1
|
Kim H, Kim S, Jun SC, Nam CS. Is what I think what you think? Multilayer network-based inter-brain synchrony approach. Soc Cogn Affect Neurosci 2025; 20:nsaf028. [PMID: 40085071 PMCID: PMC11980598 DOI: 10.1093/scan/nsaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 03/16/2025] Open
Abstract
Social interaction plays a crucial role in human societies, encompassing complex dynamics among individuals. To understand social interaction at the neural level, researchers have utilized hyperscanning in several social settings. These studies have mainly focused on inter-brain synchrony and the efficiency of paired functional brain networks, examining group interactions in dyads. However, this approach may not fully capture the complexity of multiple interactions, potentially leading to gaps in understanding inter-network differences. To overcome this limitation, the present study aims to bridge this gap by introducing methodological enhancements using the multilayer network approach, which is tailored to extract features from multiple networks. We applied this strategy to analyze the triad condition during social behavior processes to identify group interaction indices. Additionally, to validate our methodology, we compared the multilayer networks of triad conditions with group synchrony to paired conditions without group synchrony, focusing on statistical differences between alpha and beta waves. Correlation analysis between inter-brain and group networks revealed that this methodology accurately reflects the characteristics of actual behavioral synchrony. The findings of our study suggest that measures of paired brain synchrony and group interaction may exhibit distinct trends, offering valuable insights into interpreting group synchrony.
Collapse
Affiliation(s)
- Heegyu Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), #505 Dasan Building, 123, Choemdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sangyeon Kim
- Division of Artificial Intelligence Engineering, Sookmyung Women’s University, #515 Suryeon Faculty Building, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Sung Chan Jun
- School of Electrical Engineering and Computer Science and AI Graduate School, Gwangju Institute of Science and Technology (GIST), 505 Dasan Building, 123, Choemdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Chang S Nam
- Department of Industrial and Systems Engineering Northern Illinois University, 590 Garden Rd, DeKalb, IL 60115, USA
| |
Collapse
|
2
|
Li Q, Zimmermann M, Konvalinka I. Two-brain microstates: A novel hyperscanning-EEG method for quantifying task-driven inter-brain asymmetry. J Neurosci Methods 2025; 416:110355. [PMID: 39855307 DOI: 10.1016/j.jneumeth.2024.110355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/12/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND The neural mechanisms underlying real-time social interaction remain poorly understood. While hyperscanning has emerged as a popular method to better understand inter-brain mechanisms, inter-brain methods remain underdeveloped, and primarily focused on inter-brain synchronization (IBS). NEW METHOD We developed a novel approach employing two-brain EEG microstates, to investigate neural mechanisms during symmetric and asymmetric interactive tasks. Microstates are quasi-stable configurations of brain activity that have been proposed to represent basic building blocks for mental processing. Expanding the microstate methodology to dyads of interacting participants enables us to investigate quasi-stable moments of inter-brain synchronous and asymmetric activity. RESULTS Conventional microstates fitted to individuals were not related to the different interactive conditions. However, two-brain microstates were modulated in the observer-actor condition, compared to all other conditions where participants had more symmetric task demands, and the same trend was observed for the follower-leader condition. This indicates differences in resting state default-mode network activity during interactions with asymmetric tasks. COMPARISON WITH EXISTING METHODS Hyperscanning studies have primarily estimated IBS based on functional connectivity measures. However, localized connections are often hard to interpret on a larger scale when multiple connections across brains are found to be important. Two-brain microstates offer an alternative approach to evaluate neural activity from a large-scale global network perspective, by quantifying task-driven asymmetric neural states between interacting individuals. CONCLUSIONS We present a novel method using two-brain microstates, including open-source code, which expands the current hyperscanning-EEG methodology to measure and potentially identify both synchronous and asymmetric inter-brain states during real-time social interaction.
Collapse
Affiliation(s)
- Qianliang Li
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark.
| | - Marius Zimmermann
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark; Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
3
|
Boukarras S, Placidi V, Rossano F, Era V, Aglioti SM, Candidi M. Interpersonal Physiological Synchrony During Dyadic Joint Action Is Increased by Task Novelty and Reduced by Social Anxiety. Psychophysiology 2025; 62:e70031. [PMID: 40097345 PMCID: PMC11913774 DOI: 10.1111/psyp.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/18/2025] [Accepted: 02/18/2025] [Indexed: 03/19/2025]
Abstract
Interpersonal physiological synchrony refers to the temporal coordination of autonomic states during social encounters. Previous studies indicate that physiological synchrony may arise during nonverbal interactions. Nevertheless, the role played by contextual and individual factors in determining its emergence is understudied. In this work, we examined heart rate synchrony during a cooperative joint action task, exploring how task constraints, novelty, and behavioral synchrony influence physiological alignment. To achieve this, we periodically modulated task demands by alternating between peer-to-peer and leader-follower dynamics, as well as between complementary and imitative movements, and their combinations. Additionally, we assessed the role of individual differences by examining the impact of dyad members' Social Anxiety and Perspective Taking levels. We further investigated how task demands and personal traits shape the perceived quality of social interactions and subject-level heart rate variability. Our findings revealed a significant increase in physiological synchrony and a decrease in perceived interaction quality when participants switched to a novel task version (i.e., during switch blocks) compared to task repetition. Task switching was also associated with increased heart rate variability. Notably, Social Anxiety negatively predicted physiological synchrony, suggesting that more socially anxious dyads were less likely to achieve physiological alignment. However, no relationship was observed between physiological synchrony and task performance. Overall, our results suggest that physiological synchrony intensifies when dyads navigate the challenge of learning a novel task together, and that both contextual and individual aspects contribute to its emergence.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of PsychologySapienza University of RomeRomeItaly
- Santa Lucia Foundation (IRCCS)RomeItaly
| | - Valerio Placidi
- Department of PsychologySapienza University of RomeRomeItaly
- School of Advanced Studies, Centre for NeuroscienceUniversity of CamerinoCamerinoItaly
- Italian Institute of Technology, Sapienza University of Rome and CLNS@SapienzaRomeItaly
| | - Federico Rossano
- Department of PsychologySapienza University of RomeRomeItaly
- Santa Lucia Foundation (IRCCS)RomeItaly
- Italian Institute of Technology, Sapienza University of Rome and CLNS@SapienzaRomeItaly
| | - Vanessa Era
- Department of PsychologySapienza University of RomeRomeItaly
- Santa Lucia Foundation (IRCCS)RomeItaly
| | - Salvatore Maria Aglioti
- Department of PsychologySapienza University of RomeRomeItaly
- Santa Lucia Foundation (IRCCS)RomeItaly
- Italian Institute of Technology, Sapienza University of Rome and CLNS@SapienzaRomeItaly
| | - Matteo Candidi
- Department of PsychologySapienza University of RomeRomeItaly
- Santa Lucia Foundation (IRCCS)RomeItaly
| |
Collapse
|
4
|
Abalde SF, Rigby A, Keller PE, Novembre G. A framework for joint music making: Behavioral findings, neural processes, and computational models. Neurosci Biobehav Rev 2024; 167:105816. [PMID: 39032841 DOI: 10.1016/j.neubiorev.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Across different epochs and societies, humans occasionally gather to jointly make music. This universal form of collective behavior is as fascinating as it is fragmentedly understood. As the interest in joint music making (JMM) rapidly grows, we review the state-of-the-art of this emerging science, blending behavioral, neural, and computational contributions. We present a conceptual framework synthesizing research on JMM within four components. The framework is centered upon interpersonal coordination, a crucial requirement for JMM. The other components imply the influence of individuals' (past) experience, (current) social factors, and (future) goals on real-time coordination. Our aim is to promote the development of JMM research by organizing existing work, inspiring new questions, and fostering accessibility for researchers belonging to other research communities.
Collapse
Affiliation(s)
- Sara F Abalde
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy; The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia, Italy.
| | - Alison Rigby
- Neurosciences Graduate Program, University of California, San Diego, USA
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Denmark; Department of Clinical Medicine, Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
5
|
Rabinowitch TC, Brooks R, Meltzoff AN. Children in sync: exploring how interpersonal synchrony experience induces cooperation between child peers. Sci Rep 2024; 14:28130. [PMID: 39548200 PMCID: PMC11568143 DOI: 10.1038/s41598-024-78810-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
Synchronous interpersonal movements induce positive prosocial behaviors in adults and children. The processes that underlie this are debated. Here, we investigate the extent to which visual cues available during synchrony experience-particularly shared facial expressions and mutual eye contact-are necessary. Pairs of same-sex 4-year-olds (N = 216 children; 50% girls; 81% white) from the US were randomly assigned to synchronized versus asynchronized swinging experience. Access to visual information was experimentally manipulated by using a transparent versus translucent barrier between the children. The translucent barrier acted as a visual filter preventing children from monitoring facial cues while still enabling them to see whether the partner was swinging in synchrony. After the swinging experience, all pairs of children were administered the same tests of cooperation. The children administered synchronous movement performed better on the cooperation tasks, and there was no significant difference as a function of barrier transparency. This suggests that the positive effects of synchrony do not require visual resolution of the partner's social-emotional facial cues. These findings advance our understanding about factors contributing to synchrony-induced cooperation between children.
Collapse
Affiliation(s)
| | - Rechele Brooks
- Institute for Learning & Brain Sciences, University of Washington, Seattle, USA
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences, University of Washington, Seattle, USA
- Department of Psychology, University of Washington, Seattle, USA
| |
Collapse
|
6
|
Grasso-Cladera A, Costa-Cordella S, Mattoli-Sánchez J, Vilina E, Santander V, Hiltner SE, Parada FJ. Embodied hyperscanning for studying social interaction: A scoping review of simultaneous brain and body measurements. Soc Neurosci 2024:1-17. [PMID: 39387663 DOI: 10.1080/17470919.2024.2409758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/12/2024] [Indexed: 10/15/2024]
Abstract
We systematically investigated the application of embodied hyperscanning methodologies in social neuroscience research. Hyperscanning enables the simultaneous recording of neurophysiological and physiological signals from multiple participants. We highlight the trend toward integrating Mobile Brain/Body Imaging (MoBI) within the 4E research framework, which emphasizes the interconnectedness of brain, body, and environment. Our analysis revealed a geographic concentration of studies in the Global North, calling for global collaboration and transcultural research to balance the field. The predominant use of Magneto/Electroencephalogram (M/EEG) in these studies suggests a traditional brain-centric perspective in social neuroscience. Future research directions should focus on integrating diverse techniques to capture the dynamic interplay between brain and body functions in real-world contexts. Our review also finds a preference for tasks involving natural settings. Nevertheless, the analysis in hyperscanning studies is often limited to physiological signal synchrony between participants. This suggests a need for more holistic and complex approaches that combine inter-corporeal synchrony with intra-individual measures. We believe that the future of the neuroscience of relationships lies in embracing the complexity of cognition, integrating diverse methods and theories to enrich our grasp of human social behavior in its natural contexts.
