1
|
Wang H, Shi C, Jiang L, Liu X, Tang R, Tang M. Neuroimaging techniques, gene therapy, and gut microbiota: frontier advances and integrated applications in Alzheimer's Disease research. Front Aging Neurosci 2024; 16:1485657. [PMID: 39691161 PMCID: PMC11649678 DOI: 10.3389/fnagi.2024.1485657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 11/19/2024] [Indexed: 12/19/2024] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder marked by cognitive decline, for which effective treatments remain elusive due to complex pathogenesis. Recent advances in neuroimaging, gene therapy, and gut microbiota research offer new insights and potential intervention strategies. Neuroimaging enables early detection and staging of AD through visualization of biomarkers, aiding diagnosis and tracking of disease progression. Gene therapy presents a promising approach for modifying AD-related genetic expressions, targeting amyloid and tau pathology, and potentially repairing neuronal damage. Furthermore, emerging evidence suggests that the gut microbiota influences AD pathology through the gut-brain axis, impacting inflammation, immune response, and amyloid metabolism. However, each of these technologies faces significant challenges, including concerns about safety, efficacy, and ethical considerations. This article reviews the applications, advantages, and limitations of neuroimaging, gene therapy, and gut microbiota research in AD, with a particular focus on their combined potential for early diagnosis, mechanistic insights, and therapeutic interventions. We propose an integrated approach that leverages these tools to provide a multi-dimensional framework for advancing AD diagnosis, treatment, and prevention.
Collapse
Affiliation(s)
- Haitao Wang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- The School of Clinical Medical Sciences, Southwest Medical University, Luzhou, Sichuan, China
| | - Chen Shi
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China
| | - Ling Jiang
- Department of Anorectal, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, China
| | - Xiaozhu Liu
- Emergency and Critical Care Medical Center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rui Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
| | - Mingxi Tang
- School of Basic Medicine, Southwest Medical University, Luzhou, Sichuan, China
- Department of Pathology, Yaan People’s Hospital (Yaan Hospital of West China Hospital of Sichuan University), Yaan, Sichuan, China
| |
Collapse
|
3
|
Lee MJ, Pak K, Kim JH, Kim YJ, Yoon J, Lee J, Lyoo CH, Park HJ, Lee JH, Jung NY. Effect of polygenic load on striatal dopaminergic deterioration in Parkinson disease. Neurology 2019; 93:e665-e674. [PMID: 31289143 DOI: 10.1212/wnl.0000000000007939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 03/21/2019] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To investigate the effect of polygenic load on the progression of striatal dopaminergic dysfunction in patients with Parkinson disease (PD). METHODS Using data from 335 patients with PD in the Parkinson's Progression Markers Initiative (PPMI) database, we investigated the longitudinal association of PD-associated polygenic load with changes in striatal dopaminergic activity as measured by 123I-N-3-fluoropropyl-2-β-carboxymethoxy-3β-(4-iodophenyl) nortropane (123I-FP-CIT) SPECT over 4 years. PD-associated polygenic load was estimated by calculating weighted genetic risk scores (GRS) using 1) all available 27 PD-risk single nucleotide polymorphisms (SNPs) in the PPMI database (GRS1) and 2) 23 SNPs with minor allele frequency >0.05 (GRS2). RESULTS GRS1 and GRS2 were correlated with younger age at onset in patients with PD (GRS1, Spearman ρ = -0.128, p = 0.019; GRS2, Spearman ρ = -0.109, p = 0.047). Although GRS1 did not show an association with changes in striatal 123I-FP-CIT availability, GRS2 was associated with a slower decline of striatal dopaminergic activity (interactions with disease duration in linear mixed model; caudate nucleus, estimate = 0.399, SE = 0.165, p = 0.028; putamen, estimate = 0.396, SE = 0.137, p = 0.016). CONCLUSIONS Our results suggest that genetic factors for PD risk may have heterogeneous effects on striatal dopaminergic degeneration, and some factors may be associated with a slower decline of dopaminergic activity. Composition of PD progression-specific GRS may be useful in predicting disease progression in patients.
