1
|
Kamath RS, Weldon KB, Moser HR, Montoya SA, Abdullahi KS, Burton PC, Sponheim SR, Olman CA, Schallmo MP. Impaired Contour Object Perception in Psychosis. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024:S2451-9022(24)00378-1. [PMID: 39694464 DOI: 10.1016/j.bpsc.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
BACKGROUND Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology rather than a specific diagnosis such as schizophrenia. METHODS Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We also measured responses during an analogous task using ultra-high field (7T) functional magnetic resonance imaging (fMRI). RESULTS We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP) (n = 63) compared with healthy control participants (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared with participants with bipolar disorder (n = 18). fMRI showed higher responses in the lateral occipital cortex of PwPP than in control participants. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. CONCLUSIONS Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction and may be linked to impaired functional connectivity across visual regions.
Collapse
Affiliation(s)
- Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota; Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Samantha A Montoya
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, Minnesota
| | - Kamar S Abdullahi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Philip C Burton
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota; Office of the Associate Dean for Research, University of Minnesota, Minneapolis, Minnesota
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota; Veterans Affairs Health Care System, Minneapolis, Minnesota
| | - Cheryl A Olman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota; Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
2
|
Chen Y, Bai J, Shi N, Jiang Y, Chen X, Ku Y, Gao X. Intermodulation frequency components in steady-state visual evoked potentials: Generation, characteristics and applications. Neuroimage 2024; 303:120937. [PMID: 39550056 DOI: 10.1016/j.neuroimage.2024.120937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/07/2024] [Accepted: 11/14/2024] [Indexed: 11/18/2024] Open
Abstract
The steady-state visual evoked potentials (SSVEPs), evoked by dual-frequency or multi-frequency stimulation, likely contains intermodulation frequency components (IMs). Visual IMs are products of nonlinear integration of neural signals and can be evoked by various paradigms that induce neural interaction. IMs have demonstrated many interesting and important characteristics in cognitive psychology, clinical neuroscience, brain-computer interface and other fields, and possess substantial research potential. In this paper, we first review the definition of IMs and summarize the stimulation paradigms capable of inducing them, along with the possible neural origins of IMs. Subsequently, we describe the characteristics and derived applications of IMs in previous studies, and then introduced three signal processing methods favored by researchers to enhance the signal-to-noise ratio of IMs. Finally, we summarize the characteristics of IMs, and propose several potential future research directions related to IMs.
Collapse
Affiliation(s)
- Yuzhen Chen
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Jiawen Bai
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Nanlin Shi
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| | - Yunpeng Jiang
- Key Research Base of Humanities and Social Sciences of the Ministry of Education, Academy of Psychology and Behavior, Tianjin Normal University, Tianjin, China.
| | - Xiaogang Chen
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China.
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Well-Being, Department of Psychology, Sun Yat-sen University, Guangzhou, China.
| | - Xiaorong Gao
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Kamath RS, Weldon KB, Moser HR, Montoya S, Abdullahi KS, Burton PC, Sponheim SR, Olman CA, Schallmo MP. Impaired contour object perception in psychosis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.07.02.24309795. [PMID: 39006442 PMCID: PMC11245054 DOI: 10.1101/2024.07.02.24309795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Contour integration, the process of joining spatially separated elements into a single unified line, has consistently been found to be impaired in schizophrenia. Recent work suggests that this deficit could be associated with psychotic symptomatology, rather than a specific diagnosis such as schizophrenia. Examining a transdiagnostic sample of participants with psychotic psychopathology, we obtained quantitative indices of contour perception in a psychophysical behavioral task. We found impaired contour discrimination performance among people with psychotic psychopathology (PwPP, n = 62) compared to healthy controls (n = 34) and biological relatives of PwPP (n = 44). Participants with schizophrenia (n = 31) showed impaired task performance compared to participants with bipolar disorder (n = 18). We also measured responses during an analogous task using ultra-high field (7T) functional MRI and found higher responses in the lateral occipital cortex of PwPP compared to controls. Using task-based functional connectivity analyses, we observed abnormal connectivity between visual brain areas during contour perception among PwPP. These connectivity differences only emerged when participants had to distinguish the contour object from background distractors, suggesting that a failure to suppress noise elements relative to contour elements may underlie impaired contour processing in PwPP. Our results are consistent with impaired contour integration in psychotic psychopathology, and especially schizophrenia, that is related to cognitive dysfunction, and may be linked to impaired functional connectivity across visual regions.
Collapse
Affiliation(s)
- Rohit S. Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kimberly B. Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R. Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha Montoya
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | - Kamar S. Abdullahi
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Philip C. Burton
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Office of the Associate Dean for Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R. Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Veterans Affairs Health Care System, Minneapolis, MN, USA
| | - Cheryl A. Olman
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
4
|
Marticorena DCP, Wong QW, Browning J, Wilbur K, Jayakumar S, Davey PG, Seitz AR, Gardner JR, Barbour DL. Contrast response function estimation with nonparametric Bayesian active learning. J Vis 2024; 24:6. [PMID: 38197739 PMCID: PMC10790677 DOI: 10.1167/jov.24.1.6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024] Open
Abstract
Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast sensitivity functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This article describes the development of the machine learning contrast response function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the machine learning contrast sensitivity function (MLCSF) was evaluated to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential.
Collapse
Affiliation(s)
- Dom C P Marticorena
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Quinn Wai Wong
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | - Jake Browning
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
| | - Ken Wilbur
- Department of Computer Science and Engineering, Washington University, St. Louis, MO, USA
| | - Samyukta Jayakumar
- Department of Psychology, University of California, Riverside, Riverside, CA, USA
| | | | - Aaron R Seitz
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Jacob R Gardner
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Dennis L Barbour
- Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| |
Collapse
|
5
|
Marticorena DC, Wong QW, Browning J, Wilbur K, Jayakumar S, Davey P, Seitz AR, Gardner JR, Barbour DL. Contrast Response Function Estimation with Nonparametric Bayesian Active Learning. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.05.11.23289869. [PMID: 37292738 PMCID: PMC10246052 DOI: 10.1101/2023.05.11.23289869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Multidimensional psychometric functions can typically be estimated nonparametrically for greater accuracy or parametrically for greater efficiency. By recasting the estimation problem from regression to classification, however, powerful machine learning tools can be leveraged to provide an adjustable balance between accuracy and efficiency. Contrast Sensitivity Functions (CSFs) are behaviorally estimated curves that provide insight into both peripheral and central visual function. Because estimation can be impractically long, current clinical workflows must make compromises such as limited sampling across spatial frequency or strong assumptions on CSF shape. This paper describes the development of the Machine Learning Contrast Response Function (MLCRF) estimator, which quantifies the expected probability of success in performing a contrast detection or discrimination task. A machine learning CSF can then be derived from the MLCRF. Using simulated eyes created from canonical CSF curves and actual human contrast response data, the accuracy and efficiency of the MLCSF was evaluated in order to determine its potential utility for research and clinical applications. With stimuli selected randomly, the MLCSF estimator converged slowly toward ground truth. With optimal stimulus selection via Bayesian active learning, convergence was nearly an order of magnitude faster, requiring only tens of stimuli to achieve reasonable estimates. Inclusion of an informative prior provided no consistent advantage to the estimator as configured. MLCSF achieved efficiencies on par with quickCSF, a conventional parametric estimator, but with systematically higher accuracy. Because MLCSF design allows accuracy to be traded off against efficiency, it should be explored further to uncover its full potential. Precis Machine learning classifiers enable accurate and efficient contrast sensitivity function estimation with item-level prediction for individual eyes.
Collapse
|
6
|
Itthipuripat S, Phangwiwat T, Wiwatphonthana P, Sawetsuttipan P, Chang KY, Störmer VS, Woodman GF, Serences JT. Dissociable Neural Mechanisms Underlie the Effects of Attention on Visual Appearance and Response Bias. J Neurosci 2023; 43:6628-6652. [PMID: 37620156 PMCID: PMC10538590 DOI: 10.1523/jneurosci.2192-22.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 07/10/2023] [Accepted: 08/13/2023] [Indexed: 08/26/2023] Open
Abstract
A prominent theoretical framework spanning philosophy, psychology, and neuroscience holds that selective attention penetrates early stages of perceptual processing to alter the subjective visual experience of behaviorally relevant stimuli. For example, searching for a red apple at the grocery store might make the relevant color appear brighter and more saturated compared with seeing the exact same red apple while searching for a yellow banana. In contrast, recent proposals argue that data supporting attention-related changes in appearance reflect decision- and motor-level response biases without concurrent changes in perceptual experience. Here, we tested these accounts by evaluating attentional modulations of EEG responses recorded from male and female human subjects while they compared the perceived contrast of attended and unattended visual stimuli rendered at different levels of physical contrast. We found that attention enhanced the amplitude of the P1 component, an early evoked potential measured over visual cortex. A linking model based on signal detection theory suggests that response gain modulations of the P1 component track attention-induced changes in perceived contrast as measured with behavior. In contrast, attentional cues induced changes in the baseline amplitude of posterior alpha band oscillations (∼9-12 Hz), an effect that best accounts for cue-induced response biases, particularly when no stimuli are presented or when competing stimuli are similar and decisional uncertainty is high. The observation of dissociable neural markers that are linked to changes in subjective appearance and response bias supports a more unified theoretical account and demonstrates an approach to isolate subjective aspects of selective information processing.SIGNIFICANCE STATEMENT Does attention alter visual appearance, or does it simply induce response bias? In the present study, we examined these competing accounts using EEG and linking models based on signal detection theory. We found that response gain modulations of the visually evoked P1 component best accounted for attention-induced changes in visual appearance. In contrast, cue-induced baseline shifts in alpha band activity better explained response biases. Together, these results suggest that attention concurrently impacts visual appearance and response bias, and that these processes can be experimentally isolated.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
| | - Tanagrit Phangwiwat
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi Bangkok, 10140, Thailand
| | - Praewpiraya Wiwatphonthana
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- SECCLO Consortium, Department of Computer Science, Aalto University School of Science, Espoo, 02150, Finland
| | - Prapasiri Sawetsuttipan
- Neuroscience Center for Research and Innovation, Learning Institute, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Big Data Experience Center, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
- Computer Engineering Department, Faculty of Engineering, King Mongkut’s University of Technology Thonburi Bangkok, 10140, Thailand
| | - Kai-Yu Chang
- Department of Cognitive Science, University of California–San Diego, La Jolla, California 92093-1090
| | - Viola S. Störmer
- Department of Psychological and Brain Science, Dartmouth College, Hanover, New Hampshire 03755
| | - Geoffrey F. Woodman
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37235
| | - John T. Serences
- Neurosciences Graduate Program, Department of Psychology, University of California–San Diego, La Jolla, California 92093-1090
| |
Collapse
|
7
|
Selvaggi P, Jauhar S, Kotoula V, Pepper F, Veronese M, Santangelo B, Zelaya F, Turkheimer FE, Mehta MA, Howes OD. Reduced cortical cerebral blood flow in antipsychotic-free first-episode psychosis and relationship to treatment response. Psychol Med 2023; 53:5235-5245. [PMID: 36004510 PMCID: PMC10476071 DOI: 10.1017/s0033291722002288] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 06/27/2022] [Accepted: 07/04/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Altered cerebral blood flow (CBF) has been found in people at risk for psychosis, with first-episode psychosis (FEP) and with chronic schizophrenia (SCZ). Studies using arterial spin labelling (ASL) have shown reduction of cortical CBF and increased subcortical CBF in SCZ. Previous studies have investigated CBF using ASL in FEP, reporting increased CBF in striatum and reduced CBF in frontal cortex. However, as these people were taking antipsychotics, it is unclear whether these changes are related to the disorder or antipsychotic treatment and how they relate to treatment response. METHODS We examined CBF in FEP free from antipsychotic medication (N = 21), compared to healthy controls (N = 22). Both absolute and relative-to-global CBF were assessed. We also investigated the association between baseline CBF and treatment response in a partially nested follow-up study (N = 14). RESULTS There was significantly lower absolute CBF in frontal cortex (Cohen's d = 0.84, p = 0.009) and no differences in striatum or hippocampus. Whole brain voxel-wise analysis revealed widespread cortical reductions in absolute CBF in large cortical clusters that encompassed occipital, parietal and frontal cortices (Threshold-Free Cluster Enhancement (TFCE)-corrected <0.05). No differences were found in relative-to-global CBF in the selected region of interests and in voxel-wise analysis. Relative-to-global frontal CBF was correlated with percentage change in total Positive and Negative Syndrome Scale after antipsychotic treatment (r = 0.67, p = 0.008). CONCLUSIONS These results show lower cortical absolute perfusion in FEP prior to starting antipsychotic treatment and suggest relative-to-global frontal CBF as assessed with magnetic resonance imaging could potentially serve as a biomarker for antipsychotic response.
