1
|
Jiang W, Zhang Y, Dong X, Hou K. Observational study of the relationship between negative cognitive processing bias and mental health, sleep quality in the early and middle stages of peacekeeping mission. Medicine (Baltimore) 2025; 104:e42295. [PMID: 40324253 PMCID: PMC12055113 DOI: 10.1097/md.0000000000042295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025] Open
Abstract
To examine the correlation between negative cognitive processing bias and the mental health, sleep status of peacekeepers across various time periods to establish a benchmark for peacekeeper mental health interventions. Symptom checklist 90 (SCL-90), Pittsburgh sleep quality index (PSQI), and negative cognitive processing bias questionnaire (NCPBQ) were adopted to investigate 172 Chinese peacekeepers in the Democratic Republic of the Congo at the early and middle stages of the mission. There was no statistically significant difference in the overall score of PSQI between the early and middle stages of the mission (P = .699). However, there was a statistically significant difference in the overall score of SCL-90 and NCPBQ (P < .05). Furthermore, there was a positive correlation between the negative cognitive processing bias and the scores of SCL-90 and PSQI (R = 0.114-0.528, P < .05). A negative cognitive processing bias was also found to be a strong predictor of the overall score on the SCL-90 and PSQI assessments, with explanation rates of 27.3% and 17.5%, respectively. Peacekeepers are prone to experiencing psychological issues during the initial phase of their mission, necessitating careful attention. The presence of negative cognitive processing bias significantly impacts both mental health and sleep quality. Alleviating negative cognitive processing bias can potentially enhance the mental well-being and sleep quality of peacekeepers.
Collapse
Affiliation(s)
- Wen Jiang
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Yiyi Zhang
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Xu Dong
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| | - Kaiwen Hou
- Outpatient Department, The General Hospital of Western Theater Command, Chengdu, Sichuan Province, China
| |
Collapse
|
2
|
Smith ALW, Hamilton S, Murphy SE, Cowen PJ, Harmer CJ. The behavioural effects of the serotonin 1A receptor agonist buspirone on cognition and emotional processing in healthy volunteers. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06770-6. [PMID: 40087174 DOI: 10.1007/s00213-025-06770-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 02/27/2025] [Indexed: 03/17/2025]
Abstract
RATIONALE The 5-HT1A receptor is expressed widely across the brain and is implicated in the mechanism of action of several therapeutics for mood disorders. However, there is limited and contradictory evidence about the role of this receptor in emotional processing and cognition. OBJECTIVES The current study tested the acute effects of a single dose of the 5-HT1A agonist buspirone (20 mg), on a range of emotional processing (Emotional Test Battery) and cognitive (Auditory Verbal Learning Task (AVLT) and N-back) tasks in healthy, male and female volunteers (N = 62). The study was a randomised, double-blind, placebo controlled, parallel group design. RESULTS Buspirone reduced accuracy for detection of facial expressions of disgust and increased misclassification of negative facial emotions. It had no significant effects on categorisation or recall of emotionally-valanced words. Buspirone also reduced recall accuracy in the AVLT but had no significant effect in the N-back task. Participants receiving buspirone were more likely to experience nausea, light-headedness and sleepiness. CONCLUSIONS Acute buspirone administration produced a mild impairment in verbal memory and a subtle negative bias in emotional processing in healthy volunteers. These effects are consistent with the mixed effects of buspirone on pre- and post-synaptic 5-HT1A receptors.
Collapse
Affiliation(s)
- Alexander L W Smith
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK.
- Oxford Health NHS Foundation Trust, Oxford, UK.
| | - Sorcha Hamilton
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Susannah E Murphy
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Philip J Cowen
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| | - Catherine J Harmer
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, OX3 7JX, UK
- Oxford Health NHS Foundation Trust, Oxford, UK
| |
Collapse
|
3
|
Kim SN, Choi JS, Park M, Yoo SY, Choi A, Koo JW, Kang UG. Neuromodulatory effect of transcranial direct current stimulation on cue reactivity and craving in young adults with internet gaming disorder: an event-related potential study. Front Public Health 2025; 12:1494313. [PMID: 39877912 PMCID: PMC11772170 DOI: 10.3389/fpubh.2024.1494313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/05/2024] [Indexed: 01/31/2025] Open
Abstract
Objective This study assessed the effects of transcranial direct current stimulation (tDCS) on cue reactivity and craving for game-related cues using event-related potentials (ERPs) in internet gaming disorder (IGD) patients. Methods At baseline, a series of game-related and neutral pictures were shown to both IGD and healthy controls (HCs) while ERPs were recorded. Late positive potentials (LPP) were used to investigate cue reactivity. During intervention, IGD patients received 10 sessions (two sessions/day for 5 consecutive days, 2 mA for 20 min/session) of tDCS to the left (anode stimulation) and right (cathode) dorsolateral prefrontal cortex. Subjectively assessed craving and LPP component was analyzed before stimulation and at the 1-month follow-up after tDCS in IGD. Results At baseline, patients with IGD showed higher LPP amplitudes for game-related cues in the centro-parietal and parietal regions than HCs. After 10 sessions of tDCS, increased LPP amplitudes decreased significantly at 1-month follow-up., as well as subjective craving for gaming. Conclusion These findings suggest that neurophysiological arousal in response to game-related cues in the IGD group could be modulated by the effects of tDCS. LPP was a significant neurophysiological marker of the neuroplastic response of cue reactivity underlying the therapeutic effect of tDCS on IGD. Based on the present findings, tDCS could be expanded to the treatment of other addictive disorders, including substance use disorder and behavioral addictions.
Collapse
Affiliation(s)
- Sung Nyun Kim
- Department of Psychiatry, Seoul Medical Center, Seoul, Republic of Korea
| | - Jung-Seok Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Minkyung Park
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - So Young Yoo
- Department of Psychiatry, SMG-SNU Boramae Medical Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Areum Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Ja Wook Koo
- Emotion, Cognition and Behavior Research Group, Korea Brain Research Institute, Daegu, Republic of Korea
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology, Daegu, Republic of Korea
| | - Ung Gu Kang
- Department of Psychiatry and Behavioral Science, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
4
|
Lukow PB, Lowther M, Pike AC, Yamamori Y, Chavanne AV, Gormley S, Aylward J, McCloud T, Goble T, Rodriguez-Sanchez J, Tuominen EW, Buehler SK, Kirk P, Robinson OJ. Amygdala activity after subchronic escitalopram administration in healthy volunteers: A pharmaco-functional magnetic resonance imaging study. J Psychopharmacol 2024; 38:1071-1082. [PMID: 39364684 PMCID: PMC11531087 DOI: 10.1177/02698811241286773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are used for the treatment of several conditions including anxiety disorders, but the basic neurobiology of serotonin function remains unclear. The amygdala and prefrontal cortex are strongly innervated by serotonergic projections and have been suggested to play an important role in anxiety expression. However, serotonergic function in behaviour and SSRI-mediated neurobiological changes remain incompletely understood. AIMS To investigate the neural correlates of subchronic antidepressant administration. METHODS We investigated whether the 2- to 3-week administration of a highly selective SSRI (escitalopram) would alter brain activation on a task robustly shown to recruit the bilateral amygdala and frontal cortices in a large healthy volunteer sample. Participants performed the task during a functional magnetic resonance imaging acquisition before (n = 96) and after subchronic escitalopram (n = 46, days of administration mean (SD) = 15.7 (2.70)) or placebo (n = 40 days of administration mean (SD) = 16.2 (2.90)) self-administration. RESULTS Compared to placebo, we found an elevation in right amygdala activation to the task after escitalopram administration without significant changes in mood. This effect was not seen in the left amygdala, the dorsomedial region of interest, the subgenual anterior cingulate cortex or the right fusiform area. There were no significant changes in connectivity between the dorsomedial cortex and amygdala or the subgenual anterior cingulate cortex after escitalopram administration. CONCLUSIONS To date, this most highly powered study of subchronic SSRI administration indicates that, contrary to effects often seen in patients with anxiety disorders, subchronic SSRI treatment may increase amygdala activation in healthy controls. This finding highlights important gaps in our understanding of the functional role of serotonin.
Collapse
Affiliation(s)
- Paulina B Lukow
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Millie Lowther
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alexandra C Pike
- Institute of Cognitive Neuroscience, University College London, London, UK
- Department of Psychology & York Biomedical Research Institute, University of York, York, UK
| | - Yumeya Yamamori
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Alice V Chavanne
- Institute of Cognitive Neuroscience, University College London, London, UK
- Université Paris-Saclay, Institut National de la Santé et de la Recherche Médicale, INSERM U1299 “Trajectoires Développementales Psychiatrie,” Ecole Normale Supérieure Paris-Saclay, CNRS UMR 9010, Centre Borelli, Gif-sur-Yvette, France
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Siobhan Gormley
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Jessica Aylward
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Tayla McCloud
- Institute of Cognitive Neuroscience, University College London, London, UK
- UCL Division of Psychiatry, Maple House, London, UK
| | - Talya Goble
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Julia Rodriguez-Sanchez
- Institute of Cognitive Neuroscience, University College London, London, UK
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | - Ella W Tuominen
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Sarah K Buehler
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Peter Kirk
- Institute of Cognitive Neuroscience, University College London, London, UK
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, MD, USA
| | - Oliver J Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
5
|
Stoliker D, Novelli L, Vollenweider FX, Egan GF, Preller KH, Razi A. Neural Mechanisms of Resting-State Networks and the Amygdala Underlying the Cognitive and Emotional Effects of Psilocybin. Biol Psychiatry 2024; 96:57-66. [PMID: 38185235 DOI: 10.1016/j.biopsych.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/19/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
BACKGROUND Serotonergic psychedelics, such as psilocybin, alter perceptual and cognitive systems that are functionally integrated with the amygdala. These changes can alter cognition and emotions that are hypothesized to contribute to their therapeutic utility. However, the neural mechanisms of cognitive and subcortical systems altered by psychedelics are not well understood. METHODS We used resting-state functional magnetic resonance images collected during a randomized, double-blind, placebo-controlled clinical trial of 24 healthy adults under 0.2 mg/kg psilocybin to estimate the directed (i.e., effective) changes between the amygdala and 3 large-scale resting-state networks involved in cognition. These networks are the default mode network, the salience network, and the central executive network. RESULTS We found a pattern of decreased top-down effective connectivity from these resting-state networks to the amygdala. Effective connectivity decreased within the default mode network and salience network but increased within the central executive network. These changes in effective connectivity were statistically associated with behavioral measures of altered cognition and emotion under the influence of psilocybin. CONCLUSIONS Our findings suggest that temporary amygdala signal attenuation is associated with mechanistic changes to resting-state network connectivity. These changes are significant for altered cognition and perception and suggest targets for research investigating the efficacy of psychedelic therapy for internalizing psychiatric disorders. More broadly, our study suggests the value of quantifying the brain's hierarchical organization using effective connectivity to identify important mechanisms for basic cognitive function and how they are integrated to give rise to subjective experiences.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Leonardo Novelli
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Franz X Vollenweider
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Gary F Egan
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia
| | - Katrin H Preller
- Department of Psychiatry, Psychotherapy & Psychosomatics, Psychiatric University Hospital Zurich, Zurich, Switzerland
| | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Clayton, Victoria, Australia; Monash Biomedical Imaging, Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom; CIFAR Azrieli Global Scholars Program, CIFAR, Toronto, Ontario, Canada.
