholinergic neurons are selectively vulnerable to aging and age-related neuropathology in degenerative diseases such as Alzheimer's and Parkinson's diseases. Emerging evidence from in vivo neuroimaging research, which permits longitudinal tracking of at-risk individuals, indicates that cholinergic neurodegeneration might play an earlier and more pivotal role in these diseases than was previously appreciated. Despite these advances, our understanding of the organization and functions of the BF cholinergic system mostly derives from nonhuman animal research. In this chapter, we begin with a review of the topographical organization of the BF cholinergic system in rodent and nonhuman primate models. We then discuss basic and clinical neuroscience research in humans, which has started to translate and extend the nonhuman animal research using novel noninvasive neuroimaging techniques. We focus on converging evidence indicating that the selective vulnerability of cholinergic neurons in Alzheimer's and Parkinson's diseases is expressed along a rostral-caudal topography in the BF. We close with a discussion of why this topography of vulnerability in the BF may occur and why it is relevant to the clinician.
Collapse
|
10
|
Schildt A, de Vries EFJ, Willemsen ATM, Moraga-Amaro R, Lima-Giacobbo B, Sijbesma JWA, Sossi V, Dierckx RAJO, Doorduin J. Modeling of [ 18F]FEOBV Pharmacokinetics in Rat Brain. Mol Imaging Biol 2020; 22:931-939. [PMID: 31907846 DOI: 10.1007/s11307-019-01466-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV) is a radioligand for the vesicular acetylcholine transporter (VAChT), a marker of the cholinergic system. We evaluated the quantification of [18F]FEOBV in rats in control conditions and after partial saturation of VAChT using plasma and reference tissue input models and test-retest reliability. PROCEDURE Ninety-minute dynamic [18F]FEOBV PET scans with arterial blood sampling were performed in control rats and rats pretreated with 10 μg/kg FEOBV. Kinetic analyses were performed using one- (1TCM) and two-tissue compartmental models (2TCM), Logan and Patlak graphical analyses with metabolite-corrected plasma input, reference tissue Patlak with cerebellum as reference tissue, standard uptake value (SUV) and SUV ratio (SUVR) using 60- or 90-min acquisition. To assess test-retest reliability, two dynamic [18F]FEOBV scans were performed 1 week apart. RESULTS The 1TCM did not fit the data. Time-activity curves were more reliably estimated by the irreversible than the reversible 2TCM for 60 and 90 min as the influx rate Ki showed a lower coefficient of variation (COV, 14-24 %) than the volume of distribution VT (16-108 %). Patlak graphical analysis showed a good fit to the data for both acquisition times with a COV (12-27 %) comparable to the irreversible 2TCM. For 60 min, Logan analysis performed comparably to both irreversible models (COV 14-32 %) but showed lower sensitivity to VAChT saturation. Partial saturation of VAChT did not affect model selection when using plasma input. However, poor correlations were found between irreversible 2TCM and SUV and SUVR in partially saturated VAChT states. Test-retest reliability and intraclass correlation for SUV were good. CONCLUSION [18F]FEOBV is best modeled using the irreversible 2TCM or Patlak graphical analysis. SUV should only be used if blood sampling is not possible.
Collapse
Affiliation(s)
- Anna Schildt
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Erik F J de Vries
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Antoon T M Willemsen
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Rodrigo Moraga-Amaro
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Bruno Lima-Giacobbo
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Jürgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, Canada
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands
| | - Janine Doorduin
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, P.O Box 30.001, Groningen, 9700RB, The Netherlands.
| |
Collapse
|
11
|
Cisneros-Franco JM, Voss P, Kang MS, Thomas ME, Côté J, Ross K, Gaudreau P, Rudko DA, Rosa-Neto P, de-Villers-Sidani É. PET Imaging of Perceptual Learning-Induced Changes in the Aged Rodent Cholinergic System. Front Neurosci 2020; 13:1438. [PMID: 32038142 PMCID: PMC6985428 DOI: 10.3389/fnins.2019.01438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 12/20/2019] [Indexed: 12/14/2022] Open
Abstract
The cholinergic system enhances attention and gates plasticity, making it a major regulator of adult learning. With aging, however, progressive degeneration of the cholinergic system impairs both the acquisition of new skills and functional recovery following neurological injury. Although cognitive training and perceptual learning have been shown to enhance auditory cortical processing, their specific impact on the cholinergic system remains unknown. Here we used [18F]FEOBV, a positron emission tomography (PET) radioligand that selectively binds to the vesicular acetylcholine transporter (VAChT), as a proxy to assess whether training on a perceptual task results in increased cholinergic neurotransmission. We show for the first time that perceptual learning is associated with region-specific changes in cholinergic neurotransmission, as detected by [18F]FEOBV PET imaging and corroborated with immunohistochemistry.