Collapse
Affiliation(s)
- Pierluigi Selvaggi
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Azienda Ospedaliero-Universitaria Consorziale Policlinico di Bari, Bari, Italy
| | - Sameer Jauhar
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- Early Intervention Psychosis Clinical Academic Group, South London & Maudsley NHS Foundation Trust, London, UK
| | - Vasileia Kotoula
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fiona Pepper
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Barbara Santangelo
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Federico E. Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Mitul A. Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Oliver D. Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC London Institute of Medical Sciences, Hammersmith Hospital, London W12 0NN, UK
- Faculty of Medicine, Institute of Clinical Sciences (ICS), Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
8
|
Schallmo MP, Weldon KB, Kamath RS, Moser HR, Montoya SA, Killebrew KW, Demro C, Grant AN, Marjańska M, Sponheim SR, Olman CA. The psychosis human connectome project: Design and rationale for studies of visual neurophysiology. Neuroimage 2023; 272:120060. [PMID: 36997137 PMCID: PMC10153004 DOI: 10.1016/j.neuroimage.2023.120060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/01/2023] Open
Abstract
Visual perception is abnormal in psychotic disorders such as schizophrenia. In addition to hallucinations, laboratory tests show differences in fundamental visual processes including contrast sensitivity, center-surround interactions, and perceptual organization. A number of hypotheses have been proposed to explain visual dysfunction in psychotic disorders, including an imbalance between excitation and inhibition. However, the precise neural basis of abnormal visual perception in people with psychotic psychopathology (PwPP) remains unknown. Here, we describe the behavioral and 7 tesla MRI methods we used to interrogate visual neurophysiology in PwPP as part of the Psychosis Human Connectome Project (HCP). In addition to PwPP (n = 66) and healthy controls (n = 43), we also recruited first-degree biological relatives (n = 44) in order to examine the role of genetic liability for psychosis in visual perception. Our visual tasks were designed to assess fundamental visual processes in PwPP, whereas MR spectroscopy enabled us to examine neurochemistry, including excitatory and inhibitory markers. We show that it is feasible to collect high-quality data across multiple psychophysical, functional MRI, and MR spectroscopy experiments with a sizable number of participants at a single research site. These data, in addition to those from our previously described 3 tesla experiments, will be made publicly available in order to facilitate further investigations by other research groups. By combining visual neuroscience techniques and HCP brain imaging methods, our experiments offer new opportunities to investigate the neural basis of abnormal visual perception in PwPP.
Collapse
Affiliation(s)
- Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
| | - Kimberly B Weldon
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Rohit S Kamath
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Hannah R Moser
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Samantha A Montoya
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Kyle W Killebrew
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Caroline Demro
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA; Department of Psychology, University of Minnesota, Minneapolis, MN, USA
| | - Andrea N Grant
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Małgorzata Marjańska
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Scott R Sponheim
- Veterans Affairs Medical Center, Minneapolis, MN, USA; Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Cheryl A Olman
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA; Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
9
|
Giersch A, Laprévote V. Perceptual Functioning. Curr Top Behav Neurosci 2023; 63:79-113. [PMID: 36306053 DOI: 10.1007/7854_2022_393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Perceptual disorders are not part of the diagnosis criteria for schizophrenia. Yet, a considerable amount of work has been conducted, especially on visual perception abnormalities, and there is little doubt that visual perception is altered in patients. There are several reasons why such perturbations are of interest in this pathology. They are observed during the prodromal phase of psychosis, they are related to the pathophysiology (clinical disorganization, disorders of the sense of self), and they are associated with neuronal connectivity disorders. Perturbations occur at different levels of processing and likely affect how patients interact and adapt to their surroundings. The literature has become very large, and here we try to summarize different models that have guided the exploration of perception in patients. We also illustrate several lines of research by showing how perception has been investigated and by discussing the interpretation of the results. In addition to discussing domains such as contrast sensitivity, masking, and visual grouping, we develop more recent fields like processing at the level of the retina, and the timing of perception.
Collapse
Affiliation(s)
- Anne Giersch
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France.
| | - Vincent Laprévote
- University of Strasbourg, INSERM U1114, Centre Hospitalier Régional Universitaire de Strasbourg, Strasbourg, France
- CLIP Centre de Liaison et d'Intervention Précoce, Centre Psychothérapique de Nancy, Laxou, France
- Faculté de Médecine, Université de Lorraine, Vandoeuvre-lès-Nancy, France
| |
Collapse
|
10
|
Schielke A, Krekelberg B. Steady state visual evoked potentials in schizophrenia: A review. Front Neurosci 2022; 16:988077. [PMID: 36389256 PMCID: PMC9650391 DOI: 10.3389/fnins.2022.988077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/11/2022] [Indexed: 05/08/2024] Open
Abstract
Over the past decades, researchers have explored altered rhythmic responses to visual stimulation in people with schizophrenia using steady state visual evoked potentials (SSVEPs). Here we systematically review studies performed between 1954 and 2021, as identified on PubMed. We included studies if they included people with schizophrenia, a control group, reported SSVEPs as their primary outcome, and used quantitative analyses in the frequency domain. We excluded studies that used SSVEPs to primarily quantify cognitive processes (e.g., attention). Fifteen studies met these criteria. These studies reported decreased SSVEPs across a range of frequencies and electrode locations in people living with schizophrenia compared to controls; none reported increases. Null results, however, were common. Given the typically modest number of subjects in these studies, this is consistent with a moderate effect size. It is notable that most studies targeted frequencies that fall within the alpha and beta band, and investigations of frequencies in the gamma band have been rare. We group test frequencies in frequency bands and summarize the results in topographic plots. From the wide range of approaches in these studies, we distill suggested experimental designs and analysis choices for future experiments. This will increase the value of SSVEP studies, improve our understanding of the mechanisms that result in altered rhythmic responses to visual stimulation in schizophrenia, and potentially further the development of diagnostic tools.
Collapse
Affiliation(s)
- Alexander Schielke
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, NJ, United States
| | | |
Collapse
|
11
|
Siper PM, Rowe MA, Guillory SB, Rouhandeh AA, George-Jones JL, Tavassoli T, Lurie S, Zweifach J, Weissman J, Foss-Feig J, Halpern D, Trelles MP, Mulhern MS, Brittenham C, Gordon J, Zemon V, Buxbaum JD, Kolevzon A. Visual Evoked Potential Abnormalities in Phelan-McDermid Syndrome. J Am Acad Child Adolesc Psychiatry 2022; 61:565-574.e1. [PMID: 34303785 PMCID: PMC8782912 DOI: 10.1016/j.jaac.2021.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/28/2021] [Accepted: 07/15/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE The current study used visual evoked potentials (VEPs) to examine excitatory and inhibitory postsynaptic activity in children with Phelan-McDermid syndrome (PMS) and the association with genetic factors. PMS is caused by haploinsufficiency of SHANK3 on chromosome 22 and represents a common single-gene cause of autism spectrum disorder (ASD) and intellectual disability. METHOD Transient VEPs were obtained from 175 children, including 31 with PMS, 79 with idiopathic ASD, 45 typically developing controls, and 20 unaffected siblings of children with PMS. Stimuli included standard and short-duration contrast-reversing checkerboard conditions, and the reliability between these 2 conditions was assessed. Test-retest reliability and correlations with deletion size were explored in the group with PMS. RESULTS Children with PMS and, to a lesser extent, those with idiopathic ASD displayed significantly smaller amplitudes and decreased beta and gamma band activity relative to TD controls and PMS siblings. Across groups, high intraclass correlation coefficients were obtained between standard and short-duration conditions. In children with PMS, test-retest reliability was strong. Deletion size was significantly correlated with P60-N75 amplitude for both conditions. CONCLUSION Children with PMS displayed distinct transient VEP waveform abnormalities in both time and frequency domains that might reflect underlying glutamatergic deficits that were associated with deletion size. A similar response pattern was observed in a subset of children with idiopathic ASD. VEPs offer a noninvasive measure of excitatory and inhibitory neurotransmission that holds promise for stratification and surrogate endpoints in ongoing clinical trials in PMS and ASD.
Collapse
|
12
|
Hoptman MJ, Tural U, Lim KO, Javitt DC, Oberlin LE. Relationships between Diffusion Tensor Imaging and Resting State Functional Connectivity in Patients with Schizophrenia and Healthy Controls: A Preliminary Study. Brain Sci 2022; 12:brainsci12020156. [PMID: 35203920 PMCID: PMC8870342 DOI: 10.3390/brainsci12020156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/02/2022] [Accepted: 01/19/2022] [Indexed: 11/16/2022] Open
Abstract
Schizophrenia is widely seen as a disorder of dysconnectivity. Neuroimaging studies have examined both structural and functional connectivity in the disorder, but these modalities have rarely been integrated directly. We scanned 29 patients with schizophrenia and 25 healthy control subjects, and we acquired resting state fMRI and diffusion tensor imaging. We used the Functional and Tractographic Connectivity Analysis Toolbox (FATCAT) to estimate functional and structural connectivity of the default mode network. Correlations between modalities were investigated, and multimodal connectivity scores (MCS) were created using principal component analysis. Of the 28 possible region pairs, 9 showed consistent (>80%) tracts across participants. Correlations between modalities were found among those with schizophrenia for the prefrontal cortex, posterior cingulate, and lateral temporal lobes, with frontal and parietal regions, consistent with frontotemporoparietal network involvement in the disorder. In patients, MCS correlated with several aspects of the Positive and Negative Syndrome Scale, with higher multimodal connectivity associated with outward-directed (externalizing) behavior and lower multimodal connectivity related to psychosis per se. In this preliminary sample, we found FATCAT to be a useful toolbox to directly integrate and examine connectivity between imaging modalities. A consideration of conjoint structural and functional connectivity can provide important information about the network mechanisms of schizophrenia.