| |
Collapse
|
6
|
Malamud J, Lewis G, Moutoussis M, Duffy L, Bone J, Srinivasan R, Lewis G, Huys QJM. The selective serotonin reuptake inhibitor sertraline alters learning from aversive reinforcements in patients with depression: evidence from a randomized controlled trial. Psychol Med 2024; 54:2719-2731. [PMID: 38629200 DOI: 10.1017/s0033291724000837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) are first-line pharmacological treatments for depression and anxiety. However, little is known about how pharmacological action is related to cognitive and affective processes. Here, we examine whether specific reinforcement learning processes mediate the treatment effects of SSRIs. METHODS The PANDA trial was a multicentre, double-blind, randomized clinical trial in UK primary care comparing the SSRI sertraline with placebo for depression and anxiety. Participants (N = 655) performed an affective Go/NoGo task three times during the trial and computational models were used to infer reinforcement learning processes. RESULTS There was poor task performance: only 54% of the task runs were informative, with more informative task runs in the placebo than in the active group. There was no evidence for the preregistered hypothesis that Pavlovian inhibition was affected by sertraline. Exploratory analyses revealed that in the sertraline group, early increases in Pavlovian inhibition were associated with improvements in depression after 12 weeks. Furthermore, sertraline increased how fast participants learned from losses and faster learning from losses was associated with more severe generalized anxiety symptoms. CONCLUSIONS The study findings indicate a relationship between aversive reinforcement learning mechanisms and aspects of depression, anxiety, and SSRI treatment, but these relationships did not align with the initial hypotheses. Poor task performance limits the interpretability and likely generalizability of the findings, and highlights the critical importance of developing acceptable and reliable tasks for use in clinical studies. FUNDING This article presents research supported by NIHR Program Grants for Applied Research (RP-PG-0610-10048), the NIHR BRC, and UCL, with additional support from IMPRS COMP2PSYCH (JM, QH) and a Wellcome Trust grant (QH).
Collapse
Affiliation(s)
- Jolanda Malamud
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| | - Gemma Lewis
- Division of Psychiatry, University College London, London, UK
| | - Michael Moutoussis
- Max Planck UCL Centre for Computational Psychiatry & Ageing Research, University College London, London, UK
- Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, University College London, London, UK
| | - Larisa Duffy
- Division of Psychiatry, University College London, London, UK
| | - Jessica Bone
- Division of Psychiatry, University College London, London, UK
- Research Department of Behavioural Science and Health, Institute of Epidemiology, University College London, London, UK
| | | | - Glyn Lewis
- Division of Psychiatry, University College London, London, UK
| | - Quentin J M Huys
- Applied Computational Psychiatry Lab, Mental Health Neuroscience Department, Division of Psychiatry and Max Planck Centre for Computational Psychiatry and Ageing Research, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
7
|
Salloum F, Farran M, Shaib H, Jurjus A, Sleiman R, Khalil MI. Establishing an OCD Model in BALB/c Mice Using RU24969: A Molecular and Behavioural Study of Optimal Dose Selection. Behav Neurol 2024; 2024:4504858. [PMID: 38566972 PMCID: PMC10985275 DOI: 10.1155/2024/4504858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/01/2024] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Obsessive-compulsive disorder (OCD) is a disabling disease characterized by distressing obsessions and repetitive compulsions. The etiology of OCD is poorly known, and mouse modeling allows to clarify the genetic and neurochemical basis of this disorder and to investigate potential treatments. This study evaluates the impact of the 5-HT1B agonist RU24969 on the induction of OCD-like behaviours in female BALB/c mice (n = 30), distributed across five groups receiving varying doses of RU24969. Behavioural assessments, including marble test, tail suspension test, sucrose preference test, forced swim test, and nestlet shredding test, were conducted. Gene expression and protein quantitation of Gabra1 and serotonin transporter in mouse brain were also performed. Marble-burying behaviour increased significantly at high doses of RU24969 (15-20 mg/kg). The forced swimming test consistently showed elevated values at the same high concentrations, compared to the control. Altered reward-seeking behaviour was indicated by the sucrose preference test, notably at 15 and 20 mg/kg doses of RU24969. Nestlet shredding results did not show statistical significance among the tested animal groups. Gene expression analysis revealed reduced Gabra1 expression with increasing doses of RU, while serotonin transporter was not related to varying doses of RU24969. Western blotting corroborated these trends. The results underscore complex interactions between the serotonin system, GABAergic signaling, and OCD-relevant behaviours and suggest the use of intraperitoneal injection of 15 mg/kg of RU24969 to induce OCD-like behaviour in BALB/c mouse models.
Collapse
Affiliation(s)
- Fatima Salloum
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
| | - Mohamad Farran
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Houssam Shaib
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology, and Physiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Roni Sleiman
- Department of Agriculture, Faculty of Agricultural and Food Sciences, American University of Beirut, Beirut, Lebanon
| | - Mahmoud I. Khalil
- Department of Biological Sciences, Faculty of Science, Beirut Arab University, Beirut, Lebanon
- Molecular Biology Unit, Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| |
Collapse
|
8
|
Liu C, Li K, Fu M, Zhang Y, Sindermann C, Montag C, Zheng X, Zhang H, Yao S, Wang Z, Zhou B, Kendrick KM, Becker B. A central serotonin regulating gene polymorphism (TPH2) determines vulnerability to acute tryptophan depletion-induced anxiety and ventromedial prefrontal threat reactivity in healthy young men. Eur Neuropsychopharmacol 2023; 77:24-34. [PMID: 37666184 DOI: 10.1016/j.euroneuro.2023.08.484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 09/06/2023]
Abstract
Serotonin (5-HT) has long been implicated in adaptive emotion regulation as well as the development and treatment of emotional dysregulations in mental disorders. Accumulating evidence suggests a genetic vulnerability may render some individuals at a greater risk for the detrimental effects of transient variations in 5-HT signaling. The present study aimed to investigate whether individual variations in the Tryptophan hydroxylase 2 (TPH2) genetics influence susceptibility for behavioral and neural threat reactivity dysregulations during transiently decreased 5-HT signaling. To this end, interactive effects between TPH2 (rs4570625) genotype and acute tryptophan depletion (ATD) on threat reactivity were examined in a within-subject placebo-controlled pharmacological fMRI trial (n = 51). A priori genotype stratification of extreme groups (GG vs. TT) allowed balanced sampling. While no main effects of ATD on neural reactivity to threat-related stimuli and mood state were observed in the entire sample, accounting for TPH2 genotype revealed an ATD-induced increase in subjective anxious arousal in the GG but not the TT carriers. The effects were mirrored on the neural level, such that ATD specifically reduced ventromedial prefrontal cortex reactivity towards threat-related stimuli in the GG carriers. Furthermore, the ATD-induced increase in subjective anxiety positively associated with the extent of ATD-induced changes in ventromedial prefrontal cortex activity in response to threat-related stimuli in GG carriers. Together the present findings suggest for the first time that individual variations in TPH2 genetics render individuals susceptible to the anxiogenic and neural effects of a transient decrease in 5-HT signaling.
Collapse
Affiliation(s)
- Congcong Liu
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China; The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Keshuang Li
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; School of Psychology and Cognitive Science, East China Normal University, Shanghai, PR China
| | - Meina Fu
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yingying Zhang
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Cornelia Sindermann
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany; Interchange Forum for Reflecting on Intelligent Systems, University of Stuttgart, Stuttgart, Germany
| | - Christian Montag
- Department of Molecular Psychology, Institute of Psychology and Education, Ulm University, Ulm, Germany
| | - Xiaoxiao Zheng
- MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, PR China
| | - Hongxing Zhang
- School of Psychology, Xinxiang Medical University, Xinxiang, PR China
| | - Shuxia Yao
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Zheng Wang
- School of Psychological and Cognitive Sciences, Beijing Key Laboratory of Behavior and Mental Health, IDG/McGovern Institute for Brain Research, Peking. Tsinghua Center for Life Sciences, Peking University, Beijing, PR China
| | - Bo Zhou
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Keith M Kendrick
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Benjamin Becker
- The Center of Psychosomatic Medicine, Sichuan Provincial Center for Mental Health, Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, PR China; MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, PR China; Department of Psychology, The University of Hong Kong, Hong Kong, PR China.
| |
Collapse
|
9
|
Wang L, Zhou S, Xue Y, Li Q, Cao M, Gu C. Does Early Victimization of School Bullies Affect Core Self-Evaluations in Young Adulthood? A Moderated Mediation Model. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3338. [PMID: 36834031 PMCID: PMC9963547 DOI: 10.3390/ijerph20043338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Early victimization is associated with a range of psychological adaptation problems in young adulthood, including core self-evaluations. However, little is known about the mechanisms underlying the association between early victimization and young adults' core self-evaluations. This study examined the mediating role of negative cognitive processing bias and the moderating role of resilience in the relationship. A total of 972 college students were recruited to complete measures of early victimization, negative cognitive processing bias, resilience, and core self-evaluations. The results showed that early victimization significantly and negatively predicted the core self-evaluations in young adulthood. The negative association between early victimization and core self-evaluations was completely mediated by negative cognitive processing bias. Resilience moderated the relationship between early victimization and negative cognitive bias, and the relationship between negative cognitive processing bias and core self-evaluations. Resilience has both risk-buffering and risk-enhancing effects. In light of these results, in order to help victims maintain good mental health, we should intervene in individual cognitive factors. Notably, while resilience is a protective factor in most cases, the benefits of resilience should not be overstated. So, we should not only cultivate students' resilience but also provide them with more support and resources and intervene in risk factors at the same time.
Collapse
Affiliation(s)
- Lixia Wang
- School of Psychology, Central China Normal University, Wuhan 430079, China
- Mental Health Education Center, Xinyang Normal University, Xinyang 464000, China
| | - Shuzhi Zhou
- School of Psychology, Central China Normal University, Wuhan 430079, China
- Mental Health Education Center, Wuhan University of Technology, Wuhan 430070, China
| | - Yukang Xue
- Department of Educational and Counseling Psychology, University at Albany, Albany, NY 12222, USA
| | - Qianqian Li
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Min Cao
- School of Psychology, Central China Normal University, Wuhan 430079, China
| | - Chuanhua Gu
- School of Psychology, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
10
|
Stoliker D, Egan GF, Friston KJ, Razi A. Neural Mechanisms and Psychology of Psychedelic Ego Dissolution. Pharmacol Rev 2022; 74:876-917. [PMID: 36786290 DOI: 10.1124/pharmrev.121.000508] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroimaging studies of psychedelics have advanced our understanding of hierarchical brain organization and the mechanisms underlying their subjective and therapeutic effects. The primary mechanism of action of classic psychedelics is binding to serotonergic 5-HT2A receptors. Agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy that can have a profound effect on hierarchical message-passing in the brain. Here, we review the cognitive and neuroimaging evidence for the effects of psychedelics: in particular, their influence on selfhood and subject-object boundaries-known as ego dissolution-surmised to underwrite their subjective and therapeutic effects. Agonism of 5-HT2A receptors, located at the apex of the cortical hierarchy, may have a particularly powerful effect on sentience and consciousness. These effects can endure well after the pharmacological half-life, suggesting that psychedelics may have effects on neural plasticity that may play a role in their therapeutic efficacy. Psychologically, this may be accompanied by a disarming of ego resistance that increases the repertoire of perceptual hypotheses and affords alternate pathways for thought and behavior, including those that undergird selfhood. We consider the interaction between serotonergic neuromodulation and sentience through the lens of hierarchical predictive coding, which speaks to the value of psychedelics in understanding how we make sense of the world and specific predictions about effective connectivity in cortical hierarchies that can be tested using functional neuroimaging. SIGNIFICANCE STATEMENT: Classic psychedelics bind to serotonergic 5-HT2A receptors. Their agonist activity at these receptors leads to neuromodulatory changes in synaptic efficacy, resulting in a profound effect on information processing in the brain. Here, we synthesize an abundance of brain imaging research with pharmacological and psychological interpretations informed by the framework of predictive coding. Moreover, predictive coding is suggested to offer more sophisticated interpretations of neuroimaging findings by bridging the role between the 5-HT2A receptors and large-scale brain networks.
