1
|
Silva S, Bicker J, Falcão A, Dallmann R, Fortuna A. Chronopharmacokinetics of the antidepressant paroxetine: An in vitro and in vivo approach. Neuropharmacology 2025; 273:110441. [PMID: 40180243 DOI: 10.1016/j.neuropharm.2025.110441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 02/25/2025] [Accepted: 03/30/2025] [Indexed: 04/05/2025]
Abstract
The circadian rhythm influences homeostatic functions such as sleep, physical activity and food intake as well as pharmacotherapy, namely pharmacokinetics. To investigate the impact of the circadian rhythm on the pharmacokinetics of paroxetine, in vitro synchronized permeability studies were carried out in a tri-culture blood-brain barrier model. Paroxetine demonstrated lower apparent permeability when the cells were incubated at 24 h post-synchronization than at 36 h. Additionally, in vivo chronopharmacokinetic studies were performed in CD-1 female mice administered with paroxetine (5 mg/kg) by intranasal route in the early morning or evening. Paroxetine exposure in the brain was higher when it was administered at the beginning of the active phase (ZT13) compared with the rest phase (ZT1) (p < 0.001), probably owing to the lower levels of P-glycoprotein expressed in the brain at the active phase (p < 0.05). Since melatonin production depends on serotonin, its plasma concentrations were also assessed in vivo. The results demonstrated that melatonin concentrations increased 12 h after paroxetine nasal instillation at ZT13 (p < 0.05), but remained unchanged at ZT1, suggesting that the drug effect is influenced by administration time. In conclusion, the circadian rhythm impacted the pharmacokinetics of paroxetine, especially its distribution into the brain, the target organ. This emphasizes the importance of the time of administration in antidepressant dosing, highlighting its relevance for future studies.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal
| | - Robert Dallmann
- Division of Biomedical Sciences Warwick Medical School & SBIDER, University of Warwick, Coventry, UK
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal; CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Portugal.
| |
Collapse
|
2
|
Wu T, Yu Q, Zhu X, Li Y, Zhang M, Deng J, Lu L. Embracing Internal States: A Review of Optimization of Repetitive Transcranial Magnetic Stimulation for Treating Depression. Neurosci Bull 2025; 41:866-880. [PMID: 39976854 PMCID: PMC12014982 DOI: 10.1007/s12264-024-01347-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 10/05/2024] [Indexed: 04/23/2025] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is a rapid and effective therapy for major depressive disorder; however, there is significant variability in therapeutic outcomes both within and across individuals, with approximately 50% of patients showing no response to rTMS treatment. Many studies have personalized the stimulation parameters of rTMS (e.g., location and intensity of stimulation) according to the anatomical and functional structure of the brain. In addition to these parameters, the internal states of the individual, such as circadian rhythm, behavior/cognition, neural oscillation, and neuroplasticity, also contribute to the variation in rTMS effects. In this review, we summarize the current literature on the interaction between rTMS and internal states. We propose two possible methods, multimodal treatment, and adaptive closed-loop treatment, to integrate patients' internal states to achieve better rTMS treatment for depression.
Collapse
Affiliation(s)
- Tingting Wu
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China
| | - Qiuxuan Yu
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China
| | - Ximei Zhu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China
| | - Yinjiao Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China
| | - Mingyue Zhang
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China
| | - Jiahui Deng
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China.
| | - Lin Lu
- Research Unit of Diagnosis and Treatment of Mood Cognitive Disorder, Chinese Academy of Medical Sciences (No. 2018RU006), Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, 100080, China.