Collapse
Affiliation(s)
| | - Stefanella Costa-Cordella
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Centro de Estudios en Psicología Clínica y Psicoterapia (CEPPS), Facultad de Psicología, Universidad Diego Portales institution, Santiago, Chile
- Instituto Milenio para la Investigación en Depresión y Personalidad (MIDAP), Santiago, Chile
| | - Josefina Mattoli-Sánchez
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
- Programa de Pregrado en Psicología, Facultad de Psicología. Universidad Diego Portales, Santiago, Chile
| | - Erich Vilina
- Centro de Estudios en Neurociencia Humana y Neuropsicología (CENHN), Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Valentina Santander
- Programa de Magíster en Neurociencia Social, Facultad de Psicología, Universidad Diego Portales, Santiago, Chile
| | - Shari E Hiltner
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
| | - Francisco J Parada
- Department of Psychology, Carl-von-Ossietzky University of Oldenburg, Oldenburg, Germany
- Escuela de Diseño, Facultad de Arquitectura, Arte y Diseño, Universidad Diego Portales, Santiago, Chile
| |
Collapse
|
7
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
8
|
Chatterjee I, Gorsic M, Kaya RAH, Erion CJ, Clapp JD, Novak VD. Regression of Multiple Conversation Aspects using Dyadic Physiological Measurements. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-5. [PMID: 40039255 PMCID: PMC11881515 DOI: 10.1109/embc53108.2024.10782976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Dyadic physiological responses are correlated with the quality of interpersonal processes - for example, the degree of "connectedness" in education and mental health counseling. Pattern recognition algorithms could be applied to such dyadic responses to identify the states of specific dyads, but such pattern recognition has primarily focused on classification. This paper instead uses regression algorithms to estimate three conversation aspects (valence, arousal, balance) from heart rate, skin conductance, respiration, and skin temperature. Data were collected from 35 dyads who engaged in 20 minutes of conversation, divided into 10 two-minute intervals. Each interval was rated with regard to conversation valence, arousal, and balance by an observer. When regression algorithms (support vector machines and Gaussian process regression) were trained on other data from the same dyad, they were able to estimate valence, arousal and balance with lower errors than a simple baseline estimator. However, when algorithms were trained on data from other dyads, errors were not lower than those of the baseline estimator. Overall, results indicate that, as long as training data from the same dyad are available, autonomic nervous system responses can be combined with regression algorithms to estimate multiple dyadic conversation aspects with some accuracy. This has applications in education and mental health counseling, though fundamental issues remain to be addressed before the technology is used in practice.
Collapse
|
9
|
Zamm A, Loehr JD, Vesper C, Konvalinka I, Kappel SL, Heggli OA, Vuust P, Keller PE. A practical guide to EEG hyperscanning in joint action research: from motivation to implementation. Soc Cogn Affect Neurosci 2024; 19:nsae026. [PMID: 38584414 PMCID: PMC11086947 DOI: 10.1093/scan/nsae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions toward a shared goal. Here, we provide a practical guide for researchers considering using hyperscanning to study joint action and seeking to avoid frequently raised concerns from hyperscanning skeptics. We focus specifically on Electroencephalography (EEG) hyperscanning, which is widely available and optimally suited for capturing fine-grained temporal dynamics of action coordination. Our guidelines cover questions that are likely to arise when planning a hyperscanning project, ranging from whether hyperscanning is appropriate for answering one's research questions to considerations for study design, dependent variable selection, data analysis and visualization. By following clear guidelines that facilitate careful consideration of the theoretical implications of research design choices and other methodological decisions, joint action researchers can mitigate interpretability issues and maximize the benefits of hyperscanning paradigms.
Collapse
Affiliation(s)
- Anna Zamm
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada
| | - Cordula Vesper
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Simon L Kappel
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N 8200, Denmark
| | - Ole A Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
10
|
Sabharwal SR, Breaden M, Volpe G, Camurri A, Keller PE. Leadership dynamics in musical groups: Quantifying effects of musical structure on directionality of influence in concert performance videos. PLoS One 2024; 19:e0300663. [PMID: 38568939 PMCID: PMC10990194 DOI: 10.1371/journal.pone.0300663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024] Open
Abstract
Music ensemble performance provides an ecologically valid context for investigating leadership dynamics in small group interactions. Musical texture, specifically the relative salience of simultaneously sounding ensemble parts, is a feature that can potentially alter leadership dynamics by introducing hierarchical relationships between individual parts. The present study extended previous work on quantifying interpersonal coupling in musical ensembles by examining the relationship between musical texture and leader-follower relations, operationalised as directionality of influence between co-performers' body motion in concert video recordings. It was hypothesised that the directionality of influence, indexed by Granger Causality, would be greater for 'homophonic' textures with a clear distinction between melody and accompaniment parts than for 'polyphonic' textures with less distinction between melody and accompaniment. This hypothesis was tested by using pose estimation algorithms to track instrumentalists' body movements in a string quartet and a clarinet quintet, and then applying Granger Causality analysis to their head motion to estimate directional influence between instrumentalist pairs for sections of the pieces that varied in texture. It was found that Granger Causality values were generally higher (indicating greater directionality of influence) for homophonic than polyphonic textures. Furthermore, considering melody and accompaniment instrument roles revealed more evidence for the melody instrument influencing accompanying instruments than vice versa, plus a high degree of directionality among accompanying instruments, in homophonic textures. These observed patterns of directional information flow in co-performer body motion are consistent with changing leader-follower relations depending on hierarchical relations between ensemble parts in terms of the relative salience of melodic material in the musical texture. The finding that automatic pose estimation can detect modulations of leadership dynamics in standard video recordings under naturalistic performance conditions has implications for investigating interpersonal coordination in large-scale music video datasets representing different cultural traditions, and for exploring nonverbal communication in group activities more generally.
Collapse
Affiliation(s)
| | - Matthew Breaden
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | | | | | - Peter E. Keller
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus, Aarhus, Aalborg, Denmark
| |
Collapse
|
11
|
Moreau Q, Brun F, Ayrolles A, Nadel J, Dumas G. Distinct social behavior and inter-brain connectivity in Dyads with autistic individuals. Soc Neurosci 2024; 19:124-136. [PMID: 39023438 DOI: 10.1080/17470919.2024.2379917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Autism Spectrum Disorder (ASD) is defined by distinctive socio-cognitive behaviors that deviate from typical patterns. Notably, social imitation skills appear to be particularly impacted, manifesting early on in development. This paper compared the behavior and inter-brain dynamics of dyads made up of two typically developing (TD) participants with mixed dyads made up of ASD and TD participants during social imitation tasks. By combining kinematics and EEG-hyperscanning, we show that individuals with ASD exhibited a preference for the follower rather than the lead role in imitating scenarios. Moreover, the study revealed inter-brain synchrony differences, with low-alpha inter-brain synchrony differentiating control and mixed dyads. The study's findings suggest the importance of studying interpersonal phenomena in dynamic and ecological settings and using hyperscanning methods to capture inter-brain dynamics during actual social interactions.
Collapse
Affiliation(s)
- Quentin Moreau
- Precision Psychiatry and Social Physiology Laboratory (PPSP), CHU Sainte-Justine Research Center, Montréal, Canada
- Department of Psychiatry, University of Montréal, Québec, Canada
| | - Florence Brun
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Anaël Ayrolles
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
| | - Jacqueline Nadel
- CNRS, La Salpêtrière Hospital, Psychiatry Department, Sorbonne University, Paris, France
| | - Guillaume Dumas
- Precision Psychiatry and Social Physiology Laboratory (PPSP), CHU Sainte-Justine Research Center, Montréal, Canada
- Department of Psychiatry, University of Montréal, Québec, Canada
- Child and Adolescent Psychiatry Department, Assistance Publique - Hôpitaux de Paris, Robert Debré Hospital, Paris, France
- Human Genetics and Cognitive Functions, Institut Pasteur, UMR3571 CNRS, IUF, Université Paris Cité, Paris, France
- CNRS, La Salpêtrière Hospital, Psychiatry Department, Sorbonne University, Paris, France
- Mila - Quebec AI Institute, University of Montréal, Montreal, Canada
- Human Brain and Behavior Laboratory, Center for Complex Systems and Brain Sciences, Florida Atlantic University, Boca Raton, Florida, USA
| |
Collapse
|
12
|
De Felice S, Hakim U, Gunasekara N, Pinti P, Tachtsidis I, Hamilton A. Having a chat and then watching a movie: how social interaction synchronises our brains during co-watching. OXFORD OPEN NEUROSCIENCE 2024; 3:kvae006. [PMID: 38707237 PMCID: PMC11069416 DOI: 10.1093/oons/kvae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 01/25/2024] [Accepted: 03/07/2024] [Indexed: 05/07/2024]
Abstract
How does co-presence change our neural experience of the world? Can a conversation change how we synchronise with our partner during later events? Using fNIRS hyperscanning, we measured brain activity from 27 pairs of familiar adults simultaneously over frontal, temporal and parietal regions bilaterally, as they co-watched two different episodes of a short cartoon. In-between the two episodes, each pair engaged in a face-to-face conversation on topics unrelated to the cartoon episodes. Brain synchrony was calculated using wavelet transform coherence and computed separately for real pairs and shuffled pseudo) pairs. Findings reveal that real pairs showed increased brain synchrony over right Dorso-Lateral Pre-Frontal cortex (DLPFC) and right Superior Parietal Lobe (SPL), compared to pseudo pairs (who had never seen each other and watched the same movie at different times; uncorrected for multiple comparisons). In addition, co-watching after a conversation was associated with greater synchrony over right TPJ compared to co-watching before a conversation, and this effect was significantly higher in real pairs (who engaged in conversation with each other) compared to pseudo pairs (who had a conversation with someone else; uncorrected for multiple comparisons). The present study has shed the light on the role of social interaction in modulating brain synchrony across people not just during social interaction, but even for subsequent non-social activities. These results have implications in the growing domain of naturalistic neuroimaging and interactive neuroscience.
Collapse
Affiliation(s)
- S De Felice
- Department of Psychology, University of Cambridge, 2 Free School Lane, CB2 3RF, UK
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| | - U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - N Gunasekara
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
- Centre for Brain and Cognitive Development, Birkbeck College, University of London, 33 Torrington place, London WC1E 7JL, UK
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering, Gower St, London WC1E 6BT, UK
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, London WC1N 3AZ, UK
| |
Collapse
|
13
|
Dikker S, Brito NH, Dumas G. It takes a village: A multi-brain approach to studying multigenerational family communication. Dev Cogn Neurosci 2024; 65:101330. [PMID: 38091864 PMCID: PMC10716709 DOI: 10.1016/j.dcn.2023.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/27/2023] [Accepted: 12/07/2023] [Indexed: 12/17/2023] Open
Abstract
Grandparents play a critical role in child rearing across the globe. Yet, there is a shortage of neurobiological research examining the relationship between grandparents and their grandchildren. We employ multi-brain neurocomputational models to simulate how changes in neurophysiological processes in both development and healthy aging affect multigenerational inter-brain coupling - a neural marker that has been linked to a range of socio-emotional and cognitive outcomes. The simulations suggest that grandparent-child interactions may be paired with higher inter-brain coupling than parent-child interactions, raising the possibility that the former may be more advantageous under certain conditions. Critically, this enhancement of inter-brain coupling for grandparent-child interactions is more pronounced in tri-generational interactions that also include a parent, which may speak to findings that grandparent involvement in childrearing is most beneficial if the parent is also an active household member. Together, these findings underscore that a better understanding of the neurobiological basis of cross-generational interactions is vital, and that such knowledge can be helpful in guiding interventions that consider the whole family. We advocate for a community neuroscience approach in developmental social neuroscience to capture the diversity of child-caregiver relationships in real-world settings.