Collapse
Affiliation(s)
- Devon Stoliker
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Gary F Egan
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Karl J Friston
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| | - Adeel Razi
- Turner Institute for Brain and Mental Health (D.S., G.F.E., A.R.) and Monash Biomedical Imaging (G.F.E., A.R.), Monash University, Clayton, Victoria, Australia; Wellcome Centre for Human Neuroimaging, UCL, London, United Kingdom (K.J.F., A.R.); and CIFAR Azrieli Global Scholar, CIFAR, Toronto, Canada (A.R.)
| |
Collapse
|
11
|
Armand S, Ozenne B, Svart N, Frøkjaer VG, Knudsen GM, Fisher PM, Stenbaek DS. Brain serotonin transporter is associated with cognitive-affective biases in healthy individuals. Hum Brain Mapp 2022; 43:4174-4184. [PMID: 35607850 PMCID: PMC9374883 DOI: 10.1002/hbm.25946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/21/2022] [Accepted: 05/02/2022] [Indexed: 12/26/2022] Open
Abstract
Cognitive affective biases describe the tendency to process negative information or positive information over the other. These biases can be modulated by changing extracellular serotonin (5-HT) levels in the brain, for example, by pharmacologically blocking and downregulating the 5-HT transporter (5-HTT), which remediates negative affective bias. This suggests that higher levels of 5-HTT are linked to a priority of negative information over positive, but this link remains to be tested in vivo in healthy individuals. We, therefore, evaluated the association between 5-HTT levels, as measured with [11 C]DASB positron emission tomography (PET), and affective biases, hypothesising that higher 5-HTT levels are associated with a more negative bias. We included 98 healthy individuals with measures of [11 C]DASB binding potential (BPND ) and affective biases using The Emotional Faces Identification Task by subtracting the per cent hit rate for happy from that of sad faces (EFITAB ). We evaluated the association between [11 C]DASB BPND and EFITAB in a linear latent variable model, with the latent variable (5-HTTLV ) modelled from [11 C]DASB BPND in the fronto-striatal and fronto-limbic networks implicated in affective cognition. We observed an inverse association between 5-HTTLV and EFITAB (β = -8% EFITAB per unit 5-HTTLV , CI = -14% to -3%, p = .002). These findings show that higher 5-HTT levels are linked to a more negative bias in healthy individuals. High 5-HTT supposedly leads to high clearance of 5-HT, and thus, a negative bias could result from low extracellular 5-HT. Future studies must reveal if a similar inverse association exists in individuals with affective disorders.
Collapse
Affiliation(s)
- Sophia Armand
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Brice Ozenne
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Public Health, Section of Biostatistics, University of Copenhagen, Copenhagen, Denmark.,BrainDrugs, Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Nanna Svart
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Vibe G Frøkjaer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,BrainDrugs, Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Psychiatric Center Copenhagen, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,BrainDrugs, Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Patrick M Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,BrainDrugs, Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Dea S Stenbaek
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Psychology, University of Copenhagen, Copenhagen, Denmark.,BrainDrugs, Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
12
|
The association between reinforcement sensitivity and substance use is mediated by individual differences in dispositional affectivity in adolescents. Addict Behav 2021; 114:106719. [PMID: 33160749 DOI: 10.1016/j.addbeh.2020.106719] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/26/2020] [Accepted: 10/18/2020] [Indexed: 02/05/2023]
Abstract
BACKGROUND Adolescence marks the onset of substance use experimentation and adolescents are particularly vulnerable to certain negative effects of substances. Some evidence indicates reinforcement sensitivity is associated with substance use, though little is known about mechanisms underlying such association. AIMS in the current study were to examine, (1) associations between behavioral activation (BAS) and behavioral inhibition (BIS) system sensitivity, positive (PA) and negative affectivity (NA), and alcohol use and alcohol problems as well as tobacco, and marijuana use, and whether (2) associations are mediated by PA or NA. METHODS Participants were a community sample of N = 125 adolescents (Mage = 15.67 years; SD = 0.93; 52% boys) who completed self-report measures. RESULTS evinced associations, generally as expected, across variables (all ps < 0.05). In mediation analyses, an association emerged between BIS sensitivity and alcohol use, mediated by NA (95%CIs [0.034; 0.390]); greater BIS sensitivity was associated with greater NA and greater NA was associated with greater alcohol use. These findings were replicated with alcohol problems. An association also emerged between BAS sensitivity and marijuana use, mediated by PA (95%CIs [-0.296; -0.027]); greater BAS sensitivity was associated with greater PA and greater PA was associated with lower marijuana use. Finally, BIS sensitivity was associated with tobacco use through NA (95%CIs [0.023; 0.325]) and PA (95%CIs [0.004; 0.116]), with NA linked to greater, but PA linked to lower tobacco use. BAS sensitivity was also associated with tobacco use through PA (95%CIs [-0.395; -0.049]), with PA linked again to lower tobacco use. CONCLUSIONS There are unique and shared effects of domains of reinforcement sensitivity on adolescent substance use and these vary with index of dispositional affectivity and type of substance considered.
Collapse
|
13
|
Deza-Araujo YI, Baez-Lugo S, Vuilleumier P, Chocat A, Chételat G, Poisnel G, Klimecki OM. Whole blood serotonin levels in healthy elderly are negatively associated with the functional activity of emotion-related brain regions. Biol Psychol 2021; 160:108051. [PMID: 33592271 DOI: 10.1016/j.biopsycho.2021.108051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 12/31/2020] [Accepted: 02/09/2021] [Indexed: 11/19/2022]
Abstract
Understanding the role of neuromodulators of socio-affective processing is important to ensure psychological wellbeing during older years. Here, we investigated the link between blood serotonin levels and brain and behavioral responses to emotional information in healthy elderly. A priori regions of interest (ROI) were selected due to their role in emotion processing and their dense serotonergic innervation. Correlation analyses were performed between ROI-specific responses to emotional stimuli and whole blood serotonin levels. We found significant negative associations between serotonin and functional activity for the bilateral insula, dorsal anterior cingulate cortex and subgenual gyrus. No association with behavioral measures survived correction for multiple testing. Our results mirror prior pharmacological and genetic work on the link between serotonin and emotional brain reactivity in younger adults. Given the involvement of serotonin in several age-related changes, our study encourages future research to characterize the role of this neuromodulator in emotion processing across the lifespan.
Collapse
Affiliation(s)
- Yacila I Deza-Araujo
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland.
| | - Sebastian Baez-Lugo
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
| | - Patrik Vuilleumier
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Laboratory for Behavioral Neurology and Imaging of Cognition, Department of Neuroscience, Medical School, University of Geneva, Geneva, Switzerland
| | - Anne Chocat
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Gaël Chételat
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Géraldine Poisnel
- Inserm, UMR-S U1237, Université De Caen-Normandie, GIP Cyceron, Caen, France
| | - Olga M Klimecki
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland; Clinical Psychology and Behavioral Neuroscience, Faculty of Psychology, Technische Universität Dresden, 01187, Dresden, Germany
| |
Collapse
|
14
|
Lai CH. Task MRI-Based Functional Brain Network of Major Depression. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1305:19-33. [PMID: 33834392 DOI: 10.1007/978-981-33-6044-0_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This chapter will focus on task magnetic resonance imaging (MRI) to understand the biological mechanisms and pathophysiology of brain in major depressive disorder (MDD), which would have minor alterations in the brain function. Therefore, the functional study, such as task MRI functional connectivity, would play a crucial role to explore the brain function in MDD. Different kinds of tasks would determine the alterations in functional connectivity in task MRI studies of MDD. The emotion-related tasks are linked with alterations in anterior cingulate cortex, insula, and default mode network. The emotional memory task is linked with amygdala-hippocampus alterations. The reward-related task would be related to the reward circuit alterations, such as fronto-straital. The cognitive-related tasks would be associated with frontal-related functional connectivity alterations, such as the dorsolateral prefrontal cortex, anterior cingulate cortex, and other frontal regions. The visuo-sensory characteristics of tasks might be associated with the parieto-occipital alterations. The frontolimbic regions might be major components of task MRI-based functional connectivity in MDD. However, different scenarios and tasks would influence the representations of results.
Collapse
Affiliation(s)
- Chien-Han Lai
- Psychiatry & Neuroscience Clinic, Taoyuan, Taiwan. .,Institute of Biophotonics, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
15
|
Snyder AD, Zuniga E, Ma L, Steinberg JL, Woisard K, Narayana PA, Lane S, Schmitz J, Moeller FG. Examination of preliminary behavioral and effective connectivity findings from treatment response to citalopram in cocaine use disorder: A dynamic causal modeling study. Psychiatry Res Neuroimaging 2020; 303:111127. [PMID: 32593950 PMCID: PMC8948471 DOI: 10.1016/j.pscychresns.2020.111127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 06/12/2020] [Indexed: 10/24/2022]
Abstract
We sought effective (directional) connectivity parameters associated with response to citalopram in cocaine use disorder (CUD) by conducting a functional magnetic resonance imaging (fMRI) experiment with participants diagnosed with CUD (n = 13) and matched healthy controls (HC; n = 17). CUD participants showed a positive correlation between bilateral DLPFC-to-putamen effective connectivity and treatment effectiveness score. These preliminary results support further investigation of prefrontal-striatal interactions in response to treatment in CUD.
Collapse
Affiliation(s)
- A D Snyder
- Institute for Drug and Alcohol Studies; Department of Psychiatry.
| | - E Zuniga
- Institute for Drug and Alcohol Studies
| | - L Ma
- Institute for Drug and Alcohol Studies; Department of Radiology
| | - J L Steinberg
- Institute for Drug and Alcohol Studies; Department of Psychiatry
| | - K Woisard
- Institute for Drug and Alcohol Studies; Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - P A Narayana
- Department of Diagnostic and Interventional Imaging, University of Texas Health Science Center at Houston, Houston, TX, United States
| | - S Lane
- Program in Neuroscience, Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - J Schmitz
- Faillace Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, Texas, United States
| | - F G Moeller
- Institute for Drug and Alcohol Studies; Department of Psychiatry; Department of Pharmacology and Toxicology; Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
16
|
Gellner AK, Voelter J, Schmidt U, Beins EC, Stein V, Philipsen A, Hurlemann R. Molecular and neurocircuitry mechanisms of social avoidance. Cell Mol Life Sci 2020; 78:1163-1189. [PMID: 32997200 PMCID: PMC7904739 DOI: 10.1007/s00018-020-03649-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 12/11/2022]
Abstract
Humans and animals live in social relationships shaped by actions of approach and avoidance. Both are crucial for normal physical and mental development, survival, and well-being. Active withdrawal from social interaction is often induced by the perception of threat or unpleasant social experience and relies on adaptive mechanisms within neuronal networks associated with social behavior. In case of confrontation with overly strong or persistent stressors and/or dispositions of the affected individual, maladaptive processes in the neuronal circuitries and its associated transmitters and modulators lead to pathological social avoidance. This review focuses on active, fear-driven social avoidance, affected circuits within the mesocorticolimbic system and associated regions and a selection of molecular modulators that promise translational potential. A comprehensive review of human research in this field is followed by a reflection on animal studies that offer a broader and often more detailed range of analytical methodologies. Finally, we take a critical look at challenges that could be addressed in future translational research on fear-driven social avoidance.