| |
Collapse
|
3
|
Handschuh PA, Murgaš M, Winkler D, Winkler-Pjrek E, Hartmann AM, Domschke K, Baldinger-Melich P, Rujescu D, Lanzenberger R, Spies M. Summer and SERT: Effect of daily sunshine hours on SLC6A4 promoter methylation in seasonal affective disorder. World J Biol Psychiatry 2025; 26:159-169. [PMID: 40114401 DOI: 10.1080/15622975.2025.2477463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/02/2025] [Accepted: 03/05/2025] [Indexed: 03/22/2025]
Abstract
OBJECTIVES Knowledge on how sunlight impacts SERT activity via SLC6A4 promoter methylation in Seasonal Affective Disorder (SAD) remains limited. This study aimed to investigate the effect of daily sunshine duration on SLC6A4 promoter methylation in 28 patients with SAD and 40 healthy controls (HC). METHODS Daily sunlight data for Vienna, Austria (mean of 28 days before blood sampling), were obtained from ©GeoSphere Austria. A general linear model analysed SLC6A4 promoter methylation as the dependent variable, with sunlight hours as the independent variable, and group (SAD, HC), age, sex, and 5-HTTLPR/rs25531 as covariates. Exploratory analyses examined the effects of sunlight hours and methylation on Beck Depression Inventory (BDI) scores. RESULTS Sunlight had a significant effect on SLC6A4 promoter methylation (p = 0.03), with more sunlight hours resulting in lower methylation (r = -0.25). However, the interaction between sunlight and group was non-significant, suggesting a rather general effect across both groups. Sunlight also influenced BDI scores (p < 0.01), with fewer sunlight hours leading to higher scores (r = -0.25), which aligns with previous research. SLC6A4 promoter methylation had no significant effect on BDI scores. CONCLUSIONS Our findings suggest that sunlight influences SLC6A4 methylation without SAD specificity.
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Faculty of Medicine, Medical Center, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
- Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
4
|
Bu F, Bone JK, Fancourt D. Will things feel better in the morning? A time-of-day analysis of mental health and wellbeing from nearly 1 million observations. BMJ MENTAL HEALTH 2025; 28:e301418. [PMID: 39904722 PMCID: PMC11795389 DOI: 10.1136/bmjment-2024-301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/23/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND Mood is known to change over seasons of the year, days of the week, and even over the course of the day (diurnally). But although broader mental health and well-being also vary over months and weeks, it is unclear whether there are diurnal changes in how people experience and report their mental health. OBJECTIVE To assess time-of-day association with depression, anxiety, well-being and loneliness. METHODS The study analysed data from 49 218 adults drawn from the University College London COVID-19 Social Study, which gathered detailed repeated measurements from the same participants across time over a 2-year period (March 2020-March 2022, 18.5 observation per person). Data were analysed using linear mixed-effects models. FINDINGS There is a clear time-of-day pattern in self-reported mental health and well-being, with people generally waking up feeling best and feeling worst around midnight. There is also an association with day of the week and season, with particularly strong evidence for better mental health and well-being in the summer. Time-of-day patterns are moderated by day, with more variation in mental health and individual well-being during weekends compared with weekdays. Loneliness is relatively more stable. CONCLUSIONS Generally, things do seem better in the morning. Hedonic and eudemonic well-being have the most variation, and social well-being is most stable. CLINICAL IMPLICATIONS Our findings indicate the importance of considering time, day and season in research design, analyses, intervention delivery, and the planning and provision of public health services.