Collapse
|
14
|
Flösch KP, Flaisch T, Imhof MA, Schupp HT. Dyadic cooperation with human and artificial agents: Event-related potentials trace dynamic role taking during an interactive game. Psychophysiology 2024; 61:e14433. [PMID: 37681492 DOI: 10.1111/psyp.14433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 07/04/2023] [Accepted: 08/10/2023] [Indexed: 09/09/2023]
Abstract
Humans are highly co-operative and thus cognitively, affectively, and motivationally tuned to pursue shared goals. Yet, cooperative tasks typically require people to constantly take and switch individual roles. Task relevance is dictated by these roles and thereby dynamically changing. Here, we designed a dyadic game to test whether the family of P3 components can trace this dynamic allocation of task relevance. We demonstrate that late positive event-related potential (ERP) modulations not only reflect predictable asymmetries between receiving and sending information but also differentiate whether the receiver's role is related to correct decision making or action monitoring. Furthermore, similar results were observed when playing the game with a computer, suggesting that experimental games may motivate humans to similarly cooperate with an artificial agent. Overall, late positive ERP waves provide a real-time measure of how role taking dynamically shapes the meaning and relevance of stimuli within collaborative contexts. Our results, therefore, shed light on how the processes of mutual coordination unfold during dyadic cooperation.
Collapse
Affiliation(s)
- Karl-Philipp Flösch
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Tobias Flaisch
- Department of Psychology, University of Konstanz, Konstanz, Germany
| | - Martin A Imhof
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| | - Harald T Schupp
- Department of Psychology, University of Konstanz, Konstanz, Germany
- Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany
| |
Collapse
|
15
|
Yang M, Li X, Sang B, Deng X. Age differences in interbrain synchronization during peer cooperation: an EEG hyperscanning study. Cereb Cortex 2023; 33:10614-10623. [PMID: 37615349 DOI: 10.1093/cercor/bhad308] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/25/2023] Open
Abstract
Healthy peer relationships could provide emotional and social support for adolescents experiencing dramatic physical and environmental changes. Examining age differences in cognitive neural processing during peer interaction provides insight into adolescent interpersonal contact and "social brain" development. The present study compared the age differences between adolescents and adults by examining the behavior and interbrain synchronization of pairs in a cooperative computer game task. 32 pairs of adolescents and 31 pairs of adults were recruited as participants. The reaction times and interbrain synchronization of the participants were measured. The results revealed that interbrain synchronization activation following the onset of the "ready signal" was primarily detected in low-frequency bands such as delta and theta. Adolescent pairs' interbrain synchronization activations were significantly higher than those of adult pairs in the anterior and central brain regions, such as the frontal, frontal-central, and parietal lobes. Correlation analysis indicated a positive correlation between occipital region interbrain synchronization and behavioral performance. The findings provide behavioral and neurophysiological evidence for the characteristics of adolescent interpersonal cognitive processing and point to the significance of low-frequency interbrain synchronization in interpersonal coordination.
Collapse
Affiliation(s)
- Meng Yang
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinqi Li
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Biao Sang
- Lab for Educational Big Data and Policymaking, Shanghai Academy of Educational Sciences, Shanghai 200032, China
- School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China
| | - Xinmei Deng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
- The Shenzhen Humanities & Social Sciences Key Research Bases of the Center for Mental Health, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
16
|
Chuang C, Hsu H. Pseudo-mutual gazing enhances interbrain synchrony during remote joint attention tasking. Brain Behav 2023; 13:e3181. [PMID: 37496332 PMCID: PMC10570487 DOI: 10.1002/brb3.3181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/29/2023] [Accepted: 07/13/2023] [Indexed: 07/28/2023] Open
Abstract
INTRODUCTION Mutual gaze enables people to share attention and increase engagement during social interactions through intentional and implicit messages. Although previous studies have explored gaze behaviors and neural mechanisms underlying in-person eye contact, the growing prevalence of remote communication has raised questions about how to establish mutual gaze remotely and how the brains of interacting individuals synchronize. METHODS To address these questions, we conducted a study using eye trackers to create a pseudo-mutual gaze channel that mirrors the gazes of each interacting dyad on their respective remote screens. To demonstrate fluctuations in coupling across brains, we incorporated electroencephalographic hyperscanning techniques to simultaneously record the brain activity of interacting dyads engaged in a joint attention task in player-observer, collaborative, and competitive modes. RESULTS Our results indicated that mutual gaze could improve the efficiency of joint attention activities among remote partners. Moreover, by employing the phase locking value, we could estimate interbrain synchrony (IBS) and observe low-frequency couplings in the frontal and temporal regions that varied based on the interaction mode. While dyadic gender composition significantly affected gaze patterns, it did not impact the IBS. CONCLUSION These results provide insight into the neurological mechanisms underlying remote interaction through the pseudo-mutual gaze channel and have significant implications for developing effective online communication environments.
Collapse
Affiliation(s)
- Chun‐Hsiang Chuang
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Institute of Information Systems and ApplicationsCollege of Electrical Engineering and Computer ScienceNational Tsing Hua UniversityHsinchuTaiwan
| | - Hao‐Che Hsu
- Research Center for Education and Mind Sciences, College of EducationNational Tsing Hua UniversityHsinchuTaiwan
- Department of Computer ScienceNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Department of Computer Science and EngineeringNational Taiwan Ocean UniversityKeelungTaiwan
| |
Collapse
|
17
|
Chatterjee I, Goršič M, Hossain MS, Clapp JD, Novak VD. Automated Classification of Dyadic Conversation Scenarios using Autonomic Nervous System Responses. IEEE TRANSACTIONS ON AFFECTIVE COMPUTING 2023; 14:3388-3395. [PMID: 38107015 PMCID: PMC10721131 DOI: 10.1109/taffc.2023.3236265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Two people's physiological responses become more similar as those people talk or cooperate, a phenomenon called physiological synchrony. The degree of synchrony correlates with conversation engagement and cooperation quality, and could thus be used to characterize interpersonal interaction. In this study, we used a combination of physiological synchrony metrics and pattern recognition algorithms to automatically classify four different dyadic conversation scenarios: two-sided positive conversation, two-sided negative conversation, and two one-sided scenarios. Heart rate, skin conductance, respiration and peripheral skin temperature were measured from 16 dyads in all four scenarios, and individual as well as synchrony features were extracted from them. A two-stage classifier based on stepwise feature selection and linear discriminant analysis achieved a four-class classification accuracy of 75.0% in leave-dyad-out crossvalidation. Removing synchrony features reduced accuracy to 65.6%, indicating that synchrony is informative. In the future, such classification algorithms may be used to, e.g., provide real-time feedback about conversation mood to participants, with applications in areas such as mental health counseling and education. The approach may also generalize to group scenarios and adjacent areas such as cooperation and competition.
Collapse
Affiliation(s)
| | - Maja Goršič
- University of Cincinnati, Cincinnati, OH 45221
| | | | | | | |
Collapse
|
18
|
Kimura K, Tanaka Y, Ogata T, Miyake Y. Preceding and trailing role-taking in dyad synchronization using finger tapping. Sci Rep 2023; 13:9861. [PMID: 37332049 DOI: 10.1038/s41598-023-36880-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 06/12/2023] [Indexed: 06/20/2023] Open
Abstract
In ensembles, people synchronize the timings of their movements with those of others. Players sometimes take on preceding and trailing roles, whereby one's beat is either slightly earlier or slightly later than that of another. In this study, we aimed to clarify whether the division of preceding and trailing roles occurs in simple rhythmic coordination among non-musicians. Additionally, we investigated the temporal dependencies between these roles. We conducted a synchronous-continuous tapping task involving pairs of people, whereby pairs of participants first tapped to synchronize with a metronome. After the metronome stopped, the participants synchronized their taps to their partners' tap timings, which were presented as auditory stimuli. Except in one trial, the pairs involved participants taking on preceding and trailing roles. Compared to the participants taking on the trailing role, those taking on the preceding role demonstrated enhanced phase-correction responses, while those taking on the trailing role significantly adapted their tempos to match those of their partners. As a result, people spontaneously divided into preceding and trailing roles. The preceding participants tended to reduce asynchronies, while the trailing participants tended to match their tempo to their partners'.
Collapse
Affiliation(s)
- Kazuto Kimura
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 266-8502, Japan.
| | - Yuki Tanaka
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 266-8502, Japan
| | - Taiki Ogata
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 266-8502, Japan
| | - Yoshihiro Miyake
- Department of Computer Science, Tokyo Institute of Technology, Yokohama, 266-8502, Japan
| |
Collapse
|
19
|
Kwon J, Kotani H. Head motion synchrony in unidirectional and bidirectional verbal communication. PLoS One 2023; 18:e0286098. [PMID: 37224121 DOI: 10.1371/journal.pone.0286098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
Interpersonal communication includes verbal and nonverbal communication. Verbal communication comprises one-way (e.g., a speech or lecture) and interactive verbal communication (e.g., daily conversations or meetings), which we frequently encounter. Nonverbal communication has considerable influence on interpersonal communication, and body motion synchrony is known to be an important factor for successful communication and social interaction. However, most research on body motion synchrony has been elucidated by either the setting of one-way verbal transmission or the verbal interaction setting, and it remains unclear whether verbal directionality and interactivity affect body motion synchrony. One-way and two-way (interactive) verbal communication is implicated in designed or undesigned leader-follower relationships, and also in the complexity and diversity of interpersonal interactions, where two-way verbal communication is more complex and diverse than in the one-way condition. In this study, we tested head motion synchrony between the one-way verbal communication condition (in which the roles of the speaker and listener are fixed) and the two-way verbal communication condition (where the speaker and listener can freely engage in a conversation). Therefore, although no statistically significant difference in synchrony activity (relative frequency) was found, a statistically significant difference was observed in synchrony direction (temporal lead-lag structure as mimicry) and intensity. Specifically, the synchrony direction in two-way verbal communication was close to zero, but this in one-way verbal communication was synchronized with the listener's movement predominantly delayed. Furthermore, synchrony intensity, in terms of the degree of variation in the phase difference distribution, was significantly higher in the one-way verbal communication than in the two-way condition, with bigger time-shifts being observed in the latter. This result suggests that verbal interaction does not affect the overall frequency of head motion synchrony but does affect the temporal lead-lag structure and coherence.
Collapse
Affiliation(s)
- Jinhwan Kwon
- Department of Education, Kyoto University of Education, Kyoto, Japan
| | - Hiromi Kotani
- Department of Education, Kyoto University of Education, Kyoto, Japan
| |
Collapse
|
20
|
Phillips E, Goupil L, Whitehorn M, Bruce-Gardyne E, Csolsim F, Marriott-Haresign I, Wass S. Proactive or reactive? Neural oscillatory insight into the leader-follower dynamics of early infant-caregiver interaction. Proc Natl Acad Sci U S A 2023; 120:e2122481120. [PMID: 37014853 PMCID: PMC10104541 DOI: 10.1073/pnas.2122481120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 11/29/2022] [Indexed: 04/05/2023] Open
Abstract
We know that infants' ability to coordinate attention with others toward the end of the first year is fundamental to language acquisition and social cognition. Yet, we understand little about the neural and cognitive mechanisms driving infant attention in shared interaction: do infants play a proactive role in creating episodes of joint attention? Recording electroencephalography (EEG) from 12-mo-old infants while they engaged in table-top play with their caregiver, we examined the communicative behaviors and neural activity preceding and following infant- vs. adult-led joint attention. Infant-led episodes of joint attention appeared largely reactive: they were not associated with increased theta power, a neural marker of endogenously driven attention, and infants did not increase their ostensive signals before the initiation. Infants were, however, sensitive to whether their initiations were responded to. When caregivers joined their attentional focus, infants showed increased alpha suppression, a pattern of neural activity associated with predictive processing. Our results suggest that at 10 to 12 mo, infants are not routinely proactive in creating joint attention episodes yet. They do, however, anticipate behavioral contingency, a potentially foundational mechanism for the emergence of intentional communication.