Collapse
Affiliation(s)
- Anne-Kathrin Gellner
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Jella Voelter
- Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany
| | - Ulrike Schmidt
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.,Department of Psychiatry Und Psychotherapy, University of Göttingen, Von-Siebold-Str. 5, 37075, Göttingen, Germany
| | - Eva Carolina Beins
- Institute of Human Genetics, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Valentin Stein
- Institute of Physiology II, University Hospital Bonn, 53115, Bonn, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - René Hurlemann
- Division of Medical Psychology, Department of Psychiatry, University Hospital, Venusberg-Campus 1, 53127, Bonn, Germany. .,Department of Psychiatry, School of Medicine and Health Sciences, University of Oldenburg, Hermann-Ehlers-Str. 7, 26160, Bad Zwischenahn, Germany. .,Research Center Neurosensory Science, University of Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
17
|
Wise T, Patrick F, Meyer N, Mazibuko N, Oates AE, van der Bijl AH, Danjou P, O’Connor SM, Doolin E, Wooldridge C, Rathjen D, Macare C, Williams SC, Perkins A, Young AH. Cholinergic Modulation of Disorder-Relevant Neural Circuits in Generalized Anxiety Disorder. Biol Psychiatry 2020; 87:908-915. [PMID: 32107005 PMCID: PMC7198974 DOI: 10.1016/j.biopsych.2019.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 11/25/2019] [Accepted: 12/11/2019] [Indexed: 01/17/2023]
Abstract
BACKGROUND Generalized anxiety disorder is associated with hyperactivity in the amygdala-prefrontal networks, and normalization of this aberrant function is thought to be critical for successful treatment. Preclinical evidence implicates cholinergic neurotransmission in the function of these systems and suggests that cholinergic modulation may have anxiolytic effects. However, the effects of cholinergic modulators on the function of anxiety-related networks in humans have not been investigated. METHODS We administered a novel α7 nicotinic acetylcholine receptor-negative allosteric modulator, BNC210, to 24 individuals (3 male subjects) with generalized anxiety disorder and assessed its effects on neural responses to fearful face stimuli. RESULTS BNC210 reduced amygdala reactivity to fearful faces relative to placebo and similarly to lorazepam and also reduced connectivity between the amygdala and the anterior cingulate cortex, a network involved in regulating anxious responses to aversive stimuli. CONCLUSIONS These results demonstrate for the first time that the function of disorder-relevant neural circuits in generalized anxiety disorder can be beneficially altered through modulation of cholinergic neurotransmission and suggest potential for this system as a novel target for anxiolytic pharmacotherapy.
Collapse
Affiliation(s)
- Toby Wise
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK; Wellcome Trust Centre for Neuroimaging, University College London, London, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Department of Humanities and Social Sciences, California Institute of Technology, Pasadena, California.
| | - Fiona Patrick
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Nicholas Meyer
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | | | | | | | | | | | - Caroline Wooldridge
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | | | - Christine Macare
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Steven C.R. Williams
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre, South London, London, UK
| | - Adam Perkins
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre, South London, London, UK
| | - Allan H. Young
- Department of Psychological Medicine, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK,National Institute for Health Research Biomedical Research Centre, South London, London, UK
| |
Collapse
|
18
|
Goldstein-Piekarski AN, Holt-Gosselin B, O'Hora K, Williams LM. Integrating sleep, neuroimaging, and computational approaches for precision psychiatry. Neuropsychopharmacology 2020; 45:192-204. [PMID: 31426055 PMCID: PMC6879628 DOI: 10.1038/s41386-019-0483-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/21/2019] [Accepted: 07/22/2019] [Indexed: 12/13/2022]
Abstract
In advancing precision psychiatry, we focus on what imaging technology and computational approaches offer for the future of diagnostic subtyping and personalized tailoring of interventions for sleep impairment in mood and anxiety disorders. Current diagnostic criteria for mood and anxiety tend to lump different forms of sleep disturbance together. Parsing the biological features of sleep impairment and brain circuit dysfunction is one approach to identifying subtypes within these disorders that are mechanistically coherent and offer targets for intervention. We focus on two large-scale neural circuits implicated in sleep impairment and in mood and anxiety disorders: the default mode network and negative affective network. Through a synthesis of existing knowledge about these networks, we pose a testable framework for understanding how hyper- versus hypo-engagement of these networks may underlie distinct features of mood and sleep impairment. Within this framework we consider whether poor sleep quality may have an explanatory role in previously observed associations between network dysfunction and mood symptoms. We expand this framework to future directions including the potential for connecting circuit-defined subtypes to more distal features derived from digital phenotyping and wearable technologies, and how new discovery may be advanced through machine learning approaches.
Collapse
Affiliation(s)
- Andrea N Goldstein-Piekarski
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Bailey Holt-Gosselin
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA
| | - Kathleen O'Hora
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA
| | - Leanne M Williams
- Department of Psychiatry and Behavioral Sciences, Stanford University, 401 Quarry Road, Stanford, CA, 94305, USA.
- Sierra-Pacific Mental Illness Research, Education, and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, 3801 Miranda Avenue, Palo Alto, CA, 94304, USA.
| |
Collapse
|
19
|
Bär KJ, Köhler S, Cruz FDL, Schumann A, Zepf FD, Wagner G. Functional consequences of acute tryptophan depletion on raphe nuclei connectivity and network organization in healthy women. Neuroimage 2019; 207:116362. [PMID: 31743788 DOI: 10.1016/j.neuroimage.2019.116362] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 01/01/2023] Open
Abstract
Previous research on central nervous serotonin (5-HT) function provided evidence for a substantial involvement of 5-HT in the regulation of brain circuitries associated with cognitive and affective processing. The underlying neural networks comprise core subcortical/cortical regions such as amygdala and medial prefrontal cortex, which are assumed to be modulated amongst others by 5-HT. Beside the use of antidepressants, acute tryptophan depletion (ATD) is a widely accepted technique to manipulate of 5-HT synthesis and its respective metabolites in humans by means of a dietary and non-pharmacological tool. We used a double-blind, randomized, cross-over design with two experimental challenge conditions, i.e. ATD and tryptophan (TRP) supplementation (TRYP+) serving as a control. The aim was to perturb 5-HT synthesis and to detect its impact on brain functional connectivity (FC) of the upper serotonergic raphe nuclei, the amygdala and the ventromedial prefrontal cortex as well as on network organization using resting state fMRI. 30 healthy adult female participants (age: M = 24.5 ± 4.4 yrs) were included in the final analysis. ATD resulted in a 90% decrease of TRP in the serum relative to baseline. Compared to TRYP + for the ATD condition a significantly lower FC of the raphe nucleus to the frontopolar cortex was detected, as well as greater functional coupling between the right amygdala and the ventromedial prefrontal cortex. FC of the raphe nucleus correlated significantly with the magnitude of TRP changes for both challenge conditions (ATD & TRYP+). Network-based statistical analysis using time series from 260 independent anatomical ROIs revealed significantly greater FC after ATD compared to TRYP+ in several brain regions being part of the default-mode (DMN) and the executive-control networks (ECN), but also of salience or visual networks. Finally, we observed an impact of ATD on the rich-club organization in terms of decreased rich-club coefficients compared to TRYP+. In summary we could confirm previous findings that the putative decrease in brain 5-HT synthesis via ATD significantly alters FC of the raphe nuclei as well as of specific subcortical/cortical regions involved in affective, but also in cognitive processes. Moreover, an ATD-effect on the so-called rich-club organization of some nodes with the high degree was demonstrated. This may indicate effects of brain 5-HT on the integration of information flow from several brain networks.
Collapse
Affiliation(s)
- Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| | - Stefanie Köhler
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Feliberto de la Cruz
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Florian D Zepf
- Department of Child and Adolescent Psychiatry, Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Friedrich Schiller University, 07743, Jena, Germany
| | - Gerd Wagner
- Psychiatric Brain and Body Research Group, Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
| |
Collapse
|
20
|
Grillon C, Robinson OJ, Cornwell B, Ernst M. Modeling anxiety in healthy humans: a key intermediate bridge between basic and clinical sciences. Neuropsychopharmacology 2019; 44:1999-2010. [PMID: 31226707 PMCID: PMC6897969 DOI: 10.1038/s41386-019-0445-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/06/2019] [Accepted: 06/11/2019] [Indexed: 12/11/2022]
Abstract
Animal models of anxiety disorders are important for elucidating neurobiological defense mechanisms. However, animal models are limited when it comes to understanding the more complex processes of anxiety that are unique to humans (e.g., worry) and to screen new treatments. In this review, we outline how the Experimental Psychopathology approach, based on experimental models of anxiety in healthy subjects, can mitigate these limitations and complement research in animals. Experimental psychopathology can bridge basic research in animals and clinical studies, as well as guide and constrain hypotheses about the nature of psychopathology, treatment mechanisms, and treatment targets. This review begins with a brief review of the strengths and limitations of animal models before discussing the need for human models of anxiety, which are especially necessary to probe higher-order cognitive processes. This can be accomplished by combining anxiety-induction procedures with tasks that probe clinically relevant processes to identify neurocircuits that are potentially altered by anxiety. The review then discusses the validity of experimental psychopathology and introduces a methodological approach consisting of five steps: (1) select anxiety-relevant cognitive or behavioral operations and associated tasks, (2) identify the underlying neurocircuits supporting these operations in healthy controls, 3) examine the impact of experimental anxiety on the targeted operations in healthy controls, (4) utilize findings from step 3 to generate hypotheses about neurocircuit dysfunction in anxious patients, and 5) evaluate treatment mechanisms and screen novel treatments. This is followed by two concrete illustrations of this approach and suggestions for future studies.
