1
|
Wong TY, Moore TM, Hillman N, Calkins ME, Shahriar S, Dietterich T, Ruparel K, Roalf DR, Wolf DH, Satterthwaite TD, Ered A, Gur RE, Gur RC. Longitudinal Development of Neurocognitive Functioning and Gray Matter Volume in Youths With Recurrent Psychosis Spectrum Symptoms. Schizophr Bull 2025:sbaf049. [PMID: 40382716 DOI: 10.1093/schbul/sbaf049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
BACKGROUND AND HYPOTHESIS Neurodevelopmental risk-factor models of psychosis highlight the importance of early developmental deviations in the emergence of psychosis. However, few longitudinal studies map neurodevelopment and neurocognitive trajectories across age in preclinical psychosis. We investigated longitudinal trajectories in neurocognition and brain volume in a community cohort of adolescents with recurrent psychosis spectrum (PS) symptoms, tracking their development into young adulthood compared to their typically developing (TD) peers. STUDY DESIGN Utilizing the Philadelphia Neurodevelopmental Cohort, we analyzed data of 231 youths aged 8-30 with at least one follow-up assessment, including 88 with PS. STUDY RESULTS Individuals with PS showed similar developmental trajectories but demonstrated significant impairments in executive functioning (t = -2.81, q = 0.010), memory (t = -2.34, q = 0.019), complex cognition (t = -3.72, q = 0.001), social cognition (t = -2.73, q = 0.010), motor (t = -2.50, q = 0.015), and general cognition (t = -3.20, q = 0.004). Lower cortical (t = -2.46, P = .014) and subcortical (t = -2.41, P = .016) gray matter volume in the recurrent PS group compared to the TD group were documented with age-related group differences becoming less pronounced by young adulthood. Further analyses revealed age-by-group interactions (qs < 0.05) observed in a few temporal and frontal regions, with differences between groups at earlier ages. CONCLUSIONS These findings suggest that recurrent PS symptoms are linked to early neurocognitive and brain structure deficits, highlighting the need for interventions to reduce psychosis risk and support healthy neurodevelopment.
Collapse
Affiliation(s)
- Ting Yat Wong
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Psychology, The Education University of Hong Kong, Hong Kong Special Administrative Region, 999077, China
- Center of Psychosocial Health, The Education University of Hong, Hong Kong Special Administrative Region, 999077, China
| | - Tyler M Moore
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Noah Hillman
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Monica E Calkins
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Sarah Shahriar
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Tyler Dietterich
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Kosha Ruparel
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - David R Roalf
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Daniel H Wolf
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Arielle Ered
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Lifespan Brain Institute of the Children's Hospital of Philadelphia and Penn Medicine, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
2
|
Keding TJ, Russell JD, Zhu X, He Q, Li JJ, Herringa RJ. Diverging Effects of Violence Exposure and Psychiatric Symptoms on Amygdala-Prefrontal Maturation During Childhood and Adolescence. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:450-462. [PMID: 39182725 PMCID: PMC11885587 DOI: 10.1016/j.bpsc.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/09/2024] [Accepted: 08/12/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Violence exposure during childhood and adolescence is associated with increased prevalence and severity of psychopathology. Neurobiological correlates suggest that abnormal maturation of emotion-related brain circuitry, such as the amygdala-prefrontal cortex (PFC) circuit, may underlie the development of psychiatric symptoms after exposure. However, it remains unclear how amygdala-PFC circuit maturation is related to psychiatric risk in the context of violence. METHODS In this study, we analyzed individual differences in amygdala-PFC circuit maturity using data collected from the PNC (Philadelphia Neurodevelopmental Cohort) (n = 1133 youths). Neurodevelopment models of amygdala-PFC resting-state functional connectivity were built using deep learning and trained to predict chronological age in typically developing youths (not violence exposed and without a psychiatric diagnosis). Using the brain age gap estimate, an index of relative circuit maturation, patterns of atypical neurodevelopment were investigated. RESULTS Violence exposure was associated with delayed maturation of basolateral amygdala (BLA)-PFC circuits, driven by increased BLA-medial orbitofrontal cortex functional connectivity. In contrast, increased psychiatric symptoms were associated with advanced maturation of BLA-PFC functional connectivity, driven by decreased BLA-dorsolateral PFC functional connectivity. CONCLUSIONS Delayed frontoamygdala maturation after exposure to violence suggests atypical, but adaptive, development of threat appraisal processes, potentially reflecting a greater threat generalization characteristic of younger children. Advanced circuit maturation with increasing symptoms suggests divergent neurodevelopmental mechanisms underlying illness after emotion circuits have adapted to adversity, exacerbated by preexisting vulnerabilities to early maturation. Disentangling the effects of adversity and psychopathology on neurodevelopment is crucial for helping youths recover from violence and preventing illness from continuing into adulthood.
Collapse
Affiliation(s)
- Taylor J Keding
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin; Department of Psychology, Yale University, New Haven, Connecticut.
| | - Justin D Russell
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| | - Xiaojin Zhu
- Department of Computer Science, University of Wisconsin-Madison, Madison, Wisconsin
| | - Quanfa He
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin
| | - James J Li
- Department of Psychology, University of Wisconsin-Madison, Madison, Wisconsin; Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ryan J Herringa
- Neuroscience Training Program, University of Wisconsin-Madison, Madison, Wisconsin; Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin
| |
Collapse
|
3
|
Roalf D, Atkins A, Czernuszenko A, Pecsok MK, McDonald-McGinn DM, Schmitt JE, Roeske MJ, Hopkins S, Freedman P, Alexander-Bloch A, Schabdach J, Jung B, Crowley TB, Gallagher RS, McGinn DE, Moberg PJ, Ruparel K, Shinohara RT, Turetsky BI, White L, Zackai EH, Gur RC, Gur RE. Presence, severity, and functional associations of incomplete hippocampal inversion in 22q11.2 deletion syndrome. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00137-5. [PMID: 40288750 DOI: 10.1016/j.bpsc.2025.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/07/2025] [Accepted: 04/08/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND The hippocampus is smaller and functionally disrupted in individuals with 22q11.2 deletion syndrome (22q11DS), though the cause remains unclear. During gestational weeks 20-30 an inversion in the dentate gyrus and cornu ammonis occurs. This process can go awry resulting in incomplete hippocampal inversion (IHI). In the general population, IHI is more common in the left hemisphere than the right; yet its prevalence, severity, and functional impact in 22q11DS remain unexplored. Investigating IHI in 22q11DS could uncover morphological hippocampal abnormalities linked to neuropsychiatric and neurocognitive symptoms. METHODS Using 3T structural MRI data, the presence and severity of IHI were assessed in 22q11DS (n=108) and healthy comparison (HC; n=633) individuals. Total and subregional hippocampal volume, psychopathology, and hippocampal-based memory were evaluated. RESULTS IHI prevalence was significantly higher in 22q11DS compared to HC in both the left (63% vs. 30%, p<0.001) and right hemispheres (29% vs. 8%, p<0.001). IHI severity was also greater in 22q11DS (p<0.001) bilaterally. IHI influenced hippocampal volume differences, with left IHI primarily affecting the head (p<0.01) and tail (p<0.001) and right IHI affecting only the tail (p<0.001). In exploratory analyses within 22q11DS, left IHI presence was linked to poorer face memory (p<0.05) but not psychopathology. CONCLUSIONS These findings highlight a high prevalence of hippocampal morphological alterations in 22q11DS, which are associated with memory performance. Earlier developmental and longitudinal studies are needed to clarify the role of IHI in 22q11DS sequelae.
Collapse
Affiliation(s)
- David Roalf
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP.
| | - Ally Atkins
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Adam Czernuszenko
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Margaret K Pecsok
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Donna M McDonald-McGinn
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Division of Human Biology and Medical Genetics, Sapienza, University, Rome, Italy
| | - J Eric Schmitt
- Department of Radiology, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sarah Hopkins
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Phoebe Freedman
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | | | | | - T Blaine Crowley
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - R Sean Gallagher
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Daniel E McGinn
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Paul J Moberg
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Kosha Ruparel
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bruce I Turetsky
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Lauren White
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Elaine H Zackai
- 22q and You Center, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment & Psychosis Section, Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA; Lifespan Brain Institute (LiBI) at Penn & CHOP
| |
Collapse
|
4
|
Zeng T, Tian F, Zhang S, Li X, Tan AP, Larsen B, Gur RC, Gur RE, Moore TM, Satterthwaite TD, Deco G, Holmes AJ, Yeo BTT. Optimizing Biophysical Large-Scale Brain Circuit Models With Deep Neural Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.07.647497. [PMID: 40291740 PMCID: PMC12026898 DOI: 10.1101/2025.04.07.647497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Biophysical modeling provides mechanistic insights into brain function, from single-neuron dynamics to large-scale circuit models bridging macro-scale brain activity with microscale measurements. Biophysical models are governed by biologically meaningful parameters, many of which can be experimentally measured. Some parameters are unknown, and optimizing their values can dramatically improve adherence to experimental data, significantly enhancing biological plausibility. Previous optimization methods - such as exhaustive search, gradient descent, evolutionary strategies and Bayesian optimization - require repeated, computationally expensive numerical integration of biophysical differential equations, limiting scalability to population-level datasets. Here, we introduce DELSSOME (DEep Learning for Surrogate Statistics Optimization in MEan field modeling), a framework that bypasses numerical integration by directly predicting whether model parameters produce realistic brain dynamics. When applied to the widely used feedback inhibition control (FIC) mean field model, DELSSOME achieves a 2000× speedup over Euler integration. By embedding DELSSOME within an evolutionary optimization strategy, trained models generalize to new datasets without additional tuning, enabling a 50× speedup in FIC model estimation while preserving neurobiological insights. The massive acceleration facilitates large-scale mechanistic modeling in population-level neuroscience, unlocking new opportunities for understanding brain function.
Collapse
|
5
|
Doucet GE, Goldsmith C, Myers K, Rice DL, Ende G, Pavelka DJ, Joliot M, Calhoun VD, Wilson TW, Uddin LQ. Dev-Atlas: A reference atlas of functional brain networks for typically developing adolescents. Dev Cogn Neurosci 2025; 72:101523. [PMID: 39938145 PMCID: PMC11870229 DOI: 10.1016/j.dcn.2025.101523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/20/2024] [Accepted: 01/21/2025] [Indexed: 02/14/2025] Open
Abstract
It is well accepted that the brain is functionally organized into multiple networks and extensive literature has demonstrated that the organization of these networks shows major changes during adolescence. Yet, there is limited option for a reference functional brain atlas derived from typically-developing adolescents, which is problematic as the reliable identification of functional brain networks crucially depends on the use of such reference functional atlases. In this context, we utilized resting-state functional MRI data from 1391 typically-developing youth aged 8-17 years to create an adolescent-specific reference atlas of functional brain networks. We further investigated the impact of age and sex on these networks. Using a multiscale individual component clustering algorithm, we identified 24 reliable functional brain networks, classified within six domains: Default-Mode (5 networks), Control (4 networks), Salience (3 networks), Attention (4 networks), Somatomotor (5 networks), and Visual (3 networks). We identified reliable and large effects of age on the spatial topography of these majority of networks, as well as on the functional network connectivity. Sex effects were not as widespread. We created a novel brain atlas, named Dev-Atlas, focused on a typically-developing sample, with the hope that this atlas can be used in future developmental neuroscience studies.
Collapse
Affiliation(s)
- Gaelle E Doucet
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA.
| | - Callum Goldsmith
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Katrina Myers
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Danielle L Rice
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grace Ende
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Derek J Pavelka
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Marc Joliot
- Groupe d'Imagerie Neurofonctionelle-Institut des maladies neurodégénératives (GIN-IMN) UMR 5293, Bordeaux University, CNRS, CEA, Bordeaux, France
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Center for Pediatric Brain Health, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology and Neuroscience, Creighton University School of Medicine, Omaha, NE, USA
| | - Lucina Q Uddin
- Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA; Department of Psychology, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
6
|
Mauri C, Cerri S, Puonti O, Mühlau M, Van Leemput K. A lightweight generative model for interpretable subject-level prediction. Med Image Anal 2025; 101:103436. [PMID: 39793217 PMCID: PMC11876000 DOI: 10.1016/j.media.2024.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/13/2025]
Abstract
Recent years have seen a growing interest in methods for predicting an unknown variable of interest, such as a subject's diagnosis, from medical images depicting its anatomical-functional effects. Methods based on discriminative modeling excel at making accurate predictions, but are challenged in their ability to explain their decisions in anatomically meaningful terms. In this paper, we propose a simple technique for single-subject prediction that is inherently interpretable. It augments the generative models used in classical human brain mapping techniques, in which the underlying cause-effect relations can be encoded, with a multivariate noise model that captures dominant spatial correlations. Experiments demonstrate that the resulting model can be efficiently inverted to make accurate subject-level predictions, while at the same time offering intuitive visual explanations of its inner workings. The method is easy to use: training is fast for typical training set sizes, and only a single hyperparameter needs to be set by the user. Our code is available at https://github.com/chiara-mauri/Interpretable-subject-level-prediction.
Collapse
Affiliation(s)
- Chiara Mauri
- Department of Health Technology, Technical University of Denmark, Denmark; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Stefano Cerri
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA
| | - Oula Puonti
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Mark Mühlau
- Department of Neurology and TUM-Neuroimaging Center, School of Medicine, Technical University of Munich, Germany
| | - Koen Van Leemput
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, USA; Department of Neuroscience and Biomedical Engineering, Aalto University, Finland; Department of Computer Science, Aalto University, Finland
| |
Collapse
|
7
|
Luo AC, Meisler SL, Sydnor VJ, Alexander-Bloch A, Bagautdinova J, Barch DM, Bassett DS, Davatzikos C, Franco AR, Goldsmith J, Gur RE, Gur RC, Hu F, Jaskir M, Kiar G, Keller AS, Larsen B, Mackey AP, Milham MP, Roalf DR, Shafiei G, Shinohara RT, Somerville LH, Weinstein SM, Yeatman JD, Cieslak M, Rokem A, Satterthwaite TD. Two Axes of White Matter Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644049. [PMID: 40166142 PMCID: PMC11957034 DOI: 10.1101/2025.03.19.644049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Despite decades of neuroimaging research, how white matter develops along the length of major tracts in humans remains unknown. Here, we identify fundamental patterns of white matter maturation by examining developmental variation along major, long-range cortico-cortical tracts in youth ages 5-23 years using diffusion MRI from three large-scale, cross-sectional datasets (total N = 2,710). Across datasets, we delineate two replicable axes of human white matter development. First, we find a deep-to-superficial axis, in which superficial tract regions near the cortical surface exhibit greater age-related change than deep tract regions. Second, we demonstrate that the development of superficial tract regions aligns with the cortical hierarchy defined by the sensorimotor-association axis, with tract ends adjacent to sensorimotor cortices maturing earlier than those adjacent to association cortices. These results reveal developmental variation along tracts that conventional tract-average analyses have previously obscured, challenging the implicit assumption that white matter tracts mature uniformly along their length. Such developmental variation along tracts may have functional implications, including mitigating ephaptic coupling in densely packed deep tract regions and tuning neural synchrony through hierarchical development in superficial tract regions - ultimately refining neural transmission in youth.