Collapse
Affiliation(s)
- J Miguel Cisneros-Franco
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Patrice Voss
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Min Su Kang
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Maryse E Thomas
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Jonathan Côté
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| | - Karen Ross
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
| | - Pierrette Gaudreau
- Réseau Québécois de Recherche sur le Vieillissement, Université de Montréal, Montreal, QC, Canada
| | - David A Rudko
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada.,Research Centre for Studies in Aging, McGill University, Montreal, QC, Canada
| | - Étienne de-Villers-Sidani
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada.,Centre for Research on Brain, Language and Music, McGill University, Montreal, QC, Canada
| |
Collapse
|
12
|
Bohnen NI, Kanel P, Zhou Z, Koeppe RA, Frey KA, Dauer WT, Albin RL, Müller MLTM. Cholinergic system changes of falls and freezing of gait in Parkinson's disease. Ann Neurol 2019; 85:538-549. [PMID: 30720884 PMCID: PMC6450746 DOI: 10.1002/ana.25430] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 02/03/2019] [Accepted: 02/03/2019] [Indexed: 01/16/2023]
Abstract
Objective Postural instability and gait difficulties (PIGDs) represent debilitating disturbances in Parkinson's disease (PD). Past acetylcholinesterase positron emission tomography (PET) imaging studies implicate cholinergic changes as significant contributors to PIGD features. These studies were limited in quantification of striatal cholinergic synapse integrity. Vesicular acetylcholine transporter (VAChT) PET ligands are better suited for evaluation of high binding areas. We examined associations between regional VAChT expression and freezing of gait (FoG) and falls. Methods Ninety‐four PD subjects underwent clinical assessment and VAChT ([18F]FEOBV) PET. Results Thirty‐five subjects (37.2%) reported a history of falls, and 15 (16%) had observed FoG. Univariate volume‐of‐interest analyses demonstrated significantly reduced thalamic (p = 0.0016) VAChT expression in fallers compared to nonfallers. VAChT expression was significantly reduced in the striatum (p = 0.0012) and limbic archicortex (p = 0.004) in freezers compared to nonfreezers. Whole‐brain voxel‐based analyses of FEOBV PET complemented these findings and showed more granular changes associated with falling history, including the right visual thalamus (especially the right lateral geniculate nucleus [LGN]), right caudate nucleus, and bilateral prefrontal regions. Freezers had prominent VAChT expression reductions in the bilateral striatum, temporal, and mesiofrontal limbic regions. Interpretation Our findings confirm and extend on previous PET findings of thalamic cholinergic deficits associated with falling history and now emphasize right visual thalamus complex changes, including the right LGN. FoG status is associated with reduced VAChT expression in striatal cholinergic interneurons and the limbic archicortex. These observations suggest different cholinergic systems changes underlying falls and FoG in PD. Ann Neurol 2019;85:538–549
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Radiology, University of Michigan, Ann Arbor, MI.,Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Prabesh Kanel
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Zhi Zhou
- Radiology, University of Michigan, Ann Arbor, MI
| | - Robert A Koeppe
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Kirk A Frey
- Radiology, University of Michigan, Ann Arbor, MI.,Neurology, University of Michigan, Ann Arbor, MI
| | - William T Dauer
- Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Roger L Albin
- Neurology, University of Michigan, Ann Arbor, MI.,Neurology Service and GRECC, Veterans Administration Ann Arbor Healthcare System, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| | - Martijn L T M Müller
- Radiology, University of Michigan, Ann Arbor, MI.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI
| |
Collapse
|
13
|
Bedard MA, Aghourian M, Legault-Denis C, Postuma RB, Soucy JP, Gagnon JF, Pelletier A, Montplaisir J. Brain cholinergic alterations in idiopathic REM sleep behaviour disorder: a PET imaging study with 18F-FEOBV. Sleep Med 2019; 58:35-41. [PMID: 31078078 DOI: 10.1016/j.sleep.2018.12.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 12/19/2018] [Accepted: 12/27/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND REM sleep behaviour disorder (RBD) occurs frequently in patients with synucleinopathies such as Parkinson's disease, dementia with Lewy body, or multiple system atrophy, but may also occur as a prodromal stage of those diseases; and is termed idiopathic RBD (iRBD) when not accompanied by other symptoms. Cholinergic degeneration of the mesopontine nuclei have been described in synucleinopathies with or without RBD, but this has not yet been explored in iRBD. We sought to assess cholinergic neuronal integrity in iRBD using PET neuroimaging with the 18F-fluoroethoxybenzovesamicol (FEOBV). METHODS The sample included 10 participants evenly