Collapse
Affiliation(s)
- Christian Grillon
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA.
| | - Oliver J Robinson
- University College London, Institute of Cognitive Neuroscience, London, UK
| | - Brian Cornwell
- Centre for Mental Health, Faculty of Health, Arts and Design, Swinburne University of Technology, Hawthorn, VIC, Australia
| | - Monique Ernst
- Section on the Neurobiology of Fear and Anxiety, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
21
|
van Dalfsen JH, Markus CR. The serotonin transporter gene-linked polymorphic region (5-HTTLPR) and the sleep-promoting effects of tryptophan: A randomized placebo-controlled crossover study. J Psychopharmacol 2019; 33:948-954. [PMID: 31237183 PMCID: PMC6628462 DOI: 10.1177/0269881119855978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The low-expressive short (S) allele of a functional polymorphism (5-HTTLPR) within the serotonin (5-hydroxytriptamine; 5-HT) transporter gene (SLC6A4) has been associated with a reduced functioning of the brain 5-HT system relative to the long (L) allele. As a consequence, the S-allele is found to predispose individuals to a higher risk of sleep quality reduction and clinical insomnia. AIMS The present study investigated whether subchronic pre-sleep tryptophan administration could compensate for this predisposition by improving sleep in 5-HTTLPR S-allele carriers. METHODS In a double-blind placebo-controlled crossover design a sample of homozygous 5-HTTLPR S-allele (n = 47) and L-allele (n = 51) carriers were assessed for subjective (sleep diary) and objective (actigraphy) sleep during a treatment protocol consisting of 1 week of placebo (1000 mg/day) and 1 week of tryptophan administration (1000 mg/day). RESULTS The results support the sleep-promoting effects of tryptophan. Tryptophan improved objective sleep efficiency and objective wake after sleep onset irrespective of allelic variation. There was a marginally significant improvement of subjective sleep quality in the 5-HTTLPR S-allele group but not in the L-allele group following tryptophan relative to placebo intake. In contrast, a significantly poorer sleep quality in the S-allele as opposed to the L-allele group in the placebo condition was not observed in the tryptophan condition. CONCLUSIONS Tryptophan augmentation promises to be a valuable treatment strategy for sleep impairments related to genetic deficiencies in 5-HT functioning.
Collapse
Affiliation(s)
- Jens H van Dalfsen
- Jens H van Dalfsen, Department of Neuropsychology
and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University,
Universiteitssingel 40, 6229 ER Maastricht, the Netherlands.
| | | |
Collapse
|
22
|
Prouty EW, Chandler DJ, Gao WJ, Waterhouse BD. Selective vulnerability of dorsal raphe-medial prefrontal cortex projection neurons to corticosterone-induced hypofunction. Eur J Neurosci 2019; 50:1712-1726. [PMID: 30687960 PMCID: PMC12017375 DOI: 10.1111/ejn.14355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/20/2018] [Accepted: 01/10/2019] [Indexed: 01/11/2023]
Abstract
Glucocorticoid hormones and serotonin (5-HT) are strongly associated with the development and treatment of depression, respectively. Glucocorticoids regulate the function of serotonergic neurons in the dorsal raphe nucleus (DR), which are the major source of 5-HT to the forebrain. DR 5-HT neurons are electrophysiologically heterogeneous, though whether this phenotypic variation aligns with specific brain functions or neuropsychiatric disease states is largely unknown. The goal of this work was to determine if chronic exogenous glucocorticoid administration differentially affects the electrophysiological profile of DR neurons implicated in the regulation of emotion versus visual sensation by comparing properties of cells projecting to medial prefrontal cortex (mPFC) versus lateral geniculate nucleus (LGN). Following retrograde tracer injection into mPFC or LGN, male Sprague-Dawley rats received daily injections of corticosterone (CORT) for 21 days, after which whole-cell patch clamp recordings were made from retrogradely labeled DR neurons. CORT-treatment significantly increased the action potential half-width of LGN-projecting DR neurons, but did not significantly affect the firing frequency or excitatory postsynaptic currents of these cells. CORT-treatment significantly reduced the input resistance, evoked firing frequency, and spontaneous excitatory postsynaptic current frequency of mPFC-projecting DR neurons, indicating a concurrent reduction of both intrinsic excitability and excitatory drive. Our results suggest that the serotonergic regulation of cognitive and emotional networks in the mPFC may be more sensitive to the effects of glucocorticoid excess than visual sensory circuits in the LGN and that reduced 5-HT transmission in the mPFC may underlie the association between glucocorticoid excess and depression.
Collapse
Affiliation(s)
- Eric W. Prouty
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University School of Osteopathic Medicine, Stratford, New Jersey
| |
Collapse
|
23
|
Social brain, social dysfunction and social withdrawal. Neurosci Biobehav Rev 2019; 97:10-33. [DOI: 10.1016/j.neubiorev.2018.09.012] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 05/31/2018] [Accepted: 09/17/2018] [Indexed: 01/07/2023]
|
24
|
Gonzalez-Escamilla G, Chirumamilla VC, Meyer B, Bonertz T, von Grotthus S, Vogt J, Stroh A, Horstmann JP, Tüscher O, Kalisch R, Muthuraman M, Groppa S. Excitability regulation in the dorsomedial prefrontal cortex during sustained instructed fear responses: a TMS-EEG study. Sci Rep 2018; 8:14506. [PMID: 30267020 PMCID: PMC6162240 DOI: 10.1038/s41598-018-32781-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 09/11/2018] [Indexed: 01/25/2023] Open
Abstract
Threat detection is essential for protecting individuals from adverse situations, in which a network of amygdala, limbic regions and dorsomedial prefrontal cortex (dmPFC) regions are involved in fear processing. Excitability regulation in the dmPFC might be crucial for fear processing, while abnormal patterns could lead to mental illness. Notwithstanding, non-invasive paradigms to measure excitability regulation during fear processing in humans are missing. To address this challenge we adapted an approach for excitability characterization, combining electroencephalography (EEG) and transcranial magnetic stimulation (TMS) over the dmPFC during an instructed fear paradigm, to dynamically dissect its role in fear processing. Event-related (ERP) and TMS-evoked potentials (TEP) were analyzed to trace dmPFC excitability. We further linked the excitability regulation patterns to individual MRI-derived gray matter structural integrity of the fear network. Increased cortical excitability was demonstrated to threat (T) processing in comparison to no-threat (NT), reflected by increased amplitude of evoked potentials. Furthermore, TMS at dmPFC enhanced the evoked responses during T processing, while the structural integrity of the dmPFC and amygdala predicted the excitability regulation patterns to fear processing. The dmPFC takes a special role during fear processing by dynamically regulating excitability. The applied paradigm can be used to non-invasively track response abnormalities to threat stimuli in healthy subjects or patients with mental disorders.
Collapse
Affiliation(s)
- Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Venkata C Chirumamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Benjamin Meyer
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Tamara Bonertz
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sarah von Grotthus
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johannes Vogt
- Institute for Microscopic Anatomy and Neurobiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Albrecht Stroh
- Focus Program Translational Neurosciences, Institute for Microscopic Anatomy and Neurobiology, Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Johann-Philipp Horstmann
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Raffael Kalisch
- Neuroimaging Center Mainz, Focus Program Translational Neuroscience, University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Muthuraman Muthuraman
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neurosciences (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131, Mainz, Germany.
| |
Collapse
|
25
|
Rangaprakash D, Bohon C, Lawrence KE, Moody T, Morfini F, Khalsa SS, Strober M, Feusner JD. Aberrant Dynamic Connectivity for Fear Processing in Anorexia Nervosa and Body Dysmorphic Disorder. Front Psychiatry 2018; 9:273. [PMID: 29997532 PMCID: PMC6028703 DOI: 10.3389/fpsyt.2018.00273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 06/05/2018] [Indexed: 01/20/2023] Open
Abstract
Anorexia nervosa (AN) and body dysmorphic disorder (BDD) share distorted perceptions of appearance with extreme negative emotion, yet the neural phenotypes of emotion processing remain underexplored in them, and they have never been directly compared. We sought to determine if shared and disorder-specific fronto-limbic connectivity patterns characterize these disorders. FMRI data was obtained from three unmedicated groups: BDD (n = 32), weight-restored AN (n = 25), and healthy controls (HC; n = 37), while they viewed fearful faces and rated their own degree of fearfulness in response. We performed dynamic effective connectivity modeling with medial prefrontal cortex (mPFC), rostral anterior cingulate cortex (rACC), and amygdala as regions-of-interest (ROI), and assessed associations between connectivity and clinical variables. HCs exhibited significant within-group bidirectional mPFC-amygdala connectivity, which increased across the blocks, whereas BDD participants exhibited only significant mPFC-to-amygdala connectivity (P < 0.05, family-wise error corrected). In contrast, participants with AN lacked significant prefrontal-amygdala connectivity in either direction. AN showed significantly weaker mPFC-to-amygdala connectivity compared to HCs (P = 0.0015) and BDD (P = 0.0050). The mPFC-to-amygdala connectivity was associated with greater subjective fear ratings (R2 = 0.11, P = 0.0016), eating disorder symptoms (R2 = 0.33, P = 0.0029), and anxiety (R2 = 0.29, P = 0.0055) intensity scores. Our findings, which suggest a complex nosological relationship, have implications for understanding emotion regulation circuitry in these related psychiatric disorders, and may have relevance for current and novel therapeutic approaches.
Collapse
Affiliation(s)
- D. Rangaprakash
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Cara Bohon
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
| | - Katherine E. Lawrence
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Teena Moody
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Francesca Morfini
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Sahib S. Khalsa
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- Oxley College of Health Sciences, University of Tulsa, Tulsa, OK, United States
- Laureate Institute for Brain Research, University of Tulsa, Tulsa, OK, United States
| | - Michael Strober
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jamie D. Feusner
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
26
|
Tryptophan supplementation and serotonin function: genetic variations in behavioural effects. Proc Nutr Soc 2018; 77:174-188. [DOI: 10.1017/s0029665117004451] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The neurotransmitter serotonin has a role in affective disorders such as depression and anxiety, as well as sleep, cognitive function and appetite. This review examines the evidence that serotonin-related genotypes may moderate the behavioural effects of supplementation with the serotonin precursor amino acidl-tryptophan (TRP), on which synthesis of serotonin (or 5-hydroxytryptamine; 5-HT) depends. However, 95 % of serotonin is synthesised and used in the periphery, and TRP is also metabolised via non-5-HT routes such as the kynurenine pathway. Moreover, understanding of genotypes involved in regulation of serotonin raises questions over the generalisability of TRP effects on behaviour across individuals with varied serotonergic genotypes. To date, only differences between variants of the 5-HT transporter-linked promoter region (5-HTTLPR) have been investigated in relation to behavioural effects of TRP supplementation. Effects of 5-HTTLPR genotypes are usually compared between the alleles that are either high (L/L′) or low (S/S′) expressing of mRNA for the 5-HT transporter receptor. Yet, another key genetic variable is sex: in women, the S/S′ genotype predicts sensitivity to improved mood and reduced cortisol by TRP supplementation, during stressful challenges, whereas the L/L′ genotype protects against stress-induced mood deterioration. In men, the L/L′ genotype may confer risk of stress-induced increases in negative affect; there are insufficient data to assess effects on male S/S′ genotypes. However, better-powered studies to detect sex by genotype by stress by TRP interactions, as well as consideration of more genotypes, are needed before strong conclusions and recommendations for behavioural effects of TRP treatment can be reached.
Collapse
|
27
|
Carlisi CO, Robinson OJ. The role of prefrontal-subcortical circuitry in negative bias in anxiety: Translational, developmental and treatment perspectives. Brain Neurosci Adv 2018; 2:2398212818774223. [PMID: 30167466 PMCID: PMC6097108 DOI: 10.1177/2398212818774223] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/09/2018] [Indexed: 12/22/2022] Open
Abstract
Anxiety disorders are the most common cause of mental ill health in the developed world, but our understanding of symptoms and treatments is not presently grounded in knowledge of the underlying neurobiological mechanisms. In this review, we discuss accumulating work that points to a role for prefrontal-subcortical brain circuitry in driving a core psychological symptom of anxiety disorders - negative affective bias. Specifically, we point to converging work across humans and animal models, suggesting a reciprocal relationship between dorsal and ventral prefrontal-amygdala circuits in promoting and inhibiting negative bias, respectively. We discuss how the developmental trajectory of these circuits may lead to the onset of anxiety during adolescence and, moreover, how effective pharmacological and psychological treatments may serve to shift the balance of activity within this circuitry to ameliorate negative bias symptoms. Together, these findings may bring us closer to a mechanistic, neurobiological understanding of anxiety disorders and their treatment.