Collapse
Affiliation(s)
- Feifei Bu
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Jessica K Bone
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| | - Daisy Fancourt
- Research Department of Behavioural Science and Health, Institute of Epidemiology and Health Care, University College London, London, UK
| |
Collapse
|
5
|
Oh M, Brumberg J, Sossi V, Varrone A. Preserved Serotonin Transporter Availability in Parkinson Disease Measured with Either [ 11C]MADAM or [ 11C]DASB: A Study Including 2 Separate Cohorts of Nondepressed Patients. J Nucl Med 2025; 66:309-314. [PMID: 39746753 DOI: 10.2967/jnumed.124.268233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/31/2024] [Indexed: 01/04/2025] Open
Abstract
Serotonin transporter (SERT) availability was assessed using 2 tracers, [11C]N,N-dimethyl-2-(2-amino-4-cyanophenylthio)benzylamine ([11C]DASB) and [11C]N,N-dimethyl-2-(2-amino-4-fluoromethylphenylthio)benzylamine) ([11C]MADAM), in independent cohorts of patients and controls. This study aimed to independently confirm whether SERT remains intact in nondepressed individuals with early-stage Parkinson disease (PD), because the use of diverse methodologies could potentially yield disparate results. Methods: Seventeen PD patients (5 women and 12 men; age, 64 ± 7 y; Unified Parkinson's Disease Rating Scale motor score, 23 ± 5; Beck Depression Inventory score, 5 ± 4) and 20 age- and sex-matched healthy controls underwent [11C]MADAM PET at Karolinska Institutet. Fifteen PD patients (5 women and 10 men; age, 59 ± 9 y; Unified Parkinson's Disease Rating Scale motor score, 15 ± 7; Beck Depression Inventory score, 4 ± 4) and 8 controls were examined with [11C]DASB PET at the University of British Columbia. PET scans were performed at both institutions using a high-resolution research tomograph. A simplified reference tissue model and Logan graphical analysis were used to calculate the regional nondisplaceable binding potential (BPND), using the cerebellum as the reference. Parametric BPND images were generated using wavelet-aided parametric imaging. MRI-defined volumes of interest included cortical and subcortical regions, as well as brain stem nuclei. Results: There were no significant differences between controls and early-stage PD patients in either the [11C]DASB or the [11C]MADAM cohort, regardless of the analysis method. Group differences (Cohen d) in the [11C]DASB cohort ranged from 0.34 to 0.86 in brain stem nuclei, 0.09 to 0.61 in subcortical regions, and 0.28 to 0.70 in cortical regions. In the [11C]MADAM cohort, they ranged from 0.16 to 0.40, 0.19 to 0.55, and 0.32 to 0.61, respectively. Logan BPND highly correlated with simplified reference tissue model BPND for both tracers in each group (P < 0.001). Conclusion: SERT availability is relatively preserved in nondepressed patients with PD. This study suggests that serotonergic degeneration is not a major feature of the disease in nondepressed patients with nonadvanced disease.
Collapse
Affiliation(s)
- Minyoung Oh
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden;
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Joachim Brumberg
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
- Department of Nuclear Medicine, Medical Center-University of Freiburg, Freiburg, Germany; and
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada
| | - Andrea Varrone
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet and Stockholm Health Care Services, Stockholm, Sweden
| |
Collapse
|
6
|
Halabian A, Radahmadi M. The neurobiological mechanisms of photoperiod impact on brain functions: a comprehensive review. Rev Neurosci 2024; 35:933-958. [PMID: 39520288 DOI: 10.1515/revneuro-2024-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 06/19/2024] [Indexed: 11/16/2024]
Abstract
Variations in day length, or photoperiodism, whether natural or artificial light, significantly impact biological, physiological, and behavioral processes within the brain. Both natural and artificial light sources are environmental factors that significantly influence brain functions and mental well-being. Photoperiodism is a phenomenon, occurring either over a 24 h cycle or seasonally and denotes all biological responses of humans and animals to these fluctuations in day and night length. Conversely, artificial light occurrence refers to the presence of light during nighttime hours and/or its absence during the daytime (unnaturally long and short days, respectively). Light at night, which is a form of light pollution, is prevalent in many societies, especially common in certain emergency occupations. Moreover, individuals with certain mental disorders, such as depression, often exhibit a preference for darkness over daytime light. Nevertheless, disturbances in light patterns can have negative consequences, impacting brain performance through similar mechanisms albeit with varying degrees of severity. Furthermore, changes in day length lead to alterations in the activity of receptors, proteins, ion channels, and molecular signaling pathways, all of which can impact brain health. This review aims to summarize the mechanisms by which day length influences brain functions through neural circuits, hormonal systems, neurochemical processes, cellular activity, and even molecular signaling pathways.