Collapse
Affiliation(s)
- Matthew J. Hoptman
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA
- Correspondence: or ; Tel.: +1-845-398-6569
| | - Umit Tural
- Clinical Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA;
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55454, USA;
| | - Daniel C. Javitt
- Schizophrenia Research Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY 10962, USA; or
- Division of Experimental Therapeutics, College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Lauren E. Oberlin
- Department of Psychiatry, Weill Cornell Medicine, New York, NY 10065, USA;
| |
Collapse
|
13
|
Marcar VL, Battegay E, Schmidt D, Cheetham M. Parallel processing in human visual cortex revealed through the influence of their neural responses on the visual evoked potential. Vision Res 2021; 193:107994. [PMID: 34979298 DOI: 10.1016/j.visres.2021.107994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
Abstract
The neural response in the human visual system is composed of magno-, parvo- and koniocellular input from the retina. Signal differences from functional imaging between health and individuals with a cognitive weakness are attributed to a dysfunction of a specific retinal input. Yet, anatomical interconnections within the human visual system obscure individual contribution to the neural response in V1. Deflections in the visual evoked potential (VEP) arise from an interaction between electric dipoles, their strength determined by the size of the neural population active during temporal - and spatial luminance contrast processing. To investigate interaction between these neural responses, we recorded the VEP over visual cortex of 14 healthy adults viewing four series of windmill patterns. Within a series, the relative area white in a pattern varied systematically. Between series, the number of sectors across which this area was distributed doubled. These patterns were viewed as pattern alternating and on-/off stimuli. P100/P1 amplitude increased linearly with the relative area white in the pattern, while N135/N1 and P240/P2 amplitude increased with the number of sectors of which the area white was distributed. The decreases P100 amplitude with increasing number of sectors is attributed to an interaction between electric dipoles located in granular and supragranular layers of V1. Differences between the VEP components obtained during a pattern reversing display and following pattern onset are accounted for by the transient and sustained nature of neural responses processing temporal - and spatial luminance contrast and ability of these responses to manifest in the VEP.
Collapse
Affiliation(s)
- V L Marcar
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Comprehensive Cancer Centre Zurich, PO Box, 157, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Hospital Zürich, Biomedical Optical Research Laboratory (BORL), Department of Neonatology, Frauenklinikstrasse 10, CH-8006 Zürich, Switzerland.
| | - E Battegay
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland; University Research Priority Program "Dynamics of Healthy Aging", University of Zürich, Zürich, Switzerland; International Center for Multimorbidity and Complexity in Medicine (ICMC), University Zurich, University Hospital Basel (Department of Psychosomatic Medicine), Merian Iselin Klinik Basel, Switzerland
| | - D Schmidt
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| | - M Cheetham
- University Hospital Zurich, Department of Internal Medicine, Rämistrasse 100, CH-8091 Zürich, Switzerland
| |
Collapse
|
14
|
Herrera SN, Zemon V, Revheim N, Silipo G, Gordon J, Butler PD. Cognitive function mediates the relationship between visual contrast sensitivity and functional outcome in schizophrenia. J Psychiatr Res 2021; 144:138-145. [PMID: 34624619 PMCID: PMC8665016 DOI: 10.1016/j.jpsychires.2021.09.055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Individuals with schizophrenia exhibit deficits in visual contrast processing, though less is known about how these deficits impact neurocognition and functional outcomes. This study investigated effects of contrast sensitivity (CS) on cognition and capacity for independent living in schizophrenia. METHODS Participants were 58 patients with schizophrenia (n = 49) and schizoaffective disorder (n = 9). Patients completed a psychophysical paradigm to obtain CS with stimuli consisting of grating patterns of low (0.5 and 1 cycles/degree) and high spatial frequencies (4, 7, 21 cycles/degree). Patients completed the MATRICS Consensus Cognitive Battery and Wechsler Adult Intelligence Scales, Third Edition to assess cognition, and the problem-solving factor of the Independent Living Scales to assess functional capacity. We computed bivariate correlation coefficients for all pairs of variables and tested mediation models with CS to low (CS-LSF) and high spatial frequencies (CS-HSF) as predictors, cognitive measures as mediators, and capacity for independent living as an outcome. RESULTS Cognition mediated the relationship between CS and independent living with CS-LSF a stronger predictor than CS-HSF. Mediation effects were strongest for perceptual organization and memory-related domains. In an expanded moderated mediation model, CS-HSF was found to be a significant predictor of independent living through perceptual organization as a mediator and CS-LSF as a moderator of this relationship. CONCLUSION CS relates to functional capacity in schizophrenia through neurocognition. These relationships may inform novel visual remediation interventions.
Collapse
Affiliation(s)
- Shaynna N Herrera
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA.
| | - Vance Zemon
- Ferkauf Graduate School of Psychology, Yeshiva University, Bronx, NY, USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA
| | - James Gordon
- Hunter College of the City University of New York, New York, NY, USA
| | - Pamela D Butler
- Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY, USA; Department of Psychiatry, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
15
|
Patel GH, Arkin SC, Ruiz-Betancourt D, DeBaun H, Strauss NE, Bartel LP, Grinband J, Martinez A, Berman RA, Leopold DA, Javitt DC. What you see is what you get: visual scanning failures of naturalistic social scenes in schizophrenia. Psychol Med 2021; 51:2923-2932. [PMID: 32498743 PMCID: PMC7751380 DOI: 10.1017/s0033291720001646] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Impairments in social cognition contribute significantly to disability in schizophrenia patients (SzP). Perception of facial expressions is critical for social cognition. Intact perception requires an individual to visually scan a complex dynamic social scene for transiently moving facial expressions that may be relevant for understanding the scene. The relationship of visual scanning for these facial expressions and social cognition remains unknown. METHODS In 39 SzP and 27 healthy controls (HC), we used eye-tracking to examine the relationship between performance on The Awareness of Social Inference Test (TASIT), which tests social cognition using naturalistic video clips of social situations, and visual scanning, measuring each individual's relative to the mean of HC. We then examined the relationship of visual scanning to the specific visual features (motion, contrast, luminance, faces) within the video clips. RESULTS TASIT performance was significantly impaired in SzP for trials involving sarcasm (p < 10-5). Visual scanning was significantly more variable in SzP than HC (p < 10-6), and predicted TASIT performance in HC (p = 0.02) but not SzP (p = 0.91), differing significantly between groups (p = 0.04). During the visual scanning, SzP were less likely to be viewing faces (p = 0.0001) and less likely to saccade to facial motion in peripheral vision (p = 0.008). CONCLUSIONS SzP show highly significant deficits in the use of visual scanning of naturalistic social scenes to inform social cognition. Alterations in visual scanning patterns may originate from impaired processing of facial motion within peripheral vision. Overall, these results highlight the utility of naturalistic stimuli in the study of social cognition deficits in schizophrenia.
Collapse
Affiliation(s)
- Gaurav H. Patel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | | | - Laura P. Bartel
- Columbia University Medical Center
- New York State Psychiatric Institute
| | - Jack Grinband
- Columbia University Medical Center
- New York State Psychiatric Institute
| | | | | | | | - Daniel C. Javitt
- Columbia University Medical Center
- New York State Psychiatric Institute
- Nathan Kline Institute
| |
Collapse
|
16
|
Zhuo C, Xiao B, Chen C, Jiang D, Li G, Ma X, Li R, Wang L, Xu Y, Zhou C, Lin X. Abberant inverted U-shaped brain pattern and trait-related retinal impairment in schizophrenia patients with combined auditory and visual hallucinations: a pilot study. Brain Imaging Behav 2021; 15:738-747. [PMID: 32304019 PMCID: PMC8032576 DOI: 10.1007/s11682-020-00281-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Schizophrenic patients often experience auditory hallucinations (AHs) and visual hallucinations (VHs). However, brain and retinal alterations associated with combined AHs and VHs in schizophrenic patients are unknown. This study aimed o investigate brain and retinal alterations in first episode un-treated schizophrenic patients with combined AHs and VHs (FUSCHAV). FUSCHAV patients (n = 120), divided into four groups according to severity of AH and VH symptoms, were compared to healthy controls (n = 30). Gray matter volume (GMV) and global functional connectivity density (gFCD) were recorded to reflect brain structure and functional alterations. Total retinal thickness was acquired by optical coherence tomography to assess retinal impairment. The majority of FUSCHAV patients (85.8%) demonstrated both GMV reduction and gFCD increases along with retinal thinning compared to healthy controls. The severity of GMV reduction and gFCD increase differed between patient groups, ranked from highest to lowest severity as follows: severe AHs combined with severe VHs (FUSCHSASV, 20 patients), moderate AHs combined with severe VHs (FUSCHMASV, 23 patients), severe AHs combined with moderate VHs (FUSCHSAMV, 28 patients), and moderate AHs combined with moderate VHs (FUSCHMAMV, 26). Retinal impairment was similar among the four FUSCHAV groups. GMV reduction and gFCD increases in the frontal-parietal lobule show an inverted U-shaped pattern among FUSCHAV patients according to AH and VH severity, while retinal impairment remains stable among FUSCHAV groups. These findings indicate a reciprocal deterioration in auditory and visual disturbances among FUSCHAV patients.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China.
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China.
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China.
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.
- MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, 030001, China.
- Department of Psychiatry, Tianjin Medical University, Tianjin, 300074, China.
- Department of Medical Big Data Centre, Shanxi Medical University, Taiyuan, China.
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, 300274, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Department of Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, 272119, Shandong Province, China
| | - Xiaoyan Ma
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Ranli Li
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Lina Wang
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory(PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, Tianjin, 300222, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China
| | - Chunhua Zhou
- Department of Pharmacoloy, The First Hospital of Hebei Medical Universtiy, Shijiazhuang, 05000, Hebei Province, China.