Collapse
Affiliation(s)
- Christina O. Carlisi
- Division of Psychology and Language Sciences, University College London, London, UK
| | - Oliver J. Robinson
- Institute of Cognitive Neuroscience, University College London, London, UK
| |
Collapse
|
28
|
Structural connectomics of anxious arousal in early adolescence: Translating clinical and ethological findings. NEUROIMAGE-CLINICAL 2017; 16:604-609. [PMID: 28971010 PMCID: PMC5619942 DOI: 10.1016/j.nicl.2017.09.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 09/02/2017] [Accepted: 09/19/2017] [Indexed: 01/03/2023]
Abstract
Etiological explanations of clinical anxiety can be advanced through understanding the neural mechanisms associated with anxiety in youth prior to the emergence of psychopathology. In this vein, the present study sought to investigate how trait anxiety is related to features of the structural connectome in early adolescence. 40 adolescents (21 female, mean age = 13.49 years) underwent a diffusion-weighted imaging scan. We hypothesized that the strength of several a priori defined structural connections would vary with anxious arousal based on previous work in human clinical neuroscience and adult rodent optogenetics. First, connection strength of caudate to rostral middle frontal gyrus was predicted to be anticorrelated with anxious arousal, predicated on extant work in clinically-diagnosed adolescents. Second, connection strength of amygdala to rostral anterior cingulate and to medial orbital frontal cortex would be positively and negatively correlated with anxious arousal, respectively, predicated on rodent optogenetics showing the former pathway is anxiogenic and the latter is anxiolytic. We also predicted that levels of anxiety would not vary with measures of global network topology, based on reported null findings. Results support that anxiety in early adolescence is associated with (1) the clinical biomarker connecting caudate to frontal cortex, and (2) the anxiogenic pathway connecting amygdala to rostral anterior cingulate, both in left but not right hemisphere. Findings support that in early adolescence, anxious arousal may be related to mechanisms that increase anxiogenesis, and not in a deficit in regulatory mechanisms that support anxiolysis.
Collapse
|
29
|
Mueller F, Lenz C, Dolder PC, Harder S, Schmid Y, Lang UE, Liechti ME, Borgwardt S. Acute effects of LSD on amygdala activity during processing of fearful stimuli in healthy subjects. Transl Psychiatry 2017; 7:e1084. [PMID: 28375205 PMCID: PMC5416695 DOI: 10.1038/tp.2017.54] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/30/2017] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Lysergic acid diethylamide (LSD) induces profound changes in various mental domains, including perception, self-awareness and emotions. We used functional magnetic resonance imaging (fMRI) to investigate the acute effects of LSD on the neural substrate of emotional processing in humans. Using a double-blind, randomised, cross-over study design, placebo or 100 μg LSD were orally administered to 20 healthy subjects before the fMRI scan, taking into account the subjective and pharmacological peak effects of LSD. The plasma levels of LSD were determined immediately before and after the scan. The study (including the a priori-defined study end point) was registered at ClinicalTrials.gov before study start (NCT02308969). The administration of LSD reduced reactivity of the left amygdala and the right medial prefrontal cortex relative to placebo during the presentation of fearful faces (P<0.05, family-wise error). Notably, there was a significant negative correlation between LSD-induced amygdala response to fearful stimuli and the LSD-induced subjective drug effects (P<0.05). These data suggest that acute administration of LSD modulates the engagement of brain regions that mediate emotional processing.
Collapse
Affiliation(s)
- F Mueller
- Department of Psychiatry, Universitäre Psychiatrische Kliniken, University of Basel, Basel, Switzerland
| | - C Lenz
- Department of Psychiatry, Universitäre Psychiatrische Kliniken, University of Basel, Basel, Switzerland
| | - P C Dolder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - S Harder
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - Y Schmid
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - U E Lang
- Department of Psychiatry, Universitäre Psychiatrische Kliniken, University of Basel, Basel, Switzerland
| | - M E Liechti
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Clinical Research, University Hospital Basel, Basel, Switzerland
| | - S Borgwardt
- Department of Psychiatry, Universitäre Psychiatrische Kliniken, University of Basel, Basel, Switzerland
| |
Collapse
|
30
|
Cheng Y, Xu J, Arnone D, Nie B, Yu H, Jiang H, Bai Y, Luo C, Campbell RAA, Shan B, Xu L, Xu X. Resting-state brain alteration after a single dose of SSRI administration predicts 8-week remission of patients with major depressive disorder. Psychol Med 2017; 47:438-450. [PMID: 27697079 DOI: 10.1017/s0033291716002440] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND The present study investigated alteration of brain resting-state activity induced by antidepressant treatment and attempted to investigate whether treatment efficacy can be predicted at an early stage of pharmacological treatment. METHOD Forty-eight first-episode medication-free patients diagnosed with major depression received treatment with escitalopram. Resting-state functional magnetic resonance imaging was administered prior to treatment, 5 h after the first dose, during the course of pharmacological treatment (week 4) and at endpoint (week 8). Resting-state activity was evaluated in the course of the 8-week treatment and in relation to clinical improvement. RESULTS Escitalopram dynamically modified resting-state activity in depression during the treatment. After 5 h the antidepressant induced a significant decrease in the signal in the occipital cortex and an increase in the dorsolateral and dorsomedial prefrontal cortices and middle cingulate cortex. Furthermore, while remitters demonstrated more obvious changes following treatment, these were more modest in non-responders suggesting possible tonic and dynamic differences in the serotonergic system. Changes after 5 h in the caudate, occipital and temporal cortices were the best predictor of clinical remission at endpoint. CONCLUSIONS This study revealed the possibility of using the measurement of resting-state neural changes a few hours after acute administration of antidepressant to identify individuals likely to remit after a few weeks of treatment.
Collapse
Affiliation(s)
- Y Cheng
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - J Xu
- Department of Internal Medicine,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - D Arnone
- Department of Psychological Medicine,Centre for Affective Disorders, King's College London,London,UK
| | - B Nie
- Key Laboratory of Nuclear Analysis Techniques,Institute of High Energy Physics, Chinese Academy of Sciences,Beijing,China
| | - H Yu
- Magnetic Resonance Imaging Center,the First Hospital of Kunming City,Kunming,China
| | - H Jiang
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - Y Bai
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| | - C Luo
- Magnetic Resonance Imaging Center,the First Hospital of Kunming City,Kunming,China
| | - R A A Campbell
- Department of Neuroscience,Cold Spring Harbor Laboratory,New York,USA
| | - B Shan
- Key Laboratory of Nuclear Analysis Techniques,Institute of High Energy Physics, Chinese Academy of Sciences,Beijing,China
| | - L Xu
- Key Laboratory of Animal Models and Human Disease Mechanisms,Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology,Kunming,China
| | - X Xu
- Department of Psychiatry,First Affiliated Hospital of Kunming Medical University,Kunming,China
| |
Collapse
|
31
|
Raab K, Kirsch P, Mier D. Understanding the impact of 5-HTTLPR, antidepressants, and acute tryptophan depletion on brain activation during facial emotion processing: A review of the imaging literature. Neurosci Biobehav Rev 2016; 71:176-197. [DOI: 10.1016/j.neubiorev.2016.08.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/28/2016] [Accepted: 08/26/2016] [Indexed: 12/22/2022]
|
32
|
Social functioning in major depressive disorder. Neurosci Biobehav Rev 2016; 69:313-32. [PMID: 27395342 DOI: 10.1016/j.neubiorev.2016.07.002] [Citation(s) in RCA: 404] [Impact Index Per Article: 44.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 06/15/2016] [Accepted: 07/05/2016] [Indexed: 12/18/2022]
Abstract
Depression is associated with social risk factors, social impairments and poor social functioning. This paper gives an overview of these social aspects using the NIMH Research and Domain Criteria 'Systems for Social Processes' as a framework. In particular, it describes the bio-psycho-social interplay regarding impaired affiliation and attachment (social anhedonia, hyper-sensitivity to social rejection, competition avoidance, increased altruistic punishment), impaired social communication (impaired emotion recognition, diminished cooperativeness), impaired social perception (reduced empathy, theory-of-mind deficits) and their impact on social networks and the use of social media. It describes these dysfunctional social processes at the behavioural, neuroanatomical, neurochemical and genetic levels, and with respect to animal models of social stress. We discuss the diagnostic specificity of these social deficit constructs for depression and in relation to depression severity. Since social factors are importantly involved in the pathogenesis and the consequences of depression, such research will likely contribute to better diagnostic assessments and concepts, treatments and preventative strategies both at the diagnostic and transdiagnostic level.
Collapse
|
33
|
Anxiety-potentiated amygdala-medial frontal coupling and attentional control. Transl Psychiatry 2016; 6:e833. [PMID: 27271859 PMCID: PMC4931603 DOI: 10.1038/tp.2016.105] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 04/24/2016] [Indexed: 01/09/2023] Open
Abstract
Anxiety disorders can be treated both pharmacologically and psychologically, but many individuals either fail to respond to treatment or relapse. Improving outcomes is difficult, in part because we have incomplete understanding of the neurobiological mechanisms underlying current treatments. In a sequence of studies, we have identified 'affective bias-related' amygdala-medial cortical coupling as a candidate substrate underlying adaptive anxiety (that is, anxiety elicited by threat of shock in healthy individuals) and shown that it is also chronically engaged in maladaptive anxiety disorders. We have provided evidence that this circuit can be modulated pharmacologically, but whether this mechanism can be shifted by simple psychological instruction is unknown. In this functional magnetic resonance imaging study, we extend a previously used translational anxiety induction (threat of shock) in healthy subjects (N=43) and cognitive task to include an element of instructed attentional control. Replicating our previous findings, we show that induced anxiety engages 'affective bias-related' amygdala-dorsal medial frontal coupling during the processing of emotional faces. By contrast, instructing subjects to attend to neutral shapes (and ignore faces) disengages this circuitry and increases putative 'attentional control-related' coupling between the amygdala and a more rostral prefrontal region. These neural coupling changes are accompanied by corresponding modulation of behavioural performance. Taken together, these findings serve to further highlight the potential role of amygdala-medial frontal coupling in the pathogenesis of anxiety and highlight a mechanism by which it can be modulated via psychological instructions. This, in turn, generates hypotheses for future work exploring the mechanisms underlying psychological therapeutic interventions for anxiety.