divided between healthy subjects and patients with iRBD. Polysomnography and PET imaging with FEOBV were performed in all participants. Standardized uptake value ratios (SUVRs) were compared between the two groups using voxel wise t-tests. Non-parametric correlations were also computed in patients with iRBD between FEOBV uptake and muscle tonic and phasic activity during REM sleep. RESULTS Compared with healthy participants, significantly higher FEOBV uptakes were observed in patients with iRBD. The largest differences were observed in specific brainstem areas corresponding to the bulbar reticular formation, pontine coeruleus/subcoeruleus complex, tegmental periacqueductal grey, and mesopontine cholinergic nuclei. FEOBV uptake in iRBD was also higher than in controls in the ventromedial area of the thalamus, deep cerebellar nuclei, and some cortical territories (including the paracentral lobule, anterior cingulate, and orbitofrontal cortex). Significant correlation was found between muscle activity during REM sleep, and SUVR increases in both the mesopontine area and paracentral cortex. CONCLUSION We showed here for the first time the brain cholinergic alterations in patients with iRBD. As opposed to the cholinergic depletion described previously in RBD associated with clinical Parkinson's disease, increased cholinergic innervation was found in multiple areas in iRBD. The most significant changes were observed in brainstem areas containing structures involved in the promotion of REM sleep and muscle atonia. This suggests that iRBD might be a clinical condition in which compensatory cholinergic upregulation in those areas occurs in association with the initial phases of a neurodegenerative process leading to a clinically observable synucleinopathy.
Collapse
Affiliation(s)
- Marc-Andre Bedard
- NeuroQAM Centre, Université du Québec à Montréal (UQAM), Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada
| | - Meghmik Aghourian
- NeuroQAM Centre, Université du Québec à Montréal (UQAM), Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada
| | - Camille Legault-Denis
- NeuroQAM Centre, Université du Québec à Montréal (UQAM), Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada
| | - Ronald B Postuma
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Canada; Department of Neurology and Neurosurgery, McGill University, Canada
| | - Jean-Paul Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Canada; Department of Radiology and Nuclear Medicine, Université de Montréal, Canada; PERFORM Centre, Concordia University, Canada
| | - Jean-François Gagnon
- NeuroQAM Centre, Université du Québec à Montréal (UQAM), Canada; Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Canada
| | - Amélie Pelletier
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Canada
| | - Jacques Montplaisir
- Centre for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Canada; Department of Psychiatry, Université de Montréal, Canada.
| |
Collapse
|
14
|
Longitudinal Alzheimer’s Degeneration Reflects the Spatial Topography of Cholinergic Basal Forebrain Projections. Cell Rep 2018; 24:38-46. [DOI: 10.1016/j.celrep.2018.06.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 04/09/2018] [Accepted: 05/30/2018] [Indexed: 10/28/2022] Open
|
15
|
Jin H, Yue X, Liu H, Han J, Flores H, Su Y, Parsons SM, Perlmutter JS, Tu Z. Kinetic modeling of [ 18 F]VAT, a novel radioligand for positron emission tomography imaging vesicular acetylcholine transporter in non-human primate brain. J Neurochem 2018; 144:791-804. [PMID: 29315563 DOI: 10.1111/jnc.14291] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/16/2017] [Accepted: 12/19/2017] [Indexed: 01/06/2023]
Abstract
Molecular imaging of vesicular acetylcholine transporter (VAChT) in the brain provides an important cholinergic biomarker for the pathophysiology and treatment of dementias including Alzheimer's disease. In this study, kinetics modeling methods were applied and compared for quantifying regional brain uptake of the VAChT-specific positron emission tomography radiotracer, ((-)-(1-(-8-(2-fluoroethoxy)-3-hydroxy-1,2,3,4-tetrahydronaphthalen-2-yl)piperidin-4-yl)(4-fluorophenyl)-methanone) ([18 F]VAT) in macaques. Total volume distribution (VT ) estimates were compared for one-tissue compartment model (1TCM), two-tissue compartment model (2TCM), Logan graphic analysis (LoganAIF) and multiple linear analysis (MA1) with arterial blood input function using data from three macaques. Using the cerebellum-hemispheres as the reference region with data from seven macaques, three additional models were compared: reference tissue model (RTM), simplified RTM (SRTM), and Logan graphic analysis (LoganREF). Model selection criterion indicated that a) 2TCM and SRTM were the most appropriate kinetics models for [18 F]VAT; and b) SRTM was strongly correlated with 2TCM (Pearson's coefficients r > 0.93, p < 0.05). Test-retest studies demonstrated that [18 F]VAT has good reproducibility and reliability (TRV < 10%, ICC > 0.72). These studies demonstrate [18 F]VAT is a promising VAChT positron emission tomography tracer for quantitative assessment of VAChT levels in the brain of living subjects.