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, 325000, China.
| |
Collapse
|
17
|
Neural markers of suppression in impaired binocular vision. Neuroimage 2021; 230:117780. [PMID: 33503479 PMCID: PMC8063178 DOI: 10.1016/j.neuroimage.2021.117780] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 12/29/2020] [Accepted: 01/17/2021] [Indexed: 11/26/2022] Open
Abstract
Even after conventional patching treatment, individuals with a history of amblyopia typically lack good stereo vision. This is often attributed to atypical suppression between the eyes, yet the specific mechanism is still unclear. Guided by computational models of binocular vision, we tested explicit predictions about how neural responses to contrast might differ in individuals with impaired binocular vision. Participants with a history of amblyopia (N = 25), and control participants with typical visual development (N = 19) took part in the study. Neural responses to different combinations of contrast in the left and right eyes, were measured using both electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). Stimuli were sinusoidal gratings with a spatial frequency of 3c/deg, flickering at 4 Hz. In the fMRI experiment, we also ran population receptive field and retinotopic mapping sequences, and a phase-encoded localiser stimulus, to identify voxels in primary visual cortex (V1) sensitive to the main stimulus. Neural responses in both modalities increased monotonically with stimulus contrast. When measured with EEG, responses were attenuated in the weaker eye, consistent with a fixed tonic suppression of that eye. When measured with fMRI, a low contrast stimulus in the weaker eye substantially reduced the response to a high contrast stimulus in the stronger eye. This effect was stronger than when the stimulus-eye pairings were reversed, consistent with unbalanced dynamic suppression between the eyes. Measuring neural responses using different methods leads to different conclusions about visual differences in individuals with impaired binocular vision. Both of the atypical suppression effects may relate to binocular perceptual deficits, e.g. in stereopsis, and we anticipate that these measures could be informative for monitoring the progress of treatments aimed at recovering binocular vision.
Collapse
|
18
|
Chen X, Chen C, Ji F, Xu Y, Wang W, Lin X, Jiang D, Song X, Gao X, Tian H, Zhuo C, Zhang J. Irreversible Primary Visual Cortex Impairment in a Mouse Model of High-Risk Schizophrenia. Neuropsychiatr Dis Treat 2021; 17:277-282. [PMID: 33542631 PMCID: PMC7853429 DOI: 10.2147/ndt.s246163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
PURPOSE Although visual deficits can be observed at any stage of schizophrenia, few studies have focused on visual cortex alterations in individuals at high risk of schizophrenia. This study aimed to investigate the pathological changes of the primary visual cortex in a prenatal mouse model of MK801-induced high-risk schizophrenia. METHODS The high-risk schizophrenia model was generated by MK801 injection into pregnant mice. The male offspring without schizophrenia-like behaviors in early adulthood were defined as the high-risk mouse model of schizophrenia (HRMMS) and divided into two groups. One HRMMS group received the antipsychotic agent risperidone beginning at postnatal week 4 and another group did not receive any treatment. After treatment for 4 weeks, in vivo two-photon calcium imaging was performed to characterize the primary visual cortex activity. The novel object recognition test and the prepulse inhibition apparatus test were also implemented to assess the cognitive and behavioral performance, respectively. RESULTS Both groups of HRMMS mice, with or without antipsychotic treatment, had decreased neuronal calcium activity, demonstrating primary visual cortex impairment. More notably, antipsychotic treatment did not normalize the impaired neuronal activities in the primary visual cortex. Correspondingly, the treatment did not improve the cognitive or behavioral impairment. CONCLUSION Visual cortex impairment might be a prominent feature of individuals at high risk of schizophrenia that cannot be normalized by early treatment with antipsychotic medication, indicating the presence of independent regulatory pathways for visual perception disturbance in schizophrenia. Thus, visual system impairment in schizophrenic patients must be further studied.
Collapse
Affiliation(s)
- Xinying Chen
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory (PNGC_Lab), Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, People's Republic of China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Feng Ji
- Department of Psychiatry, School of Mental Health, Jining Medical University, Jining 272119, Shandong Province, People's Republic of China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, People's Republic of China
| | - Wenqiang Wang
- Co-Collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen 361000, People's Republic of China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang Province 325000, People's Republic of China
| | - Xueqin Song
- The First Affiliated Hospital/Zhengzhou University, Biological Psychiatry International Joint Laboratory of Henan/Zhengzhou University, Henan Psychiatric Transformation Research Key Laboratory/Zhengzhou University, Zhengzhou 450052, People's Republic of China
| | - Xiangyang Gao
- Health Management Institute, Center for Statistical Analysis of Medical Data, Medical Big Data Analysis Center, Chinese PLA General Hospital, Beijing 100191, People's Republic of China
| | - Hongjun Tian
- Department of Neurology and Psychiatry Biological Imaging Laboratory (NPBI_Lab), Tianjin Fourth Center Hospital, Tianjin 200024, People's Republic of China
| | - Chuanjun Zhuo
- Department of Neurology and Psychiatry Biological Imaging Laboratory (NPBI_Lab), Tianjin Fourth Center Hospital, Tianjin 200024, People's Republic of China
| | - Jingliang Zhang
- Department of Psychiatry, Wenzhou Kangning Hospital, Wenzhou, Zhejiang Province 325007, People's Republic of China
| |
Collapse
|
19
|
Zemon V, Herrera S, Gordon J, Revheim N, Silipo G, Butler PD. Contrast sensitivity deficits in schizophrenia: A psychophysical investigation. Eur J Neurosci 2020; 53:1155-1170. [DOI: 10.1111/ejn.15026] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 10/22/2020] [Accepted: 10/23/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Vance Zemon
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - Shaynna Herrera
- Ferkauf Graduate School of Psychology Yeshiva University Bronx NY USA
| | - James Gordon
- Hunter College of the City University of New York New York NY USA
| | - Nadine Revheim
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Gail Silipo
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
| | - Pamela D. Butler
- Nathan S. Kline Institute for Psychiatric Research Orangeburg NY USA
- Department of Psychiatry New York University School of Medicine New York NY USA
| |
Collapse
|
20
|
Abstract
It is now well documented that schizophrenia is associated with impairments in visual processing at all levels of vision, and that these disturbances are related to deficits in multiple higher-level cognitive and social cognitive functions. Visual remediation methods have been slow to appear in the literature as a potential treatment strategy to target these impairments, however, in contrast to interventions that aim to improve auditory and higher cognitive functions in schizophrenia. In this report, we describe a National Institute of Mental Health (NIMH)-funded R61/R33 grant that uses a phased approach to optimize and evaluate a novel visual remediation intervention for people with schizophrenia. The goals of this project are: (1) in the R61 phase, to establish the optimal components and dose (number of sessions) of a visual remediation intervention from among two specific visual training strategies (and their combination) for improving low and mid-level visual functions in schizophrenia; and (2) in the R33 phase, to determine the extent to which the optimal intervention improves not only visual processing but also higher-level cognitive and role functions. Here we present the scientific background for and innovation of the study, along with our methods, hypotheses, and preliminary data. The results of this study will help determine the utility of this novel intervention approach for targeting visual perceptual, cognitive, and functional impairments in schizophrenia.
Collapse
|
21
|
Zhuo C, Chen M, Xu Y, Jiang D, Chen C, Ma X, Li R, Sun Y, Li Q, Zhou C, Lin X. Reciprocal deterioration of visual and auditory hallucinations in schizophrenia presents V-shaped cognition impairment and widespread reduction in brain gray matter-A pilot study. J Clin Neurosci 2020; 79:154-159. [PMID: 33070887 DOI: 10.1016/j.jocn.2020.07.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 05/07/2020] [Accepted: 07/19/2020] [Indexed: 10/23/2022]
Abstract
Schizophrenic patients often experience visual hallucinations (VHs) and auditory hallucinations (AHs); however, brain aberrations associated with combined VH and AH in schizophrenic patients remains poorly documented. Changes to the brain and cognition during the first episode of untreated schizophrenic patients (FUSCH) with both VHs and AHs (FUSCHVA) were evaluated. One-hundred and fifty-seven patients were enrolled that had FUSCH (1) with VHs but not AHs (FUSCHV), and (2) with AHs but not VHs (FUSCHA), plus FUSCHVA and healthy controls (n = 30). Gray matter volume (GMV) and MATRICS Consensus Cognitive Battery (MCCB) was measured to reflect impairments to the brain and cognition, respectively. FUSCHVA patients had the severest cognitive impairment for all components of the MCCB, followed by FUSCHV and FUSCHA patients. Compared to healthy patients, FUSCHVA patients had reduced GMV in the occipital, parietal, frontal, and temporal cortex, and increased GMV in the hippocampus and striatum. Compared to FUSCHV patients, FUSCHVA patients had reduced GMV in the occipital cortex and postcentral gyrus, and increased GMV in the posterio-parietal lobe. Compared to patients with FUSCHA, the GMV in patients with FUSCHVV was reduced in the occipital cortex and posterio parietal lobe. In conclusion, visual and auditory hallucinations appear to deteriorate reciprocally in FUSCHVA patients, accompanied with sever cognitive impairments. Compared to AHs, VHs might be accompanied with severe GMV impairment in the brain, especially in the primary visual cortex and higher perception integration cortex (posterio parietal lobe) in patients with FUSCH.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Neuroimage-Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining 272119, Shandong Province, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China; Department of Psychiatric-Neuroimage-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China; Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, 300222 Tianjin, China; Key labaratory of Real Time of Brain Circuits Tracing For Neurology and Psychiatry, Tianjin Medical University Affiliated Tianjin Forth Centre Hospital, Tianjin Fourth Centre Hospital, Tianjin 300024, China.
| | - Min Chen
- Department of Neuroimage-Genetics Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining 272119, Shandong Province, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan 030001, China
| | - Deguo Jiang
- Department of Psychiatric-Neuroimage-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Ce Chen
- Department of Psychiatric-Neuroimage-Genetics, Wenzhou Seventh People's Hospital, Wenzhou 325000, China
| | - Xiaoyan Ma
- Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, 300222 Tianjin, China
| | - Ranli Li
- Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, 300222 Tianjin, China
| | - Yun Sun
- Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Heath Teaching Hospital, 300222 Tianjin, China
| | - Qianchen Li
- Department of Pharmacoloy, The First Hospital of Hebei Medical University, Shijiazhuang 05000, Hebei Province, China
| | - Chunhua Zhou
- Department of Pharmacoloy, The First Hospital of Hebei Medical University, Shijiazhuang 05000, Hebei Province, China.