Collapse
Affiliation(s)
- Audrey C. Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Steven L. Meisler
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Valerie J. Sydnor
- Department of Psychiatry, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Aaron Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Deanna M. Barch
- Department of Psychiatry, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO, USA
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics & Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- The Santa Fe Institute, Santa Fe, NM, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Alexandre R. Franco
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Strategic Data Initiatives, Child Mind Institute, New York, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, , Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Marc Jaskir
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Neuroengineering and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Gregory Kiar
- Center for Data Analytics, Innovation, and Rigor, Child Mind Institute, New York, NY, USA
| | - Arielle S. Keller
- Department of Psychological Sciences, University of Connecticut, Storrs, CT, USA
- Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Allyson P. Mackey
- Department of Psychology, School of Arts and Sciences, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P. Milham
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, USA
- Center for Data Analytics, Innovation, and Rigor, Child Mind Institute, New York, NY, USA
| | - David R. Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Golia Shafiei
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Russell T. Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, , Philadelphia, PA, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Leah H. Somerville
- Department of Psychology and Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Sarah M. Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA, USA
| | - Jason D. Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, USA
- Department of Psychology, Stanford University, Stanford, CA, USA
- Division of Developmental-Behavioral Pediatrics, Department of Pediatrics, Stanford University School of Medicine, Stanford,California, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Seattle, Washington, United States of America
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI), Children’s Hospital of Philadelphia and Penn Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics (AI2D), Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
8
|
Yang L, Qiao C, Kanamori T, Calhoun VD, Stephen JM, Wilson TW, Wang YP. Tensor dictionary-based heterogeneous transfer learning to study emotion-related gender differences in brain. Neural Netw 2025; 183:106974. [PMID: 39657530 DOI: 10.1016/j.neunet.2024.106974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 11/05/2024] [Accepted: 11/26/2024] [Indexed: 12/12/2024]
Abstract
In practice, collecting auxiliary labeled data with same feature space from multiple domains is difficult. Thus, we focus on the heterogeneous transfer learning to address the problem of insufficient sample sizes in neuroimaging. Viewing subjects, time, and features as dimensions, brain activation and dynamic functional connectivity data can be treated as high-order heterogeneous data with heterogeneity arising from distinct feature space. To use the heterogeneous priori knowledge from the low-dimensional brain activation data to improve the classification performance of high-dimensional dynamic functional connectivity data, we propose a tensor dictionary-based heterogeneous transfer learning framework. It combines supervised tensor dictionary learning with heterogeneous transfer learning for enhance high-order heterogeneous knowledge sharing. The former can encode the underlying discriminative features in high-order data into dictionaries, while the latter can transfer heterogeneous knowledge encoded in dictionaries through feature transformation derived from mathematical relationship between domains. The primary focus of this paper is gender classification using fMRI data to identify emotion-related brain gender differences during adolescence. Additionally, experiments on simulated data and EEG data are included to demonstrate the generalizability of the proposed method. Experimental results indicate that incorporating prior knowledge significantly enhances classification performance. Further analysis of brain gender differences suggests that temporal variability in brain activity explains differences in emotion regulation strategies between genders. By adopting the heterogeneous knowledge sharing strategy, the proposed framework can capture the multifaceted characteristics of the brain, improve the generalization of the model, and reduce training costs. Understanding the gender specific neural mechanisms of emotional cognition helps to develop the gender-specific treatments for neurological diseases.
Collapse
Affiliation(s)
- Lan Yang
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Takafumi Kanamori
- Department of Mathematical and Computing Science, Tokyo Institute of Technology, Tokyo 152-8552, Japan; RIKEN AIP, Tokyo 103-0027, Japan.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science(TReNDS), Georgia State University, Georgia Institute of Technology, Atlanta, GA 30030, USA; Emory University, Atlanta, GA, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
9
|
Shafiei G, Esper NB, Hoffmann MS, Ai L, Chen AA, Cluce J, Covitz S, Giavasis S, Lane C, Mehta K, Moore TM, Salo T, Tapera TM, Calkins ME, Colcombe S, Davatzikos C, Gur RE, Gur RC, Pan PM, Jackowski AP, Rokem A, Rohde LA, Shinohara RT, Tottenham N, Zuo XN, Cieslak M, Franco AR, Kiar G, Salum GA, Milham MP, Satterthwaite TD. Reproducible Brain Charts: An open data resource for mapping brain development and its associations with mental health. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.24.639850. [PMID: 40060681 PMCID: PMC11888297 DOI: 10.1101/2025.02.24.639850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Major mental disorders are increasingly understood as disorders of brain development. Large and heterogeneous samples are required to define generalizable links between brain development and psychopathology. To this end, we introduce the Reproducible Brain Charts (RBC), an open data resource that integrates data from 5 large studies of brain development in youth from three continents (N=6,346; 45% Female). Confirmatory bifactor models were used to create harmonized psychiatric phenotypes that capture major dimensions of psychopathology. Following rigorous quality assurance, neuroimaging data were carefully curated and processed using consistent pipelines in a reproducible manner with DataLad, the Configurable Pipeline for the Analysis of Connectomes (C-PAC), and FreeSurfer. Initial analyses of RBC data emphasize the benefit of careful quality assurance and data harmonization in delineating developmental effects and associations with psychopathology. Critically, all RBC data - including harmonized psychiatric phenotypes, unprocessed images, and fully processed imaging derivatives - are openly shared without a data use agreement via the International Neuroimaging Data-sharing Initiative. Together, RBC facilitates large-scale, reproducible, and generalizable research in developmental and psychiatric neuroscience.
Collapse
Affiliation(s)
- G Shafiei
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - N B Esper
- Child Mind Institute, New York, NY, USA
| | - M S Hoffmann
- Department of Neuropsychiatry, Universidade Federal de Santa Maria (UFSM), Santa Maria, Brazil
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health, Brazil
- Care Policy and Evaluation Centre, London School of Economics and Political Science, London, UK
| | - L Ai
- Child Mind Institute, New York, NY, USA
| | - A A Chen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, USA
| | - J Cluce
- Child Mind Institute, New York, NY, USA
| | - S Covitz
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | | | - C Lane
- Child Mind Institute, New York, NY, USA
| | - K Mehta
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - T M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - T Salo
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - T M Tapera
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA
| | - M E Calkins
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - S Colcombe
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - C Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - R E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - R C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - P M Pan
- Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - A P Jackowski
- Department of Psychiatry, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - A Rokem
- Department of Psychology, University of Washington, Seattle, WA, USA
- eScience Institute, University of Washington, Seattle, WA
| | - L A Rohde
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - R T Shinohara
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - N Tottenham
- Department of Psychology, Columbia University, New York, NY, USA
| | - X N Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - M Cieslak
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
| | - A R Franco
- Child Mind Institute, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, USA
| | - G Kiar
- Child Mind Institute, New York, NY, USA
| | - G A Salum
- Child Mind Institute, New York, NY, USA
- Graduate Program in Psychiatry and Behavioral Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- National Institute of Developmental Psychiatry & National Center for Innovation and Research in Mental Health, Brazil
- ADHD Outpatient Program & Developmental Psychiatry Program, Hospital de Clinicas de Porto Alegre, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
- Medical Council UNIFAJ & UNIMAX, Brazil
| | - M P Milham
- Child Mind Institute, New York, NY, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute, Orangeburg, NY, USA
| | - T D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
10
|
Tu D, Wrobel J, Satterthwaite TD, Goldsmith J, Gur RC, Gur RE, Gertheiss J, Bassett DS, Shinohara RT. Regression and alignment for functional data and network topology. Biostatistics 2024; 26:kxae026. [PMID: 39140988 PMCID: PMC11822954 DOI: 10.1093/biostatistics/kxae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 08/15/2024] Open
Abstract
In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of preprocessing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.
Collapse
Affiliation(s)
- Danni Tu
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Julia Wrobel
- Department of Biostatistics and Bioinformatics, 1518 Clifton Rd. NE, Emory University, Atlanta, GA, 30322, United States
| | - Theodore D Satterthwaite
- Department of Psychiatry, 3700 Hamilton Walk, Perelman School of Medicine, Philadelphia, PA, 19104, United States
- Penn Lifespan Informatics and Neuroimaging Center, 3700 Hamilton Walk, Philadelphia, PA, 19104, United States
| | - Jeff Goldsmith
- Department of Biostatistics, 722 W. 168th St, Columbia University, New York, NY, 10032, United States
| | - Ruben C Gur
- Department of Psychiatry, 3700 Hamilton Walk, Perelman School of Medicine, Philadelphia, PA, 19104, United States
- The Penn Medicine-CHOP Lifespan Brain Institute, 3700 Hamilton Walk, Philadelphia, PA, 19104, United States
| | - Raquel E Gur
- Department of Psychiatry, 3700 Hamilton Walk, Perelman School of Medicine, Philadelphia, PA, 19104, United States
- The Penn Medicine-CHOP Lifespan Brain Institute, 3700 Hamilton Walk, Philadelphia, PA, 19104, United States
| | - Jan Gertheiss
- Department of Mathematics and Statistics, School of Economics and Social Sciences, Holstenhofweg 85, Helmut Schmidt University, 22043 Hamburg, Germany
| | - Dani S Bassett
- Department of Bioengineering, 210 S 33rd St, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Physics and Astronomy, 209 S 33rd St, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Electrical and Systems Engineering, 200 S 33rd St, University of Pennsylvania, Philadelphia, PA, 19104, United States
- Department of Neurology, 3400 Spruce St, University of Pennsylvania, Philadelphia, PA, 19104, United States
| | - Russell T Shinohara
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, 423 Guardian Drive, University of Pennsylvania, Philadelphia, PA, 19104, United States
| |
Collapse
|
11
|
Moskovich S, Shtangel O, Mezer AA. Approximating R1 and R2: A Quantitative Approach to Clinical Weighted MRI. Hum Brain Mapp 2024; 45:e70102. [PMID: 39698763 PMCID: PMC11656103 DOI: 10.1002/hbm.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/20/2024] Open
Abstract
Weighted MRI images are widely used in clinical as well as open-source neuroimaging databases. Weighted images such as T1-weighted, T2-weighted, and proton density-weighted (T1w, T2w, and PDw, respectively) are used for evaluating the brain's macrostructure; however, their values cannot be used for microstructural analysis, as they lack physical meaning. Quantitative MRI (qMRI) relaxation rate parameters (e.g., R1 and R2) do contain microstructural physical meaning. Nevertheless, qMRI is rarely done in large-scale clinical databases. Currently, the weighted images ratio T1w/T2w is used as a quantifier to approximate the brain's microstructure. In this paper, we test three additional quantifiers that approximate quantitative maps, which can help bring quantitative MRI to the clinic for easy use. Following the signal equations and using simple mathematical operations, we combine the T1w, T2w, and PDw images to estimate the R1 and R2 maps. We find that two of these quantifiers (T1w/PDw and T1w/ln(T2w)) can approximate R1, and that (ln(T2w/PDw)) can approximate R2, in 3 datasets that were tested. We find that this approach also can be applied to T2w scans taken from widely available DTI (Diffusion Tensor Imaging) datasets. We tested these quantifiers on both in vitro phantom and in vivo human datasets. We found that the quantifiers accurately represent the quantitative parameters across datasets. Finally, we tested the quantifiers within a clinical context, and found that they are robust across datasets. Our work provides a simple pipeline to enhance the usability and quantitative accuracy of MRI weighted images.
Collapse
Affiliation(s)
- Shachar Moskovich
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Oshrat Shtangel
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Aviv A. Mezer
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
| |
Collapse
|
12
|
Lee S, Niu R, Zhu L, Kayser AS, Hsu M. Distinguishing deception from its confounds by improving the validity of fMRI-based neural prediction. Proc Natl Acad Sci U S A 2024; 121:e2412881121. [PMID: 39642199 DOI: 10.1073/pnas.2412881121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/22/2024] [Indexed: 12/08/2024] Open
Abstract
Deception is a universal human behavior. Yet longstanding skepticism about the validity of measures used to characterize the biological mechanisms underlying deceptive behavior has relegated such studies to the scientific periphery. Here, we address these fundamental questions by applying machine learning methods and functional magnetic resonance imaging (fMRI) to signaling games capturing motivated deception in human participants. First, we develop an approach to test for the presence of confounding processes and validate past skepticism by showing that much of the predictive power of neural predictors trained on deception data comes from processes other than deception. Specifically, we demonstrate that discriminant validity is compromised by the predictor's ability to predict behavior in a control task that does not involve deception. Second, we show that the presence of confounding signals need not be fatal and that the validity of the neural predictor can be improved by removing confounding signals while retaining those associated with the task of interest. To this end, we develop a "dual-goal tuning" approach in which, beyond the typical goal of predicting the behavior of interest, the predictor also incorporates a second compulsory goal that enforces chance performance in the control task. Together, these findings provide a firmer scientific foundation for understanding the neural basis of a neglected class of behavior, and they suggest an approach for improving validity of neural predictors.
Collapse
Affiliation(s)
- Sangil Lee
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
| | - Runxuan Niu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, International Data Group/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Lusha Zhu
- School of Psychological and Cognitive Sciences and Beijing Key Laboratory of Behavior and Mental Health, International Data Group/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Andrew S Kayser
- Department of Neurology, University of California, San Francisco, CA 94158
- Division of Neurology, San Francisco Veterans Affairs Health Care System, San Francisco, CA 94121
| | - Ming Hsu
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720
- Haas School of Business, University of California, Berkeley, CA 94720
| |
Collapse
|
13
|
Eom TY, Schmitt JE, Li Y, Davenport CM, Steinberg J, Bonnan A, Alam S, Ryu YS, Paul L, Hansen BS, Khairy K, Pelletier S, Pruett-Miller SM, Roalf DR, Gur RE, Emanuel BS, McDonald-McGinn DM, Smith JN, Li C, Christie JM, Northcott PA, Zakharenko SS. Tbx1 haploinsufficiency leads to local skull deformity, paraflocculus and flocculus dysplasia, and motor-learning deficit in 22q11.2 deletion syndrome. Nat Commun 2024; 15:10510. [PMID: 39638997 PMCID: PMC11621701 DOI: 10.1038/s41467-024-54837-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 11/22/2024] [Indexed: 12/07/2024] Open
Abstract
Neurodevelopmental disorders are thought to arise from intrinsic brain abnormalities. Alternatively, they may arise from disrupted crosstalk among tissues. Here we show the local reduction of two vestibulo-cerebellar lobules, the paraflocculus and flocculus, in mouse models and humans with 22q11.2 deletion syndrome (22q11DS). In mice, this paraflocculus/flocculus dysplasia is associated with haploinsufficiency of the Tbx1 gene. Tbx1 haploinsufficiency also leads to impaired cerebellar synaptic plasticity and motor learning. However, neural cell compositions and neurogenesis are not altered in the dysplastic paraflocculus/flocculus. Interestingly, 22q11DS and Tbx1+/- mice have malformations of the subarcuate fossa, a part of the petrous temporal bone, which encapsulates the paraflocculus/flocculus. Single-nuclei RNA sequencing reveals that Tbx1 haploinsufficiency leads to precocious differentiation of chondrocytes to osteoblasts in the petrous temporal bone autonomous to paraflocculus/flocculus cell populations. These findings suggest a previously unrecognized pathogenic structure/function relation in 22q11DS in which local skeletal deformity and cerebellar dysplasia result in behavioral deficiencies.