Collapse
Affiliation(s)
- Hongjun Jin
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Xuyi Yue
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hui Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Junbin Han
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hubert Flores
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Yi Su
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Stanley M Parsons
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, California, USA
| | - Joel S Perlmutter
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA.,Department of Neuroscience, Physical Therapy and Occupational Therapy, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Zhude Tu
- Department of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Aghourian M, Legault-Denis C, Soucy JP, Rosa-Neto P, Gauthier S, Kostikov A, Gravel P, Bédard MA. Quantification of brain cholinergic denervation in Alzheimer's disease using PET imaging with [ 18F]-FEOBV. Mol Psychiatry 2017; 22:1531-1538. [PMID: 28894304 DOI: 10.1038/mp.2017.183] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/08/2023]
Abstract
18F-fluoroethoxybenzovesamicol (FEOBV) is a new PET radiotracer that binds to the vesicular acetylcholine transporter. In both animals and healthy humans, FEOBV was found sensitive and reliable to characterize presynaptic cholinergic nerve terminals in the brain. It has been used here for we believe the first time in patients with Alzheimer's disease (AD) to quantify brain cholinergic losses. The sample included 12 participants evenly divided in healthy subjects and patients with AD, all assessed with the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA) cognitive scales. Every participant underwent three consecutive PET imaging sessions with (1) the FEOBV as a tracer of the cholinergic terminals, (2) the 18F-NAV4694 (NAV) as an amyloid-beta tracer, and (3) the 18F-Fluorodeoxyglucose (FDG) as a brain metabolism agent. Standardized uptake value ratios (SUVRs) were computed for each tracer, and compared between the two groups using voxel wise t-tests. Correlations were also computed between each tracer and the cognitive scales, as well as between FEOBV and the two other radiotracers. Results showed major reductions of FEOBV uptake in multiple cortical areas that were evident in each AD subject, and in the AD group as a whole when compared to the control group. FDG and NAV were also able to distinguish the two groups, but with lower sensitivity than FEOBV. FEOBV uptake values were positively correlated with FDG in numerous cortical areas, and negatively correlated with NAV in some restricted areas. The MMSE and MoCA cognitive scales were found to correlate significantly with FEOBV and with FDG, but not with NAV. We concluded that PET imaging with FEOBV is more sensitive than either FDG or NAV to distinguish AD patients from control subjects, and may be useful to quantify disease severity. FEOBV can be used to assess cholinergic degeneration in human, and may represent an excellent biomarker for AD.
Collapse
Affiliation(s)
- M Aghourian
- Université du Québec à Montréal (UQAM), Cognitive Pharmacology Research Unit, Montreal, QC, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - C Legault-Denis
- Université du Québec à Montréal (UQAM), Cognitive Pharmacology Research Unit, Montreal, QC, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Verdun, QC, Canada
| | - J-P Soucy
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.,PERFORM Centre, Concordia University, Montreal, QC, Canada
| | - P Rosa-Neto
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - S Gauthier
- McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Verdun, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - A Kostikov
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - P Gravel
- McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada
| | - M-A Bédard
- Université du Québec à Montréal (UQAM), Cognitive Pharmacology Research Unit, Montreal, QC, Canada.,McConnell Brain Imaging Centre, Montreal Neurological Institute, Montreal, QC, Canada.,McGill Centre for Studies in Aging, Douglas Mental Health University Institute, Verdun, QC, Canada
| |
Collapse
|
17
|
Normal Striatal Vesicular Acetylcholine Transporter Expression in Tourette Syndrome. eNeuro 2017; 4:eN-NWR-0178-17. [PMID: 28791334 PMCID: PMC5547197 DOI: 10.1523/eneuro.0178-17.2017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/28/2017] [Accepted: 07/10/2017] [Indexed: 12/02/2022] Open
Abstract
Considerable prior work suggests basal ganglia dysfunction in Tourette syndrome (TS). Analysis of a small number of postmortem specimens suggests deficits of some striatal interneuron populations, including striatal cholinergic interneurons. To assess the integrity of striatal cholinergic interneurons in TS, we used [18F]FEOBV positron emission tomography (PET) to quantify striatal vesicular acetylcholine transporter (VAChT) expression, a measure of cholinergic terminal density, in human TS and control subjects. We found no evidence of striatal cholinergic deficits. Discrepant imaging and postmortem analysis results may reflect agonal or postmortem changes, medication effects, or significant disease heterogeneity.