| | - Xiaodong Lin
- Department of Pharmacoloy, The First Hospital of Hebei Medical University, Shijiazhuang 05000, Hebei Province, China
| |
Collapse
|
22
|
Zhuo C, Xiao B, Chen C, Jiang D, Li G, Ma X, Li R, Wang L, Xu Y, Zhou C, Lin X. Antipsychotic agents deteriorate brain and retinal function in schizophrenia patients with combined auditory and visual hallucinations: A pilot study and secondary follow-up study. Brain Behav 2020; 10:e01611. [PMID: 32285647 PMCID: PMC7303384 DOI: 10.1002/brb3.1611] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/13/2020] [Accepted: 03/10/2020] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Schizophrenia patients often experience auditory hallucinations (AHs) and visual hallucinations (VHs). However, the degree and type of brain and retinal alterations associated with combined AHs and VHs in schizophrenia patients remain unknown. There is an urgent need for a study that investigates the trajectory of brain and retinal alterations in patients with first-episode untreated schizophrenia accompanied by combined AHs and VHs (FUSCHAV). METHODS FUSCHAV patients (n = 120), divided into four groups according to AH and VH symptom severity (severe AHs combined with severe VHs [FUSCHSASV, 20 patients]; middle-to-moderate AHs combined with severe VHs [FUSCHMASV, 23 patients]; severe AHs combined with middle-to-moderate VHs [FUSCHSAMV, 28 patients]; and middle-to-moderate AHs combined with middle-to-moderate VHs [FUSCHMAMV, 26 patients]), were compared to healthy controls (n = 30). Gray matter volume (GMV) was adopted for brain structural alteration assessment. Total retinal thickness was adopted as a measure of retinal thickness impairment. RESULTS In the pilot study, the rate of GMV reduction showed an inverted U-shaped pattern across the different FUSCHAV patient groups according to AH and VH severity. The degree of retinal impairment remained stable across the groups. More notably, in the secondary follow-up study, we observed that, after 6 months of treatment with antipsychotic agents, all the GMV reduction-related differences across the different patient groups disappeared, and both GMV and retinal thickness demonstrated a tendency to deteriorate. CONCLUSIONS These findings indicate the need for heightened alertness on brain and retinal impairments in patients with FUSCHAV. Further deteriorations induced by antipsychotic agent treatment should be monitored in clinical practice.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- Department of Psychiatry Pattern Recognition, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Genetics, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China.,Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China.,Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Bo Xiao
- Department of OCT, Tianjin Eye Hospital, Tianjin, China
| | - Ce Chen
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Deguo Jiang
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| | - Gongying Li
- Department of Psychiatry Pattern Recognition, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China.,Department of Genetics, Laboratory of Schizophrenia, School of Mental Health, Jining Medical University, Jining, China
| | - Xiaoyan Ma
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Ranli Li
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Lina Wang
- Department of Psychiatric-Neuroimaging-Genetics and Co-morbidity Laboratory (PNGC_Lab), Tianjin Anding Hospital, Tianjin Mental Health Center, Tianjin Medical University Mental Health Teaching Hospital, Tianjin Medical University, Tianjin, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China.,MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Chunhua Zhou
- Department of Pharmacology, The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaodong Lin
- Department of Psychiatry, Wenzhou Seventh People's Hospital, Wenzhou, China
| |
Collapse
|
23
|
Zhuo C, Ji F, Xiao B, Lin X, Chen C, Jiang D, Ma X, Li R, Liu S, Xu Y, Wang W. Antipsychotic agent-induced deterioration of the visual system in first-episode untreated patients with schizophrenia maybe self-limited: Findings from a secondary small sample follow-up study based on a pilot follow-up study. Psychiatry Res 2020; 286:112906. [PMID: 32151847 DOI: 10.1016/j.psychres.2020.112906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 12/15/2022]
Abstract
Define changes in the visual cortex and retina in first-episode schizophrenia patients with visual disturbance (FUSCHVD) accompanied by antipsychotic agent treatment is important for guiding treatment. We examined the visual system prior to and after 3 years of antipsychotic-agent treatment in 48 patients with FUSCHVD and 50 healthy controls, and after 3.5 years of antipsychotic-agent treatment in 12 patients with FUSCHVD and 12 healthy subjects who came from the cohort with 3 years of follow up. Reduction of the visual cortex gray matter volume (GMV) was observed in patients compared to healthy controls, and impairments deteriorated accompanied with 3 years' treatment with antipsychotic agents. Total retinal thickness was also reduced in patients but did not deteriorated with treatment with antipsychotic agents. However, in the 12 patients who performed the additional 6-month follow-up, GMV and total retinal thickness reductions did not demonstrate any further trend in deterioration. These findings indicate that the reductions of GMV and retinal thickness may be self-limited. Although these findings were consistent with previous reports, it was only observed in a small number of patients. Therefore, clinicians should remain pay greater attention to visual system impairment in FUSCHVD.
Collapse
Affiliation(s)
- Chuanjun Zhuo
- School of Mental Health, Jining Medical University, Jining, Shandong 272119, China; Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China; Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China; Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China; Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, Fujian 361000, China.
| | - Feng Ji
- School of Mental Health, Jining Medical University, Jining, Shandong 272119, China
| | - Bo Xiao
- Department of OTC center, Tianjin Medical University Affiliated Eye Hospital, Tianjin, 272004, China
| | - Xiaodong Lin
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Ce Chen
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Deguo Jiang
- Psychiatric-Neuroimaging-Genetics Laboratory, Wenzhou Seventh People's Hospital, Wenzhou, Zhejiang 325000, China
| | - Xiaoyan Ma
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Ranli Li
- Psychiatric-Neuroimaging-Genetics-Comorbidity Laboratory, Tianjin Mental Health Centre, Mental Health Teaching Hospital of Tianjin Medical University, Tianjin Anding Hospital, Tianjin 300222, China
| | - Sha Liu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Yong Xu
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, China; MDT Center for Cognitive Impairment and Sleep Disorders, First Hospital of Shanxi Medical University, Taiyuan, Shanxi 030001, China
| | - Wenqiang Wang
- Co-collaboration Laboratory of China and Canada, Xiamen Xianyue Hospital and University of Alberta, Xiamen, Fujian 361000, China
| |
Collapse
|
24
|
Liu Z, Chen Z, Xu Y, Feng L, Yuan J, Deng D, Han Y, Yu M. Objective Assessment of the Effect of Optical Treatment on Magnocellular and Parvocellular-biased Visual Response in Anisometropic Amblyopia. Invest Ophthalmol Vis Sci 2020; 61:21. [PMID: 32058564 PMCID: PMC7326570 DOI: 10.1167/iovs.61.2.21] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Optical treatment can improve visual function in anisometropic amblyopia, but there is no electrophysiological evidence, and the underlying change in visual pathway remains unknown. Our aims were to characterize the functional loss in magnocellular and parvocellular visual pathways in anisometropic amblyopia at baseline and to investigate the effect of optical treatment on the 2 visual pathways. Methods Using isolated-check visual-evoked potential, we measured the magnocellular- and parvocellular-biased contrast response functions in 15 normal controls (20.13 ± 3.93 years; mean ± standard deviation), 16 patients with anisometropic amblyopia (18.00 ± 6.04 years) who were fully refractive corrected before and 29 (19.41 ± 7.41 years) who had never been corrected. Twelve previously uncorrected amblyopes received optical treatment for more than 2 months and finished the follow-up measurement. Results Both the magnocellular- and parvocellular-biased contrast response functions in the amblyopic eye exhibited significantly reduced response and weaker contrast gains. We also found that the uncorrected amblyopes showed a more severe response reduction in magnocellular-biased, but not parvocellular-biased condition when compared with those corrected, with a weaker initial contrast gain and lower maximal response. After optical treatment, 12 uncorrected amblyopes demonstrated improved visual acuity of the amblyopic eye and a significant response gain to magnocellular-biased but not parvocellular-biased stimuli. Conclusions We demonstrated deficits to both magnocellular- and parvocellular-biased stimuli in subjects with anisometropic amblyopia. Optical treatment could produce neurophysiological changes in visual pathways even in older children and adults, which may be mediated through the magnocellular pathway.
Collapse
|
25
|
Harper L, Spencer E, Davidson C, Hutchinson CV. Selectively reduced contrast sensitivity in high schizotypy. Exp Brain Res 2020; 238:51-62. [PMID: 31781821 PMCID: PMC6957544 DOI: 10.1007/s00221-019-05695-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 11/15/2019] [Indexed: 11/30/2022]
Abstract
Deficits in the ability to encode small differences in contrast between adjacent parts of an image (contrast sensitivity) are well documented in schizophrenic patients. In the present study, we sought to determine whether contrast sensitivity deficits reported in schizophrenic patients are also evident in those who exhibit high schizotypy scores in a typical (i.e., non-schizophrenic) population. Using the O-Life Questionnaire, we determined the effects of schizotypy on spatial (0.5, 2 and 8 c/deg) and spatiotemporal (0.5 and 8 c/deg at 0.5 and 8 Hz) contrast sensitivity in 73 young (18-26 years), majority female (n = 68) participants. We found differences in contrast sensitivity that were spatial, spatiotemporal and O-Life subscale specific. Spatial contrast sensitivity was significantly lower in high, compared to low schizotypes at low spatial frequencies (0.5 c/deg) in those who scored highly on the Unusual Experiences and Cognitive Disorganisation O-Life subscales. For moving stimuli, individuals with high scores on the Unusual Experiences subscale exhibited lower spatiotemporal contrast sensitivity for 0.5 and 8 c/deg patterns drifting at 8 Hz. Although the effects reported here were relatively small, this is the first report of reduced contrast sensitivity in schizotypy.
Collapse
Affiliation(s)
- Lauren Harper
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Emily Spencer
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK
| | - Colin Davidson
- School of Pharmacy and Biomedical Sciences, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston, UK
| | - Claire V Hutchinson
- Department of Neuroscience, Psychology and Behaviour, College of Life Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
26
|
Ramsay IS, Schallmo MP, Biagianti B, Fisher M, Vinogradov S, Sponheim SR. Deficits in Auditory and Visual Sensory Discrimination Reflect a Genetic Liability for Psychosis and Predict Disruptions in Global Cognitive Functioning. Front Psychiatry 2020; 11:638. [PMID: 32733293 PMCID: PMC7358403 DOI: 10.3389/fpsyt.2020.00638] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/19/2020] [Indexed: 11/29/2022] Open
Abstract
Sensory discrimination thresholds (i.e., the briefest stimulus that can be accurately perceived) can be measured using tablet-based auditory and visual sweep paradigms. These basic sensory functions have been found to be diminished in patients with psychosis. However, the extent to which worse sensory discrimination characterizes genetic liability for psychosis, and whether it is related to clinical symptomatology and community functioning remains unknown. In the current study we compared patients with psychosis (PSY; N=76), their first-degree biological relatives (REL; N=44), and groups of healthy controls (CON; N=13 auditory and visual/N=275 auditory/N=267 visual) on measures of auditory and visual sensory discrimination, and examined relationships with a battery of symptom, cognitive, and functioning measures. Sound sweep thresholds differed among the PSY, REL, and CON groups, driven by higher thresholds in the PSY compared to CON group, with the REL group showing intermediate thresholds. Visual thresholds also differed among the three groups, driven by higher thresholds in the REL versus CON group, and no significant differences between the REL and PSY groups. Across groups and among patients, higher thresholds (poorer discrimination) for both sound and visual sweeps strongly correlated with lower global cognitive scores. We conclude that low-level auditory and visual sensory discrimination deficits in psychosis may reflect genetic liability for psychotic illness. Critically, these deficits relate to global cognitive disruptions that are a hallmark of psychotic illnesses such as schizophrenia.