Collapse
Affiliation(s)
- Tae-Yeon Eom
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - J Eric Schmitt
- Division of Neuroradiology, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, 19104, USA
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Christopher M Davenport
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Audrey Bonnan
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
| | - Shahinur Alam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Leena Paul
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Baranda S Hansen
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Center for Bioimage Informatics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stephane Pelletier
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - David R Roalf
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Raquel E Gur
- Brain Behavior Laboratory, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Beverly S Emanuel
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Donna M McDonald-McGinn
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Department of Molecular Medicine, Division of Human Biology and Medical Genetics, Sapienza University, Rome, 00185, Italy
| | - Jesse N Smith
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Cai Li
- Department of Biostatistics, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jason M Christie
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, 33458, USA
- Department of Physiology and Biophysics, University of Colorado Anschutz School of Medicine, Aurora, CO, 80045, USA
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA.
| |
Collapse
|
14
|
Wang Y, Qiao C, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. A Deep Dynamic Causal Learning Model to Study Changes in Dynamic Effective Connectivity During Brain Development. IEEE Trans Biomed Eng 2024; 71:3390-3401. [PMID: 38968024 PMCID: PMC11700232 DOI: 10.1109/tbme.2024.3423803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
OBJECTIVE Brain dynamic effective connectivity (dEC), characterizes the information transmission patterns between brain regions that change over time, which provides insight into the biological mechanism underlying brain development. However, most existing methods predominantly capture fixed or temporally invariant EC, leaving dEC largely unexplored. METHODS Herein we propose a deep dynamic causal learning model specifically designed to capture dEC. It includes a dynamic causal learner to detect time-varying causal relationships from spatio-temporal data, and a dynamic causal discriminator to validate these findings by comparing original and reconstructed data. RESULTS Our model outperforms established baselines in the accuracy of identifying dynamic causalities when tested on the simulated data. When applied to the Philadelphia Neurodevelopmental Cohort, the model uncovers distinct patterns in dEC networks across different age groups. Specifically, the evolution process of brain dEC networks in young adults is more stable than in children, and significant differences in information transfer patterns exist between them. CONCLUSION This study highlights the brain's developmental trajectory, where networks transition from undifferentiated to specialized structures with age, in accordance with the improvement of an individual's cognitive and information processing capability. SIGNIFICANCE The proposed model consists of the identification and verification of dynamic causality, utilizing the spatio-temporal fusing information from fMRI. As a result, it can accurately detect dEC and characterize its evolution over age.
Collapse
|
15
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions of language and executive function can survive across diverse real-world data: Dataset shifts in developmental populations. Dev Cogn Neurosci 2024; 70:101464. [PMID: 39447452 PMCID: PMC11538622 DOI: 10.1016/j.dcn.2024.101464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/09/2024] [Accepted: 10/15/2024] [Indexed: 10/26/2024] Open
Abstract
Predictive modeling potentially increases the reproducibility and generalizability of neuroimaging brain-phenotype associations. Yet, the evaluation of a model in another dataset is underutilized. Among studies that undertake external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies (i.e., dataset shifts). Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized developmental samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. Through advanced methodological approaches, we demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features. Results indicate the potential of functional connectome-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of brain-phenotype associations in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Department of Radiology, Harvard Medical School, Boston, MA 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Bioengineering, Northeastern University, Boston, MA 02120, USA; Department of Psychology, Northeastern University, Boston, MA 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06520, USA; Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA; Department of Statistics & Data Science, Yale University, New Haven, CT 06520, USA; Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA; Wu Tsai Institute, Yale University, New Haven, CT 06510, USA
| |
Collapse
|
16
|
Parkes L, Kim JZ, Stiso J, Brynildsen JK, Cieslak M, Covitz S, Gur RE, Gur RC, Pasqualetti F, Shinohara RT, Zhou D, Satterthwaite TD, Bassett DS. A network control theory pipeline for studying the dynamics of the structural connectome. Nat Protoc 2024; 19:3721-3749. [PMID: 39075309 PMCID: PMC12039364 DOI: 10.1038/s41596-024-01023-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 05/16/2024] [Indexed: 07/31/2024]
Abstract
Network control theory (NCT) is a simple and powerful tool for studying how network topology informs and constrains the dynamics of a system. Compared to other structure-function coupling approaches, the strength of NCT lies in its capacity to predict the patterns of external control signals that may alter the dynamics of a system in a desired way. An interesting development for NCT in the neuroscience field is its application to study behavior and mental health symptoms. To date, NCT has been validated to study different aspects of the human structural connectome. NCT outputs can be monitored throughout developmental stages to study the effects of connectome topology on neural dynamics and, separately, to test the coherence of empirical datasets with brain function and stimulation. Here, we provide a comprehensive pipeline for applying NCT to structural connectomes by following two procedures. The main procedure focuses on computing the control energy associated with the transitions between specific neural activity states. The second procedure focuses on computing average controllability, which indexes nodes' general capacity to control the dynamics of the system. We provide recommendations for comparing NCT outputs against null network models, and we further support this approach with a Python-based software package called 'network control theory for python'. The procedures in this protocol are appropriate for users with a background in network neuroscience and experience in dynamical systems theory.
Collapse
Affiliation(s)
- Linden Parkes
- Department of Psychiatry, Rutgers University, Piscataway, NJ, USA.
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA.
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Jason Z Kim
- Department of Physics, Cornell University, Ithaca, NY, USA
| | - Jennifer Stiso
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia K Brynildsen
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew Cieslak
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sydney Covitz
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Raquel E Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruben C Gur
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Fabio Pasqualetti
- Department of Mechanical Engineering, University of California, Riverside, Riverside, CA, USA
| | - Russell T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dale Zhou
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Lifespan Informatics and Neuroimaging Center (PennLINC), Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Penn/CHOP Lifespan Brain Institute, Perelman School of Medicine, Children's Hospital of Philadelphia Research Institute, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computation and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Santa Fe Institute, Santa Fe, NM, USA
| |
Collapse
|
17
|
Gage AT, Stone JR, Wilde EA, McCauley SR, Welsh RC, Mugler JP, Tustison N, Avants B, Whitlow CT, Lancashire L, Bhatt SD, Haas M. Normative Neuroimaging Library: Designing a Comprehensive and Demographically Diverse Dataset of Healthy Controls to Support Traumatic Brain Injury Diagnostic and Therapeutic Development. J Neurotrauma 2024; 41:2497-2512. [PMID: 39235436 DOI: 10.1089/neu.2024.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
The past decade has seen impressive advances in neuroimaging, moving from qualitative to quantitative outputs. Available techniques now allow for the inference of microscopic changes occurring in white and gray matter, along with alterations in physiology and function. These existing and emerging techniques hold the potential of providing unprecedented capabilities in achieving a diagnosis and predicting outcomes for traumatic brain injury (TBI) and a variety of other neurological diseases. To see this promise move from the research lab into clinical care, an understanding is needed of what normal data look like for all age ranges, sex, and other demographic and socioeconomic categories. Clinicians can only use the results of imaging scans to support their decision-making if they know how the results for their patient compare with a normative standard. This potential for utilizing magnetic resonance imaging (MRI) in TBI diagnosis motivated the American College of Radiology and Cohen Veterans Bioscience to create a reference database of healthy individuals with neuroimaging, demographic data, and characterization of psychological functioning and neurocognitive data that will serve as a normative resource for clinicians and researchers for development of diagnostics and therapeutics for TBI and other brain disorders. The goal of this article is to introduce the large, well-curated Normative Neuroimaging Library (NNL) to the research community. NNL consists of data collected from ∼1900 healthy participants. The highlights of NNL are (1) data are collected across a diverse population, including civilians, veterans, and active-duty service members with an age range (18-64 years) not well represented in existing datasets; (2) comprehensive structural and functional neuroimaging acquisition with state-of-the-art sequences (including structural, diffusion, and functional MRI; raw scanner data are preserved, allowing higher quality data to be derived in the future; standardized imaging acquisition protocols across sites reflect sequences and parameters often recommended for use with various neurological and psychiatric conditions, including TBI, post-traumatic stress disorder, stroke, neurodegenerative disorders, and neoplastic disease); and (3) the collection of comprehensive demographic details, medical history, and a broad structured clinical assessment, including cognition and psychological scales, relevant to multiple neurological conditions with functional sequelae. Thus, NNL provides a demographically diverse population of healthy individuals who can serve as a comparison group for brain injury study and clinical samples, providing a strong foundation for precision medicine. Use cases include the creation of imaging-derived phenotypes (IDPs), derivation of reference ranges of imaging measures, and use of IDPs as training samples for artificial intelligence-based biomarker development and for normative modeling to help identify injury-induced changes as outliers for precision diagnosis and targeted therapeutic development. On its release, NNL is poised to support the use of advanced imaging in clinician decision support tools, the validation of imaging biomarkers, and the investigation of brain-behavior anomalies, moving the field toward precision medicine.
Collapse
Affiliation(s)
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Elisabeth A Wilde
- George E. Wahlen VA, Salt Lake City Healthcare System, Salt Lake City, Utah, USA
| | - Stephen R McCauley
- Department of Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert C Welsh
- Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - John P Mugler
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Nick Tustison
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Brian Avants
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, Virginia, USA
| | - Christopher T Whitlow
- Department of Radiology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | | | | | - Magali Haas
- Cohen Veterans Bioscience, New York, New York, USA
| |
Collapse
|
18
|
Dall'Aglio L, Johanson SU, Mallard T, Lamballais S, Delaney S, Smoller JW, Muetzel RL, Tiemeier H. Psychiatric neuroimaging at a crossroads: Insights from psychiatric genetics. Dev Cogn Neurosci 2024; 70:101443. [PMID: 39500134 PMCID: PMC11570172 DOI: 10.1016/j.dcn.2024.101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/21/2024] [Accepted: 09/05/2024] [Indexed: 11/21/2024] Open
Abstract
Thanks to methodological advances, large-scale data collections, and longitudinal designs, psychiatric neuroimaging is better equipped than ever to identify the neurobiological underpinnings of youth mental health problems. However, the complexity of such endeavors has become increasingly evident, as the field has been confronted by limited clinical relevance, inconsistent results, and small effect sizes. Some of these challenges parallel those historically encountered by psychiatric genetics. In past genetic research, robust findings were historically undermined by oversimplified biological hypotheses, mistaken assumptions about expectable effect sizes, replication problems, confounding by population structure, and shared biological patterns across disorders. Overcoming these challenges has contributed to current successes in the field. Drawing parallels across psychiatric genetics and neuroimaging, we identify key shared challenges as well as pinpoint relevant insights that could be gained in psychiatric neuroimaging from the transition that occurred from the candidate gene to (post) genome-wide "eras" of psychiatric genetics. Finally, we discuss the prominent developmental component of psychiatric neuroimaging and how that might be informed by epidemiological and omics approaches. The evolution of psychiatric genetic research offers valuable insights that may expedite the resolution of key challenges in psychiatric neuroimaging, thus potentially moving our understanding of psychiatric pathophysiology forward.
Collapse
Affiliation(s)
- Lorenza Dall'Aglio
- Department of Child and Adolescent Psychology and Psychiatry, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands; Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Saúl Urbina Johanson
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Travis Mallard
- Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Sander Lamballais
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Scott Delaney
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
| | - Jordan W Smoller
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, 185 Cambridge St, Boston, MA 02114, USA; Center for Precision Psychiatry, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, USA
| | - Ryan L Muetzel
- Department of Radiology, Erasmus MC, University Medical Center Rotterdam-Sophia Children's Hospital, PO Box 2040, Rotterdam, CA 3000, the Netherlands
| | - Henning Tiemeier
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Jones JD, Boyd RC, Sandro AD, Calkins ME, Los Reyes AD, Barzilay R, Young JF, Benton TD, Gur RC, Moore TM, Gur RE. The General Psychopathology 'p' Factor in Adolescence: Multi-Informant Assessment and Computerized Adaptive Testing. Res Child Adolesc Psychopathol 2024; 52:1753-1764. [PMID: 38869751 DOI: 10.1007/s10802-024-01223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
Accumulating evidence supports the presence of a general psychopathology dimension, the p factor ('p'). Despite growing interest in the p factor, questions remain about how p is assessed. Although multi-informant assessment of psychopathology is commonplace in clinical research and practice with children and adolescents, almost no research has taken a multi-informant approach to studying youth p or has examined the degree of concordance between parent and youth reports. Further, estimating p requires assessment of a large number of symptoms, resulting in high reporter burden that may not be feasible in many clinical and research settings. In the present study, we used bifactor multidimensional item response theory models to estimate parent- and adolescent-reported p in a large community sample of youth (11-17 years) and parents (N = 5,060 dyads). We examined agreement between parent and youth p scores and associations with assessor-rated youth global functioning. We also applied computerized adaptive testing (CAT) simulations to parent and youth reports to determine whether adaptive testing substantially alters agreement on p or associations with youth global functioning. Parent-youth agreement on p was moderate (r =.44) and both reports were negatively associated with youth global functioning. Notably, 7 out of 10 of the highest loading items were common across reporters. CAT reduced the average number of items administered by 57%. Agreement between CAT-derived p scores was similar to the full form (r =.40) and CAT scores were negatively correlated with youth functioning. These novel results highlight the promise and potential clinical utility of a multi-informant p factor approach.
Collapse
Affiliation(s)
- Jason D Jones
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA.