Collapse
Affiliation(s)
| | - Louise Goupil
- Centre National de la Recherche Scientifique, Laboratoire de Psychologie et NeuroCognition, Université Grenoble Alpes, 38000Grenoble, France
| | - Megan Whitehorn
- Department of Psychology, University of East London, London, UKE15 4LZ
| | | | | | | | - Sam V. Wass
- Department of Psychology, University of East London, London, UKE15 4LZ
| |
Collapse
|
21
|
Silfwerbrand L, Ogata Y, Yoshimura N, Koike Y, Gingnell M. An fMRI-study of leading and following using rhythmic tapping. Soc Neurosci 2023; 17:558-567. [PMID: 36891876 DOI: 10.1080/17470919.2023.2189615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
Leading and following is about synchronizing and joining actions in accordance with the differences that the leader and follower roles provide. The neural reactivity representing these roles was measured in an explorative fMRI-study, where two persons lead and followed each other in finger tapping using simple, individual, pre-learnt rhythms. All participants acted both as leader and follower. Neural reactivity for both lead and follow related to social awareness and adaptation distributed over the lateral STG, STS and TPJ. Reactivity for follow contrasted with lead mostly reflected sensorimotor and rhythmic processing in cerebellum IV, V, somatosensory cortex and SMA. During leading, as opposed to following, neural reactivity was observed in the insula and bilaterally in the superior temporal gyrus, pointing toward empathy, sharing of feelings, temporal coding and social engagement. Areas for continuous adaptation, in the posterior cerebellum and Rolandic operculum, were activated during both leading and following. This study indicated mutual adaptation of leader and follower during tapping and that the roles gave rise to largely similar neuronal reactivity. The differences between the roles indicated that leading was more socially focused and following had more motoric- and temporally related neural reactivity.
Collapse
Affiliation(s)
- Lykke Silfwerbrand
- Department of Medical sciences, Psychiatry, Akademiska Sjukhuset, Uppsala, Sweden.,Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Yousuke Ogata
- Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Natsue Yoshimura
- Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Yasuharu Koike
- Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama, Japan
| | - Malin Gingnell
- Department of Medical sciences, Psychiatry, Akademiska Sjukhuset, Uppsala, Sweden.,Department of Psychology, Emotion Psychology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
22
|
Emergent and planned interpersonal synchronization are both sensitive to 'tempo aftereffect contagion'. Neuropsychologia 2023; 181:108492. [PMID: 36736856 DOI: 10.1016/j.neuropsychologia.2023.108492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 02/04/2023]
Abstract
Interpersonal synchronization is fundamental for motor coordination during social interactions. Discerning emergent (entrainment) from planned synchronization represents a non-trivial issue in visually bonded individuals acting together, as well as assessing whether inter-individual differences, e.g., in autistic traits, modulate both types of synchronization. In a visuomotor finger-tapping task, two participants replicated a target tempo either synchronizing ('joint' condition) or not ('non-interactive' condition, 'non-int') with each other. One participant was exposed ('induced') to tempo aftereffect (a medium tempo seems faster or slower after exposure to slower or faster inducing tempi), but not the other participant ('not induced'); thus they had different timing perceptions of the same target. We assessed to what degree emergent and/or planned synchronization affected dyads by analyzing inter-tap-intervals, synchronization indexes, and cross-correlation coefficients. Results revealed a 'tempo aftereffect contagion': inter-tap-intervals of both induced and not-induced participants showed aftereffect in both the joint and non-int conditions. Moreover, aftereffects did not correlate across conditions suggesting they might be due to (at least in part) different processes, but the propensity for tempo aftereffect contagion correlated with individuals' autistic traits only in the non-int condition. Finally, participants co-adjusted their tapping more in the joint condition than in the non-int one, as confirmed by higher synchronization indexes and the mutual adaptation pattern of cross-correlation coefficients. Altogether, these results show the subtle interplay between emergent and planned interpersonal synchronization mechanisms that act on a millisecond timescale independently from synching or not with the partner.
Collapse
|
23
|
Kohler N, Novembre G, Gugnowska K, Keller PE, Villringer A, Sammler D. Cortico-cerebellar audio-motor regions coordinate self and other in musical joint action. Cereb Cortex 2023; 33:2804-2822. [PMID: 35771593 PMCID: PMC10016054 DOI: 10.1093/cercor/bhac243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/14/2022] Open
Abstract
Joint music performance requires flexible sensorimotor coordination between self and other. Cognitive and sensory parameters of joint action-such as shared knowledge or temporal (a)synchrony-influence this coordination by shifting the balance between self-other segregation and integration. To investigate the neural bases of these parameters and their interaction during joint action, we asked pianists to play on an MR-compatible piano, in duet with a partner outside of the scanner room. Motor knowledge of the partner's musical part and the temporal compatibility of the partner's action feedback were manipulated. First, we found stronger activity and functional connectivity within cortico-cerebellar audio-motor networks when pianists had practiced their partner's part before. This indicates that they simulated and anticipated the auditory feedback of the partner by virtue of an internal model. Second, we observed stronger cerebellar activity and reduced behavioral adaptation when pianists encountered subtle asynchronies between these model-based anticipations and the perceived sensory outcome of (familiar) partner actions, indicating a shift towards self-other segregation. These combined findings demonstrate that cortico-cerebellar audio-motor networks link motor knowledge and other-produced sounds depending on cognitive and sensory factors of the joint performance, and play a crucial role in balancing self-other integration and segregation.
Collapse
Affiliation(s)
- Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Laboratory, Italian Institute of Technology, Viale Regina Elena 291, 00161 Rome, Italy
| | - Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt am Main, Germany
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Universitetsbyen 3, 8000 Aarhus C, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Locked Bag 1797, Penrith NSW 2751, Australia
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstr. 1a, 04103, Leipzig, Germany
| | - Daniela Sammler
- Corresponding author: Daniela Sammler, MPI for Empirical Aesthetics, Grüneburgweg 14, 60322 Frankfurt/M., Germany.
| |
Collapse
|
24
|
Takai A, Fu Q, Doibata Y, Lisi G, Tsuchiya T, Mojtahedi K, Yoshioka T, Kawato M, Morimoto J, Santello M. Learning acquisition of consistent leader-follower relationships depends on implicit haptic interactions. Sci Rep 2023; 13:3476. [PMID: 36859436 PMCID: PMC9977766 DOI: 10.1038/s41598-023-29722-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
Are leaders made or born? Leader-follower roles have been well characterized in social science, but they remain somewhat obscure in sensory-motor coordination. Furthermore, it is unknown how and why leader-follower relationships are acquired, including innate versus acquired controversies. We developed a novel asymmetrical coordination task in which two participants (dyad) need to collaborate in transporting a simulated beam while maintaining its horizontal attitude. This experimental paradigm was implemented by twin robotic manipulanda, simulated beam dynamics, haptic interactions, and a projection screen. Clear leader-follower relationships were learned only when strong haptic feedback was introduced. This phenomenon occurred despite participants not being informed that they were interacting with each other and the large number of equally-valid alternative dyadic coordination strategies. We demonstrate the emergence of consistent leader-follower relationships in sensory-motor coordination, and further show that haptic interaction is essential for dyadic co-adaptation. These results provide insights into neural mechanisms responsible for the formation of leader-follower relationships in our society.
Collapse
Affiliation(s)
- Asuka Takai
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
- Graduate School of Engineering Division of Mechanical Engineering, Osaka Metropolitan University, Osaka, Japan
| | - Qiushi Fu
- Department of Mechanical and Aerospace Engineering, University of Central Florida, Orlando, USA
| | - Yuzuru Doibata
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Giuseppe Lisi
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Toshiki Tsuchiya
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA
| | - Keivan Mojtahedi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA
| | - Toshinori Yoshioka
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
- XNef, Kyoto, Japan
| | - Mitsuo Kawato
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan
| | - Jun Morimoto
- Brain Information Communication Research Laboratory Group, Advanced Telecommunications Research Institute International, Seika, Japan.
- Graduate School of Informatics, Department of Systems Science, Kyoto University, Kyoto, Japan.
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, USA.
| |
Collapse
|
25
|
Harry BB, Margulies DS, Falkiewicz M, Keller PE. Brain networks for temporal adaptation, anticipation, and sensory-motor integration in rhythmic human behavior. Neuropsychologia 2023; 183:108524. [PMID: 36868500 DOI: 10.1016/j.neuropsychologia.2023.108524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/21/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023]
Abstract
Human interaction often requires the precise yet flexible interpersonal coordination of rhythmic behavior, as in group music making. The present fMRI study investigates the functional brain networks that may facilitate such behavior by enabling temporal adaptation (error correction), prediction, and the monitoring and integration of information about 'self' and the external environment. Participants were required to synchronize finger taps with computer-controlled auditory sequences that were presented either at a globally steady tempo with local adaptations to the participants' tap timing (Virtual Partner task) or with gradual tempo accelerations and decelerations but without adaptation (Tempo Change task). Connectome-based predictive modelling was used to examine patterns of brain functional connectivity related to individual differences in behavioral performance and parameter estimates from the adaptation and anticipation model (ADAM) of sensorimotor synchronization for these two tasks under conditions of varying cognitive load. Results revealed distinct but overlapping brain networks associated with ADAM-derived estimates of temporal adaptation, anticipation, and the integration of self-controlled and externally controlled processes across task conditions. The partial overlap between ADAM networks suggests common hub regions that modulate functional connectivity within and between the brain's resting-state networks and additional sensory-motor regions and subcortical structures in a manner reflecting coordination skill. Such network reconfiguration might facilitate sensorimotor synchronization by enabling shifts in focus on internal and external information, and, in social contexts requiring interpersonal coordination, variations in the degree of simultaneous integration and segregation of these information sources in internal models that support self, other, and joint action planning and prediction.
Collapse
Affiliation(s)
- Bronson B Harry
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, Paris, France; Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Marcel Falkiewicz
- Max Planck Research Group for Neuroanatomy and Connectivity, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, Australia; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.
| |
Collapse
|
26
|
Russo C, Senese VP. Functional near-infrared spectroscopy is a useful tool for multi-perspective psychobiological study of neurophysiological correlates of parenting behaviour. Eur J Neurosci 2023; 57:258-284. [PMID: 36485015 DOI: 10.1111/ejn.15890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 12/02/2022] [Accepted: 12/08/2022] [Indexed: 12/13/2022]
Abstract
The quality of the relationship between caregiver and child has long-term effects on the cognitive and socio-emotional development of children. A process involved in human parenting is the bio-behavioural synchrony that occurs between the partners in the relationship during interaction. Through interaction, bio-behavioural synchronicity allows the adaptation of the physiological systems of the parent to those of the child and promotes the positive development and modelling of the child's social brain. The role of bio-behavioural synchrony in building social bonds could be investigated using functional near-infrared spectroscopy (fNIRS). In this paper we have (a) highlighted the importance of the quality of the caregiver-child relationship for the child's cognitive and socio-emotional development, as well as the relevance of infantile stimuli in the activation of parenting behaviour; (b) discussed the tools used in the study of the neurophysiological substrates of the parental response; (c) proposed fNIRS as a particularly suitable tool for the study of parental responses; and (d) underlined the need for a multi-systemic psychobiological approach to understand the mechanisms that regulate caregiver-child interactions and their bio-behavioural synchrony. We propose to adopt a multi-system psychobiological approach to the study of parental behaviour and social interaction.