Collapse
|
34
|
Windle M, Kogan SM, Lee S, Chen YF, Lei KM, Brody GH, Beach SRH, Yu T. Neighborhood × Serotonin Transporter Linked Polymorphic Region (5-HTTLPR) interactions for substance use from ages 10 to 24 years using a harmonized data set of African American children. Dev Psychopathol 2016; 28:415-31. [PMID: 26073189 PMCID: PMC4881837 DOI: 10.1017/s095457941500053x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This study investigated the influences of neighborhood factors (residential stability and neighborhood disadvantage) and variants of the serotonin transporter linked polymorphic region (5-HTTLPR) genotype on the development of substance use among African American children aged 10-24 years. To accomplish this, a harmonized data set of five longitudinal studies was created via pooling overlapping age cohorts to establish a database with 2,689 children and 12,474 data points to span ages 10-24 years. A description of steps used in the development of the harmonized data set is provided, including how issues such as the measurement equivalence of constructs were addressed. A sequence of multilevel models was specified to evaluate Gene × Environment effects on growth of substance use across time. Findings indicated that residential instability was associated with higher levels and a steeper gradient of growth in substance use across time. The inclusion of the 5-HTTLPR genotype provided greater precision to the relationships in that higher residential instability, in conjunction with the risk variant of 5-HTTLPR (i.e., the short allele), was associated with the highest level and steepest gradient of growth in substance use across ages 10-24 years. The findings demonstrated how the creation of a harmonized data set increased statistical power to test Gene × Environment interactions for an under studied sample.
Collapse
|
35
|
Spiegel DR, Mccroskey AL, Deyerle BA. A Case of Transient Global Amnesia: A Review and How It May Shed Further Insight into the Neurobiology of Delusions. INNOVATIONS IN CLINICAL NEUROSCIENCE 2016; 13:32-41. [PMID: 27354927 PMCID: PMC4911939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Transient global amnesia is a clinical syndrome characterized by the sudden onset of anterograde amnesia, accompanied by repetitive questioning, sometimes with a retrograde component, lasting up to 24 hours, without compromise of other neurologic function. Neuroimaging after an acutetransient global amnesia event often shows transient perturbation of specific hippocampal circuits that are involved in memory processing. Critical clinical distinctions, such as between transient global amnesia and other forms of transient amnesic episodes, as well as important clues to the underlying pathophysiologies are herein reviewed. Finally, we discuss the role of hippocampal insufficiency in the neurobiology of delusions.
Collapse
Affiliation(s)
- David R Spiegel
- All with the Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Aidan L Mccroskey
- All with the Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| | - Branden A Deyerle
- All with the Department of Psychiatry and Behavioral Sciences, Eastern Virginia Medical School, Norfolk, Virginia
| |
Collapse
|
36
|
Ulrich M, Keller J, Grön G. Neural signatures of experimentally induced flow experiences identified in a typical fMRI block design with BOLD imaging. Soc Cogn Affect Neurosci 2015; 11:496-507. [PMID: 26508774 DOI: 10.1093/scan/nsv133] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 10/20/2015] [Indexed: 11/14/2022] Open
Abstract
Previously, experimentally induced flow experiences have been demonstrated with perfusion imaging during activation blocks of 3 min length to accommodate with the putatively slowly evolving "mood" characteristics of flow. Here, we used functional magnetic resonance imaging (fMRI) in a sample of 23 healthy, male participants to investigate flow in the context of a typical fMRI block design with block lengths as short as 30 s. To induce flow, demands of arithmetic tasks were automatically and continuously adjusted to the individual skill level. Compared against conditions of boredom and overload, experience of flow was evident from individuals' reported subjective experiences and changes in electrodermal activity. Neural activation was relatively increased during flow, particularly in the anterior insula, inferior frontal gyri, basal ganglia and midbrain. Relative activation decreases during flow were observed in medial prefrontal and posterior cingulate cortex, and in the medial temporal lobe including the amygdala. Present findings suggest that even in the context of comparably short activation blocks flow can be reliably experienced and is associated with changes in neural activation of brain regions previously described. Possible mechanisms of interacting brain regions are outlined, awaiting further investigation which should now be possible given the greater temporal resolution compared with previous perfusion imaging.
Collapse
Affiliation(s)
- Martin Ulrich
- Department of Psychiatry, University of Ulm, 89075 Ulm and
| | - Johannes Keller
- Department of Psychology and Education, University of Ulm, 89069 Ulm, Germany
| | - Georg Grön
- Department of Psychiatry, University of Ulm, 89075 Ulm and
| |
Collapse
|
37
|
Kraehenmann R, Schmidt A, Friston K, Preller KH, Seifritz E, Vollenweider FX. The mixed serotonin receptor agonist psilocybin reduces threat-induced modulation of amygdala connectivity. NEUROIMAGE-CLINICAL 2015; 11:53-60. [PMID: 26909323 PMCID: PMC4732191 DOI: 10.1016/j.nicl.2015.08.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 07/27/2015] [Accepted: 08/17/2015] [Indexed: 11/24/2022]
Abstract
Stimulation of serotonergic neurotransmission by psilocybin has been shown to shift emotional biases away from negative towards positive stimuli. We have recently shown that reduced amygdala activity during threat processing might underlie psilocybin's effect on emotional processing. However, it is still not known whether psilocybin modulates bottom-up or top-down connectivity within the visual-limbic-prefrontal network underlying threat processing. We therefore analyzed our previous fMRI data using dynamic causal modeling and used Bayesian model selection to infer how psilocybin modulated effective connectivity within the visual–limbic–prefrontal network during threat processing. First, both placebo and psilocybin data were best explained by a model in which threat affect modulated bidirectional connections between the primary visual cortex, amygdala, and lateral prefrontal cortex. Second, psilocybin decreased the threat-induced modulation of top-down connectivity from the amygdala to primary visual cortex, speaking to a neural mechanism that might underlie putative shifts towards positive affect states after psilocybin administration. These findings may have important implications for the treatment of mood and anxiety disorders. We measured BOLD signals during a threat-inducing pictures task. Subjects were treated with psilocybin (a serotonergic hallucinogen) and placebo. We compared effective connectivity changes between psilocybin and placebo using DCM. We found that psilocybin decreased top-down connectivity from the amygdala to visual cortex. Results point at a neural mechanism underlying emotional shifts induced by psilocybin.
Collapse
Affiliation(s)
- Rainer Kraehenmann
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zürich 8032, Switzerland; Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zürich 8032, Switzerland.
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel 4012, Switzerland; Department of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 AF, United Kingdom
| | - Karl Friston
- Wellcome Centre for Imaging Neuroscience, University College London, London WC1N 3BG, United Kingdom
| | - Katrin H Preller
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zürich 8032, Switzerland
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zürich 8032, Switzerland
| | - Franz X Vollenweider
- Neuropsychopharmacology and Brain Imaging, Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zürich 8032, Switzerland
| |
Collapse
|
38
|
Challis C, Berton O. Top-Down Control of Serotonin Systems by the Prefrontal Cortex: A Path toward Restored Socioemotional Function in Depression. ACS Chem Neurosci 2015; 6:1040-54. [PMID: 25706226 DOI: 10.1021/acschemneuro.5b00007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Social withdrawal, increased threat perception, and exaggerated reassurance seeking behaviors are prominent interpersonal symptoms in major depressive disorder (MDD). Altered serotonin (5-HT) systems and corticolimbic dysconnectivity have long been suspected to contribute to these symptomatic facets; however, the underlying circuits and intrinsic cellular mechanisms that control 5-HT output during socioemotional interactions remain poorly understood. We review literature that implicates a direct pathway between the ventromedial prefrontal cortex (vmPFC) and dorsal raphe nucleus (DRN) in the adaptive and pathological control of social approach-avoidance behaviors. Imaging and neuromodulation during approach-avoidance tasks in humans point to the cortical control of brainstem circuits as an essential regulator of socioemotional decisions and actions. Parallel rodent studies using viral-based connectomics and optogenetics are beginning to provide a cellular blueprint of the underlying circuitry. In these studies, manipulations of vmPFC synaptic inputs to the DRN have revealed bidirectional influences on socioaffective behaviors via direct monosynaptic excitation and indirect disynaptic inhibition of 5-HT neurons. Additionally, adverse social experiences that result in permanent avoidance biases, such as social defeat, drive long-lasting plasticity in this microcircuit, potentiating the indirect inhibition of 5-HT output. Conversely, neuromodulation of the vmPFC via deep brain stimulation (DBS) attenuates avoidance biases by restoring the direct excitatory drive of 5-HT neurons and strengthening a key subset of forebrain 5-HT projections. Better understanding the cellular organization of the vmPFC-DRN pathway and identifying molecular determinants of its neuroplasticity can open fundamentally novel avenues for the treatment of affective disorders.
Collapse
Affiliation(s)
- Collin Challis
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| | - Olivier Berton
- Department of Psychiatry, ‡Neuroscience Graduate Group, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
39
|
Miskowiak KW, Glerup L, Vestbo C, Harmer CJ, Reinecke A, Macoveanu J, Siebner HR, Kessing LV, Vinberg M. Different neural and cognitive response to emotional faces in healthy monozygotic twins at risk of depression. Psychol Med 2015; 45:1447-1458. [PMID: 25382193 DOI: 10.1017/s0033291714002542] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Negative cognitive bias and aberrant neural processing of emotional faces are trait-marks of depression. Yet it is unclear whether these changes constitute an endophenotype for depression and are also present in healthy individuals with hereditary risk for depression. METHOD Thirty healthy, never-depressed monozygotic (MZ) twins with a co-twin history of depression (high risk group: n = 13) or without co-twin history of depression (low-risk group: n = 17) were enrolled in a functional magnetic resonance imaging (fMRI) study. During fMRI, participants viewed fearful and happy faces while performing a gender discrimination task. After the scan, they were given a faces dot-probe task, a facial expression recognition task and questionnaires assessing mood, personality traits and coping strategies. RESULTS High-risk twins showed increased neural response to happy and fearful faces in dorsal anterior cingulate cortex (ACC), dorsomedial prefrontal cortex (dmPFC), pre-supplementary motor area and occipito-parietal regions compared to low-risk twins. They also displayed stronger negative coupling between amygdala and pregenual ACC, dmPFC and temporo-parietal regions during emotional face processing. These task-related changes in neural responses in high-risk twins were accompanied by impaired gender discrimination performance during face processing. They also displayed increased attention vigilance for fearful faces and were slower at recognizing facial expressions relative to low-risk controls. These effects occurred in the absence of differences between groups in mood, subjective state or coping. CONCLUSIONS Different neural response and functional connectivity within fronto-limbic and occipito-parietal regions during emotional face processing and enhanced fear vigilance may be key endophenotypes for depression.