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA.
| | - Rhonda C Boyd
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Akira Di Sandro
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Monica E Calkins
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Andres De Los Reyes
- Department of Psychology, University of Maryland, College Park, Maryland, USA
| | - Ran Barzilay
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Jami F Young
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Tami D Benton
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Tyler M Moore
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| | - Raquel E Gur
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Children's Hospital of Philadelphia, Roberts Center for Pediatric Research, 2716 South Street, Philadelphia, PA 19146, USA
- Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, USA
| |
Collapse
|
20
|
Chen AA, Weinstein SM, Adebimpe A, Gur RC, Gur RE, Merikangas KR, Satterthwaite TD, Shinohara RT, Shou H. Similarity-based multimodal regression. Biostatistics 2024; 25:1122-1139. [PMID: 38058018 PMCID: PMC11471965 DOI: 10.1093/biostatistics/kxad033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 10/07/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023] Open
Abstract
To better understand complex human phenotypes, large-scale studies have increasingly collected multiple data modalities across domains such as imaging, mobile health, and physical activity. The properties of each data type often differ substantially and require either separate analyses or extensive processing to obtain comparable features for a combined analysis. Multimodal data fusion enables certain analyses on matrix-valued and vector-valued data, but it generally cannot integrate modalities of different dimensions and data structures. For a single data modality, multivariate distance matrix regression provides a distance-based framework for regression accommodating a wide range of data types. However, no distance-based method exists to handle multiple complementary types of data. We propose a novel distance-based regression model, which we refer to as Similarity-based Multimodal Regression (SiMMR), that enables simultaneous regression of multiple modalities through their distance profiles. We demonstrate through simulation, imaging studies, and longitudinal mobile health analyses that our proposed method can detect associations between clinical variables and multimodal data of differing properties and dimensionalities, even with modest sample sizes. We perform experiments to evaluate several different test statistics and provide recommendations for applying our method across a broad range of scenarios.
Collapse
Affiliation(s)
- Andrew A Chen
- Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sarah M Weinstein
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA 19122, USA
| | - Azeez Adebimpe
- Penn Lifespan Informatics & Neuroimaging Center, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathleen R Merikangas
- Genetic Epidemiology Research Branch, Intramural Research Program, National Institute of Mental Health, Bethesda, MD 20892, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics & Neuroimaging Center, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Haochang Shou
- Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
21
|
Rosenblatt M, Tejavibulya L, Sun H, Camp CC, Khaitova M, Adkinson BD, Jiang R, Westwater ML, Noble S, Scheinost D. Power and reproducibility in the external validation of brain-phenotype predictions. Nat Hum Behav 2024; 8:2018-2033. [PMID: 39085406 DOI: 10.1038/s41562-024-01931-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 06/18/2024] [Indexed: 08/02/2024]
Abstract
Brain-phenotype predictive models seek to identify reproducible and generalizable brain-phenotype associations. External validation, or the evaluation of a model in external datasets, is the gold standard in evaluating the generalizability of models in neuroimaging. Unlike typical studies, external validation involves two sample sizes: the training and the external sample sizes. Thus, traditional power calculations may not be appropriate. Here we ran over 900 million resampling-based simulations in functional and structural connectivity data to investigate the relationship between training sample size, external sample size, phenotype effect size, theoretical power and simulated power. Our analysis included a wide range of datasets: the Healthy Brain Network, the Adolescent Brain Cognitive Development Study, the Human Connectome Project (Development and Young Adult), the Philadelphia Neurodevelopmental Cohort, the Queensland Twin Adolescent Brain Project, and the Chinese Human Connectome Project; and phenotypes: age, body mass index, matrix reasoning, working memory, attention problems, anxiety/depression symptoms and relational processing. High effect size predictions achieved adequate power with training and external sample sizes of a few hundred individuals, whereas low and medium effect size predictions required hundreds to thousands of training and external samples. In addition, most previous external validation studies used sample sizes prone to low power, and theoretical power curves should be adjusted for the training sample size. Furthermore, model performance in internal validation often informed subsequent external validation performance (Pearson's r difference <0.2), particularly for well-harmonized datasets. These results could help decide how to power future external validation studies.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Huili Sun
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Chris C Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Milana Khaitova
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Rongtao Jiang
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Margaret L Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
22
|
Zhang A, Zhang G, Cai B, Wilson TW, Stephen JM, Calhoun VD, Wang YP. A Bayesian incorporated linear non-Gaussian acyclic model for multiple directed graph estimation to study brain emotion circuit development in adolescence. Netw Neurosci 2024; 8:791-807. [PMID: 39355441 PMCID: PMC11349030 DOI: 10.1162/netn_a_00384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 05/15/2024] [Indexed: 10/03/2024] Open
Abstract
Emotion perception is essential to affective and cognitive development which involves distributed brain circuits. Emotion identification skills emerge in infancy and continue to develop throughout childhood and adolescence. Understanding the development of the brain's emotion circuitry may help us explain the emotional changes during adolescence. In this work, we aim to deepen our understanding of emotion-related functional connectivity (FC) from association to causation. We proposed a Bayesian incorporated linear non-Gaussian acyclic model (BiLiNGAM), which incorporated association model into the estimation pipeline. Simulation results indicated stable and accurate performance over various settings, especially when the sample size was small. We used fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC) to validate the approach. It included 855 individuals aged 8-22 years who were divided into five different adolescent stages. Our network analysis revealed the development of emotion-related intra- and intermodular connectivity and pinpointed several emotion-related hubs. We further categorized the hubs into two types: in-hubs and out-hubs, as the center of receiving and distributing information, respectively. In addition, several unique developmental hub structures and group-specific patterns were discovered. Our findings help provide a directed FC template of brain network organization underlying emotion processing during adolescence.
Collapse
Affiliation(s)
- Aiying Zhang
- School of Data Science, University of Virginia, Charlottesville, VA, USA
| | - Gemeng Zhang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Biao Cai
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Tony W. Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | | | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
23
|
Chen L, Qiao C, Ren K, Qu G, Calhoun VD, Stephen JM, Wilson TW, Wang YP. Explainable spatio-temporal graph evolution learning with applications to dynamic brain network analysis during development. Neuroimage 2024; 298:120771. [PMID: 39111376 PMCID: PMC11533345 DOI: 10.1016/j.neuroimage.2024.120771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/23/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024] Open
Abstract
Modeling dynamic interactions among network components is crucial to uncovering the evolution mechanisms of complex networks. Recently, spatio-temporal graph learning methods have achieved noteworthy results in characterizing the dynamic changes of inter-node relations (INRs). However, challenges remain: The spatial neighborhood of an INR is underexploited, and the spatio-temporal dependencies in INRs' dynamic changes are overlooked, ignoring the influence of historical states and local information. In addition, the model's explainability has been understudied. To address these issues, we propose an explainable spatio-temporal graph evolution learning (ESTGEL) model to model the dynamic evolution of INRs. Specifically, an edge attention module is proposed to utilize the spatial neighborhood of an INR at multi-level, i.e., a hierarchy of nested subgraphs derived from decomposing the initial node-relation graph. Subsequently, a dynamic relation learning module is proposed to capture the spatio-temporal dependencies of INRs. The INRs are then used as adjacent information to improve the node representation, resulting in comprehensive delineation of dynamic evolution of the network. Finally, the approach is validated with real data on brain development study. Experimental results on dynamic brain networks analysis reveal that brain functional networks transition from dispersed to more convergent and modular structures throughout development. Significant changes are observed in the dynamic functional connectivity (dFC) associated with functions including emotional control, decision-making, and language processing.
Collapse
Affiliation(s)
- Longyun Chen
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Chen Qiao
- School of Mathematics and Statistics, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Kai Ren
- Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, USA.
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE 68010, USA.
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118, USA.
| |
Collapse
|
24
|
Karl V, Engen H, Beck D, Norbom LB, Ferschmann L, Aksnes ER, Kjelkenes R, Voldsbekk I, Andreassen OA, Alnæs D, Ladouceur CD, Westlye LT, Tamnes CK. The role of functional emotion circuits in distinct dimensions of psychopathology in youth. Transl Psychiatry 2024; 14:317. [PMID: 39095355 PMCID: PMC11297301 DOI: 10.1038/s41398-024-03036-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/04/2024] Open
Abstract
Several mental disorders emerge during childhood or adolescence and are often characterized by socioemotional difficulties, including alterations in emotion perception. Emotional facial expressions are processed in discrete functional brain modules whose connectivity patterns encode emotion categories, but the involvement of these neural circuits in psychopathology in youth is poorly understood. This study examined the associations between activation and functional connectivity patterns in emotion circuits and psychopathology during development. We used task-based fMRI data from the Philadelphia Neurodevelopmental Cohort (PNC, N = 1221, 8-23 years) and conducted generalized psycho-physiological interaction (gPPI) analyses. Measures of psychopathology were derived from an independent component analysis of questionnaire data. The results showed positive associations between identifying fearful, sad, and angry faces and depressive symptoms, and a negative relationship between sadness recognition and positive psychosis symptoms. We found a positive main effect of depressive symptoms on BOLD activation in regions overlapping with the default mode network, while individuals reporting higher levels of norm-violating behavior exhibited emotion-specific lower functional connectivity within regions of the salience network and between modules that overlapped with the salience and default mode network. Our findings illustrate the relevance of functional connectivity patterns underlying emotion processing for behavioral problems in children and adolescents.
Collapse
Affiliation(s)
- Valerie Karl
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway.
| | - Haakon Engen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- Institute of Military Psychiatry Norwegian Armed Forces Joint Medical Services, Oslo, Norway
| | - Dani Beck
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Lia Ferschmann
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
| | - Eira R Aksnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Rikka Kjelkenes
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Cecile D Ladouceur
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lars T Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Christian K Tamnes
- PROMENTA Research Center, Department of Psychology, University of Oslo, Oslo, Norway
- Division of Mental Health and Substance Abuse, Diakonhjemmet Hospital, Oslo, Norway
- NORMENT, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
25
|
Kurth F, Schijven D, van den Heuvel OA, Hoogman M, van Rooij D, Stein DJ, Buitelaar JK, Bölte S, Auzias G, Kushki A, Venkatasubramanian G, Rubia K, Bollmann S, Isaksson J, Jaspers‐Fayer F, Marsh R, Batistuzzo MC, Arnold PD, Bressan RA, Stewart SE, Gruner P, Sorensen L, Pan PM, Silk TJ, Gur RC, Cubillo AI, Haavik J, O'Gorman Tuura RL, Hartman CA, Calvo R, McGrath J, Calderoni S, Jackowski A, Chantiluke KC, Satterthwaite TD, Busatto GF, Nigg JT, Gur RE, Retico A, Tosetti M, Gallagher L, Szeszko PR, Neufeld J, Ortiz AE, Ghisleni C, Lazaro L, Hoekstra PJ, Anagnostou E, Hoekstra L, Simpson B, Plessen JK, Deruelle C, Soreni N, James A, Narayanaswamy J, Reddy JY, Fitzgerald J, Bellgrove MA, Salum GA, Janssen J, Muratori F, Vila M, Giral MG, Ameis SH, Bosco P, Remnélius KL, Huyser C, Pariente JC, Jalbrzikowski M, Rosa PG, O'Hearn KM, Ehrlich S, Mollon J, Zugman A, Christakou A, Arango C, Fisher SE, Kong X, Franke B, Medland SE, Thomopoulos SI, Jahanshad N, Glahn DC, Thompson PM, Francks C, Luders E. Large-scale analysis of structural brain asymmetries during neurodevelopment: Associations with age and sex in 4265 children and adolescents. Hum Brain Mapp 2024; 45:e26754. [PMID: 39046031 PMCID: PMC11267452 DOI: 10.1002/hbm.26754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 04/29/2024] [Accepted: 05/23/2024] [Indexed: 07/25/2024] Open
Abstract
Only a small number of studies have assessed structural differences between the two hemispheres during childhood and adolescence. However, the existing findings lack consistency or are restricted to a particular brain region, a specific brain feature, or a relatively narrow age range. Here, we investigated associations between brain asymmetry and age as well as sex in one of the largest pediatric samples to date (n = 4265), aged 1-18 years, scanned at 69 sites participating in the ENIGMA (Enhancing NeuroImaging Genetics through Meta-Analysis) consortium. Our study revealed that significant brain asymmetries already exist in childhood, but their magnitude and direction depend on the brain region examined and the morphometric measurement used (cortical volume or thickness, regional surface area, or subcortical volume). With respect to effects of age, some asymmetries became weaker over time while others became stronger; sometimes they even reversed direction. With respect to sex differences, the total number of regions exhibiting significant asymmetries was larger in females than in males, while the total number of measurements indicating significant asymmetries was larger in males (as we obtained more than one measurement per cortical region). The magnitude of the significant asymmetries was also greater in males. However, effect sizes for both age effects and sex differences were small. Taken together, these findings suggest that cerebral asymmetries are an inherent organizational pattern of the brain that manifests early in life. Overall, brain asymmetry appears to be relatively stable throughout childhood and adolescence, with some differential effects in males and females.