Collapse
Affiliation(s)
- Myung Jun Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Kyoungjune Pak
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jong Hun Kim
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Yun Joong Kim
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jeehee Yoon
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jinwoo Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Chul Hyoung Lyoo
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Hyung Jun Park
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| | - Jae-Hyeok Lee
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea.
| | - Na-Yeon Jung
- From the Departments of Neurology (M.J.L.) and Nuclear Medicine (K.P.), Pusan National University Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Busan; Department of Neurology (J.H.K.), National Health Insurance Service Ilsan Hospital, Goyang; Department of Neurology (Y.J.K.), Hallym University College of Medicine, Anyang; Department of Computer Engineering (J.Y., J.L.), Hallym University, Chuncheon; Department of Neurology (C.H.L.), Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Neurology (H.J.P.), Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung; and Department of Neurology (J.-H.L., N.-Y.J.), Pusan National University Yangsan Hospital, Pusan National University School of Medicine and Biomedical Research Institute, Yangsan, Republic of Korea
| |
Collapse
|
7
|
Grosset DG, Tatsch K, Oertel WH, Tolosa E, Bajaj N, Kupsch A, O'Brien JT, Seibyl J, Walker Z, Sherwin P, Chen C, Grachev ID. Safety analysis of 10 clinical trials and for 13 years after first approval of ioflupane 123I injection (DaTscan). J Nucl Med 2014; 55:1281-7. [PMID: 24947061 DOI: 10.2967/jnumed.114.138032] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/07/2014] [Indexed: 01/28/2023] Open
Abstract
Ioflupane is an analog of cocaine that binds reversibly with high affinity to the dopamine transporter (DaT) protein, a marker for presynaptic terminals in dopaminergic nigrostriatal neurons. Ioflupane (123)I Injection is also known as DaTscan or DaTSCAN ((123)I-ioflupane is also called (123)I-2-β-carbomethoxy-3β-(4-iodophenyl)-N-(3-fluoropropyl)nortropane or (123)I-FP-CIT). The diagnostic efficacy of DaTscan has been described elsewhere. Here, we present a comprehensive analysis of the safety of DaTscan starting from initiation of clinical development through 13 y after the date of first market approval. Safety data in the sponsor's clinical development safety database from 10 completed DaTscan clinical trials were pooled, and postapproval experience was summarized from standardized aggregate safety reports submitted to regulatory agencies. A total of 1,180 clinical trial subjects (92% of 1,284 subjects planned to receive DaTscan in the clinical trials) received DaTscan. Percentages of subjects with adverse events by category were as follows: all (22%), considered at least possibly related to DaTscan by the investigator (4%), any severe (3%), headache (4%), nausea (2%), dizziness (2%), nasopharyngitis (1%), and injection site hematoma (1%). Four percent of subjects had at least 1 serious adverse event; 5 subjects (<1%) had serious adverse events that led to death. All serious adverse events, including those that led to death, were deemed by an expert clinician to be unrelated to DaTscan. An estimated half a million market doses of DaTscan (for single use) were administered from July 2000 through the July 2013 reporting period. In postapproval safety assessment, 1 death was reported 20 d after (and unrelated to) DaTscan administration. Two spontaneously reported serious adverse drug reactions (ADRs) and 32 spontaneously reported nonserious ADRs were submitted, approximately half of which are identified in labeling. Headache (in clinical trials) and injection site pain (postapproval) were the most commonly reported events or reactions. Although adverse events were reported for 1 in 5 clinical trial subjects, most were mild and considered unrelated to DaTscan administration. Severe events were uncommon, and no serious adverse event occurring in more than 1 subject was deemed related to DaTscan administration. In postapproval experience, the frequency of ADRs spontaneously reported was less than 1 per 10,000 doses administered. Comprehensive safety data show that DaTscan was well tolerated.