Collapse
Affiliation(s)
- Alireza Halabian
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, The University of Western, Ontario, N6A 3K7 London, ON, Canada
| | - Maryam Radahmadi
- Department of Physiology, School of Medicine, 48455 Isfahan University of Medical Sciences , 81746-73461 Isfahan, Iran
| |
Collapse
|
7
|
Gao Q, Tang Z, Wang H, Yamazaki M, Jiang J, Fu YH, Ptacek LJ, Zhang L. Human PERIOD3 variants lead to winter depression-like behaviours via glucocorticoid signalling. Nat Metab 2024; 6:2267-2280. [PMID: 39528818 DOI: 10.1038/s42255-024-01163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 10/04/2024] [Indexed: 11/16/2024]
Abstract
Our brain adapts to seasonal changes. Mis-adaptations may lead to seasonal patterns in several psychiatric disorders, but we know little regarding the underlying mechanisms. Our previous work identified two variants in the human circadian clock gene PERIOD3 (PER3), that is, P415A and H417R, which are associated with winter depression, but whether and how these variants lead to the disorder remain to be characterized. Here we find that male mice carrying human P415A and H417R display winter depression-like behaviours that are caused by the actions of P415A and H417R in the adrenal gland. Systemic corticosterone level is downregulated in adaptation to shortening of day length, while P415A and H417R eliminate this downregulation by increasing corticosterone synthesis. Enhanced glucocorticoid signalling represses the transcription of Tph2, which encodes the rate-limiting enzyme of serotonin synthesis, leading to increased depression-like behaviours. Taken together, our findings unveil a mechanism according to which human variants contribute to seasonal mood traits.
Collapse
Affiliation(s)
- Qian Gao
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases (NITFID), National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiwei Tang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Haili Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maya Yamazaki
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Jia Jiang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Ying-Hui Fu
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Louis J Ptacek
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Luoying Zhang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China.
| |
Collapse
|
8
|
Sun L, Malén T, Tuisku J, Kaasinen V, Hietala JA, Rinne J, Nuutila P, Nummenmaa L. Seasonal variation in D2/3 dopamine receptor availability in the human brain. Eur J Nucl Med Mol Imaging 2024; 51:3284-3291. [PMID: 38730083 PMCID: PMC11369044 DOI: 10.1007/s00259-024-06715-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 04/14/2024] [Indexed: 05/12/2024]
Abstract
PURPOSE Brain functional and physiological plasticity is essential to combat dynamic environmental challenges. The rhythmic dopamine signaling pathway, which regulates emotion, reward and learning, shows seasonal patterns with higher capacity of dopamine synthesis and lower number of dopamine transporters during dark seasons. However, seasonal variation of the dopamine receptor signaling remains to be characterized. METHODS Based on a historical database of healthy human brain [11C]raclopride PET scans (n = 291, 224 males and 67 females), we investigated the seasonal patterns of D2/3 dopamine receptor signaling. Daylength at the time of scanning was used as a predictor for brain regional non-displaceable binding of the radiotracer, while controlling for age and sex. RESULTS Daylength was negatively correlated with availability of D2/3 dopamine receptors in the striatum. The largest effect was found in the left caudate, and based on the primary sample, every 4.26 h (i.e., one standard deviation) increase of daylength was associated with a mean 2.8% drop (95% CI -0.042 to -0.014) of the receptor availability. CONCLUSIONS Seasonally varying D2/3 receptor signaling may also underlie the seasonality of mood, feeding, and motivational processes. Our finding suggests that in future studies of brain dopamine signaling, especially in high-latitude regions, the effect of seasonality should be considered.
Collapse
Affiliation(s)
- Lihua Sun
- Huashan Institute of Medicine, Huashan Hospital, Fudan University, Shanghai, China.
- Turku PET Centre, University of Turku, Turku, Finland.
- Turku PET Centre, Turku University Hospital, Turku, Finland.