Collapse
Affiliation(s)
- F. Kurth
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Institute of Diagnostic and Interventional Radiology, Jena University HospitalJenaGermany
| | - D. Schijven
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
| | - O. A. van den Heuvel
- Department of PsychiatryAmsterdam University Medical CenterAmsterdamThe Netherlands
| | - M. Hoogman
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - D. van Rooij
- Donders Institute for Brain, Cognition and Behavior, Department of Cognitive NeuroscienceRadboud University Medical CenterNijmegenThe Netherlands
| | - D. J. Stein
- SAMRC Unit on Risk & Resilience in Mental Disorders, Department of Psychiatry & Neuroscience InstituteUniversity of Cape TownCape TownSouth Africa
| | - J. K. Buitelaar
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
- Department of Cognitive NeuroscienceRadboudumcNijmegenThe Netherlands
| | - S. Bölte
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Curtin Autism Research Group, Curtin School of Allied HealthCurtin UniversityPerthAustralia
| | - G. Auzias
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - A. Kushki
- Holland Bloorview Kids Rehabilitation Hospital, Institute for Biomedical EngineeringUniversity of TorontoTorontoCanada
| | - G. Venkatasubramanian
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoCanada
| | - K. Rubia
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - S. Bollmann
- School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneAustralia
| | - J. Isaksson
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Child and Adolescent Psychiatry Unit, Department of Medical SciencesUppsala UniversityUppsalaSweden
| | - F. Jaspers‐Fayer
- BC Children's Research Institute and the University of British ColumbiaVancouverCanada
| | - R. Marsh
- Department of PsychiatryColumbia University Irving Medical Center and the New York State Psychiatric InstituteNew YorkNew YorkUSA
| | - M. C. Batistuzzo
- Department & Institute of PsychiatryUniversity of Sao Paulo, Medical SchoolSao PauloBrazil
- Department of Methods and Techniques in PsychologyPontifical Catholic UniversitySao PauloBrazil
| | - P. D. Arnold
- The Mathison Centre for Mental Health Research & Education, Hotchkiss Brain InstituteUniversity of CalgaryCalgaryCanada
| | - R. A. Bressan
- Federal University of São PauloSão PauloBrazil
- Instituto Ame Sua MenteSão PauloBrazil
| | - S. E. Stewart
- British Columbia Children's Hospital, British Columbia Mental Health and Substance Use ServicesUniversity of British ColumbiaVancouverCanada
| | - P. Gruner
- Department of PsychiatryYale UniversityNew HavenConnecticutUSA
| | - L. Sorensen
- Department of Biological and Medical PsychologyUniversity of BergenBergenNorway
| | - P. M. Pan
- Laboratório de Neurociências Integrativas (LINC), Departamento de PsiquiatriaUniversidade Federal de São Paulo (UNIFESP)São PauloBrazil
- Instituto Nacional de siquiatria do Desenvolvimento (INPD)São PauloBrazil
| | - T. J. Silk
- Centre for Social and Early Emotional Development and School of PsychologyDeakin UniversityGeelongAustralia
- Murdoch Children's Research InstituteMelbourneAustralia
| | - R. C. Gur
- Department of Psychiatry, Section on Neurodevelopment and Psychosis and the Lifespan Brain Institute, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. I. Cubillo
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
| | - J. Haavik
- Department of BiomedicineUniversity of BergenBergenNorway
- Division of PsychiatryHaukeland University HospitalBergenNorway
| | - R. L. O'Gorman Tuura
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - C. A. Hartman
- Interdisciplinary Center Psychopathology and Emotion Regulation, Department of Psychiatry, University of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| | - R. Calvo
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - J. McGrath
- Department of PsychiatryTrinity College DublinDublinIreland
| | - S. Calderoni
- IRCCS Stella Maris FoundationPisaItaly
- Department of Clinical and Experimental MedicineUniversity of PisaPisaItaly
| | - A. Jackowski
- Department of PsychiatryUNIFESPSão PauloBrazil
- Department of EducationICT and Learning, Østfold University CollegeHaldenNorway
| | - K. C. Chantiluke
- Institute of Psychiatry, Psychology & NeuroscienceKing's College LondonLondonUK
| | - T. D. Satterthwaite
- Department of Psychiatry, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Lifespan Brain InstituteUniversity of Pennsylvania & Children's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
- Center for Biomedical Image Computing and Analytics, Perelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - G. F. Busatto
- Department of Psychiatry, Faculty of MedicineUniversity of São PauloSão PauloBrazil
| | - J. T. Nigg
- Department of Psychiatry and Center for ADHD ResearchOregon Health & Science UniversityPortlandOregonUSA
| | - R. E. Gur
- Department of Psychiatry, The Penn‐CHOP Lifespan Brain InstituteUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - A. Retico
- Pisa DivisionNational Institute for Nuclear Physics (INFN)PisaItaly
| | | | - L. Gallagher
- Department of PsychiatryTrinity College DublinDublinIreland
- The Hospital for Sick childrenTorontoCanada
- The Centre for Addiction and Mental Health TorontoTorontoCanada
- Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. R. Szeszko
- Department of PsychiatryIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Department of NeuroscienceIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
- Mental Illness Research, Education and Clinical Center (MIRECC)James J. Peters VA Medical CenterNew YorkNew YorkUSA
| | - J. Neufeld
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
| | - A. E. Ortiz
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - C. Ghisleni
- Center for MR Research, University Children's Hospital ZurichUniversity of ZurichZurichSwitzerland
| | - L. Lazaro
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
- School of MedicineUniversity of BarcelonaBarcelonaSpain
- Centro de Investigación Biomédica en Red Salud Mental (CIBERSAM)BarcelonaSpain
- Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - P. J. Hoekstra
- Department of Child and Adolescent Psychiatry & Accare Child Study CenterUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - E. Anagnostou
- Holland Bloorview Kids Rehabilitation Hospital, Department of Pediatrics, Temetry School of MedicineUniversity of TorontoTorontoCanada
| | - L. Hoekstra
- Karakter University Center for Child and Adolescent PsychiatryNijmegenThe Netherlands
- Donders Center for Cognitive NeuroimagingNijmegenThe Netherlands
- Radboud University Medical CenterNijmegenThe Netherlands
| | - B. Simpson
- New York State Psychiatric Institute/CUIMCNew YorkNew YorkUSA
| | - J. K. Plessen
- Division of Child and Adolescent Psychiatry, Department of PsychiatryUniversity Hospital LausanneLausanneSwitzerland
| | - C. Deruelle
- Institut de neurosciences de la Timone UMR 7289, Aix‐Marseille Université & CNRSMarseilleFrance
| | - N. Soreni
- Pediatric OCD Consultation ClinicSJHHamiltonCanada
- Department of Psychiatry and Behavioral Neurosciences and Offord Child StudiesMcMaster UniversityHamiltonCanada
| | - A. James
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - J. Narayanaswamy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | - J. Y. Reddy
- National Institute of Mental Health and Neuro Sciences (NIMHANS)BengaluruIndia
| | | | - M. A. Bellgrove
- School of Psychological Sciences and Turner Institute for Brain and Mental HealthMonash UniversityMelbourneAustralia
| | - G. A. Salum
- Graduate Program of Psychiatry and Behavioral SciencesUniversidade Federal do Rio Grande do Sul, Hospital de Clínicas de Porto AlegrePorto AlegreBrazil
- Child Mind InstituteNew YorkNew YorkUSA
| | - J. Janssen
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental HealthHospital General Universitario Gregorio Marañón, IiSGM, CIBERSAMMadridSpain
| | | | - M. Vila
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - M. Garcia Giral
- Department of Child and Adolescent Psychiatry and Psychology, Neuroscience InstituteHospital ClinicBarcelonaSpain
| | - S. H. Ameis
- Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoCanada
- Temerty Faculty of Medicine, Department of PsychiatryUniversity of TorontoTorontoCanada
| | - P. Bosco
- IRCCS Stella Maris FoundationPisaItaly
| | - K. Lundin Remnélius
- Center of Neurodevelopmental Disorders (KIND), Centre for Psychiatry Research, Department of Women's and Children's HealthKarolinska Institutet & Stockholm Health Care Services, Region StockholmStockholmSweden
| | - C. Huyser
- Academic Center Child and Youth PsychiatryLevvelAmsterdamThe Netherlands
- Department of Child and Adolescent PsychiatryAmsterdamUMCAmsterdamThe Netherlands
| | - J. C. Pariente
- Magnetic Resonance Image Core FacilityInstitut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
| | - M. Jalbrzikowski
- Department of Psychiatry and Behavioral SciencesBoston Children's HospitalBostonMassachusettsUSA
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
| | - P. G. Rosa
- Laboratory of Psychiatric Neuroimaging (LIM‐21), Departamento e Instituto de Psiquiatria, Hospital das Clinicas HCFMUSP, Faculdade de MedicinaUniversidade de Sao PauloSao PauloBrazil
| | - K. M. O'Hearn
- Atrium Health Wake Forest Baptist Medical CenterWinston‐SalemNorth CarolinaUSA
| | - S. Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences & Department of Child and Adolescent PsychiatryFaculty of Medicine, TU DresdenDresdenGermany
| | - J. Mollon
- Boston Children's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - A. Zugman
- National Institutes of Health/National Institute of Mental HealthBethesdaMarylandUSA
| | - A. Christakou
- Institute of Psychiatry, Psychology and NeuroscienceKing's College LondonLondonUK
- Centre for Integrative Neuroscience and Neurodynamics, School of Psychology and Clinical Language SciencesUniversity of ReadingReadingUK
| | - C. Arango
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, IiSGM, School of MedicineUniversidad Complutense, CIBERSAMMadridSpain
| | - S. E. Fisher
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - X. Kong
- Department of Psychology and Behavioral SciencesZhejiang UniversityHangzhouChina
- Department of Psychiatry of Sir Run Run Shaw HospitalZhejiang University School of MedicineHangzhouChina
| | - B. Franke
- Department of PsychiatryRadboud University Medical CenterNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - S. E. Medland
- QIMR Berghofer Medical Research InstituteHerstonAustralia
| | - S. I. Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - N. Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - D. C. Glahn
- Department of PsychiatryHarvard Medical SchoolBostonMassachusettsUSA
- Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's HospitalBostonMassachusettsUSA
| | - P. M. Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of MedicineUniversity of Southern CaliforniaMarina del ReyCaliforniaUSA
| | - C. Francks
- Language and Genetics DepartmentMax Planck Institute for PsycholinguisticsNijmegenThe Netherlands
- Department of Human GeneticsRadboud University Medical CenterNijmegenThe Netherlands
- Donders Institute for Brain, Cognition and BehaviourRadboud UniversityNijmegenThe Netherlands
| | - E. Luders
- School of PsychologyUniversity of AucklandAucklandNew Zealand
- Swedish Collegium for Advanced Study (SCAS)UppsalaSweden
- Department of Women's and Children's HealthUppsala UniversityUppsalaSweden
- Laboratory of Neuro Imaging, Keck School of MedicineUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
26
|
Zoupou E, Moore TM, Calkins ME, Gur RE, Gur RC, Scott JC. Domain-specific associations between psychopathology and neurocognitive functioning. Psychol Med 2024; 54:3145-3155. [PMID: 38828712 DOI: 10.1017/s0033291724001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
BACKGROUND Neurocognitive dysfunction is a transdiagnostic finding in psychopathology, but relationships among cognitive domains and general and specific psychopathology dimensions remain unclear. This study aimed to examine associations between cognition and psychopathology dimensions in a large youth cohort. METHOD The sample (N = 9350; age 8-21 years) was drawn from the Philadelphia Neurodevelopmental Cohort. Data from structured clinical interviews were modeled using bifactor confirmatory factor analysis (CFA), resulting in an overall psychopathology ('p') factor score and six orthogonal psychopathology dimensions: dysphoria/distress, obsessive-compulsive, behavioral/externalizing, attention-deficit/hyperactivity, phobias, and psychosis. Neurocognitive data were aggregated using correlated-traits CFA into five factors: executive functioning, memory, complex cognition, social cognition, and sensorimotor speed. We examined relationships among specific and general psychopathology dimensions and neurocognitive factors. RESULTS The final model showed both overall and specific associations between cognitive functioning and psychopathology, with acceptable fit (CFI = 0.91; TLI = 0.90; RMSEA = 0.024; SRMR = 0.054). Overall psychopathology and most psychopathology dimensions were negatively associated with neurocognitive functioning (phobias [p < 0.0005], behavioral/externalizing [p < 0.0005], attention-deficit/hyperactivity [p < 0.0005], psychosis [p < 0.0005 to p < 0.05]), except for dysphoria/distress and obsessive-compulsive symptoms, which were positively associated with complex cognition (p < 0.05 and p < 0.01, respectively). CONCLUSION By modeling a broad range of cognitive and psychopathology domains in a large, diverse sample of youth, we found aspects of neurocognitive functioning shared across clinical phenotypes, as well as domain-specific patterns. Findings support transdiagnostic examination of cognitive performance to parse variability in the link between neurocognitive functioning and clinical phenotypes.
Collapse
Affiliation(s)
- Eirini Zoupou
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Monica E Calkins
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI), Children's Hospital of Philadelphia and Penn Medicine, Philadelphia, PA 19104, USA
| | - J Cobb Scott
- Department of Psychiatry, Neurodevelopment and Psychosis Section, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- VISN4 MIRECC, Corporal Michael J. Crescenz Veterans Affairs Medical Center, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Saberi A, Wischnewski KJ, Jung K, Lotter LD, Schaare HL, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Poustka L, Hohmann S, Holz N, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Paus T, Dukart J, Bernhardt BC, Popovych OV, Eickhoff SB, Valk SL. Adolescent maturation of cortical excitation-inhibition balance based on individualized biophysical network modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.18.599509. [PMID: 38948771 PMCID: PMC11213014 DOI: 10.1101/2024.06.18.599509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
The balance of excitation and inhibition is a key functional property of cortical microcircuits which changes through the lifespan. Adolescence is considered a crucial period for the maturation of excitation-inhibition balance. This has been primarily observed in animal studies, yet human in vivo evidence on adolescent maturation of the excitation-inhibition balance at the individual level is limited. Here, we developed an individualized in vivo marker of regional excitation-inhibition balance in human adolescents, estimated using large-scale simulations of biophysical network models fitted to resting-state functional magnetic resonance imaging data from two independent cross-sectional (N = 752) and longitudinal (N = 149) cohorts. We found a widespread relative increase of inhibition in association cortices paralleled by a relative age-related increase of excitation, or lack of change, in sensorimotor areas across both datasets. This developmental pattern co-aligned with multiscale markers of sensorimotor-association differentiation. The spatial pattern of excitation-inhibition development in adolescence was robust to inter-individual variability of structural connectomes and modeling configurations. Notably, we found that alternative simulation-based markers of excitation-inhibition balance show a variable sensitivity to maturational change. Taken together, our study highlights an increase of inhibition during adolescence in association areas using cross sectional and longitudinal data, and provides a robust computational framework to estimate microcircuit maturation in vivo at the individual level.
Collapse
Affiliation(s)
- Amin Saberi
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kevin J Wischnewski
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute of Mathematics, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, Dusseldorf, Germany
| | - Kyesam Jung
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Leon D Lotter
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Max Planck School of Cognition, Stephanstrasse 1A, 04103 Leipzig, Germany
| | - H Lina Schaare
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, United Kingdom
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, 68131 Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, 05405 Burlington, Vermont, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, University Park, Nottingham, United Kingdom
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- German Center for Mental Health (DZPG), site Berlin-Potsdam, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- AP-HP. Sorbonne Université, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U A10 "Trajectoires développementales en psychiatrie"; Université Paris-Saclay, Ecole Normale supérieure Paris-Saclay, CNRS, Centre Borelli; Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig-Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, 33076 Bordeaux, France
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Nathalie Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Square J5, 68159 Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
| | - Juergen Dukart
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sofie L Valk
- Institute of Neuroscience and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
28
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BTT. In vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. Proc Natl Acad Sci U S A 2024; 121:e2318641121. [PMID: 38814872 PMCID: PMC11161789 DOI: 10.1073/pnas.2318641121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 04/04/2024] [Indexed: 06/01/2024] Open
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here, we noninvasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the gamma-aminobutyric acid (GABA) agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in the association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 y old) and Asian (7.2 to 7.9 y old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Pediatrics, University of Minnesota, Minneapolis, MN55455
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Tianchu Zeng
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Lijun An
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- ByteDance, Singapore048583, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
- Department of Radiology, University of Pennsylvania, Philadelphia, PA19104
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
| | - Avram J. Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ07103
- Wu Tsai Institute, Yale University, New Haven, CT06520
| | - Yapei Xie
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
| | - Marielle V. Fortier
- Department of Diagnostic and Interventional Imaging, Kandang Kerbau Women’s and Children’s Hospital, Singapore229899, Singapore
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119074, Singapore
| | - Peter Gluckman
- Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland1142, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore119228, Singapore
| | - Michael J. Meaney
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore138632, Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QCH3A1A1, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona08002, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona08010, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA19104
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA19104
- Lifespan Brain Institute of Penn Medicine and Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA19104
| | - B. T. Thomas Yeo
- Centre for Sleep and Cognition and Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore117594, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore117583, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore117456, Singapore
- Integrative Sciences and Engineering Programme, National University of Singapore, Singapore119077, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Signapore117456, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA02129
| |
Collapse
|
29
|
Weinstein SM, Vandekar SN, Li B, Alexander‐Bloch AF, Raznahan A, Li M, Gur RE, Gur RC, Roalf DR, Park MTM, Chakravarty M, Baller EB, Linn KA, Satterthwaite TD, Shinohara RT. Network enrichment significance testing in brain-phenotype association studies. Hum Brain Mapp 2024; 45:e26714. [PMID: 38878300 PMCID: PMC11179683 DOI: 10.1002/hbm.26714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 04/08/2024] [Accepted: 05/04/2024] [Indexed: 06/19/2024] Open
Abstract
Functional networks often guide our interpretation of spatial maps of brain-phenotype associations. However, methods for assessing enrichment of associations within networks of interest have varied in terms of both scientific rigor and underlying assumptions. While some approaches have relied on subjective interpretations, others have made unrealistic assumptions about spatial properties of imaging data, leading to inflated false positive rates. We seek to address this gap in existing methodology by borrowing insight from a method widely used in genetics research for testing enrichment of associations between a set of genes and a phenotype of interest. We propose network enrichment significance testing (NEST), a flexible framework for testing the specificity of brain-phenotype associations to functional networks or other sub-regions of the brain. We apply NEST to study enrichment of associations with structural and functional brain imaging data from a large-scale neurodevelopmental cohort study.