Collapse
|
18
|
Ramakrishnan NK, Visser AKD, Rybczynska AA, Nyakas CJ, Luiten PGM, Kwizera C, Sijbesma JWA, Elsinga PH, Ishiwata K, Dierckx RAJO, van Waarde A. Sigma-1 Agonist Binding in the Aging Rat Brain: a MicroPET Study with [(11)C]SA4503. Mol Imaging Biol 2016; 18:588-97. [PMID: 26637208 PMCID: PMC4927617 DOI: 10.1007/s11307-015-0917-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE Sigma-1 receptor ligands modulate the release of several neurotransmitters and intracellular calcium signaling. We examined the binding of a radiolabeled sigma-1 agonist in the aging rat brain with positron emission tomography (PET). PROCEDURES Time-dependent uptake of [(11)C]SA4503 was measured in the brain of young (1.5 to 3 months) and aged (18 to 32 months) Wistar Hannover rats, and tracer-kinetic models were fitted to this data, using metabolite-corrected plasma radioactivity as input function. RESULTS In aged animals, the injected probe was less rapidly metabolized and cleared. Logan graphical analysis and a 2-tissue compartment model (2-TCM) fit indicated changes of total distribution volume (V T) and binding potential (BP ND) of the tracer. BP ND was reduced particularly in the (hypo)thalamus, pons, and medulla. CONCLUSIONS Some areas showed reductions of ligand binding with aging whereas binding in other areas (cortex) was not significantly affected.
Collapse
Affiliation(s)
- Nisha K Ramakrishnan
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Division of Imaging Sciences and Biomedical Engineering, King's College London, Strand, London, WC2R 2LS, UK
| | - Anniek K D Visser
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Anna A Rybczynska
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Csaba J Nyakas
- Research Group of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Morphology and Physiology, Semmelweis University, 17 Vas, H-1088, Budapest, Hungary
| | - Paul G M Luiten
- Research Group of Molecular Neurobiology, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
- Department of Morphology and Physiology, Semmelweis University, 17 Vas, H-1088, Budapest, Hungary
| | - Chantal Kwizera
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Jurgen W A Sijbesma
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Philip H Elsinga
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Kiichi Ishiwata
- Southern Tohoku Research Institute for Neuroscience, 7-115 Yatsuyamada, Koriyama, 963-8052, Japan
| | - Rudi A J O Dierckx
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Aren van Waarde
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
19
|
Barthel C, Sorger D, Deuther-Conrad W, Scheunemann M, Schweiger S, Jäckel P, Roghani A, Steinbach J, Schüürmann G, Sabri O, Brust P, Wenzel B. New systematically modified vesamicol analogs and their affinity and selectivity for the vesicular acetylcholine transporter – A critical examination of the lead structure. Eur J Med Chem 2015; 100:50-67. [DOI: 10.1016/j.ejmech.2015.05.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 05/20/2015] [Accepted: 05/21/2015] [Indexed: 12/14/2022]
|
20
|
Bannon D, Landau AM, Doudet DJ. How Relevant Are Imaging Findings in Animal Models of Movement Disorders to Human Disease? Curr Neurol Neurosci Rep 2015; 15:53. [DOI: 10.1007/s11910-015-0571-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
21
|
Bernard-Gauthier V, Aliaga A, Aliaga A, Boudjemeline M, Hopewell R, Kostikov A, Rosa-Neto P, Thiel A, Schirrmacher R. Syntheses and evaluation of carbon-11- and fluorine-18-radiolabeled pan-tropomyosin receptor kinase (Trk) inhibitors: exploration of the 4-aza-2-oxindole scaffold as Trk PET imaging agents. ACS Chem Neurosci 2015; 6:260-76. [PMID: 25350780 DOI: 10.1021/cn500193f] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Tropomyosin receptor kinases (TrkA/B/C) are critically involved in the development of the nervous system, in neurological disorders as well as in multiple neoplasms of both neural and non-neural origins. The development of Trk radiopharmaceuticals would offer unique opportunities toward a more complete understanding of this emerging therapeutic target. To that end, we first developed [(11)C]GW441756 ([(11)C]9), a high affinity photoisomerizable pan-Trk inhibitor, as a lead radiotracer for our positron emission tomography (PET) program. Efficient carbon-11 radiolabeling afforded [(11)C]9 in high radiochemical yields (isolated RCY, 25.9% ± 5.7%). In vitro autoradiographic studies in rat brain and TrkB-expressing human neuroblastoma cryosections confirmed that [(11)C]9 specifically binds to Trk receptors in vitro. MicroPET studies revealed that binding of [(11)C]9 in the rodent brain was mostly nonspecific despite initial high brain uptake (SUVmax = 2.0). Modeling studies of the 4-aza-2-oxindole scaffold led to the successful identification of a small series of high affinity fluorinated and methoxy derivatized pan-Trk inhibitors based on our lead compound 9. Out of this series, the fluorinated compound 10 was selected for initial evaluation and radiolabeled with fluorine-18 (isolated RCY, 2.5% ± 0.6%). Compound [(18)F]10 demonstrated excellent Trk selectivity in a panel of cancer relevant kinase targets and a promising in vitro profile in tumors and brain sections but high oxidative metabolic susceptibility leading to nonspecific brain distribution in vivo. The information gained in this study will guide further exploration of the 4-aza-2-oxindole scaffold as a lead for Trk PET ligand development.