Collapse
Affiliation(s)
- Carmela Russo
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Vincenzo Paolo Senese
- Psychometric Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
27
|
Christensen J, Slavik L, Nicol JJ, Loehr JD. Alpha oscillations related to self-other integration and distinction during live orchestral performance: A naturalistic case study. PSYCHOLOGY OF MUSIC 2023; 51:295-315. [PMID: 36532616 PMCID: PMC9751440 DOI: 10.1177/03057356221091313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ensemble music performance requires musicians to achieve precise interpersonal coordination while maintaining autonomous control over their own actions. To do so, musicians dynamically shift between integrating other performers' actions into their own action plans and maintaining a distinction between their own and others' actions. Research in laboratory settings has shown that this dynamic process of self-other integration and distinction is indexed by sensorimotor alpha oscillations. The purpose of the current descriptive case study was to examine oscillations related to self-other integration and distinction in a naturalistic performance context. We measured alpha activity from four violinists during a concert hall performance of a 60-musician orchestra. We selected a musical piece from the orchestra's repertoire and, before analyzing alpha activity, performed a score analysis to divide the piece into sections that were expected to strongly promote self-other integration and distinction. In line with previous laboratory findings, performers showed suppressed and enhanced alpha activity during musical sections that promoted self-other integration and distinction, respectively. The current study thus provides preliminary evidence that findings from carefully controlled laboratory experiments generalize to complex real-world performance. Its findings also suggest directions for future research and potential applications of interest to musicians, music educators, and music therapists.
Collapse
Affiliation(s)
| | - Lauren Slavik
- Department of Psychology, University of Saskatchewan, Saskatoon, Canada
| | - Jennifer J Nicol
- Department of Educational Psychology and Special Education, University of Saskatchewan, Saskatoon, Canada
| | - Janeen D Loehr
- Department of Psychology, University of Saskatchewan, Saskatoon, Canada
| |
Collapse
|
28
|
Moreau Q, Tieri G, Era V, Aglioti SM, Candidi M. The performance monitoring system is attuned to others' actions during dyadic motor interactions. Cereb Cortex 2022; 33:222-234. [PMID: 35203090 DOI: 10.1093/cercor/bhac063] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
Interpersonal motor interactions require the simultaneous monitoring of one's own and one's partner's actions. To characterize how the action monitoring system tracks self and other behavior during synchronous interactions, we combined electroencephalography recordings and immersive virtual reality in two tasks where participants were asked to synchronize their actions with those of a virtual partner (VP). The two tasks differed in the features to be monitored: the Goal task required participants to predict and monitor the VP's reaching goal; the Spatial task required participants to predict and monitor the VP's reaching trajectory. In both tasks, the VP performed unexpected movement changes to which the participant needed to adapt. By extracting the neural activity locked to the detection of unexpected changes in the VP's action (other-monitoring) or to the participants' action-replanning (self-monitoring), we show that the monitoring system is more attuned to others' than to one's own actions. Additionally, distinctive neural responses to VP's unexpected goals and trajectory corrections were found: goal changes were reflected both in early fronto-central and later posterior neural responses while trajectory deviations were reflected only in later posterior responses. Altogether, our results indicate that the monitoring system adopts an inherent social mode to handle interpersonal motor interactions.
Collapse
Affiliation(s)
- Quentin Moreau
- Department of Psychology, Sapienza University, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Gaetano Tieri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Virtual Reality Lab, Unitelma Sapienza University, 00161, Rome, Italy
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| | - Salvatore Maria Aglioti
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia and Sapienza University, 00161, Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185, Rome, Italy.,IRCCS Fondazione Santa Lucia, 00179, Rome, Italy
| |
Collapse
|
29
|
Boukarras S, Ferri D, Frisanco A, Farnese ML, Consiglio C, Alvino I, Bianchi F, D’Acunto A, Borgogni L, Aglioti SM. Bringing social interaction at the core of organizational neuroscience. Front Psychol 2022; 13:1034454. [PMID: 36467198 PMCID: PMC9714489 DOI: 10.3389/fpsyg.2022.1034454] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/31/2022] [Indexed: 10/25/2023] Open
Abstract
Organizations are composed of individuals working together for achieving specific goals, and interpersonal dynamics do exert a strong influence on workplace behaviour. Nevertheless, the dual and multiple perspective of interactions has been scarcely considered by Organizational Neuroscience (ON), the emerging field of study that aims at incorporating findings from cognitive and brain sciences into the investigation of organizational behaviour. This perspective article aims to highlight the potential benefits of adopting experimental settings involving two or more participants (the so-called "second person" approach) for studying the neural bases of organizational behaviour. Specifically, we stress the idea that moving beyond the individual perspective and capturing the dynamical relationships occurring within dyads or groups (e.g., leaders and followers, salespersons and clients, teams) might bring novel insights into the rising field of ON. In addition, designing research paradigms that reliably recreate real work and life situations might increase the generalizability and ecological validity of its results. We start with a brief overview of the current state of ON research and we continue by describing the second-person approach to social neuroscience. In the last paragraph, we try and outline how this approach could be extended to ON. To this end, we focus on leadership, group processes and emotional contagion as potential targets of interpersonal ON research.
Collapse
Affiliation(s)
- Sarah Boukarras
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Santa Lucia Foundation, IRCCS, Rome, Italy
| | - Donato Ferri
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | - Althea Frisanco
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| | | | - Chiara Consiglio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Ilario Alvino
- Department of Legal Sciences, Sapienza University of Rome, Rome, Italy
| | - Francesco Bianchi
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- EY, Rome, Italy
| | | | - Laura Borgogni
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Salvatore Maria Aglioti
- Santa Lucia Foundation, IRCCS, Rome, Italy
- Sapienza University of Rome and CLNS@Sapienza, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
30
|
Liu Y, Li J, Wang Q, Li Y. The specificity, situational modulations, and behavioral correlates of parent-child neural synchrony. Front Hum Neurosci 2022; 16:1000826. [PMID: 36438636 PMCID: PMC9682019 DOI: 10.3389/fnhum.2022.1000826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2023] Open
Abstract
In recent years, aiming to uncover the neural mechanism of parent-child interaction and link it to the children's social development, a newly developed index, namely, parent-child inter-brain neural synchronization (INS) has attracted growing interest. Existing studies have mainly focused on three aspects of the INS; these are the specificity of the INS (i.e., stronger INS for parent-child dyads than stranger-child dyads), the situational modulations of the INS (i.e., how the valence of the situation or the types of interaction modulate INS), and the associations between the INS and the state-like behavioral tendencies or trait-like individual features of the parents and children. This review summarizes the existing findings in line with these three topics and provides preliminary suggestions to promote parent-child INS. In the meanwhile, the inconsistent findings and unstudied questions were discussed, opening new avenues for future studies.
Collapse
|
31
|
Angioletti L, Balconi M. Delta-Alpha EEG pattern reflects the interoceptive focus effect on interpersonal motor synchronization. FRONTIERS IN NEUROERGONOMICS 2022; 3:1012810. [PMID: 38235477 PMCID: PMC10790895 DOI: 10.3389/fnrgo.2022.1012810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 10/13/2022] [Indexed: 01/19/2024]
Abstract
Little is known about how the modulation of the interoceptive focus impacts the neural correlates of high-level social processes, such as synchronization mechanisms. Therefore, the current study aims to explore the intraindividual electrophysiological (EEG) patterns induced by the interoceptive focus on breath when performing cognitive and motor tasks requiring interpersonal synchronization. A sample of 28 healthy caucasian adults was recruited and asked to perform two tasks requiring interpersonal synchronization during two distinct conditions: while focusing on the breath or without the focus on the breath. EEG frequency bands (delta, theta, alpha, and beta band) were recorded from the frontal, temporo-central, and parieto-occipital regions of interest. Significant results were observed for the delta and alpha bands. Notably, higher mean delta values and alpha desynchronization were observed in the temporo-central area during the focus on the breath condition when performing the motor compared to the cognitive synchronization task. Taken together these results could be interpreted considering the functional meaning of delta and alpha band in relation to motor synchronization. Indeed, motor delta oscillations shape the dynamics of motor behaviors and motor neural processes, while alpha band attenuation was previously observed during generation, observation, and imagery of movement and is considered to reflect cortical motor activity and action-perception coupling. Overall, the research shows that an EEG delta-alpha pattern emerges in the temporo-central areas at the intra-individual level, indicating the attention to visceral signals, particularly during interpersonal motor synchrony.
Collapse
Affiliation(s)
- Laura Angioletti
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| | - Michela Balconi
- International Research Center for Cognitive Applied Neuroscience (IrcCAN), Università Cattolica del Sacro Cuore, Milan, Italy
- Research Unit in Affective and Social Neuroscience, Department of Psychology, Università Cattolica del Sacro Cuore, Milan, Italy
| |
Collapse
|
32
|
Cheng X, Guo B, Hu Y. Distinct neural couplings to shared goal and action coordination in joint action: evidence based on fNIRS hyperscanning. Soc Cogn Affect Neurosci 2022; 17:956-964. [PMID: 35325237 PMCID: PMC9527463 DOI: 10.1093/scan/nsac022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 01/19/2022] [Accepted: 03/23/2022] [Indexed: 11/15/2022] Open
Abstract
Joint action is central to human nature, enabling individuals to coordinate in time and space to achieve a joint outcome. Such interaction typically involves two key elements: shared goal and action coordination. Yet, the substrates entrained to these two components in joint action remained unclear. In the current study, dyads performed two tasks involving both sharing goal and action coordination, i.e. complementary joint action and imitative joint action, a task only involving shared goal and a task only involving action coordination, while their brain activities were recorded by the functional near-infrared spectroscopy hyperscanning technique. The results showed that both complementary and imitative joint action (i.e. involving shared goal and action coordination) elicited better behavioral performance than the task only involving shared goal/action coordination. We observed that the interbrain synchronization (IBS) at the right inferior frontal cortex (IFC) entrained more to shared goal, while left-IFC IBS entrained more to action coordination. We also observed that the right-IFC IBS was greater during completing a complementary action than an imitative action. Our results suggest that IFC plays an important role in joint action, with distinct lateralization for the sub-components of joint action.
Collapse
Affiliation(s)
- Xiaojun Cheng
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Bing Guo
- School of Psychology, Shenzhen University, Shenzhen 518060, China
| | - Yinying Hu
- Institute of Brain and Education Innovation, East China Normal University, Shanghai 200062, China
| |
Collapse
|
33
|
Tsoi L, Burns SM, Falk EB, Tamir DI. The promises and pitfalls of functional magnetic resonance imaging hyperscanning for social interaction research. SOCIAL AND PERSONALITY PSYCHOLOGY COMPASS 2022; 16:e12707. [PMID: 36407123 PMCID: PMC9667901 DOI: 10.1111/spc3.12707] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 11/28/2022]
Abstract
Social neuroscience combines tools and perspectives from social psychology and neuroscience to understand how people interact with their social world. Here we discuss a relatively new method-hyperscanning-to study real-time, interactive social interactions using functional magnetic resonance imaging (fMRI). We highlight three contributions that fMRI hyperscanning makes to the study of the social mind: (1) Naturalism: it shifts the focus from tightly-controlled stimuli to more naturalistic social interactions; (2) Multi-person Dynamics: it shifts the focus from individuals as the unit of analysis to dyads and groups; and (3) Neural Resolution: fMRI hyperscanning captures high-resolution neural patterns and dynamics across the whole brain, unlike other neuroimaging hyperscanning methods (e.g., electroencephalogram, functional near-infrared spectroscopy). Finally, we describe the practical considerations and challenges that fMRI hyperscanning researchers must navigate. We hope researchers will harness this powerful new paradigm to address pressing questions in today's society.