Collapse
Affiliation(s)
- Sarah M. Weinstein
- Department of Epidemiology and BiostatisticsTemple University College of Public HealthPhiladelphiaPennsylvaniaUSA
| | - Simon N. Vandekar
- Department of BiostatisticsVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Bin Li
- Department of Computer and Information SciencesTemple University College of Science and TechnologyPhiladelphiaPennsylvaniaUSA
| | - Aaron F. Alexander‐Bloch
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
- Department of Child and Adolescent Psychiatry and Behavioral ScienceChildren's Hospital of PhiladelphiaPhiladelphiaPennsylvaniaUSA
| | - Armin Raznahan
- Section on Developmental NeurogenomicsNational Institute of Mental Health Intramural Research ProgramBethesdaMarylandUSA
| | - Mingyao Li
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Raquel E. Gur
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Ruben C. Gur
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - David R. Roalf
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Min Tae M. Park
- Department of Psychiatry, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Integrated Program in NeuroscienceMcGill UniversityQCCanada
| | - Mallar Chakravarty
- Department of PsychiatryMcGill UniversityQCCanada
- Cerebral Imaging Centre, Douglas Research Centre, McGill UniversityQCCanada
| | - Erica B. Baller
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Kristin A. Linn
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Theodore D. Satterthwaite
- Department of PsychiatryUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| | - Russell T. Shinohara
- Department of Biostatistics, Epidemiology, and InformaticsUniversity of Pennsylvania, Perelman School of MedicinePhiladelphiaPennsylvaniaUSA
| |
Collapse
|
30
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.16.594528. [PMID: 38798580 PMCID: PMC11118390 DOI: 10.1101/2024.05.16.594528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevel-opmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
|
31
|
Orlichenko A, Qu G, Zhou Z, Liu A, Deng HW, Ding Z, Stephen JM, Wilson TW, Calhoun VD, Wang YP. A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds. ARXIV 2024:arXiv:2405.07977v1. [PMID: 38800653 PMCID: PMC11118598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Objective fMRI and derived measures such as functional connectivity (FC) have been used to predict brain age, general fluid intelligence, psychiatric disease status, and preclinical neurodegenerative disease. However, it is not always clear that all demographic confounds, such as age, sex, and race, have been removed from fMRI data. Additionally, many fMRI datasets are restricted to authorized researchers, making dissemination of these valuable data sources challenging. Methods We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics and generate high-quality synthetic fMRI data based on user-supplied demographics. We train and validate our model using two large, widely used datasets, the Philadelphia Neurodevelopmental Cohort (PNC) and Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP). Results We find that DemoVAE recapitulates group differences in fMRI data while capturing the full breadth of individual variations. Significantly, we also find that most clinical and computerized battery fields that are correlated with fMRI data are not correlated with DemoVAE latents. An exception are several fields related to schizophrenia medication and symptom severity. Conclusion Our model generates fMRI data that captures the full distribution of FC better than traditional VAE or GAN models. We also find that most prediction using fMRI data is dependent on correlation with, and prediction of, demographics. Significance Our DemoVAE model allows for generation of high quality synthetic data conditioned on subject demographics as well as the removal of the confounding effects of demographics. We identify that FC-based prediction tasks are highly influenced by demographic confounds.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Gang Qu
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| | - Ziyu Zhou
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | - Anqi Liu
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Hong-Wen Deng
- Center for Biomedical Informatics and Genomics, Tulane Integrated Institute of Data & Health Sciences, Tulane University, New Orleans, LA 70112
| | - Zhengming Ding
- Department of Computer Science, Tulane University, New Orleans, LA 70118
| | | | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA 70118
| |
Collapse
|
32
|
Ma Y, Li H, Zhou Z, Chen X, Ma L, Guray E, Balderston NL, Oathes DJ, Shinohara RT, Wolf DH, Nasrallah IM, Shou H, Satterthwaite TD, Davatzikos C, Fan Y. pNet: A toolbox for personalized functional networks modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591367. [PMID: 38746228 PMCID: PMC11092457 DOI: 10.1101/2024.04.26.591367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Personalized functional networks (FNs) derived from functional magnetic resonance imaging (fMRI) data are useful for characterizing individual variations in the brain functional topography associated with the brain development, aging, and disorders. To facilitate applications of the personalized FNs with enhanced reliability and reproducibility, we develop an open-source toolbox that is user-friendly, extendable, and includes rigorous quality control (QC), featuring multiple user interfaces (graphics, command line, and a step-by-step guideline) and job-scheduling for high performance computing (HPC) clusters. Particularly, the toolbox, named personalized functional network modeling (pNet), takes fMRI inputs in either volumetric or surface type, ensuring compatibility with multiple fMRI data formats, and computes personalized FNs using two distinct modeling methods: one method optimizes the functional coherence of FNs, while the other enhances their independence. Additionally, the toolbox provides HTML-based reports for QC and visualization of personalized FNs. The toolbox is developed in both MATLAB and Python platforms with a modular design to facilitate extension and modification by users familiar with either programming language. We have evaluated the toolbox on two fMRI datasets and demonstrated its effectiveness and user-friendliness with interactive and scripting examples. pNet is publicly available at https://github.com/MLDataAnalytics/pNet.
Collapse
Affiliation(s)
- Yuncong Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Hongming Li
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Zhen Zhou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyang Chen
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Liang Ma
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Erus Guray
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Nicholas L Balderston
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Desmond J Oathes
- Center for Neuromodulation in Depression and Stress, Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russell T Shinohara
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology and Informatics, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Daniel H Wolf
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Ilya M Nasrallah
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Haochang Shou
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Clinical Epidemiology (CCEB), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Center for Statistics in Big Data (CSBD), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
- Penn Statistics in Imaging and Visualization Center (PennSIVE), Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Theodore D Satterthwaite
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Psychiatry, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
- 9. Penn Lifespan Informatics and Neuroimaging Center (PennLINC), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| | - Yong Fan
- Center for Biomedical Image Computing and Analytics (CBICA), the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104 USA
- Department of Radiology, the Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
33
|
Luo AC, Sydnor VJ, Pines A, Larsen B, Alexander-Bloch AF, Cieslak M, Covitz S, Chen AA, Esper NB, Feczko E, Franco AR, Gur RE, Gur RC, Houghton A, Hu F, Keller AS, Kiar G, Mehta K, Salum GA, Tapera T, Xu T, Zhao C, Salo T, Fair DA, Shinohara RT, Milham MP, Satterthwaite TD. Functional connectivity development along the sensorimotor-association axis enhances the cortical hierarchy. Nat Commun 2024; 15:3511. [PMID: 38664387 PMCID: PMC11045762 DOI: 10.1038/s41467-024-47748-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Human cortical maturation has been posited to be organized along the sensorimotor-association axis, a hierarchical axis of brain organization that spans from unimodal sensorimotor cortices to transmodal association cortices. Here, we investigate the hypothesis that the development of functional connectivity during childhood through adolescence conforms to the cortical hierarchy defined by the sensorimotor-association axis. We tested this pre-registered hypothesis in four large-scale, independent datasets (total n = 3355; ages 5-23 years): the Philadelphia Neurodevelopmental Cohort (n = 1207), Nathan Kline Institute-Rockland Sample (n = 397), Human Connectome Project: Development (n = 625), and Healthy Brain Network (n = 1126). Across datasets, the development of functional connectivity systematically varied along the sensorimotor-association axis. Connectivity in sensorimotor regions increased, whereas connectivity in association cortices declined, refining and reinforcing the cortical hierarchy. These consistent and generalizable results establish that the sensorimotor-association axis of cortical organization encodes the dominant pattern of functional connectivity development.
Collapse
Affiliation(s)
- Audrey C Luo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Adam Pines
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Sydney Covitz
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Andrew A Chen
- Division of Biostatistics and Bioinformatics, Department of Public Health Sciences, Medical University of South Carolina, Charleston, SC, 29425, USA
| | | | - Eric Feczko
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Alexandre R Franco
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
- Department of Psychiatry, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Child and Adolescent Psychiatry and Behavioral Science, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Audrey Houghton
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fengling Hu
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arielle S Keller
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Gregory Kiar
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Kahini Mehta
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Giovanni A Salum
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Section on Negative Affect and Social Processes, Hospital de Clínicas de Porto Alegre, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Tinashe Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, 02115, USA
| | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Taylor Salo
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
- Institute of Child Development, College of Education and Human Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Russell T Shinohara
- Penn Statistics in Imaging and Visualization Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Michael P Milham
- Center for the Developing Brain, Child Mind Institute, New York, NY, 10022, USA
- Center for Biomedical Imaging and Neuromodulation, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY, 10962, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Lifespan Brain Institute, Children's Hospital of Philadelphia and Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| |
Collapse
|
34
|
Qu G, Orlichenko A, Wang J, Zhang G, Xiao L, Zhang K, Wilson TW, Stephen JM, Calhoun VD, Wang YP. Interpretable Cognitive Ability Prediction: A Comprehensive Gated Graph Transformer Framework for Analyzing Functional Brain Networks. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:1568-1578. [PMID: 38109241 PMCID: PMC11090410 DOI: 10.1109/tmi.2023.3343365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Graph convolutional deep learning has emerged as a promising method to explore the functional organization of the human brain in neuroscience research. This paper presents a novel framework that utilizes the gated graph transformer (GGT) model to predict individuals' cognitive ability based on functional connectivity (FC) derived from fMRI. Our framework incorporates prior spatial knowledge and uses a random-walk diffusion strategy that captures the intricate structural and functional relationships between different brain regions. Specifically, our approach employs learnable structural and positional encodings (LSPE) in conjunction with a gating mechanism to efficiently disentangle the learning of positional encoding (PE) and graph embeddings. Additionally, we utilize the attention mechanism to derive multi-view node feature embeddings and dynamically distribute propagation weights between each node and its neighbors, which facilitates the identification of significant biomarkers from functional brain networks and thus enhances the interpretability of the findings. To evaluate our proposed model in cognitive ability prediction, we conduct experiments on two large-scale brain imaging datasets: the Philadelphia Neurodevelopmental Cohort (PNC) and the Human Connectome Project (HCP). The results show that our approach not only outperforms existing methods in prediction accuracy but also provides superior explainability, which can be used to identify important FCs underlying cognitive behaviors.
Collapse
|
35
|
Chang JR, Yao ZF, Hsieh S, Nordling TEM. Age Prediction Using Resting-State Functional MRI. Neuroinformatics 2024; 22:119-134. [PMID: 38341830 DOI: 10.1007/s12021-024-09653-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2023] [Indexed: 02/13/2024]
Abstract
The increasing lifespan and large individual differences in cognitive capability highlight the importance of comprehending the aging process of the brain. Contrary to visible signs of bodily ageing, like greying of hair and loss of muscle mass, the internal changes that occur within our brains remain less apparent until they impair function. Brain age, distinct from chronological age, reflects our brain's health status and may deviate from our actual chronological age. Notably, brain age has been associated with mortality and depression. The brain is plastic and can compensate even for severe structural damage by rewiring. Functional characterization offers insights that structural cannot provide. Contrary to the multitude of studies relying on structural magnetic resonance imaging (MRI), we utilize resting-state functional MRI (rsfMRI). We also address the issue of inclusion of subjects with abnormal brain ageing through outlier removal. In this study, we employ the Least Absolute Shrinkage and Selection Operator (LASSO) to identify the 39 most predictive correlations derived from the rsfMRI data. The data is from a cohort of 176 healthy right-handed volunteers, aged 18-78 years (95/81 male/female, mean age 48, SD 17) collected at the Mind Research Imaging Center at the National Cheng Kung University. We establish a normal reference model by excluding 68 outliers, which achieves a leave-one-out mean absolute error of 2.48 years. By asking which additional features that are needed to predict the chronological age of the outliers with a smaller error, we identify correlations predictive of abnormal aging. These are associated with the Default Mode Network (DMN). Our normal reference model has the lowest prediction error among published models evaluated on adult subjects of almost all ages and is thus a candidate for screening for abnormal brain aging that has not yet manifested in cognitive decline. This study advances our ability to predict brain aging and provides insights into potential biomarkers for assessing brain age, suggesting that the role of DMN in brain aging should be studied further.
Collapse
Affiliation(s)
- Jose Ramon Chang
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Zai-Fu Yao
- College of Education, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Research Center for Education and Mind Sciences, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Kinesiology, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Basic Psychology Group, Department of Educational Psychology and Counseling, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
- Department of Public Health, College of Medicine, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan
| | - Torbjörn E M Nordling
- Department of Mechanical Engineering, National Cheng Kung University, No. 1 University Rd., Tainan, 701, Taiwan.
| |
Collapse
|
36
|
Zhang S, Larsen B, Sydnor VJ, Zeng T, An L, Yan X, Kong R, Kong X, Gur RC, Gur RE, Moore TM, Wolf DH, Holmes AJ, Xie Y, Zhou JH, Fortier MV, Tan AP, Gluckman P, Chong YS, Meaney MJ, Deco G, Satterthwaite TD, Yeo BT. In-vivo whole-cortex marker of excitation-inhibition ratio indexes cortical maturation and cognitive ability in youth. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.22.546023. [PMID: 38586012 PMCID: PMC10996460 DOI: 10.1101/2023.06.22.546023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
A balanced excitation-inhibition ratio (E/I ratio) is critical for healthy brain function. Normative development of cortex-wide E/I ratio remains unknown. Here we non-invasively estimate a putative marker of whole-cortex E/I ratio by fitting a large-scale biophysically-plausible circuit model to resting-state functional MRI (fMRI) data. We first confirm that our model generates realistic brain dynamics in the Human Connectome Project. Next, we show that the estimated E/I ratio marker is sensitive to the GABA-agonist benzodiazepine alprazolam during fMRI. Alprazolam-induced E/I changes are spatially consistent with positron emission tomography measurement of benzodiazepine receptor density. We then investigate the relationship between the E/I ratio marker and neurodevelopment. We find that the E/I ratio marker declines heterogeneously across the cerebral cortex during youth, with the greatest reduction occurring in sensorimotor systems relative to association systems. Importantly, among children with the same chronological age, a lower E/I ratio marker (especially in association cortex) is linked to better cognitive performance. This result is replicated across North American (8.2 to 23.0 years old) and Asian (7.2 to 7.9 years old) cohorts, suggesting that a more mature E/I ratio indexes improved cognition during normative development. Overall, our findings open the door to studying how disrupted E/I trajectories may lead to cognitive dysfunction in psychopathology that emerges during youth.