Collapse
Affiliation(s)
- Vadim Bernard-Gauthier
- Experimental
Medicine, Department of Medicine, McGill University, 1110 Pine
Avenue West, Montreal, Quebec H3A 1A3, Canada
- Department
of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
| | - Arturo Aliaga
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Antonio Aliaga
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Mehdi Boudjemeline
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Robert Hopewell
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Alexey Kostikov
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| | - Pedro Rosa-Neto
- Translational
Neuroimaging Laboratory, McGill Centre for Studies in Aging, Douglas Mental Health University Institute, 6875 Boulevard LaSalle, Montreal, Quebec H4H 1R3, Canada
| | - Alexander Thiel
- Department
of Neurology and Neurosurgery, McGill University, Jewish General Hospital, 3755 Cote St. Catherine Rd., Montreal, Quebec H2T 1E2, Canada
| | - Ralf Schirrmacher
- Department
of Oncology, University of Alberta, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada
- McConnell
Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, Quebec H3A 2B4, Canada
| |
Collapse
|
22
|
Schilling LP, Leuzy A, Zimmer ER, Gauthier S, Rosa-Neto P. Nonamyloid PET biomarkers and Alzheimer's disease: current and future perspectives. FUTURE NEUROLOGY 2014. [DOI: 10.2217/fnl.14.40] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ABSTRACT Recent advances in neurobiology and PET have helped redefine Alzheimer's disease (AD) as a dynamic pathophysiological process, clinically characterized by preclinical, mild cognitive impairment due to AD and dementia stages. Though a majority of PET studies conducted within these populations have to date focused on β-amyloid, various ‘nonamyloid’ radiopharmaceuticals exist for evaluating neurodegeneration, neuroinflammation and perturbations in neurotransmission across the spectrum of AD. Importantly, findings using such tracers have been shown to correlate with various clinical, cognitive and behavioral measures. In the context of a growing shift toward early diagnosis and symptomatic and disease-modifying clinical trials, nonamyloid PET radiotracers will prove of use, and, potentially, contribute to improved therapeutic prospects for AD.
Collapse
Affiliation(s)
- Lucas Porcello Schilling
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Brain Institute of Rio Grande do Sul, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Antoine Leuzy
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Eduardo Rigon Zimmer
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Department of Biochemistry, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Serge Gauthier
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| | - Pedro Rosa-Neto
- Translational Neuroimaging Laboratory (TNL), McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
- Alzheimer's Disease Research Unit, McGill Center for Studies in Aging (MCSA), Douglas Mental Health Research Institute, Montreal, Canada
| |
Collapse
|
23
|
Cyr M, Parent MJ, Mechawar N, Rosa-Neto P, Soucy JP, Clark SD, Aghourian M, Bedard MA. Deficit in sustained attention following selective cholinergic lesion of the pedunculopontine tegmental nucleus in rat, as measured with both post-mortem immunocytochemistry and in vivo PET imaging with [¹⁸F]fluoroethoxybenzovesamicol. Behav Brain Res 2014; 278:107-14. [PMID: 25257103 DOI: 10.1016/j.bbr.2014.09.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 12/28/2022]
Abstract
Cholinergic neurons of the pedunculopontine tegmental nucleus (PPTg) are thought to be involved in cognitive functions such as sustained attention, and lesions of these cells have been documented in patients showing fluctuations of attention such as in Parkinson's disease or dementia with Lewy Body. Animal studies have been conducted to support the role of these cells in attention, but the lesions induced in these animals were not specific to the cholinergic PPTg system, and were assessed by post-mortem methods remotely performed from the in vivo behavioral assessments. Moreover, sustained attention have not been directly assessed in these studies, but rather deduced from indirect measurements. In the present study, rats were assessed on the 5-Choice Serial Reaction Time Task (5-CSRTT), and a specific measure of variability in response latency was created. Animals were observed both before and after selective lesion of the PPTg cholinergic neurons. Brain cholinergic denervation was assessed both in vivo and ex vivo, using PET imaging with [(18)F]fluoroethoxybenzovesamicol ([(18)F]FEOBV) and immunocytochemistry respectively. Results showed that the number of correct responses and variability in response latency in the 5-CSRTT were the only behavioral measures affected following the lesions. These measures were found to correlate significantly with the number of PPTg cholinergic cells, as measured with both [(18)F]FEOBV and immunocytochemistry. This suggests the primary role of the PPTg cholinergic cells in sustained attention. It also allows to reliably use the PET imaging with [(18)F]FEOBV for the purpose of assessing the relationship between behavior and cholinergic innervation in living animals.