Collapse
Affiliation(s)
- K W Miskowiak
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Denmark
| | - L Glerup
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Denmark
| | - C Vestbo
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Denmark
| | - C J Harmer
- Department of Psychiatry,University of Oxford,Oxford,UK
| | - A Reinecke
- Department of Psychiatry,University of Oxford,Oxford,UK
| | - J Macoveanu
- Danish Research Centre for Magnetic Resonance,Copenhagen University Hospital Hvidovre,Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance,Copenhagen University Hospital Hvidovre,Denmark
| | - L V Kessing
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Denmark
| | - M Vinberg
- Psychiatric Centre Copenhagen,Copenhagen University Hospital,Rigshospitalet,Denmark
| |
Collapse
|
40
|
Biskup CS, Gaber T, Helmbold K, Bubenzer-Busch S, Zepf FD. Amino acid challenge and depletion techniques in human functional neuroimaging studies: an overview. Amino Acids 2015; 47:651-83. [DOI: 10.1007/s00726-015-1919-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 01/09/2015] [Indexed: 01/16/2023]
|
41
|
Phillips ML, Chase HW, Sheline YI, Etkin A, Almeida JR, Deckersbach T, Trivedi MH. Identifying predictors, moderators, and mediators of antidepressant response in major depressive disorder: neuroimaging approaches. Am J Psychiatry 2015; 172:124-38. [PMID: 25640931 PMCID: PMC4464814 DOI: 10.1176/appi.ajp.2014.14010076] [Citation(s) in RCA: 191] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Despite significant advances in neuroscience and treatment development, no widely accepted biomarkers are available to inform diagnostics or identify preferred treatments for individuals with major depressive disorder. METHOD In this critical review, the authors examine the extent to which multimodal neuroimaging techniques can identify biomarkers reflecting key pathophysiologic processes in depression and whether such biomarkers may act as predictors, moderators, and mediators of treatment response that might facilitate development of personalized treatments based on a better understanding of these processes. RESULTS The authors first highlight the most consistent findings from neuroimaging studies using different techniques in depression, including structural and functional abnormalities in two parallel neural circuits: serotonergically modulated implicit emotion regulation circuitry, centered on the amygdala and different regions in the medial prefrontal cortex; and dopaminergically modulated reward neural circuitry, centered on the ventral striatum and medial prefrontal cortex. They then describe key findings from the relatively small number of studies indicating that specific measures of regional function and, to a lesser extent, structure in these neural circuits predict treatment response in depression. CONCLUSIONS Limitations of existing studies include small sample sizes, use of only one neuroimaging modality, and a focus on identifying predictors rather than moderators and mediators of differential treatment response. By addressing these limitations and, most importantly, capitalizing on the benefits of multimodal neuroimaging, future studies can yield moderators and mediators of treatment response in depression to facilitate significant improvements in shorter- and longer-term clinical and functional outcomes.
Collapse
|
42
|
The role of serotonin in reward, punishment and behavioural inhibition in humans: insights from studies with acute tryptophan depletion. Neurosci Biobehav Rev 2014; 46 Pt 3:365-78. [PMID: 25195164 DOI: 10.1016/j.neubiorev.2014.07.024] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 06/19/2014] [Accepted: 07/28/2014] [Indexed: 01/06/2023]
Abstract
Deakin and Graeff proposed that forebrain 5-hydroxytryptamine (5-HT) projections are activated by aversive events and mediate anticipatory coping responses including avoidance learning and suppression of the fight-flight escape/panic response. Other theories proposed 5-HT mediates aspects of behavioural inhibition or reward. Most of the evidence comes from rodent studies. We review 36 experimental studies in humans in which the technique of acute tryptophan depletion (ATD) was used to explicitly address the role of 5-HT in response inhibition, punishment and reward. ATD did not cause disinhibition of responding in the absence of rewards or punishments (9 studies). A major role for 5-HT in reward processing is unlikely but further tests are warranted by some ATD findings. Remarkably, ATD lessened the ability of punishments (losing points or notional money) to restrain behaviour without affecting reward processing in 7 studies. Two of these studies strongly indicate that ATD blocks 5-HT mediated aversively conditioned Pavlovian inhibition and this can explain a number of the behavioural effects of ATD.
Collapse
|
43
|
Robinson OJ, Krimsky M, Lieberman L, Allen P, Vytal K, Grillon C. Towards a mechanistic understanding of pathological anxiety: the dorsal medial prefrontal-amygdala 'aversive amplification' circuit in unmedicated generalized and social anxiety disorders. Lancet Psychiatry 2014; 1:294-302. [PMID: 25722962 PMCID: PMC4337019 DOI: 10.1016/s2215-0366(14)70305-0] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
BACKGROUND We have delineated, across four prior studies, the role of positive dorsal medial prefrontal/anterior cingulate cortex (dmPFC/ACC)-amygdala circuit coupling during aversive processing in healthy individuals under stress. This translational circuit, termed the 'aversive amplification circuit', is thought to drive adaptive, harm-avoidant behavior in threatening environments. Here, in a natural progression of this prior work, we confirm that this circuit also plays a role in the pathological manifestation of anxiety disorders. METHODS Forty-five unmedicated participants (N=22 generalized and social anxiety disorder/N=23 controls) recruited from Washington DC metropolitan area completed a simple emotion identification task during functional magnetic resonance imaging at the National Institutes of Health, Bethesda, MD, USA. FINDINGS As predicted, a diagnosis by valence interaction was seen in whole-brain amygdala connectivity within the dmPFC/ACC clusters identified in our prior study; driven by significantly greater circuit coupling during fearful versus happy face processing in anxious, but not healthy, participants. Critically, and in accordance with contemporary theoretical approaches to psychiatry, circuit coupling correlated positively with self-reported anxious symptoms, providing evidence of a continuous circuit-subjective symptomatology relationship. INTERPRETATION We track the functional role of a single neural circuit from its involvement in adaptive threat-biases under stress, to its chronic engagement in anxiety disorders in the absence of experimentally induced stress. Thus, we uniquely map a mood and anxiety related circuit across its adaptive and maladaptive stages. Clinically, this may provide a step towards a more mechanistic spectrum-based approach to anxiety disorder diagnosis and may ultimately lead to more targeted treatments.
Collapse
Affiliation(s)
- Oliver J Robinson
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA ; Institute of Cognitive Neuroscience, University College London, WC1N 3AR, UK
| | - Marissa Krimsky
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA
| | - Lynne Lieberman
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA
| | - Phillip Allen
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA
| | - Katherine Vytal
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA
| | - Christian Grillon
- Section on Neurobiology of Fear and Anxiety, National Institute of Mental Health, NIH, Bethesda, MD, 20892 USA
| |
Collapse
|
44
|
Vytal KE, Overstreet C, Charney DR, Robinson OJ, Grillon C. Sustained anxiety increases amygdala-dorsomedial prefrontal coupling: a mechanism for maintaining an anxious state in healthy adults. J Psychiatry Neurosci 2014; 39:321-9. [PMID: 24886788 PMCID: PMC4160361 DOI: 10.1503/jpn.130145] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Neuroimaging research has traditionally explored fear and anxiety in response to discrete threat cues (e.g., during fear conditioning). However, anxiety is a sustained aversive state that can persist in the absence of discrete threats. Little is known about mechanisms that maintain anxiety states over a prolonged period. Here, we used a robust translational paradigm (threat of shock) to induce sustained anxiety. Recent translational work has implicated an amygdala-prefrontal cortex (PFC) circuit in the maintenance of anxiety in rodents. To explore the functional homologues of this circuitry in humans, we used a novel paradigm to examine the impact of sustained anticipatory anxiety on amygdala-PFC intrinsic connectivity. METHODS Task-independent fMRI data were collected in healthy participants during long-duration periods of shock anticipation and safety. We examined intrinsic functional connectivity. RESULTS Our study involved 20 healthy participants. During sustained anxiety, amygdala activity was positively coupled with dorsomedial PFC (DMPFC) activity. High trait anxiety was associated with increased amygdala-DMPFC coupling. In addition, induced anxiety was associated with positive coupling between regions involved in defensive responding, and decreased coupling between regions involved in emotional control and the default mode network. LIMITATIONS Inferences regarding anxious pathology should be made with caution because this study was conducted in healthy participants. CONCLUSION Findings suggest that anticipatory anxiety increases intrinsic amygdala-DMPFC coupling and that the DMPFC may serve as a functional homologue for the rodent prefrontal regions by sustaining anxiety. Future research may use this defensive neural context to identify biomarkers of risk for anxious pathology and target these circuits for therapeutic intervention.
Collapse
Affiliation(s)
- Katherine E. Vytal
- Correspondence to: K.E. Vytal, National Institute of Mental Health, 15K North Dr., MSC 2670, Bethesda MD 20892-2670;
| | | | | | | | | |
Collapse
|
45
|
Moeller SJ, Parvaz MA, Shumay E, Wu S, Beebe-Wang N, Konova AB, Misyrlis M, Alia-Klein N, Goldstein RZ. Monoamine polygenic liability in health and cocaine dependence: imaging genetics study of aversive processing and associations with depression symptomatology. Drug Alcohol Depend 2014; 140:17-24. [PMID: 24837582 PMCID: PMC4053494 DOI: 10.1016/j.drugalcdep.2014.04.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 03/10/2014] [Accepted: 04/14/2014] [Indexed: 01/04/2023]
Abstract
BACKGROUND Gene polymorphisms that affect serotonin signaling modulate reactivity to salient stimuli and risk for emotional disturbances. Here, we hypothesized that these serotonin genes, which have been primarily explored in depressive disorders, could also have important implications for drug addiction, with the potential to reveal important insights into drug symptomatology, severity, and/or possible sequelae such as dysphoria. METHODS Using an imaging genetics approach, the current study tested in 62 cocaine abusers and 57 healthy controls the separate and combined effects of variations in the serotonin transporter (5-HTTLPR) and monoamine oxidase A (MAOA) genes on processing of aversive information. Reactivity to standardized unpleasant images was indexed by a psychophysiological marker of stimulus salience (i.e., the late positive potential (LPP) component of the event-related potential) during passive picture viewing. Depressive symptomatology was assessed with the Beck Depression Inventory (BDI). RESULTS Results showed that, independent of diagnosis, the highest unpleasant LPPs emerged in individuals with MAOA-Low and at least one 'Short' allele of 5-HTTLPR. Uniquely in the cocaine participants with these two risk variants, higher unpleasant LPPs correlated with higher BDI scores. CONCLUSIONS Taken together, these results suggest that a multilocus genetic composite of monoamine signaling relates to depression symptomatology through brain function associated with the experience of negative emotions. This research lays the groundwork for future studies that can investigate clinical outcomes and/or pharmacogenetic therapies in drug addiction and potentially other psychopathologies of emotion dysregulation.
Collapse
Affiliation(s)
- Scott J Moeller
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Muhammad A Parvaz
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Elena Shumay
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Salina Wu
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Nicasia Beebe-Wang
- Department of Biosciences, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Anna B Konova
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Psychology, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Michail Misyrlis
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America; Department of Computer Science, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Nelly Alia-Klein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America
| | - Rita Z Goldstein
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States of America.
| |
Collapse
|
46
|
Bernik M, Sampaio TPA, Gandarela L. Fibromyalgia comorbid with anxiety disorders and depression: combined medical and psychological treatment. Curr Pain Headache Rep 2014; 17:358. [PMID: 23904203 DOI: 10.1007/s11916-013-0358-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fibromyalgia is associated with high level of pain and suffering. Lack of diagnosis leads to onerous indirect economic costs. Recent data indicate that fibromyalgia; anxiety disorders, and depression tend to occur as comorbid conditions. They also share some common neurochemical dysfunctions and central nervous system alterations such as hypofunctional serotonergic system and altered reactivity of the hypothalamic-pituitary-adrenal axis. Conversely, functional neuroimaging findings point to different patterns of altered pain processing mechanisms between fibromyalgia and depression. There is no cure for fibromyalgia, and treatment response effect size is usually small to moderate. Treatment should be based on drugs that also target the comorbid psychiatric condition. Combined pharmacotherapy and cognitive-behavior therapy should ideally be offered to all patients. Lifestyle changes, such as physical exercise should be encouraged. The message to patients should be that all forms of pain are true medical conditions and deserve proper care.
Collapse
Affiliation(s)
- Marcio Bernik
- Anxiety Disorders Program, Institute of Psychiatry FMUSP, R. Dr. Ovidio Pires de Campos, 785, Caixa Postal 3671, CEP 01060-970, Sao Paulo, SP, Brazil.
| | | | | |
Collapse
|