Collapse
Affiliation(s)
- Shaoshi Zhang
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J. Sydnor
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tianchu Zeng
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Lijun An
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaoxuan Yan
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Ru Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Xiaolu Kong
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- ByteDance, Singapore
| | - Ruben C. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E. Gur
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M. Moore
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel H. Wolf
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Avram J Holmes
- Department of Psychiatry, Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Yapei Xie
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Juan Helen Zhou
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital, Singapore
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
| | - Ai Peng Tan
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Diagnostic Radiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Peter Gluckman
- UK Centre for Human Evolution, Adaptation and Disease, Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Yap Seng Chong
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Gustavo Deco
- Center for Brain and Cognition, Department of Technology and Information, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats, Universitat Barcelona, Barcelona, Spain
| | - Theodore D. Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104, USA
- Lifespan Brain Institute (LiBI) of Penn Medicine and CHOP, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - B.T. Thomas Yeo
- Centre for Sleep and Cognition & Centre for Translational MR Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
- N.1 Institute for Health, National University of Singapore, Singapore
- Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
- Department of Medicine, Human Potential Translational Research Programme & Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National Univeristy of Singapore, Signapore
- Martinos Center for Biomedical Imaging, Massachusetts General Hopstial, Charlestown, MA, USA
| |
Collapse
|
37
|
Orlichenko A, Su KJ, Shen H, Deng HW, Wang YP. Somatomotor-visual resting state functional connectivity increases after 2 years in the UK Biobank longitudinal cohort. J Med Imaging (Bellingham) 2024; 11:024010. [PMID: 38618171 PMCID: PMC11009525 DOI: 10.1117/1.jmi.11.2.024010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 01/26/2024] [Accepted: 03/29/2024] [Indexed: 04/16/2024] Open
Abstract
Purpose Functional magnetic resonance imaging (fMRI) and functional connectivity (FC) have been used to follow aging in both children and older adults. Robust changes have been observed in children, in which high connectivity among all brain regions changes to a more modular structure with maturation. We examine FC changes in older adults after 2 years of aging in the UK Biobank (UKB) longitudinal cohort. Approach We process fMRI connectivity data using the Power264 atlas and then test whether the average internetwork FC changes in the 2722-subject longitudinal cohort are statistically significant using a Bonferroni-corrected t -test. We also compare the ability of Power264 and UKB-provided, independent component analysis (ICA)-based FC to determine which of a longitudinal scan pair is older. Finally, we investigate cross-sectional FC changes as well as differences due to differing scanner tasks in the UKB, Philadelphia Neurodevelopmental Cohort, and Alzheimer's Disease Neuroimaging Initiative datasets. Results We find a 6.8% average increase in somatomotor network (SMT)-visual network (VIS) connectivity from younger to older scans (corrected p < 10 - 15 ) that occurs in male, female, older subject (> 65 years old), and younger subject (< 55 years old) groups. Among all internetwork connections, the average SMT-VIS connectivity is the best predictor of relative scan age. Using the full FC and a training set of 2000 subjects, one is able to predict which scan is older 82.5% of the time using either the full Power264 FC or the UKB-provided ICA-based FC. Conclusions We conclude that SMT-VIS connectivity increases with age in the UKB longitudinal cohort and that resting state FC increases with age in the UKB cross-sectional cohort.
Collapse
Affiliation(s)
- Anton Orlichenko
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| | - Kuan-Jui Su
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Hui Shen
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Hong-Wen Deng
- Tulane University, School of Medicine, Center for Biomedical Informatics and Genomics, New Orleans, Louisiana, United States
| | - Yu-Ping Wang
- Tulane University, Department of Biomedical Engineering, New Orleans, Louisiana, United States
| |
Collapse
|
38
|
Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. Data leakage inflates prediction performance in connectome-based machine learning models. Nat Commun 2024; 15:1829. [PMID: 38418819 PMCID: PMC10901797 DOI: 10.1038/s41467-024-46150-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 02/15/2024] [Indexed: 03/02/2024] Open
Abstract
Predictive modeling is a central technique in neuroimaging to identify brain-behavior relationships and test their generalizability to unseen data. However, data leakage undermines the validity of predictive models by breaching the separation between training and test data. Leakage is always an incorrect practice but still pervasive in machine learning. Understanding its effects on neuroimaging predictive models can inform how leakage affects existing literature. Here, we investigate the effects of five forms of leakage-involving feature selection, covariate correction, and dependence between subjects-on functional and structural connectome-based machine learning models across four datasets and three phenotypes. Leakage via feature selection and repeated subjects drastically inflates prediction performance, whereas other forms of leakage have minor effects. Furthermore, small datasets exacerbate the effects of leakage. Overall, our results illustrate the variable effects of leakage and underscore the importance of avoiding data leakage to improve the validity and reproducibility of predictive modeling.
Collapse
Affiliation(s)
- Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA.
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Department of Psychology, Northeastern University, Boston, MA, USA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, USA
| |
Collapse
|
39
|
Tu D, Wrobel J, Satterthwaite TD, Goldsmith J, Gur RC, Gur RE, Gertheiss J, Bassett DS, Shinohara RT. Regression and Alignment for Functional Data and Network Topology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.13.548836. [PMID: 37503017 PMCID: PMC10370026 DOI: 10.1101/2023.07.13.548836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
In the brain, functional connections form a network whose topological organization can be described by graph-theoretic network diagnostics. These include characterizations of the community structure, such as modularity and participation coefficient, which have been shown to change over the course of childhood and adolescence. To investigate if such changes in the functional network are associated with changes in cognitive performance during development, network studies often rely on an arbitrary choice of pre-processing parameters, in particular the proportional threshold of network edges. Because the choice of parameter can impact the value of the network diagnostic, and therefore downstream conclusions, we propose to circumvent that choice by conceptualizing the network diagnostic as a function of the parameter. As opposed to a single value, a network diagnostic curve describes the connectome topology at multiple scales-from the sparsest group of the strongest edges to the entire edge set. To relate these curves to executive function and other covariates, we use scalar-on-function regression, which is more flexible than previous functional data-based models used in network neuroscience. We then consider how systematic differences between networks can manifest in misalignment of diagnostic curves, and consequently propose a supervised curve alignment method that incorporates auxiliary information from other variables. Our algorithm performs both functional regression and alignment via an iterative, penalized, and nonlinear likelihood optimization. The illustrated method has the potential to improve the interpretability and generalizability of neuroscience studies where the goal is to study heterogeneity among a mixture of function- and scalar-valued measures.
Collapse
Affiliation(s)
- Danni Tu
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| | - Julia Wrobel
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA, USA
| | - Theodore D. Satterthwaite
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- Penn Lifespan Informatics and Neuroimaging Center, Philadelphia, PA, USA
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University, New York, NY, USA
| | - Ruben C. Gur
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- The Penn Medicine-CHOP Lifespan Brain Institute, Philadelphia, PA, USA
| | - Raquel E. Gur
- Department of Psychiatry, Perelman School of Medicine, Philadelphia, PA USA
- The Penn Medicine-CHOP Lifespan Brain Institute, Philadelphia, PA, USA
| | - Jan Gertheiss
- Department of Mathematics and Statistics, School of Economics and Social Sciences, Helmut Schmidt University, Hamburg, Germany
| | - Dani S. Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA, USA
- Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, USA
| | - Russell T. Shinohara
- The Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
40
|
Adkinson BD, Rosenblatt M, Dadashkarimi J, Tejavibulya L, Jiang R, Noble S, Scheinost D. Brain-phenotype predictions can survive across diverse real-world data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.23.576916. [PMID: 38328100 PMCID: PMC10849571 DOI: 10.1101/2024.01.23.576916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Recent work suggests that machine learning models predicting psychiatric treatment outcomes based on clinical data may fail when applied to unharmonized samples. Neuroimaging predictive models offer the opportunity to incorporate neurobiological information, which may be more robust to dataset shifts. Yet, among the minority of neuroimaging studies that undertake any form of external validation, there is a notable lack of attention to generalization across dataset-specific idiosyncrasies. Research settings, by design, remove the between-site variations that real-world and, eventually, clinical applications demand. Here, we rigorously test the ability of a range of predictive models to generalize across three diverse, unharmonized samples: the Philadelphia Neurodevelopmental Cohort (n=1291), the Healthy Brain Network (n=1110), and the Human Connectome Project in Development (n=428). These datasets have high inter-dataset heterogeneity, encompassing substantial variations in age distribution, sex, racial and ethnic minority representation, recruitment geography, clinical symptom burdens, fMRI tasks, sequences, and behavioral measures. We demonstrate that reproducible and generalizable brain-behavior associations can be realized across diverse dataset features with sample sizes in the hundreds. Results indicate the potential of functional connectivity-based predictive models to be robust despite substantial inter-dataset variability. Notably, for the HCPD and HBN datasets, the best predictions were not from training and testing in the same dataset (i.e., cross-validation) but across datasets. This result suggests that training on diverse data may improve prediction in specific cases. Overall, this work provides a critical foundation for future work evaluating the generalizability of neuroimaging predictive models in real-world scenarios and clinical settings.
Collapse
Affiliation(s)
- Brendan D Adkinson
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Matthew Rosenblatt
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
| | - Javid Dadashkarimi
- Department of Radiology, Athinoula. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Radiology, Harvard Medical School, Boston, MA, 02129, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Bioengineering, Northeastern University, Boston, MA, 02120, USA
- Department of Psychology, Northeastern University, Boston, MA, 02115, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, 06520, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Statistics & Data Science, Yale University, New Haven, CT, 06520, USA
- Child Study Center, Yale School of Medicine, New Haven, CT, 06510, USA
- Wu Tsai Institute, Yale University, New Haven, CT, 06510, USA
| |
Collapse
|
41
|
Paus T. Development and Maturation of the Human Brain, from Infancy to Adolescence. Curr Top Behav Neurosci 2024; 68:327-348. [PMID: 39138744 DOI: 10.1007/7854_2024_514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
This chapter describes basic principles and key findings regarding the development and maturation of the human brain, the former referring to the pre-natal and early post-natal periods and the latter concerning childhood and adolescence. In both cases, we focus on brain structure as revealed in vivo with multi-modal magnetic resonance imaging (MRI). We begin with a few numbers about the human brain and its cellular composition and a brief overview of a number of MRI-based metrics used to characterize age-related variations in grey and white matter. We then proceed with synthesizing current knowledge about developmental and maturational changes in the cerebral cortex (its thickness, surface area, and intra-cortical myelination) and the underlying white matter (volume and structural properties). To facilitate biological interpretations of MRI-derived metrics, we introduce the concept of virtual histology. We conclude the chapter with a few notes about future directions in the study of factors shaping the human brain from conception onwards.
Collapse
Affiliation(s)
- Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hospitalier Universitaire, University of Montréal, Montreal, QC, Canada.
| |
Collapse
|
42
|
Rosenblatt M, Tejavibulya L, Jiang R, Noble S, Scheinost D. The effects of data leakage on connectome-based machine learning models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.09.544383. [PMID: 38234740 PMCID: PMC10793416 DOI: 10.1101/2023.06.09.544383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Predictive modeling has now become a central technique in neuroimaging to identify complex brain-behavior relationships and test their generalizability to unseen data. However, data leakage, which unintentionally breaches the separation between data used to train and test the model, undermines the validity of predictive models. Previous literature suggests that leakage is generally pervasive in machine learning, but few studies have empirically evaluated the effects of leakage in neuroimaging data. Although leakage is always an incorrect practice, understanding the effects of leakage on neuroimaging predictive models provides insight into the extent to which leakage may affect the literature. Here, we investigated the effects of leakage on machine learning models in two common neuroimaging modalities, functional and structural connectomes. Using over 400 different pipelines spanning four large datasets and three phenotypes, we evaluated five forms of leakage fitting into three broad categories: feature selection, covariate correction, and lack of independence between subjects. As expected, leakage via feature selection and repeated subjects drastically inflated prediction performance. Notably, other forms of leakage had only minor effects (e.g., leaky site correction) or even decreased prediction performance (e.g., leaky covariate regression). In some cases, leakage affected not only prediction performance, but also model coefficients, and thus neurobiological interpretations. Finally, we found that predictive models using small datasets were more sensitive to leakage. Overall, our results illustrate the variable effects of leakage on prediction pipelines and underscore the importance of avoiding data leakage to improve the validity and reproducibility of predictive modeling.
Collapse
Affiliation(s)
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Bioengineering, Northeastern University, Boston, MA
- Department of Psychology, Northeastern University, Boston, MA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Child Study Center, Yale School of Medicine, New Haven, CT
- Department of Statistics & Data Science, Yale University, New Haven, CT
| |
Collapse
|
43
|
Bagautdinova J, Bourque J, Sydnor VJ, Cieslak M, Alexander-Bloch AF, Bertolero MA, Cook PA, Gur RE, Gur RC, Hu F, Larsen B, Moore TM, Radhakrishnan H, Roalf DR, Shinohara RT, Tapera TM, Zhao C, Sotiras A, Davatzikos C, Satterthwaite TD. Development of white matter fiber covariance networks supports executive function in youth. Cell Rep 2023; 42:113487. [PMID: 37995188 PMCID: PMC10795769 DOI: 10.1016/j.celrep.2023.113487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 10/05/2023] [Accepted: 11/09/2023] [Indexed: 11/25/2023] Open
Abstract
During adolescence, the brain undergoes extensive changes in white matter structure that support cognition. Data-driven approaches applied to cortical surface properties have led the field to understand brain development as a spatially and temporally coordinated mechanism that follows hierarchically organized gradients of change. Although white matter development also appears asynchronous, previous studies have relied largely on anatomical tract-based atlases, precluding a direct assessment of how white matter structure is spatially and temporally coordinated. Harnessing advances in diffusion modeling and machine learning, we identified 14 data-driven patterns of covarying white matter structure in a large sample of youth. Fiber covariance networks aligned with known major tracts, while also capturing distinct patterns of spatial covariance across distributed white matter locations. Most networks showed age-related increases in fiber network properties, which were also related to developmental changes in executive function. This study delineates data-driven patterns of white matter development that support cognition.