Collapse
Affiliation(s)
- Ian S Ramsay
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Michael-Paul Schallmo
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Bruno Biagianti
- Department of R&D, Posit Science Corporation, San Francisco, CA, United States
| | - Melissa Fisher
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Sophia Vinogradov
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Scott R Sponheim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, United States.,Minneapolis Veterans Affairs Medical Center, Minneapolis, MN, United States
| |
Collapse
|
27
|
Ji JL, Diehl C, Schleifer C, Tamminga CA, Keshavan MS, Sweeney JA, Clementz BA, Hill SK, Pearlson G, Yang G, Creatura G, Krystal JH, Repovs G, Murray J, Winkler A, Anticevic A. Schizophrenia Exhibits Bi-directional Brain-Wide Alterations in Cortico-Striato-Cerebellar Circuits. Cereb Cortex 2019; 29:4463-4487. [PMID: 31157363 PMCID: PMC6917525 DOI: 10.1093/cercor/bhy306] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/17/2018] [Indexed: 01/05/2023] Open
Abstract
Distributed neural dysconnectivity is considered a hallmark feature of schizophrenia (SCZ), yet a tension exists between studies pinpointing focal disruptions versus those implicating brain-wide disturbances. The cerebellum and the striatum communicate reciprocally with the thalamus and cortex through monosynaptic and polysynaptic connections, forming cortico-striatal-thalamic-cerebellar (CSTC) functional pathways that may be sensitive to brain-wide dysconnectivity in SCZ. It remains unknown if the same pattern of alterations persists across CSTC systems, or if specific alterations exist along key functional elements of these networks. We characterized connectivity along major functional CSTC subdivisions using resting-state functional magnetic resonance imaging in 159 chronic patients and 162 matched controls. Associative CSTC subdivisions revealed consistent brain-wide bi-directional alterations in patients, marked by hyper-connectivity with sensory-motor cortices and hypo-connectivity with association cortex. Focusing on the cerebellar and striatal components, we validate the effects using data-driven k-means clustering of voxel-wise dysconnectivity and support vector machine classifiers. We replicate these results in an independent sample of 202 controls and 145 patients, additionally demonstrating that these neural effects relate to cognitive performance across subjects. Taken together, these results from complementary approaches implicate a consistent motif of brain-wide alterations in CSTC systems in SCZ, calling into question accounts of exclusively focal functional disturbances.
Collapse
Affiliation(s)
- Jie Lisa Ji
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Caroline Diehl
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Charles Schleifer
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Carol A Tamminga
- Department of Psychiatry and Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Matcheri S Keshavan
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John A Sweeney
- Department of Psychiatry, University of Cincinnati, Cincinnati, OH, USA
| | - Brett A Clementz
- Department of Psychology, BioImaging Research Center, University of Georgia, Athens, GA, USA
- Department of Neuroscience, BioImaging Research Center, University of Georgia, Athens, GA, USA
| | - S Kristian Hill
- Department of Psychology, Rosalind Franklin University of Medicine and Science, Chicago, IL, USA
| | - Godfrey Pearlson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Genevieve Yang
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Gina Creatura
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Grega Repovs
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - John Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| | - Anderson Winkler
- Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford University, Headington, Oxford, UK
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, USA
| |
Collapse
|
28
|
Itthipuripat S, Sprague TC, Serences JT. Functional MRI and EEG Index Complementary Attentional Modulations. J Neurosci 2019; 39:6162-6179. [PMID: 31127004 PMCID: PMC6668200 DOI: 10.1523/jneurosci.2519-18.2019] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 04/12/2019] [Accepted: 05/16/2019] [Indexed: 02/07/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) and electroencephalography (EEG) are two noninvasive methods commonly used to study neural mechanisms supporting visual attention in humans. Studies using these tools, which have complementary spatial and temporal resolutions, implicitly assume they index similar underlying neural modulations related to external stimulus and internal attentional manipulations. Accordingly, they are often used interchangeably for constraining understanding about the impact of bottom-up and top-down factors on neural modulations. To test this core assumption, we simultaneously manipulated bottom-up sensory inputs by varying stimulus contrast and top-down cognitive modulations by changing the focus of spatial attention. Each of the male and female subjects participated in both fMRI and EEG sessions performing the same experimental paradigm. We found categorically different patterns of attentional modulation on fMRI activity in early visual cortex and early stimulus-evoked potentials measured via EEG (e.g., the P1 component and steady-state visually-evoked potentials): fMRI activation scaled additively with attention, whereas evoked EEG components scaled multiplicatively with attention. However, across longer time scales, a contralateral negative-going potential and oscillatory EEG signals in the alpha band revealed additive attentional modulation patterns like those observed with fMRI. These results challenge prior assumptions that fMRI and early stimulus-evoked potentials measured with EEG can be interchangeably used to index the same neural mechanisms of attentional modulations at different spatiotemporal scales. Instead, fMRI measures of attentional modulations are more closely linked with later EEG components and alpha-band oscillations. Considered together, hemodynamic and electrophysiological signals can jointly constrain understanding of the neural mechanisms supporting cognition.SIGNIFICANCE STATEMENT fMRI and EEG have been used as tools to measure the location and timing of attentional modulations in visual cortex and are often used interchangeably for constraining computational models under the assumption that they index similar underlying neural processes. However, by varying attentional and stimulus parameters, we found differential patterns of attentional modulations of fMRI activity in early visual cortex and commonly used stimulus-evoked potentials measured via EEG. Instead, across longer time scales, a contralateral negative-going potential and EEG oscillations in the alpha band exhibited attentional modulations similar to those observed with fMRI. Together, these results suggest that different physiological processes assayed by these complementary techniques must be jointly considered when making inferences about the neural underpinnings of cognitive operations.
Collapse
Affiliation(s)
- Sirawaj Itthipuripat
- Neurosciences Graduate Program,
- Learning Institute
- Futuristic Research in Enigmatic Aesthetics Knowledge Laboratory, King Mongkut's University of Technology Thonburi, Bangkok, 10140, Thailand
- Department of Psychology, Center for Integrative and Cognitive Neuroscience, and Interdisciplinary Program in Neuroscience, Vanderbilt University, Nashville, Tennessee 37235, and
| | - Thomas C Sprague
- Neurosciences Graduate Program,
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa Barbara, California 93106-9660
| | - John T Serences
- Neurosciences Graduate Program
- Department of Psychology
- Kavli Foundation for the Brain and Mind, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
29
|
Li X, Wu K, Zhang Y, Kong L, Bertisch H, DeLisi LE. Altered topological characteristics of morphological brain network relate to language impairment in high genetic risk subjects and schizophrenia patients. Schizophr Res 2019; 208:338-343. [PMID: 30700398 DOI: 10.1016/j.schres.2019.01.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 01/16/2019] [Accepted: 01/19/2019] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Evidence suggests relationships between abnormalities in various cortical and subcortical brain structures and language dysfunction in individuals with schizophrenia, and to some extent in those with increased genetic risk for this diagnosis. The topological features of the structural brain network at the systems-level and their impact on language function in schizophrenia and in those at high genetic risk has been less well studied. METHOD Single-subject morphological brain network was constructed in a total of 71 subjects (20 patients with schizophrenia, 19 individuals at high genetic risk for schizophrenia, and 32 controls). Among these 71 subjects, 56 were involved in our previous neuroimaging studies. Graphic Theoretical Techniques was applied to calculate the global and nodal topological characteristics of the morphological brain network of each participant. Index scores for five language-related cognitive tests were also attained from each participant. RESULTS Significantly smaller nodal degree in bilateral superior occipital gyri (SOG) were observed in individuals with schizophrenia, as compared to the controls and those at high risk; while significantly reduced nodal betweenness centrality (quantifying the level of a node in connecting other nodes in the network) in right middle frontal gyrus (MFG) was found in the high-risk group, relative to controls. The right MFG nodal efficiency and hub capacity (represented by both nodal degree and betweenness centrality) of the morphological brain network were negatively associated with the wide range achievement test (WRAT) standard performance score; while the right SOG nodal degree was positively associated with the WRAT standard performance score, in the entire study sample. CONCLUSIONS These findings enhance the understanding of structural brain abnormalities at the systems-level in individuals with schizophrenia and those at high genetic risk, which may serve as critical neural substrates for the origin of the language-related impairments and symptom manifestations of schizophrenia.
Collapse
Affiliation(s)
- Xiaobo Li
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Kai Wu
- Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China; Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China; Guangdong Engineering Technology Research Center for Diagnosis and Rehabilitation of Dementia, Guangzhou, China.
| | - Yue Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | - Lingyin Kong
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou, China
| | | | - Lynn E DeLisi
- VA Boston Healthcare System, Harvard Medical School, Brockton, MA, USA
| |
Collapse
|
30
|
Yang GJ, Murray JD, Glasser M, Pearlson GD, Krystal JH, Schleifer C, Repovs G, Anticevic A. Altered Global Signal Topography in Schizophrenia. Cereb Cortex 2018; 27:5156-5169. [PMID: 27702810 DOI: 10.1093/cercor/bhw297] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 08/28/2016] [Indexed: 02/04/2023] Open
Abstract
Schizophrenia (SCZ) is a disabling neuropsychiatric disease associated with disruptions across distributed neural systems. Resting-state functional magnetic resonance imaging has identified extensive abnormalities in the blood-oxygen level-dependent signal in SCZ patients, including alterations in the average signal over the brain-i.e. the "global" signal (GS). It remains unknown, however, if these "global" alterations occur pervasively or follow a spatially preferential pattern. This study presents the first network-by-network quantification of GS topography in healthy subjects and SCZ patients. We observed a nonuniform GS contribution in healthy comparison subjects, whereby sensory areas exhibited the largest GS component. In SCZ patients, we identified preferential GS representation increases across association regions, while sensory regions showed preferential reductions. GS representation in sensory versus association cortices was strongly anti-correlated in healthy subjects. This anti-correlated relationship was markedly reduced in SCZ. Such shifts in GS topography may underlie profound alterations in neural information flow in SCZ, informing development of pharmacotherapies.