Collapse
Affiliation(s)
- Lily Tsoi
- School of Psychology and CounselingCaldwell UniversityCaldwellNew JerseyUSA
| | - Shannon M. Burns
- Department of Psychological SciencePomona CollegeClaremontCaliforniaUSA
- Department of NeurosciencePomona CollegeClaremontCaliforniaUSA
| | - Emily B. Falk
- Annenberg School for CommunicationUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of PsychologyUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Wharton Marketing DepartmentUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Operations, Information, and Decisions DepartmentUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Diana I. Tamir
- Department of PsychologyPrinceton UniversityPrincetonNew JerseyUSA
- Princeton Neuroscience InstitutePrinceton UniversityPrincetonNew JerseyUSA
| |
Collapse
|
34
|
Cross ZR, Chatburn A, Melberzs L, Temby P, Pomeroy D, Schlesewsky M, Bornkessel-Schlesewsky I. Task-related, intrinsic oscillatory and aperiodic neural activity predict performance in naturalistic team-based training scenarios. Sci Rep 2022; 12:16172. [PMID: 36171478 PMCID: PMC9519541 DOI: 10.1038/s41598-022-20704-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 09/16/2022] [Indexed: 11/22/2022] Open
Abstract
Effective teams are essential for optimally functioning societies. However, little is known regarding the neural basis of two or more individuals engaging cooperatively in real-world tasks, such as in operational training environments. In this exploratory study, we recruited forty individuals paired as twenty dyads and recorded dual-EEG at rest and during realistic training scenarios of increasing complexity using virtual simulation systems. We estimated markers of intrinsic brain activity (i.e., individual alpha frequency and aperiodic activity), as well as task-related theta and alpha oscillations. Using nonlinear modelling and a logistic regression machine learning model, we found that resting-state EEG predicts performance and can also reliably differentiate between members within a dyad. Task-related theta and alpha activity during easy training tasks predicted later performance on complex training to a greater extent than prior behaviour. These findings complement laboratory-based research on both oscillatory and aperiodic activity in higher-order cognition and provide evidence that theta and alpha activity play a critical role in complex task performance in team environments.
Collapse
Affiliation(s)
- Zachariah R Cross
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia.
| | - Alex Chatburn
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Lee Melberzs
- Department of Defence, Australian Army, Canberra, Australia
| | - Philip Temby
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Diane Pomeroy
- Land Division, Defence Science and Technology Group, Edinburgh, SA, Australia
| | - Matthias Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| | - Ina Bornkessel-Schlesewsky
- Cognitive Neuroscience Laboratory - Australian Research Centre for Interactive and Virtual Environments, University of South Australia, Adelaide, Australia
| |
Collapse
|
35
|
Lin JFL, Imada T, Meltzoff AN, Hiraishi H, Ikeda T, Takahashi T, Hasegawa C, Yoshimura Y, Kikuchi M, Hirata M, Minabe Y, Asada M, Kuhl PK. Dual-MEG interbrain synchronization during turn-taking verbal interactions between mothers and children. Cereb Cortex 2022; 33:4116-4134. [PMID: 36130088 PMCID: PMC10068303 DOI: 10.1093/cercor/bhac330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 11/14/2022] Open
Abstract
Verbal interaction and imitation are essential for language learning and development in young children. However, it is unclear how mother-child dyads synchronize oscillatory neural activity at the cortical level in turn-based speech interactions. Our study investigated interbrain synchrony in mother-child pairs during a turn-taking paradigm of verbal imitation. A dual-MEG (magnetoencephalography) setup was used to measure brain activity from interactive mother-child pairs simultaneously. Interpersonal neural synchronization was compared between socially interactive and noninteractive tasks (passive listening to pure tones). Interbrain networks showed increased synchronization during the socially interactive compared to noninteractive conditions in the theta and alpha bands. Enhanced interpersonal brain synchrony was observed in the right angular gyrus, right triangular, and left opercular parts of the inferior frontal gyrus. Moreover, these parietal and frontal regions appear to be the cortical hubs exhibiting a high number of interbrain connections. These cortical areas could serve as a neural marker for the interactive component in verbal social communication. The present study is the first to investigate mother-child interbrain neural synchronization during verbal social interactions using a dual-MEG setup. Our results advance our understanding of turn-taking during verbal interaction between mother-child dyads and suggest a role for social "gating" in language learning.
Collapse
Affiliation(s)
- Jo-Fu Lotus Lin
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan.,Institute of Linguistics, National Tsing Hua University, 101, Section 2, Kuang-Fu Road, Hsinchu 300044, Taiwan
| | - Toshiaki Imada
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA.,Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Andrew N Meltzoff
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| | - Hirotoshi Hiraishi
- Hamamatsu University School of Medicine, 1 Chome-20-1 Handayama, Higashi Ward, Hamamatsu, Shizuoka 431-3192, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | | | - Chiaki Hasegawa
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Yuko Yoshimura
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Masayuki Hirata
- Department of Neurosurgery, Osaka University Medical School, 2 Chome-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshio Minabe
- Research Center for Child Mental Development, Graduate School of Medical Science, Kanazawa University, 13-1 Takaramachi, Kanazawa-City, Ishikawa-Ken 920-8640, Japan
| | - Minoru Asada
- Department of Adaptive Machine Systems, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Patricia K Kuhl
- Institute for Learning & Brain Sciences (I-LABS), University of Washington, Portage Bay Building, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
36
|
Novak VD, Kostoulas T, Muszynski M, Cinel C, Nijholt A. Editorial: Harnessing physiological synchronization and hyperscanning to enhance collaboration and communication. FRONTIERS IN NEUROERGONOMICS 2022; 3:956087. [PMID: 38235457 PMCID: PMC10790855 DOI: 10.3389/fnrgo.2022.956087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/28/2022] [Indexed: 01/19/2024]
Affiliation(s)
- Vesna Dominika Novak
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Theodoros Kostoulas
- Department of Information and Communication Systems Engineering, University of the Aegean, Samos, Greece
| | - Michal Muszynski
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Caterina Cinel
- BCI-NE Lab, School of Computer Science and Electronic Engineering, University of Essex, Colchester, United Kingdom
| | - Anton Nijholt
- Human Media Interaction, University of Twente, Enschede, Netherlands
| |
Collapse
|
37
|
Yoneta N, Watanabe H, Shimojo A, Takano K, Saito T, Yagyu K, Shiraishi H, Yokosawa K, Boasen J. Magnetoencephalography Hyperscanning Evidence of Differing Cognitive Strategies Due to Social Role During Auditory Communication. Front Neurosci 2022; 16:790057. [PMID: 35983225 PMCID: PMC9380591 DOI: 10.3389/fnins.2022.790057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
Auditory communication is an essential form of human social interaction. However, the intra-brain cortical-oscillatory drivers of auditory communication exchange remain relatively unexplored. We used improvisational music performance to simulate and capture the creativity and turn-taking dynamics of natural auditory communication. Using magnetoencephalography (MEG) hyperscanning in musicians, we targeted brain activity during periods of music communication imagery, and separately analyzed theta (5–7 Hz), alpha (8–13 Hz), and beta (15–29 Hz) source-level activity using a within-subjects, two-factor approach which considered the assigned social role of the subject (leader or follower) and whether communication responses were improvisational (yes or no). Theta activity related to improvisational communication and social role significantly interacted in the left isthmus cingulate cortex. Social role was furthermore differentiated by pronounced occipital alpha and beta amplitude increases suggestive of working memory retention engagement in Followers but not Leaders. The results offer compelling evidence for both musical and social neuroscience that the cognitive strategies, and correspondingly the memory and attention-associated oscillatory brain activities of interlocutors during communication differs according to their social role/hierarchy, thereby indicating that social role/hierarchy needs to be controlled for in social neuroscience research.
Collapse
Affiliation(s)
- Nano Yoneta
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Hayato Watanabe
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Department of Child Studies, Toyooka Junior College, Toyooka, Japan
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Atsushi Shimojo
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyoshi Takano
- Graduate School of Health Sciences, Hokkaido University, Sapporo, Japan
| | - Takuya Saito
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Kazuyori Yagyu
- Department of Child and Adolescent Psychiatry, Hokkaido University Hospital, Sapporo, Japan
| | - Hideaki Shiraishi
- Department of Pediatrics, Hokkaido University Hospital, Sapporo, Japan
| | - Koichi Yokosawa
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- *Correspondence: Koichi Yokosawa,
| | - Jared Boasen
- Faculty of Health Sciences, Hokkaido University, Sapporo, Japan
- Tech3Lab, HEC Montréal, Montréal, QC, Canada
| |
Collapse
|
38
|
Liang Z, Li S, Zhou S, Chen S, Li Y, Chen Y, Zhao Q, Huang F, Lu C, Yu Q, Zhou Z. Increased or decreased? Interpersonal neural synchronization in group creation. Neuroimage 2022; 260:119448. [PMID: 35843516 DOI: 10.1016/j.neuroimage.2022.119448] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 07/01/2022] [Accepted: 07/03/2022] [Indexed: 10/17/2022] Open
Abstract
Group creation is the process by which group members collaborate to produce novel and useful ideas or products, including ideas generation and evaluation. However, the interpersonal neural mechanism of group creation during natural communication remains unclear. In this study, two groups of same-sex dyads with similar individual creativity collaborated to complete the Product Improvement Task (creative condition) and the Item Purchase Plan Task (control condition), respectively. Functional near-infrared spectroscopy (fNIRS) was used to record both members' neural activity in the left prefrontal (lPFC) and right temporal-parietal junction (rTPJ) regions during the task. Considering that the role asymmetry of group members may have an impact on interpersonal neural patterns, we identified leaders and followers in the dyads based on participant performance. The results showed that leaders and followers in the creative condition had significantly lower interpersonal neural synchronization (INS) in the right superior temporal gyrus-left superior frontal gyrus, right supramarginal gyrus-left superior frontal gyrus, and right supramarginal gyrus-left middle frontal gyrus than in the control condition. Partial multivariate Granger causality analyses revealed the influence between dyads was bidirectional but was significantly stronger from the leaders to the followers than the other direction. In addition, in the creative task, the INS was significantly associated with novelty, appropriateness, and conflict of views. All these findings suggest that the ideas generation and ideas evaluation process in group creation have poor interpersonal neural activity coupling due to factors such as the difficulty of understanding novel ideas. However, performances may be improved when groups can better integrate views and reach collective understanding, intentions, and goals. Furthermore, we found that there are differences in the dynamics of INS in different brain regions. The INS related to the novelty of the group creation decreased in the early stages, while the INS related to the appropriateness decreased in the middle stages. Our findings reveal a unique interpersonal neural pattern of group creation processes in the context of natural communication.
Collapse
Affiliation(s)
- Zheng Liang
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Songqing Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; College of Electronic Engineering, Naval University of Engineering, Wuhan, China
| | - Siyuan Zhou
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Shi Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Ying Li
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China; School of Preschool Education, Changsha Normal University, Changsha, China
| | - Yanran Chen
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China
| | - Qingbai Zhao
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang, China.