Collapse
Affiliation(s)
- Joëlle Bagautdinova
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Josiane Bourque
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Valerie J Sydnor
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew Cieslak
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Maxwell A Bertolero
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raquel E Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ruben C Gur
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Fengling Hu
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bart Larsen
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tyler M Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hamsanandini Radhakrishnan
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David R Roalf
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Russel T Shinohara
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Penn Statistics in Imaging and Visualization Center, Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tinashe M Tapera
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chenying Zhao
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Aristeidis Sotiras
- Department of Radiology and Institute for Informatics, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Christos Davatzikos
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Theodore D Satterthwaite
- Penn Lifespan Informatics and Neuroimaging Center (PennLINC), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Lifespan Brain Institute (LiBI) of Penn Medicine and Children's Hospital of Philadelphia (CHOP), University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Biomedical Image Computing and Analytics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
44
|
Lewis L, Corcoran M, Cho KIK, Kwak Y, Hayes RA, Larsen B, Jalbrzikowski M. Age-associated alterations in thalamocortical structural connectivity in youths with a psychosis-spectrum disorder. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2023; 9:86. [PMID: 38081873 PMCID: PMC10713597 DOI: 10.1038/s41537-023-00411-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023]
Abstract
Psychotic symptoms typically emerge in adolescence. Age-associated thalamocortical connectivity differences in psychosis remain unclear. We analyzed diffusion-weighted imaging data from 1254 participants 8-23 years old (typically developing (TD):N = 626, psychosis-spectrum (PS): N = 329, other psychopathology (OP): N = 299) from the Philadelphia Neurodevelopmental Cohort. We modeled thalamocortical tracts using deterministic fiber tractography, extracted Q-Space Diffeomorphic Reconstruction (QSDR) and diffusion tensor imaging (DTI) measures, and then used generalized additive models to determine group and age-associated thalamocortical connectivity differences. Compared to other groups, PS exhibited thalamocortical reductions in QSDR global fractional anisotropy (GFA, p-values range = 3.0 × 10-6-0.05) and DTI fractional anisotropy (FA, p-values range = 4.2 × 10-4-0.03). Compared to TD, PS exhibited shallower thalamus-prefrontal age-associated increases in GFA and FA during mid-childhood, but steeper age-associated increases during adolescence. TD and OP exhibited decreases in thalamus-frontal mean and radial diffusivities during adolescence; PS did not. Altered developmental trajectories of thalamocortical connectivity may contribute to the disruptions observed in adults with psychosis.
Collapse
Affiliation(s)
- Lydia Lewis
- Institute of Child Development, University of Minnesota, Minneapolis, MN, USA
| | - Mary Corcoran
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Kang Ik K Cho
- Psychiatry Neuroimaging Laboratory, Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - YooBin Kwak
- Department of Brain and Cognitive Sciences, College of Natural Sciences, Seoul National University, Seoul, Republic of Korea
| | - Rebecca A Hayes
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA
| | - Bart Larsen
- Department of Pediatrics, Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN, USA
| | - Maria Jalbrzikowski
- Department of Psychiatry and Behavioral Sciences, Boston Children's Hospital, Boston, MA, USA.
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
45
|
Orlichenko A, Daly G, Zhou Z, Liu A, Shen H, Deng HW, Wang YP. ImageNomer: Description of a functional connectivity and omics analysis tool and case study identifying a race confound. NEUROIMAGE. REPORTS 2023; 3:100191. [PMID: 38125823 PMCID: PMC10732473 DOI: 10.1016/j.ynirp.2023.100191] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Most packages for the analysis of fMRI-based functional connectivity (FC) and genomic data are used with a programming language interface, lacking an easy-to-navigate GUI frontend. This exacerbates two problems found in these types of data: demographic confounds and quality control in the face of high dimensionality of features. The reason is that it is too slow and cumbersome to use a programming interface to create all the necessary visualizations required to identify all correlations, confounding effects, or quality control problems in a dataset. FC in particular usually contains tens of thousands of features per subject, and can only be summarized and efficiently explored using visualizations. To remedy this situation, we have developed ImageNomer, a data visualization and analysis tool that allows inspection of both subject-level and cohort-level demographic, genomic, and imaging features. The software is Python-based, runs in a self-contained Docker image, and contains a browser-based GUI frontend. We demonstrate the usefulness of ImageNomer by identifying an unexpected race confound when predicting achievement scores in the Philadelphia Neurodevelopmental Cohort (PNC) dataset, which contains multitask fMRI and single nucleotide polymorphism (SNP) data of healthy adolescents. In the past, many studies have attempted to use FC to identify achievement-related features in fMRI. Using ImageNomer to visualize trends in achievement scores between races, we find a clear potential for confounding effects if race can be predicted using FC. Using correlation analysis in the ImageNomer software, we show that FCs correlated with Wide Range Achievement Test (WRAT) score are in fact more highly correlated with race. Investigating further, we find that whereas both FC and SNP (genomic) features can account for 10-15% of WRAT score variation, this predictive ability disappears when controlling for race. We also use ImageNomer to investigate race-FC correlation in the Bipolar and Schizophrenia Network for Intermediate Phenotypes (BSNIP) dataset. In this work, we demonstrate the advantage of our ImageNomer GUI tool in data exploration and confound detection. Additionally, this work identifies race as a strong confound in FC data and casts doubt on the possibility of finding unbiased achievement-related features in fMRI and SNP data of healthy adolescents.
Collapse
Affiliation(s)
- Anton Orlichenko
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Grant Daly
- College of Medicine, University of South Alabama, Mobile, AL, USA
| | - Ziyu Zhou
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| | - Anqi Liu
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hui Shen
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Hong-Wen Deng
- School of Medicine, Tulane University, New Orleans, LA, USA
| | - Yu-Ping Wang
- Department of Biomedical Engineering, Tulane University, New Orleans, LA, USA
| |
Collapse
|
46
|
Thomas M, Whittle S, Tian YE, van Rheenen TE, Zalesky A, Cropley VL. Pathways from threat exposure to psychotic symptoms in youth: The role of emotion recognition bias and brain structure. Schizophr Res 2023; 261:304-313. [PMID: 37898031 DOI: 10.1016/j.schres.2023.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/21/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023]
Abstract
BACKGROUND Research supports an association between threatening experiences in childhood and psychosis. It is possible that early threat exposure disrupts the development of emotion recognition (specifically, producing a bias for facial expressions relating to threat) and the brain structures subserving it, contributing to psychosis development. METHODS Using data from the Philadelphia Neurodevelopmental Cohort, we examined associations between threat exposure and both the misattribution of facial expressions to fear/anger in an emotion recognition task, and gray matter volumes in key emotion processing regions. Our sample comprised youth with psychosis spectrum symptoms (N = 304), control youth (N = 787), and to evaluate specificity, youth with internalizing symptoms (N = 92). The moderating effects of group and sex were examined. RESULTS Both the psychosis spectrum and internalizing groups had higher levels of threat exposure than controls. In the total sample, threat exposure was associated with lower left medial prefrontal cortex (mPFC) volume but not misattributions to fear/anger. The effects of threat exposure did not significantly differ by group or sex. CONCLUSIONS The findings of this study provide evidence for an effect of threat exposure on mPFC morphology, but do not support an association between threat exposure and a recognition bias for threat-related expressions, that is particularly pronounced in psychosis. Future research should investigate factors linking transdiagnostic alterations related to threat exposure with psychotic symptoms, and attempt to clarify the mechanisms underpinning emotion recognition misattributions in threat-exposed youth.
Collapse
Affiliation(s)
- Megan Thomas
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia.
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Ye E Tian
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Tamsyn E van Rheenen
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia; Centre for Mental Health, School of Health Sciences, Swinburne University, Melbourne, Australia
| | - Andrew Zalesky
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| | - Vanessa L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne & Melbourne Health, Melbourne, Australia
| |
Collapse
|
47
|
Rosenblatt M, Tejavibulya L, Camp CC, Jiang R, Westwater ML, Noble S, Scheinost D. Power and reproducibility in the external validation of brain-phenotype predictions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.25.563971. [PMID: 37961654 PMCID: PMC10634903 DOI: 10.1101/2023.10.25.563971] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Identifying reproducible and generalizable brain-phenotype associations is a central goal of neuroimaging. Consistent with this goal, prediction frameworks evaluate brain-phenotype models in unseen data. Most prediction studies train and evaluate a model in the same dataset. However, external validation, or the evaluation of a model in an external dataset, provides a better assessment of robustness and generalizability. Despite the promise of external validation and calls for its usage, the statistical power of such studies has yet to be investigated. In this work, we ran over 60 million simulations across several datasets, phenotypes, and sample sizes to better understand how the sizes of the training and external datasets affect statistical power. We found that prior external validation studies used sample sizes prone to low power, which may lead to false negatives and effect size inflation. Furthermore, increases in the external sample size led to increased simulated power directly following theoretical power curves, whereas changes in the training dataset size offset the simulated power curves. Finally, we compared the performance of a model within a dataset to the external performance. The within-dataset performance was typically within r=0.2 of the cross-dataset performance, which could help decide how to power future external validation studies. Overall, our results illustrate the importance of considering the sample sizes of both the training and external datasets when performing external validation.
Collapse
Affiliation(s)
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| | - Chris C. Camp
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
| | - Rongtao Jiang
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Margaret L. Westwater
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
| | - Stephanie Noble
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Department of Bioengineering, Northeastern University, Boston, MA
- Department of Psychology, Northeastern University, Boston, MA
| | - Dustin Scheinost
- Department of Biomedical Engineering, Yale University, New Haven, CT
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT
- Child Study Center, Yale School of Medicine, New Haven, CT
- Department of Statistics & Data Science, Yale University, New Haven, CT
| |
Collapse
|
48
|
Zhu J, Margulies D, Qiu A. White matter functional gradients and their formation in adolescence. Cereb Cortex 2023; 33:10770-10783. [PMID: 37727985 DOI: 10.1093/cercor/bhad319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 09/21/2023] Open
Abstract
It is well known that functional magnetic resonance imaging (fMRI) is a widely used tool for studying brain activity. Recent research has shown that fluctuations in fMRI data can reflect functionally meaningful patterns of brain activity within the white matter. We leveraged resting-state fMRI from an adolescent population to characterize large-scale white matter functional gradients and their formation during adolescence. The white matter showed gray-matter-like unimodal-to-transmodal and sensorimotor-to-visual gradients with specific cognitive associations and a unique superficial-to-deep gradient with nonspecific cognitive associations. We propose two mechanisms for their formation in adolescence. One is a "function-molded" mechanism that may mediate the maturation of the transmodal white matter via the transmodal gray matter. The other is a "structure-root" mechanism that may support the mutual mediation roles of the unimodal and transmodal white matter maturation during adolescence. Thus, the spatial layout of the white matter functional gradients is in concert with the gray matter functional organization. The formation of the white matter functional gradients may be driven by brain anatomical wiring and functional needs.
Collapse
Affiliation(s)
- Jingwen Zhu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
| | - Daniel Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 45 Rue des Saint-Pères, 75006 Paris, France
| | - Anqi Qiu
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore
- NUS (Suzhou) Research Institute, National University of Singapore, No. 377 Linquan Street, Suzhou 215000, China
- The N.1 Institute for Health, National University of Singapore, 28 Medical Dr, Singapore 117456, Singapore
- Institute of Data Science, National University of Singapore, 3 Research Link, #04-06, Singapore 117602, Singapore
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, 11 Yuk Choi Rd, Kowloon, Hong Kong
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
49
|
Zugman A, Jett L, Antonacci C, Winkler AM, Pine DS. A systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward. J Anxiety Disord 2023; 99:102773. [PMID: 37741177 PMCID: PMC10753861 DOI: 10.1016/j.janxdis.2023.102773] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 09/25/2023]
Abstract
Anxiety disorders are among the most prevalent psychiatric disorders. Neuroimaging findings remain uncertain, and resting state functional magnetic resonance (rs-fMRI) connectivity is of particular interest since it is a scalable functional imaging modality. Given heterogeneous past findings for rs-fMRI in anxious individuals, we characterize patterns across anxiety disorders by conducting a systematic review and meta-analysis. Studies were included if they contained at the time of scanning both a healthy group and a patient group. Due to insufficient study numbers, the quantitative meta-analysis only included seed-based studies. We performed an activation likelihood estimation (ALE) analysis that compared patients and healthy volunteers. All analyses were corrected for family-wise error with a cluster-level threshold of p < .05. Patients exhibited hypo-connectivity between the amygdala and the medial frontal gyrus, anterior cingulate cortex, and cingulate gyrus. This finding, however, was not robust to potential file-drawer effects. Though limited by strict inclusion criteria, our results highlight the heterogeneous nature of reported findings. This underscores the need for data sharing when attempting to detect reliable patterns of disruption in brain activity across anxiety disorders.
Collapse
Affiliation(s)
- André Zugman
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| | - Laura Jett
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Child Emotion Lab, University of Wisconsin, Madison, Madison, WI, United States.
| | - Chase Antonacci
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Department of Psychology, Stanford University, Stanford, CA, United States.
| | - Anderson M Winkler
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States; Division of Human Genetics, School of Medicine, The University of Texas Rio Grande Valley, Brownsville, Texas, United States.
| | - Daniel S Pine
- Section on Development and Affective Neuroscience (SDAN), Emotion and Development Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
50
|
Matsudaira I, Yamaguchi R, Taki Y. Transmit Radiant Individuality to Offspring (TRIO) study: investigating intergenerational transmission effects on brain development. Front Psychiatry 2023; 14:1150973. [PMID: 37840799 PMCID: PMC10568142 DOI: 10.3389/fpsyt.2023.1150973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/07/2023] [Indexed: 10/17/2023] Open
Abstract
Intergenerational transmission is a crucial aspect of human development. Although prior studies have demonstrated the continuity of psychopathology and maladaptive upbringing environments between parents and offspring, the underlying neurobiological mechanisms remain unclear. We have begun a novel neuroimaging research project, the Transmit Radiant Individuality to Offspring (TRIO) study, which focuses on biological parent-offspring trios. The participants of the TRIO study were Japanese parent-offspring trios consisting of offspring aged 10-40 and their biological mother and father. Structural and functional brain images of all participants were acquired using magnetic resonance imaging (MRI). Saliva samples were collected for DNA analysis. We obtained psychosocial information, such as intelligence, mental health problems, personality traits, and experiences during the developmental period from each parent and offspring in the same manner as much as possible. By April 2023, we completed data acquisition from 174 trios consisting of fathers, mothers, and offspring. The target sample size was 310 trios. However, we plan to conduct genetic and epigenetic analyses, and the sample size is expected to be expanded further while developing this project into a multi-site collaborative study in the future. The TRIO study can challenge the elucidation of the mechanism of intergenerational transmission effects on human development by collecting diverse information from parents and offspring at the molecular, neural, and behavioral levels. Our study provides interdisciplinary insights into how individuals' lives are involved in the construction of the lives of their descendants in the subsequent generation.
Collapse
Affiliation(s)
- Izumi Matsudaira
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| | - Ryo Yamaguchi
- Japan Society for the Promotion of Science, Tokyo, Japan
- Department of Medical Sciences, Graduate School of Medicine, Tohoku University, Sendai, Japan
| | - Yasuyuki Taki
- Smart-Aging Research Center, Tohoku University, Sendai, Japan
| |
Collapse
|