Collapse
Affiliation(s)
- Genevieve J Yang
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.,Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT 06519, USA
| | - John D Murray
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Matthew Glasser
- Department of Neurobiology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Godfrey D Pearlson
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06106, USA
| | - John H Krystal
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.,Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,NIAAA Center for the Translational Neuroscience of Alcoholism, New Haven, CT 06519, USA
| | - Charlie Schleifer
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA
| | - Grega Repovs
- Department of Psychology, University of Ljubljana, Ljubljana, Slovenia
| | - Alan Anticevic
- Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT 06511, USA.,Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.,Abraham Ribicoff Research Facilities, Connecticut Mental Health Center, New Haven, CT 06519, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, 200 Retreat Avenue, Hartford, CT 06106, USA.,NIAAA Center for the Translational Neuroscience of Alcoholism, New Haven, CT 06519, USA.,Department of Psychology, Yale University, 2 Hillhouse Avenue, New Haven, CT 06520, USA
| |
Collapse
|
31
|
Samani NN, Proudlock FA, Siram V, Suraweera C, Hutchinson C, Nelson CP, Al-Uzri M, Gottlob I. Retinal Layer Abnormalities as Biomarkers of Schizophrenia. Schizophr Bull 2018; 44:876-885. [PMID: 29272501 PMCID: PMC6007436 DOI: 10.1093/schbul/sbx130] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Schizophrenia is associated with several brain deficits, as well as visual processing deficits, but clinically useful biomarkers are elusive. We hypothesized that retinal layer changes, noninvasively visualized using spectral-domain optical coherence tomography (SD-OCT), may represent a possible "window" to these abnormalities. METHODS A Leica EnvisuTM SD-OCT device was used to obtain high-resolution central foveal B-scans in both eyes of 35 patients with schizophrenia and 50 demographically matched controls. Manual retinal layer segmentation was performed to acquire individual and combined layer thickness measurements in 3 macular regions. Contrast sensitivity was measured at 3 spatial frequencies in a subgroup of each cohort. Differences were compared using adjusted linear models and significantly different layer measures in patients underwent Spearman Rank correlations with contrast sensitivity, quantified symptoms severity, disease duration, and antipsychotic medication dose. RESULTS Total retinal and photoreceptor complex thickness was reduced in all regions in patients (P < .0001). Segmentation revealed consistent thinning of the outer nuclear layer (P < .001) and inner segment layer (P < .05), as well as a pattern of parafoveal ganglion cell changes. Low spatial frequency contrast sensitivity was reduced in patients (P = .002) and correlated with temporal parafoveal ganglion cell complex thinning (R = .48, P = .01). Negative symptom severity was inversely correlated with foveal photoreceptor complex thickness (R = -.54, P = .001) and outer nuclear layer thickness (R = -.47, P = .005). CONCLUSIONS Our novel findings demonstrate considerable retinal layer abnormalities in schizophrenia that are related to clinical features and visual function. With time, SD-OCT could provide easily-measurable biomarkers to facilitate clinical assessment and further our understanding of the disease.
Collapse
Affiliation(s)
| | - Frank A Proudlock
- Ulverscroft Eye Unit, University of Leicester, Leicester, UK,Department of Neuroscience, Psychology and Behaviour, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, UK
| | - Vasantha Siram
- Leicestershire Partnership NHS Trust, Bradgate Unit, Glenfield Hospital, Leicester, UK
| | - Chathurie Suraweera
- Leicestershire Partnership NHS Trust, Bradgate Unit, Glenfield Hospital, Leicester, UK
| | - Claire Hutchinson
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, UK
| | - Christopher P Nelson
- NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, UK
| | - Mohammed Al-Uzri
- Leicestershire Partnership NHS Trust, Bradgate Unit, Glenfield Hospital, Leicester, UK,Adult Social and Epidemiological Psychiatry and Disability Research Group, Department of Health Sciences, University of Leicester, Leicester General Hospital, Leicester, UK
| | - Irene Gottlob
- Department of Neuroscience, Psychology and Behaviour, University of Leicester, Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, UK,To whom correspondence should be addressed; Robert Kilpatrick Clinical Sciences Building, Leicester Royal Infirmary, PO Box 65, Leicester LE2 7LX, UK; tel: +44-116-252-3268, e-mail:
| |
Collapse
|
32
|
Silverstein SM, Demmin DL, Bednar JA. Computational Modeling of Contrast Sensitivity and Orientation Tuning in First-Episode and Chronic Schizophrenia. COMPUTATIONAL PSYCHIATRY (CAMBRIDGE, MASS.) 2017; 1:102-131. [PMID: 30090855 PMCID: PMC6067832 DOI: 10.1162/cpsy_a_00005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/16/2017] [Indexed: 12/11/2022]
Abstract
Computational modeling is a useful method for generating hypotheses about the contributions of impaired neurobiological mechanisms, and their interactions, to psychopathology. Modeling is being increasingly used to further our understanding of schizophrenia, but to date, it has not been applied to questions regarding the common perceptual disturbances in the disorder. In this article, we model aspects of low-level visual processing and demonstrate how this can lead to testable hypotheses about both the nature of visual abnormalities in schizophrenia and the relationships between the mechanisms underlying these disturbances and psychotic symptoms. Using a model that incorporates retinal, lateral geniculate nucleus (LGN), and V1 activity, as well as gain control in the LGN, homeostatic adaptation in V1, lateral excitation and inhibition in V1, and self-organization of synaptic weights based on Hebbian learning and divisive normalization, we show that (a) prior data indicating increased contrast sensitivity for low-spatial-frequency stimuli in first-episode schizophrenia can be successfully modeled as a function of reduced retinal and LGN efferent activity, leading to overamplification at the cortical level, and (b) prior data on reduced contrast sensitivity and broadened orientation tuning in chronic schizophrenia can be successfully modeled by a combination of reduced V1 lateral inhibition and an increase in the Hebbian learning rate at V1 synapses for LGN input. These models are consistent with many current findings, and they predict several relationships that have not yet been demonstrated. They also have implications for understanding changes in brain and visual function from the first psychotic episode to the chronic stage of illness.
Collapse
Affiliation(s)
- Steven M. Silverstein
- Rutgers University Behavioral Health Care, Piscataway, New Jersey, USA
- Robert Wood Johnson Medical School Department of Psychiatry, Rutgers University, Piscataway, New Jersey, USA
| | - Docia L. Demmin
- Rutgers University Behavioral Health Care, Piscataway, New Jersey, USA
- Department of Psychology, Rutgers University, Piscataway, New Jersey, USA
| | - James A. Bednar
- School of Informatics, University of Edinburgh, Edinburgh, Scotland
| |
Collapse
|
33
|
Social Preference and Glutamatergic Dysfunction: Underappreciated Prerequisites for Social Dysfunction in Schizophrenia. Trends Neurosci 2016; 39:587-596. [PMID: 27477199 DOI: 10.1016/j.tins.2016.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/17/2016] [Accepted: 06/13/2016] [Indexed: 12/21/2022]
Abstract
Impaired social functioning is pervasive in schizophrenia. Unfortunately, existing treatments have limited efficacy, and possible psychological or neurobiological mechanisms underlying social dysfunction in this disorder remain obscure. Here, we evaluate whether social preference, one key aspect of social processing that has been largely overlooked in schizophrenia research, and N-methyl-d-aspartate receptor (NMDAR) dysfunction can provide insights into the mechanism underlying social dysfunction in schizophrenia. Based on evidence from developmental psychology, and behavioral and clinical neuroscience, we propose a heuristic model in which reduced NMDAR function may induce disrupted social preference that can subsequently lead to social cognitive impairment and social disability. We discuss its implications in terms of the pathophysiology of schizophrenia, other disorders with marked social disability, and potential treatments.
Collapse
|
34
|
Silverstein SM. Visual Perception Disturbances in Schizophrenia: A Unified Model. NEBRASKA SYMPOSIUM ON MOTIVATION. NEBRASKA SYMPOSIUM ON MOTIVATION 2016; 63:77-132. [PMID: 27627825 DOI: 10.1007/978-3-319-30596-7_4] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
35
|
Functional hierarchy underlies preferential connectivity disturbances in schizophrenia. Proc Natl Acad Sci U S A 2015; 113:E219-28. [PMID: 26699491 DOI: 10.1073/pnas.1508436113] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Schizophrenia may involve an elevated excitation/inhibition (E/I) ratio in cortical microcircuits. It remains unknown how this regulatory disturbance maps onto neuroimaging findings. To address this issue, we implemented E/I perturbations within a neural model of large-scale functional connectivity, which predicted hyperconnectivity following E/I elevation. To test predictions, we examined resting-state functional MRI in 161 schizophrenia patients and 164 healthy subjects. As predicted, patients exhibited elevated functional connectivity that correlated with symptom levels, and was most prominent in association cortices, such as the fronto-parietal control network. This pattern was absent in patients with bipolar disorder (n = 73). To account for the pattern observed in schizophrenia, we integrated neurobiologically plausible, hierarchical differences in association vs. sensory recurrent neuronal dynamics into our model. This in silico architecture revealed preferential vulnerability of association networks to E/I imbalance, which we verified empirically. Reported effects implicate widespread microcircuit E/I imbalance as a parsimonious mechanism for emergent inhomogeneous dysconnectivity in schizophrenia.
Collapse
|
36
|
Hvoslef-Eide M, Mar AC, Nilsson SRO, Alsiö J, Heath CJ, Saksida LM, Robbins TW, Bussey TJ. The NEWMEDS rodent touchscreen test battery for cognition relevant to schizophrenia. Psychopharmacology (Berl) 2015. [PMID: 26202612 DOI: 10.1007/s00213-015-4007-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
RATIONALE The NEWMEDS initiative (Novel Methods leading to New Medications in Depression and Schizophrenia, http://www.newmeds-europe.com ) is a large industrial-academic collaborative project aimed at developing new methods for drug discovery for schizophrenia. As part of this project, Work package 2 (WP02) has developed and validated a comprehensive battery of novel touchscreen tasks for rats and mice for assessing cognitive domains relevant to schizophrenia. OBJECTIVES This article provides a review of the touchscreen battery of tasks for rats and mice for assessing cognitive domains relevant to schizophrenia and highlights validation data presented in several primary articles in this issue and elsewhere. METHODS The battery consists of the five-choice serial reaction time task and a novel rodent continuous performance task for measuring attention, a three-stimulus visual reversal and the serial visual reversal task for measuring cognitive flexibility, novel non-matching to sample-based tasks for measuring spatial working memory and paired-associates learning for measuring long-term memory. RESULTS The rodent (i.e. both rats and mice) touchscreen operant chamber and battery has high translational value across species due to its emphasis on construct as well as face validity. In addition, it offers cognitive profiling of models of diseases with cognitive symptoms (not limited to schizophrenia) through a battery approach, whereby multiple cognitive constructs can be measured using the same apparatus, enabling comparisons of performance across tasks. CONCLUSION This battery of tests constitutes an extensive tool package for both model characterisation and pre-clinical drug discovery.
Collapse
Affiliation(s)
- M Hvoslef-Eide
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK. .,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.
| | - A C Mar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience and Physiology, New York University Medical Center, New York, NY, 10016, USA
| | - S R O Nilsson
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - J Alsiö
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK.,Department of Neuroscience, Unit of Functional Neurobiology, University of Uppsala, 75124, Uppsala, Sweden
| | - C J Heath
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - L M Saksida
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T W Robbins
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | - T J Bussey
- Department of Psychology, University of Cambridge, Downing Street, Cambridge, CB2 3EB, UK.,MRC and Wellcome Trust Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| |
Collapse
|
37
|
Tohid H, Faizan M, Faizan U. Alterations of the occipital lobe in schizophrenia. NEUROSCIENCES (RIYADH, SAUDI ARABIA) 2015; 20:213-24. [PMID: 26166588 PMCID: PMC4710336 DOI: 10.17712/nsj.2015.3.20140757] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The relationship of the occipital lobe of the brain with schizophrenia is not commonly studied; however, this topic is considered an essential subject matter among clinicians and scientists. We conducted this systematic review to elaborate the relationship in depth. We found that most schizophrenic patients show normal occipital anatomy and physiology, a minority showed dwindled values, and some demonstrated augmented function and structure. The findings are laborious to incorporate within single disease models that present the involvement of the occipital lobe in schizophrenia. Schizophrenia progresses clinically in the mid-twenties and thirties and its prognosis is inadequate. Changes in the volume, the gray matter, and the white matter in the occipital lobe are quite evident; however, the mechanism behind this involvement is not yet fully understood. Therefore, we recommend further research to explore the occipital lobe functions and volumes across the different stages of schizophrenia.