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Quanlei Yu
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| | - Zhijin Zhou
- Key Laboratory of Adolescent Cyberpsychology and Behavior (CCNU), Ministry of Education, Central China Normal University, Wuhan, China; Key Laboratory of Human Development and Mental Health of Hubei Province, School of Psychology, Central China Normal University, Wuhan, China.
| |
Collapse
|
39
|
Luft CDB, Zioga I, Giannopoulos A, Di Bona G, Binetti N, Civilini A, Latora V, Mareschal I. Social synchronization of brain activity increases during eye-contact. Commun Biol 2022; 5:412. [PMID: 35508588 PMCID: PMC9068716 DOI: 10.1038/s42003-022-03352-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 04/11/2022] [Indexed: 11/23/2022] Open
Abstract
Humans make eye-contact to extract information about other people’s mental states, recruiting dedicated brain networks that process information about the self and others. Recent studies show that eye-contact increases the synchronization between two brains but do not consider its effects on activity within single brains. Here we investigate how eye-contact affects the frequency and direction of the synchronization within and between two brains and the corresponding network characteristics. We also evaluate the functional relevance of eye-contact networks by comparing inter- and intra-brain networks of friends vs. strangers and the direction of synchronization between leaders and followers. We show that eye-contact increases higher inter- and intra-brain synchronization in the gamma frequency band. Network analysis reveals that some brain areas serve as hubs linking within- and between-brain networks. During eye-contact, friends show higher inter-brain synchronization than strangers. Dyads with clear leader/follower roles demonstrate higher synchronization from leader to follower in the alpha frequency band. Importantly, eye-contact affects synchronization between brains more than within brains, demonstrating that eye-contact is an inherently social signal. Future work should elucidate the causal mechanisms behind eye-contact induced synchronization. Friends making eye-contact have higher inter-brain synchronization than strangers. Eye-contact affects neural synchronization between brains more than within a brain, highlighting that eye-contact is an inherently social signal.
Collapse
Affiliation(s)
- Caroline Di Bernardi Luft
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.
| | - Ioanna Zioga
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom.,Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Anastasios Giannopoulos
- School of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Athens, Greece
| | - Gabriele Di Bona
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Nicola Binetti
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| | - Andrea Civilini
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom
| | - Vito Latora
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, United Kingdom.,Dipartimento di Fisica ed Astronomia, Università di Catania and INFN, I-95123, Catania, Italy.,The Alan Turing Institute, The British Library, London, NW1 2DB, United Kingdom.,Complexity Science Hub, Josefstäadter Strasse 39, A 1080, Vienna, Austria
| | - Isabelle Mareschal
- School of Biological and Behavioural Sciences, Queen Mary, University of London, London, E1 4NS, United Kingdom
| |
Collapse
|
40
|
Vuust P, Heggli OA, Friston KJ, Kringelbach ML. Music in the brain. Nat Rev Neurosci 2022; 23:287-305. [PMID: 35352057 DOI: 10.1038/s41583-022-00578-5] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 02/06/2023]
Abstract
Music is ubiquitous across human cultures - as a source of affective and pleasurable experience, moving us both physically and emotionally - and learning to play music shapes both brain structure and brain function. Music processing in the brain - namely, the perception of melody, harmony and rhythm - has traditionally been studied as an auditory phenomenon using passive listening paradigms. However, when listening to music, we actively generate predictions about what is likely to happen next. This enactive aspect has led to a more comprehensive understanding of music processing involving brain structures implicated in action, emotion and learning. Here we review the cognitive neuroscience literature of music perception. We show that music perception, action, emotion and learning all rest on the human brain's fundamental capacity for prediction - as formulated by the predictive coding of music model. This Review elucidates how this formulation of music perception and expertise in individuals can be extended to account for the dynamics and underlying brain mechanisms of collective music making. This in turn has important implications for human creativity as evinced by music improvisation. These recent advances shed new light on what makes music meaningful from a neuroscientific perspective.
Collapse
Affiliation(s)
- Peter Vuust
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark.
| | - Ole A Heggli
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark
| | - Karl J Friston
- Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Morten L Kringelbach
- Center for Music in the Brain, Aarhus University and The Royal Academy of Music (Det Jyske Musikkonservatorium), Aarhus, Denmark.,Department of Psychiatry, University of Oxford, Oxford, UK.,Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
| |
Collapse
|
41
|
Norton ES, Manning BL, Harriott EM, Nikolaeva JI, Nyabingi OS, Fredian KM, Page JM, McWeeny S, Krogh-Jespersen S, MacNeill LA, Roberts MY, Wakschlag LS. Social EEG: A novel neurodevelopmental approach to studying brain-behavior links and brain-to-brain synchrony during naturalistic toddler-parent interactions. Dev Psychobiol 2022; 64:e22240. [PMID: 35312062 PMCID: PMC9867891 DOI: 10.1002/dev.22240] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 01/26/2023]
Abstract
Despite increasing emphasis on emergent brain-behavior patterns supporting language, cognitive, and socioemotional development in toddlerhood, methodologic challenges impede their characterization. Toddlers are notoriously difficult to engage in brain research, leaving a developmental window in which neural processes are understudied. Further, electroencephalography (EEG) and event-related potential paradigms at this age typically employ structured, experimental tasks that rarely reflect formative naturalistic interactions with caregivers. Here, we introduce and provide proof of concept for a new "Social EEG" paradigm, in which parent-toddler dyads interact naturally during EEG recording. Parents and toddlers sit at a table together and engage in different activities, such as book sharing or watching a movie. EEG is time locked to the video recording of their interaction. Offline, behavioral data are microcoded with mutually exclusive engagement state codes. From 216 sessions to date with 2- and 3-year-old toddlers and their parents, 72% of dyads successfully completed the full Social EEG paradigm, suggesting that it is possible to collect dual EEG from parents and toddlers during naturalistic interactions. In addition to providing naturalistic information about child neural development within the caregiving context, this paradigm holds promise for examination of emerging constructs such as brain-to-brain synchrony in parents and children.
Collapse
Affiliation(s)
- Elizabeth S. Norton
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Brittany L. Manning
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Emily M. Harriott
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Julia I. Nikolaeva
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Olufemi S. Nyabingi
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Kaitlyn M. Fredian
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Jessica M. Page
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sean McWeeny
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
| | - Sheila Krogh-Jespersen
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Leigha A. MacNeill
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Megan Y. Roberts
- Roxelyn and Richard Pepper Department of Communication Sciences and Disorders, Northwestern University, Evanston, Illinois, USA
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Lauren S. Wakschlag
- Department of Medical Social Sciences and Institute for Innovations in Developmental Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
42
|
Zimmermann M, Lomoriello AS, Konvalinka I. Intra-individual behavioural and neural signatures of audience effects and interactions in a mirror-game paradigm. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211352. [PMID: 35223056 PMCID: PMC8847899 DOI: 10.1098/rsos.211352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
We often perform actions while observed by others, yet the behavioural and neural signatures of audience effects remain understudied. Performing actions while being observed has been shown to result in more emphasized movements in musicians and dancers, as well as during communicative actions. Here, we investigate the behavioural and neural mechanisms of observed actions in relation to individual actions in isolation and interactive joint actions. Movement kinematics and EEG were recorded in 42 participants (21 pairs) during a mirror-game paradigm, while participants produced improvised movements alone, while observed by a partner, or by synchronizing movements with the partner. Participants produced largest movements when being observed, and observed actors and dyads in interaction produced slower and less variable movements in contrast with acting alone. On a neural level, we observed increased mu suppression during interaction, as well as to a lesser extent during observed actions, relative to individual actions. Moreover, we observed increased widespread functional brain connectivity during observed actions relative to both individual and interactive actions, suggesting increased intra-individual monitoring and action-perception integration as a result of audience effects. These results suggest that observed actors take observers into account in their action plans by increasing self-monitoring; on a behavioural level, observed actions are similar to emergent interactive actions, characterized by slower and more predictable movements.
Collapse
Affiliation(s)
- Marius Zimmermann
- Section for Cognitive Systems, DTU Compute, Kongens Lyngby, Denmark
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | | | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Kongens Lyngby, Denmark
| |
Collapse
|
43
|
Saul MA, He X, Black S, Charles F. A Two-Person Neuroscience Approach for Social Anxiety: A Paradigm With Interbrain Synchrony and Neurofeedback. Front Psychol 2022; 12:568921. [PMID: 35095625 PMCID: PMC8796854 DOI: 10.3389/fpsyg.2021.568921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/06/2021] [Indexed: 12/11/2022] Open
Abstract
Social anxiety disorder has been widely recognised as one of the most commonly diagnosed mental disorders. Individuals with social anxiety disorder experience difficulties during social interactions that are essential in the regular functioning of daily routines; perpetually motivating research into the aetiology, maintenance and treatment methods. Traditionally, social and clinical neuroscience studies incorporated protocols testing one participant at a time. However, it has been recently suggested that such protocols are unable to directly assess social interaction performance, which can be revealed by testing multiple individuals simultaneously. The principle of two-person neuroscience highlights the interpersonal aspect of social interactions that observes behaviour and brain activity from both (or all) constituents of the interaction, rather than analysing on an individual level or an individual observation of a social situation. Therefore, two-person neuroscience could be a promising direction for assessment and intervention of the social anxiety disorder. In this paper, we propose a novel paradigm which integrates two-person neuroscience in a neurofeedback protocol. Neurofeedback and interbrain synchrony, a branch of two-person neuroscience, are discussed in their own capacities for their relationship with social anxiety disorder and relevance to the paradigm. The newly proposed paradigm sets out to assess the social interaction performance using interbrain synchrony between interacting individuals, and to employ a multi-user neurofeedback protocol for intervention of the social anxiety.
Collapse
Affiliation(s)
- Marcia A. Saul
- Faculty of Media and Communication, Centre for Digital Entertainment, Bournemouth University, Poole, United Kingdom
| | - Xun He
- Department of Psychology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- *Correspondence: Xun He
| | - Stuart Black
- Applied Neuroscience Solutions Ltd., Frimley Green, United Kingdom
| | - Fred Charles
- Department of Creative Technology, Faculty of Science and Technology, Bournemouth University, Poole, United Kingdom
- Fred Charles
| |
Collapse
|
44
|
Dikker S, Mech EN, Gwilliams L, West T, Dumas G, Federmeier KD. Exploring age-related changes in inter-brain synchrony during verbal communication. PSYCHOLOGY OF LEARNING AND MOTIVATION 2022. [DOI: 10.1016/bs.plm.2022.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
45
|
Akimoto M, Tanaka T, Ito J, Kubota Y, Seiyama A. Inter-Brain Synchronization During Sandplay Therapy: Individual Analyses. Front Psychol 2021; 12:723211. [PMID: 34887797 PMCID: PMC8650609 DOI: 10.3389/fpsyg.2021.723211] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 10/19/2021] [Indexed: 11/14/2022] Open
Abstract
Interactions between the client (Cl) and therapist (Th) evolve therapeutic relationships in psychotherapy. An interpersonal link or therapeutic space is implicitly developed, wherein certain important elements are expressed and shared. However, neural basis of psychotherapy, especially of non-verbal modalities, have scarcely been explored. Therefore, we examined the neural backgrounds of such therapeutic alliances during sandplay, a powerful art/play therapy technique. Real-time and simultaneous measurement of hemodynamics was conducted in the prefrontal cortex (PFC) of Cl-Th pairs participating in sandplay and subsequent interview sessions through multichannel near-infrared spectroscopy. As sandplay is highly individualized, and no two sessions and products (sandtrays) are the same, we expected variation in interactive patterns in the Cl–Th pairs. Nevertheless, we observed a statistically significant correlation between the spatio-temporal patterns in signals produced by the homologous regions of the brains. During the sandplay condition, significant correlations were obtained in the lateral PFC and frontopolar (FP) regions in the real Cl-Th pairs. Furthermore, a significant correlation was observed in the FP region for the interview condition. The correlations found in our study were explained as a “remote” synchronization (i.e., unconnected peripheral oscillators synchronizing through a hub maintaining free desynchronized dynamics) between two subjects in a pair, possibly representing the neural foundation of empathy, which arises commonly in sandplay therapy (ST).