Collapse
Affiliation(s)
- Donald G Grosset
- Institute of Neurological Sciences, Department of Neurology, Southern General Hospital, University of Glasgow, Glasgow, Scotland, United Kingdom
| | - Klaus Tatsch
- Department of Nuclear Medicine, Municipal Hospital Karlsruhe, Inc., Karlsruhe, Germany
| | - Wolfgang H Oertel
- Department of Neurology, Philipps-University of Marburg, Marburg, Germany
| | - Eduardo Tolosa
- Neurology Service, Hospital Clínic de Barcelona, Universitat de Barcelona, IDIBAPS, Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Catalonia, Spain
| | - Nin Bajaj
- Department of Clinical Neurology, Nottingham University Hospitals NHS Trust, Nottingham, United Kingdom
| | - Andreas Kupsch
- Department of Neurology and Stereotactic Neurosurgery, Otto-von-Guericke-University, Magdeburg, Germany
| | - John T O'Brien
- Department of Psychiatry, University of Cambridge, and Cambridgeshire and Peterborough Foundation NHS Foundation Trust, Cambridge, United Kingdom
| | - John Seibyl
- The Institute for Neurodegenerative Disorders, New Haven, Connecticut
| | - Zuzana Walker
- Mental Health Sciences Unit, University College London, Bloomsbury Campus, London, United Kingdom North Essex Partnership NHS Foundation Trust, Essex, United Kingdom
| | - Paul Sherwin
- Life Sciences, GE Healthcare, Princeton, New Jersey; and
| | - Chris Chen
- H2O Clinical, LLC, Hunt Valley, Maryland
| | - Igor D Grachev
- Life Sciences, GE Healthcare, Princeton, New Jersey; and
| |
Collapse
|
9
|
Bernsen MR, Vaissier PEB, Van Holen R, Booij J, Beekman FJ, de Jong M. The role of preclinical SPECT in oncological and neurological research in combination with either CT or MRI. Eur J Nucl Med Mol Imaging 2014; 41 Suppl 1:S36-49. [PMID: 24895751 PMCID: PMC4003405 DOI: 10.1007/s00259-013-2685-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 12/20/2013] [Indexed: 01/03/2023]
Abstract
Preclinical imaging with SPECT combined with CT or MRI is used more and more frequently and has proven to be very useful in translational research. In this article, an overview of current preclinical research applications and trends of SPECT combined with CT or MRI, mainly in tumour imaging and neuroscience imaging, is given and the advantages and disadvantages of the different approaches are described. Today SPECT and CT systems are often integrated into a single device (commonly called a SPECT/CT system), whereas at present combined SPECT and MRI is almost always carried out with separate systems and fiducial markers to combine the separately acquired images. While preclinical SPECT/CT is most widely applied in oncology research, SPECT combined with MRI (SPECT/MRI when integrated in one system) offers the potential for both neuroscience applications and oncological applications. Today CT and MRI are still mainly used to localize radiotracer binding and to improve SPECT quantification, although both CT and MRI have additional potential. Future technology developments may include fast sequential or simultaneous acquisition of (dynamic) multimodality data, spectroscopy, fMRI along with high-resolution anatomic MRI, advanced CT procedures, and combinations of more than two modalities such as combinations of SPECT, PET, MRI and CT all together. This will all strongly depend on new technologies. With further advances in biology and chemistry for imaging molecular targets and (patho)physiological processes in vivo, the introduction of new imaging procedures and promising new radiopharmaceuticals in clinical practice may be accelerated.
Collapse
Affiliation(s)
- Monique R. Bernsen
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| | - Pieter E. B. Vaissier
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
| | - Roel Van Holen
- ELIS Department, MEDISIP, Ghent University, iMinds, Ghent, Belgium
| | - Jan Booij
- Department of Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Freek J. Beekman
- Section Radiation Detection and Medical Imaging, Delft University of Technology, Delft, The Netherlands
- MILabs B.V., Utrecht, The Netherlands
| | - Marion de Jong
- Department of Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
- Department of Radiology, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|