Collapse
Affiliation(s)
- Hassaan Tohid
- Center for Mind and Brain, UC Davis, CA, United States of America. E-mail:
| | | | | |
Collapse
|
38
|
Sensory gain outperforms efficient readout mechanisms in predicting attention-related improvements in behavior. J Neurosci 2015; 34:13384-98. [PMID: 25274817 DOI: 10.1523/jneurosci.2277-14.2014] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spatial attention has been postulated to facilitate perceptual processing via several different mechanisms. For instance, attention can amplify neural responses in sensory areas (sensory gain), mediate neural variability (noise modulation), or alter the manner in which sensory signals are selectively read out by postsensory decision mechanisms (efficient readout). Even in the context of simple behavioral tasks, it is unclear how well each of these mechanisms can account for the relationship between attention-modulated changes in behavior and neural activity because few studies have systematically mapped changes between stimulus intensity, attentional focus, neural activity, and behavioral performance. Here, we used a combination of psychophysics, event-related potentials (ERPs), and quantitative modeling to explicitly link attention-related changes in perceptual sensitivity with changes in the ERP amplitudes recorded from human observers. Spatial attention led to a multiplicative increase in the amplitude of an early sensory ERP component (the P1, peaking ∼80-130 ms poststimulus) and in the amplitude of the late positive deflection component (peaking ∼230-330 ms poststimulus). A simple model based on signal detection theory demonstrates that these multiplicative gain changes were sufficient to account for attention-related improvements in perceptual sensitivity, without a need to invoke noise modulation. Moreover, combining the observed multiplicative gain with a postsensory readout mechanism resulted in a significantly poorer description of the observed behavioral data. We conclude that, at least in the context of relatively simple visual discrimination tasks, spatial attention modulates perceptual sensitivity primarily by modulating the gain of neural responses during early sensory processing.
Collapse
|
39
|
Choi EJ, Jang KM, Kim MS. Electrophysiological correlates of local–global visual processing in college students with schizotypal traits: An event-related potential study. Biol Psychol 2014; 96:158-65. [DOI: 10.1016/j.biopsycho.2013.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 11/26/2013] [Accepted: 12/20/2013] [Indexed: 11/24/2022]
|
40
|
Vinckier F, Cohen L, Oppenheim C, Salvador A, Picard H, Amado I, Krebs MO, Gaillard R. Reading impairment in schizophrenia: Dysconnectivity within the visual system. Neuropsychologia 2014; 53:187-96. [DOI: 10.1016/j.neuropsychologia.2013.10.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/28/2013] [Accepted: 10/13/2013] [Indexed: 12/31/2022]
|
41
|
Kelemen O, Kovács T, Kéri S. Contrast, motion, perceptual integration, and neurocognition in schizophrenia: the role of fragile-X related mechanisms. Prog Neuropsychopharmacol Biol Psychiatry 2013; 46:92-7. [PMID: 23838275 DOI: 10.1016/j.pnpbp.2013.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 06/23/2013] [Accepted: 06/27/2013] [Indexed: 10/26/2022]
Abstract
Recent studies demonstrated a reduced expression of Fragile X Mental Retardation Protein (FMRP), an RNA binding protein and translation regulator, in the brain and peripheral lymphocytes of patients with schizophrenia. Low FMRP levels may be related to impaired neurodevelopmental processes and synaptic plasticity. Here, we studied the relationship between peripheral FMRP level, visual perception (contrast sensitivity, perceptual integration, motion/form perception), and neuropsychological functions in schizophrenia as measured with the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Results revealed that patients with schizophrenia displayed lower FMRP levels in peripheral lymphocytes as compared to control individuals. We found significant correlations between FMRP levels and contrast sensitivity at low spatial and high temporal frequencies, perceptual integration, and motion perception. The relationship between FMRP level and neuropsychological functions was less pronounced than that seen in the case of visual perception, with the greatest effect for RBANS attention. FMRP level was not related to contrast sensitivity at high spatial and low temporal frequencies and form perception. This pattern of data is reminiscent to that observed in patients with Fragile X Syndrome (FXS). These results suggest that FMRP may be implicated in the pathogenesis of schizophrenia, possibly via the regulation of neurodevelopment, plasticity, GABA-ergic, and glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Oguz Kelemen
- Bács-Kiskun County Hospital, Psychiatry Center, Kecskemét, Hungary
| | | | | |
Collapse
|
42
|
Giersch A, Lalanne L, van Assche M, Elliott MA. On disturbed time continuity in schizophrenia: an elementary impairment in visual perception? Front Psychol 2013; 4:281. [PMID: 23755027 PMCID: PMC3664782 DOI: 10.3389/fpsyg.2013.00281] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 05/02/2013] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia is associated with a series of visual perception impairments, which might impact on the patients' every day life and be related to clinical symptoms. However, the heterogeneity of the visual disorders make it a challenge to understand both the mechanisms and the consequences of these impairments, i.e., the way patients experience the outer world. Based on earlier psychiatry literature, we argue that issues regarding time might shed a new light on the disorders observed in patients with schizophrenia. We will briefly review the mechanisms involved in the sense of time continuity and clinical evidence that they are impaired in patients with schizophrenia. We will then summarize a recent experimental approach regarding the coding of time-event structure in time, namely the ability to discriminate between simultaneous and asynchronous events. The use of an original method of analysis allowed us to distinguish between explicit and implicit judgments of synchrony. We showed that for SOAs below 20 ms neither patients nor controls fuse events in time. On the contrary subjects distinguish events at an implicit level even when judging them as synchronous. In addition, the implicit responses of patients and controls differ qualitatively. It is as if controls always put more weight on the last occurred event, whereas patients have a difficulty to follow events in time at an implicit level. In patients, there is a clear dissociation between results at short and large asynchronies, that suggest selective mechanisms for the implicit coding of time-event structure. These results might explain the disruption of the sense of time continuity in patients. We argue that this line of research might also help us to better understand the mechanisms of the visual impairments in patients and how they see their environment.
Collapse
Affiliation(s)
- Anne Giersch
- INSERM U1114, Department of Psychiatry, Fédération de Médecine Translationnelle de Strasbourg (FMTS), University Hospital of Strasbourg Strasbourg, France
| | | | | | | |
Collapse
|
43
|
Herzog MH, Roinishvili M, Chkonia E, Brand A. Schizophrenia and visual backward masking: a general deficit of target enhancement. Front Psychol 2013; 4:254. [PMID: 23717290 PMCID: PMC3653113 DOI: 10.3389/fpsyg.2013.00254] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 04/16/2013] [Indexed: 02/04/2023] Open
Abstract
The obvious symptoms of schizophrenia are of cognitive and psychopathological nature. However, schizophrenia affects also visual processing which becomes particularly evident when stimuli are presented for short durations and are followed by a masking stimulus. Visual deficits are of great interest because they might be related to the genetic variations underlying the disease (endophenotype concept). Visual masking deficits are usually attributed to specific dysfunctions of the visual system such as a hypo- or hyper-active magnocellular system. Here, we propose that visual deficits are a manifestation of a general deficit related to the enhancement of weak neural signals as occurring in all other sorts of information processing. We summarize previous findings with the shine-through masking paradigm where a shortly presented vernier target is followed by a masking grating. The mask deteriorates visual processing of schizophrenic patients by almost an order of magnitude compared to healthy controls. We propose that these deficits are caused by dysfunctions of attention and the cholinergic system leading to weak neural activity corresponding to the vernier. High density electrophysiological recordings (EEG) show that indeed neural activity is strongly reduced in schizophrenic patients which we attribute to the lack of vernier enhancement. When only the masking grating is presented, EEG responses are roughly comparable between patients and control. Our hypothesis is supported by findings relating visual masking to genetic deviants of the nicotinic α7 receptor (CHRNA7).
Collapse
Affiliation(s)
- Michael H Herzog
- Laboratory of Psychophysics, Brain Mind Institute, Ecole Polytechnique Fédérale de Lausanne Lausanne, Switzerland
| | | | | | | |
Collapse
|
44
|
Halász I, Levy-Gigi E, Kelemen O, Benedek G, Kéri S. Neuropsychological functions and visual contrast sensitivity in schizophrenia: the potential impact of comorbid posttraumatic stress disorder (PTSD). Front Psychol 2013; 4:136. [PMID: 23519404 PMCID: PMC3602812 DOI: 10.3389/fpsyg.2013.00136] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Accepted: 03/04/2013] [Indexed: 11/13/2022] Open
Abstract
Previous studies have revealed a high prevalence of posttraumatic stress disorder (PTSD) in patients with other severe mental disorders, including schizophrenia. However, the neuropsychological and psychophysical correlates of comorbid PTSD are less exactly defined. The purpose of the present study was to assess immediate and delayed memory, attention, visuospatial skills, language, and basic visual information processing in patients with schizophrenia with or without PTSD. We recruited 125 patients with schizophrenia and 70 healthy controls matched for visual acuity, age, gender, education, and socioeconomic status. Twenty-one of patients with schizophrenia exhibited comorbid PTSD. We administered the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS) and visual contrast sensitivity tasks for low spatial/high temporal frequency (0.3 cycle/degree and 18 Hz) and high spatial/low temporal frequency (10 cycles/degree and 1Hz) sinusoidal gratings. All patients were clinically stable and received antipsychotic medications. Results revealed that relative to healthy controls, patients with schizophrenia exhibited significant and generalized neuropsychological dysfunctions and reduced visual contrast sensitivity, which was more pronounced at low spatial/high temporal frequency. When we compared schizophrenia patients with and without PTSD, we found that patients with comorbid PTSD displayed lower scores for RBANS attention, immediate and delayed memory, and visuospatial scores. Schizophrenia patients with or without PTSD displayed similar visual contrast sensitivity. In conclusion, comorbid PTSD in schizophrenia may be associated with worse neuropsychological functions, whereas it does not affect basic visual information processing.
Collapse
Affiliation(s)
| | - Einat Levy-Gigi
- Institute for the Study of Affective Neuroscience, University of HaifaHaifa, Israel
| | - Oguz Kelemen
- Psychiatry Center, Bács-Kiskun County HospitalKecskemét, Hungary
| | - György Benedek
- Department of Physiology, Faculty of Medicine, University of SzegedSzeged, Hungary
| | - Szabolcs Kéri
- National Psychiatry CenterBudapest, Hungary
- Department of Physiology, Faculty of Medicine, University of SzegedSzeged, Hungary
| |
Collapse
|