Collapse
Affiliation(s)
- Marilyn Cyr
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada
| | - Maxime J Parent
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada
| | | | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, Canada; Montreal Neurological Institute (MNI), Canada
| | | | | | | | - Marc-Andre Bedard
- Université du Québec à Montréal (UQAM), Canada; Douglas Mental Health University Institute, Canada; Montreal Neurological Institute (MNI), Canada.
| |
Collapse
|
24
|
Bergman S, Estrada S, Hall H, Rahman R, Blomgren A, Larhed M, Svedberg M, Thibblin A, Wångsell F, Antoni G. Synthesis and labeling of a piperazine-based library of11C-labeled ligands for imaging of the vesicular acetylcholine transporter. J Labelled Comp Radiopharm 2014; 57:525-32. [DOI: 10.1002/jlcr.3208] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 04/24/2014] [Accepted: 04/25/2014] [Indexed: 01/08/2023]
Affiliation(s)
- Sara Bergman
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Sergio Estrada
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Håkan Hall
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Rashidur Rahman
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Andreas Blomgren
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry; Uppsala University; BMC Box 574 SE-751 23 Uppsala Sweden
| | - Mats Larhed
- Science for Life Laboratory, Department of Medicinal Chemistry; Uppsala University; BMC Box 574 SE-751 23 Uppsala Sweden
| | - Marie Svedberg
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Alf Thibblin
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| | - Fredrik Wångsell
- Organic Pharmaceutical Chemistry, Department of Medicinal Chemistry; Uppsala University; BMC Box 574 SE-751 23 Uppsala Sweden
| | - Gunnar Antoni
- Preclinical PET Platform, Department of Medicinal Chemistry; Uppsala University; Box 574 SE-751 23 Uppsala Sweden
| |
Collapse
|
25
|
Kozaka T, Uno I, Kitamura Y, Miwa D, Anwar-Ul Azim M, Ogawa K, Shiba K. Regional brain imaging of vesicular acetylcholine transporter using o-[125 I]iodo-trans-decalinvesamicol as a new potential imaging probe. Synapse 2014; 68:107-13. [PMID: 24174343 DOI: 10.1002/syn.21720] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 09/11/2013] [Indexed: 12/16/2023]
Abstract
In this study, the regional rat brain distribution of radioiodinated o-iodo-trans-decalinvesamicol ([(125) I]OIDV) was determined in vivo to evaluate its potential as a single-photon emission computed tomography (SPECT) imaging probe for vesicular acetylcholine transporter (VAChT). Following intravenous injection, [(125) I]OIDV passed freely across the blood-brain barrier and accumulated in rat brain. The accumulation of [(125) I]OIDV in rat brain was significantly reduced by coadministration of (+/-)-vesamicol (0.125 µmol). In contrast, the coadministration of σ-receptor ligands, such as (+)-pentazocine (0.125 µmol) as a σ-1 receptor ligand and (+)-3-(3-hydroxyphenyl)-N-propylpiperidine (0.125 µmol) as a σ-1 and σ-2 receptor ligands, barely affected the accumulation of [(125) I]OIDV in rat brain. These findings in vivo were corroborated by autoradiographic analysis ex vivo. The authors found that the tracer binds with pharmacological selectivity to VAChT in rat brain and predicted that it may likewise serve in translational SPECT imaging studies of this marker in the integrity of cholinergic innervations.