Collapse
Affiliation(s)
- Michiko Akimoto
- Faculty of Human Sciences, Toyo Eiwa University, Yokohama, Japan
| | - Takuma Tanaka
- Faculty of Data Science, Shiga University, Hikone, Japan
| | - Junko Ito
- Faculty of Health Sciences, Kyorin University, Tokyo, Japan
| | - Yasutaka Kubota
- Health and Medical Services Center, Shiga University, Hikone, Japan
| | - Akitoshi Seiyama
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
46
|
Moore M, Katsumi Y, Dolcos S, Dolcos F. Electrophysiological Correlates of Social Decision-making: An EEG Investigation of a Modified Ultimatum Game. J Cogn Neurosci 2021; 34:54-78. [PMID: 34673955 DOI: 10.1162/jocn_a_01782] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Cooperation behaviors during social decision-making have been shown to be sensitive to manipulations of context. However, it remains unclear how aspects of context in dynamic social interactions, such as observed nonverbal behaviors, may modulate cooperation decisions and the associated neural mechanisms. In this study, participants responded to offers from proposers to split $10 in an Ultimatum Game following observation of proposer approach (friendly) or avoidance (nonfriendly) behaviors, displayed by dynamic whole-body animated avatars, or following a nonsocial interaction control condition. As expected, behavioral results showed that participants tended to have greater acceptance rates for unfair offers following observed nonverbal social interactions with proposers compared with control, suggesting an enhancing effect of social interactions on cooperative decisions. ERP results showed greater N1 and N2 responses at the beginning of social interaction conditions compared with control, and greater sustained and late positivity responses for observed approach and avoidance proposer behaviors compared with control. Event-related spectral perturbation (ERSP) results showed differential sensitivity within theta, alpha, and beta bands during observation of social interactions and offers that was associated with subsequent decision behaviors. Together, these results point to the impact of proposers' nonverbal behaviors on subsequent cooperation decisions at both behavioral and neural levels. The ERP and ERSP findings suggest modulated attention, monitoring, and processing of biological motion during the observed nonverbal social interactions, influencing the participants' responses to offers. These findings shed light on electrophysiological correlates of response to observed social interactions that predict subsequent social decisions.
Collapse
Affiliation(s)
| | - Yuta Katsumi
- University of Illinois at Urbana-Champaign.,Northeastern University
| | | | | |
Collapse
|
47
|
Léné P, Karran AJ, Labonté-Lemoyne E, Sénécal S, Fredette M, Johnson KJ, Léger PM. Is there collaboration specific neurophysiological activation during collaborative task activity? An analysis of brain responses using electroencephalography and hyperscanning. Brain Behav 2021; 11:e2270. [PMID: 34617691 PMCID: PMC8613430 DOI: 10.1002/brb3.2270] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/20/2022] Open
Abstract
Collaboration between two individuals is thought to be associated with the synchrony of two different brain activities. Indeed, prefrontal cortical activation and alpha frequency band modulation has been widely reported, but little is known about interbrain synchrony (IBS) changes occurring during social interaction such as collaboration or competition. In this study, we assess the dynamic of IBS variation in order to provide novel insights into the frequency band modulation underlying collaboration. To address this question, we used electroencephalography (EEG) to simultaneously record the brain activity of two individuals playing a computer-based game facing four different conditions: collaboration, competition, single participation, and passive observation. The computer-based game consisted of a fast button response task. Using data recorded in sensor space, we calculated an IBS value for each frequency band using both wavelet coherence transform and phase-locking value and performed single-subject analysis to compare each condition. We found significant IBS in frontal electrodes only present during collaboration associated with alpha frequency band modulation. In addition, we observed significant IBS in the theta frequency band for both collaboration and competition conditions, along with a significant single-subject cortical activity. Competition is distinguishable through single-subject activity in several regions and frequency bands of the brain. Performance is correlated with single-subject frontal activation during collaboration in the alpha and beta frequency band.
Collapse
Affiliation(s)
- Paul Léné
- Département de management, HEC Montréal, Montréal, Quebec, Canada
| | - Alexander J Karran
- Département de technologies de l'information, HEC Montréal, Montréal, Quebec, Canada
| | - Elise Labonté-Lemoyne
- Département de technologies de l'information, HEC Montréal, Montréal, Quebec, Canada
| | - Sylvain Sénécal
- Département de technologies de l'information, HEC Montréal, Montréal, Quebec, Canada
| | - Marc Fredette
- Département de technologies de l'information, HEC Montréal, Montréal, Quebec, Canada
| | - Kevin J Johnson
- Département de management, HEC Montréal, Montréal, Quebec, Canada
| | | |
Collapse
|
48
|
Chatterjee I, Goršič M, Clapp JD, Novak D. Automatic Estimation of Interpersonal Engagement During Naturalistic Conversation Using Dyadic Physiological Measurements. Front Neurosci 2021; 15:757381. [PMID: 34764854 PMCID: PMC8576061 DOI: 10.3389/fnins.2021.757381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/07/2021] [Indexed: 11/13/2022] Open
Abstract
Physiological responses of two interacting individuals contain a wealth of information about the dyad: for example, the degree of engagement or trust. However, nearly all studies on dyadic physiological responses have targeted group-level analysis: e.g., correlating physiology and engagement in a large sample. Conversely, this paper presents a study where physiological measurements are combined with machine learning algorithms to dynamically estimate the engagement of individual dyads. Sixteen dyads completed 15-min naturalistic conversations and self-reported their engagement on a visual analog scale every 60 s. Four physiological signals (electrocardiography, skin conductance, respiration, skin temperature) were recorded, and both individual physiological features (e.g., each participant's heart rate) and synchrony features (indicating degree of physiological similarity between two participants) were extracted. Multiple regression algorithms were used to estimate self-reported engagement based on physiological features using either leave-interval-out crossvalidation (training on 14 60-s intervals from a dyad and testing on the 15th interval from the same dyad) or leave-dyad-out crossvalidation (training on 15 dyads and testing on the 16th). In leave-interval-out crossvalidation, the regression algorithms achieved accuracy similar to a 'baseline' estimator that simply took the median engagement of the other 14 intervals. In leave-dyad-out crossvalidation, machine learning achieved a slightly higher accuracy than the baseline estimator and higher accuracy than an independent human observer. Secondary analyses showed that removing synchrony features and personality characteristics from the input dataset negatively impacted estimation accuracy and that engagement estimation error was correlated with personality traits. Results demonstrate the feasibility of dynamically estimating interpersonal engagement during naturalistic conversation using physiological measurements, which has potential applications in both conversation monitoring and conversation enhancement. However, as many of our estimation errors are difficult to contextualize, further work is needed to determine acceptable estimation accuracies.
Collapse
Affiliation(s)
- Iman Chatterjee
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Maja Goršič
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| | - Joshua D. Clapp
- Department of Psychology, University of Wyoming, Laramie, WY, United States
| | - Domen Novak
- Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH, United States
| |
Collapse
|
49
|
Washburn A, Wright MJ, Chafe C, Fujioka T. Temporal Coordination in Piano Duet Networked Music Performance (NMP): Interactions Between Acoustic Transmission Latency and Musical Role Asymmetries. Front Psychol 2021; 12:707090. [PMID: 34630213 PMCID: PMC8500175 DOI: 10.3389/fpsyg.2021.707090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/16/2021] [Indexed: 11/26/2022] Open
Abstract
Today’s audio, visual, and internet technologies allow people to interact despite physical distances, for casual conversation, group workouts, or musical performance. Musical ensemble performance is unique because interaction integrity critically depends on the timing between each performer’s actions and when their acoustic outcomes arrive. Acoustic transmission latency (ATL) between players is substantially longer for networked music performance (NMP) compared to traditional in-person spaces where musicians can easily adapt. Previous work has shown that longer ATLs slow the average tempo in ensemble performance, and that asymmetric co-actor roles and empathy-related traits affect coordination patterns in joint action. Thus, we are interested in how musicians collectively adapt to a given latency and how such adaptation patterns vary with their task-related and person-related asymmetries. Here, we examined how two pianists performed duets while hearing each other’s auditory outcomes with an ATL of 10, 20, or 40 ms. To test the hypotheses regarding task-related asymmetries, we designed duets such that pianists had: (1) a starting or joining role and (2) a similar or dissimilar musical part compared to their co-performer, with respect to pitch range and melodic contour. Results replicated previous clapping-duet findings showing that longer ATLs are associated with greater temporal asynchrony between partners and increased average tempo slowing. While co-performer asynchronies were not affected by performer role or part similarity, at the longer ATLs starting performers displayed slower tempos and smaller tempo variability than joining performers. This asymmetry of stability vs. flexibility between starters and joiners may sustain coordination, consistent with recent joint action findings. Our data also suggest that relative independence in musical parts may mitigate ATL-related challenges. Additionally, there may be a relationship between co-performer differences in empathy-related personality traits such as locus of control and coordination during performance under the influence of ATL. Incorporating the emergent coordinative dynamics between performers could help further innovation of music technologies and composition techniques for NMP.
Collapse
Affiliation(s)
- Auriel Washburn
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA, United States
| | - Matthew J Wright
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA, United States
| | - Chris Chafe
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, Untied States
| | - Takako Fujioka
- Center for Computer Research in Music and Acoustics, Department of Music, Stanford University, Stanford, CA, United States.,Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, Untied States
| |
Collapse
|
50
|
Heggli OA, Konvalinka I, Kringelbach ML, Vuust P. A metastable attractor model of self-other integration (MEAMSO) in rhythmic synchronization. Philos Trans R Soc Lond B Biol Sci 2021; 376:20200332. [PMID: 34420393 DOI: 10.1098/rstb.2020.0332] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Human interaction is often accompanied by synchronized bodily rhythms. Such synchronization may emerge spontaneously as when a crowd's applause turns into a steady beat, be encouraged as in nursery rhymes, or be intentional as in the case of playing music together. The latter has been extensively studied using joint finger-tapping paradigms as a simplified version of rhythmic interpersonal synchronization. A key finding is that synchronization in such cases is multifaceted, with synchronized behaviour resting upon different synchronization strategies such as mutual adaptation, leading-following and leading-leading. However, there are multiple open questions regarding the mechanism behind these strategies and how they develop dynamically over time. Here, we propose a metastable attractor model of self-other integration (MEAMSO). This model conceptualizes dyadic rhythmic interpersonal synchronization as a process of integrating and segregating signals of self and other. Perceived sounds are continuously evaluated as either being attributed to self-produced or other-produced actions. The model entails a metastable system with two particular attractor states: one where an individual maintains two separate predictive models for self- and other-produced actions, and the other where these two predictive models integrate into one. The MEAMSO explains the three known synchronization strategies and makes testable predictions about the dynamics of interpersonal synchronization both in behaviour and the brain. This article is part of the theme issue 'Synchrony and rhythm interaction: from the brain to behavioural ecology'.
Collapse
Affiliation(s)
- Ole Adrian Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and the Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| | - Ivana Konvalinka
- SINe Lab, Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and the Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark.,Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University and the Royal Academy of Music Aarhus/Aalborg, Aarhus, Denmark
| |
Collapse
|