Collapse
Affiliation(s)
- Takashi Kozaka
- Division of Tracer Kinetics, Advanced Science Research Center, Kanazawa University, Kanazawa, Ishikawa, 920-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
26
|
PET imaging with [18F]fluoroethoxybenzovesamicol ([18F]FEOBV) following selective lesion of cholinergic pedunculopontine tegmental neurons in rat. Nucl Med Biol 2014; 41:96-101. [DOI: 10.1016/j.nucmedbio.2013.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 09/25/2013] [Accepted: 10/02/2013] [Indexed: 11/19/2022]
|
27
|
PET Neuroimaging: The White Elephant Packs His Trunk? Neuroimage 2014; 84:1094-100. [DOI: 10.1016/j.neuroimage.2013.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 08/07/2013] [Accepted: 08/11/2013] [Indexed: 01/30/2023] Open
|
28
|
Cholinergic Depletion in Alzheimer's Disease Shown by [ (18) F]FEOBV Autoradiography. INTERNATIONAL JOURNAL OF MOLECULAR IMAGING 2013; 2013:205045. [PMID: 24324884 PMCID: PMC3844185 DOI: 10.1155/2013/205045] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 09/21/2013] [Accepted: 09/23/2013] [Indexed: 12/03/2022]
Abstract
Rationale. Alzheimer's Disease (AD) is a neurodegenerative condition characterized in part by deficits in cholinergic basalocortical and septohippocampal pathways. [18F]Fluoroethoxybenzovesamicol ([18F]FEOBV), a Positron Emission Tomography ligand for the vesicular acetylcholine transporter (VAChT), is a potential molecular agent to investigate brain diseases associated with presynaptic cholinergic losses. Purpose. To demonstrate this potential, we carried out an [18F]FEOBV autoradiography study to compare postmortem brain tissues from AD patients to those of age-matched controls. Methods. [18F]FEOBV autoradiography binding, defined as the ratio between regional grey and white matter, was estimated in the hippocampus (13 controls, 8 AD) and prefrontal cortex (13 controls, 11 AD). Results. [18F]FEOBV binding was decreased by 33% in prefrontal cortex, 25% in CA3, and 20% in CA1. No changes were detected in the dentate gyrus of the hippocampus, possibly because of sprouting or upregulation toward the resilient glutamatergic neurons of the dentate gyrus. Conclusion. This is the first demonstration of [18F]FEOBV focal binding changes in cholinergic projections to the cortex and hippocampus in AD. Such cholinergic synaptic (and more specifically VAChT) alterations, in line with the selective basalocortical and septohippocampal cholinergic losses documented in AD, indicate that [18F]FEOBV is indeed a promising ligand to explore cholinergic abnormalities in vivo.
Collapse
|
29
|
Parent MJ, Cyr M, Aliaga A, Kostikov A, Schirrmacher E, Soucy JP, Mechawar N, Rosa-Neto P, Bedard MA. Concordance between in vivo and postmortem measurements of cholinergic denervation in rats using PET with [18F]FEOBV and choline acetyltransferase immunochemistry. EJNMMI Res 2013; 3:70. [PMID: 24103360 PMCID: PMC3852759 DOI: 10.1186/2191-219x-3-70] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 10/01/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Fluorine-18 fluoroethoxybenzovesamicol ([18F]FEOBV) is a radioligand for the selective imaging of the vesicular acetylcholine transporter with positron emission tomography (PET). The current study demonstrates that pathological cortical cholinergic deafferentation can be quantified in vivo with [18F]FEOBV PET, yielding analogous results to postmortem histological techniques. METHODS Fifteen male rats (3 months old) underwent a cerebral infusion of 192 IgG-saporin at the level of the nucleus basalis magnocellularis. They were scanned using [18F]FEOBV PET, then sacrificed, and their brain tissues collected for immunostaining and quantification of cholinergic denervation using optical density (OD). RESULTS For both PET binding and postmortem OD, the highest losses were found in the cortical areas, with the highest reductions in the orbitofrontal, sensorimotor, and cingulate cortices. In addition, OD quantification in the affected areas accurately predicts [18F]FEOBV uptake in the same regions when regressed linearly. CONCLUSIONS These findings support [18F]FEOBV as a reliable imaging agent for eventual use in human neurodegenerative conditions in which cholinergic losses are an important aspect.
Collapse
Affiliation(s)
- Maxime J Parent
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Université du Québec à Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Marilyn Cyr
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Université du Québec à Montreal (UQAM), Montreal, QC H3C 3P8, Canada
| | - Antonio Aliaga
- Montreal Neurological Institute (MNI), Montreal, QC H3A 2B4, Canada
| | - Alexey Kostikov
- Montreal Neurological Institute (MNI), Montreal, QC H3A 2B4, Canada
| | | | - Jean-Paul Soucy
- Montreal Neurological Institute (MNI), Montreal, QC H3A 2B4, Canada
| | - Naguib Mechawar
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
| | - Pedro Rosa-Neto
- Douglas Mental Health University Institute, McGill University, Montreal, QC H4H 1R3, Canada
- Montreal Neurological Institute (MNI), Montreal, QC H3A 2B4, Canada
| | - Marc-Andre Bedard
- Université du Québec à Montreal (UQAM), Montreal, QC H3C 3P8, Canada
- Montreal Neurological Institute (MNI), Montreal, QC H3A 2B4, Canada
| |
Collapse
|
30
|
Long-term effects of selective immunolesions of cholinergic neurons of the nucleus basalis magnocellularis on the ascending cholinergic pathways in the rat: A model for Alzheimer's disease. Brain Res Bull 2013; 94:9-16. [DOI: 10.1016/j.brainresbull.2013.01.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Accepted: 01/07/2013] [Indexed: 11/24/2022]
|