| | - Tuulia Malén
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Valtteri Kaasinen
- Clinical Neurosciences, University of Turku, Turku, Finland
- Turku University Hospital, Neurocenter, Turku, Finland
| | - Jarmo A Hietala
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Turku, Turku University Hospital, Turku, Finland
| | - Juha Rinne
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Hirono T, Igawa K, Okudaira M, Takeda R, Nishikawa T, Watanabe K. Time-of-day effects on motor unit firing and muscle contractile properties in humans. J Neurophysiol 2024; 131:472-479. [PMID: 38264791 DOI: 10.1152/jn.00368.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/17/2024] [Accepted: 01/20/2024] [Indexed: 01/25/2024] Open
Abstract
Intrinsic factors related to neuromuscular function are time-of-day dependent, but diurnal rhythms in neural and muscular components of the human neuromuscular system remain unclear. The present study aimed to investigate the time-of-day effects on neural excitability and muscle contractile properties by assessing the firing properties of tracked motor units and electrically evoked twitch muscle contraction. In 15 young adults (22.9 ± 4.7 yr), neuromuscular function was measured in the morning (10:00), at noon (13:30), in the evening (17:00), and at night (20:30). Four measurements were completed within 24 h. The measurements consisted of maximal voluntary contraction (MVC) strength of knee extension, recording of high-density surface electromyography (HDsEMG) from the vastus lateralis during ramp-up contraction to 50% of MVC, and evoked twitch torque of knee extensors by electrical stimulation. Recorded HDsEMG signals were decomposed to individual motor unit firing behaviors and the same motor units were tracked among the times of day, and recruitment thresholds and firing rates were calculated. The number of detected and tracked motor units was 127. Motor unit firing rates significantly increased from morning to noon, evening, and night (P < 0.01), but there were no significant differences in recruitment thresholds among the times of day (P > 0.05). Also, there were no significant effects of time of day on evoked twitch torque (P > 0.05). Changes in the motor unit firing rate and evoked twitch torque were not significantly correlated (P > 0.05). These findings suggest that neural excitability may be affected by the time of day, but it did not accompany changes in peripheral contractile properties in a diurnal manner.NEW & NOTEWORTHY We investigated the variations of tracked motor unit firing properties and electrically evoked twitch contraction during the day within 24 h. The variation of motor unit firing rate was observed, and tracked motor unit firing rate increased at noon, in the evening, and at night compared with that in the morning. The variation in motor unit firing rate was independent of changes in twitch contraction. Motor unit firing rate may be affected by diurnal rhythms.
Collapse
Affiliation(s)
- Tetsuya Hirono
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
- Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Kaito Igawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Masamichi Okudaira
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
- Faculty of Education, Iwate University, Morioka, Japan
| | - Ryosuke Takeda
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Taichi Nishikawa
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| | - Kohei Watanabe
- Laboratory of Neuromuscular Biomechanics, School of Health and Sport Sciences, Chukyo University, Toyota, Japan
| |
Collapse
|
10
|
Yamaguchi Y, Takagi S, Takahashi H, Sugihara G. Effectiveness of vortioxetine for winter depression in bipolar disorder: A case report. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e163. [PMID: 38868466 PMCID: PMC11114312 DOI: 10.1002/pcn5.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 06/14/2024]
Abstract
Background We present a case report on the efficacy of the short-term application of vortioxetine in managing winter depression in patients with seasonal bipolar disorder (BP). Standard treatment strategies for BP may not adequately address seasonal depressive symptoms during winter in patients with seasonal BP patterns. Depressive symptoms during winter may be linked to seasonal changes in serotonin transporter binding, such as a decrease in synaptic serotonin levels, necessitating alternative approaches. Although antidepressants, including vortioxetine, are effective in treating seasonal monopolar depression, their efficacy and safety in treating depression in patients with seasonal BP patterns remain unclear. Case Presentation This case report focuses on a 44-year-old male patient diagnosed with seasonal BP who had recurrent depressive episodes, specifically during winter. Notably, the patient had a significant decrease in recurrent episodes after short-term seasonal vortioxetine use without inducing mania or rapid cycling. Conclusion Our study highlights the potential effectiveness of a seasonal, short-term treatment strategy with antidepressants, including vortioxetine, for winter depression in individuals with BP.
Collapse
Affiliation(s)
- Yusei Yamaguchi
- Department of Psychiatry and Behavioral SciencesTokyo Medical and Dental University Graduate SchoolTokyoJapan
| | - Shunsuke Takagi
- Department of Psychiatry and Behavioral SciencesTokyo Medical and Dental University Graduate SchoolTokyoJapan
- Sleep Research InstituteWaseda UniversityTokyoJapan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral SciencesTokyo Medical and Dental University Graduate SchoolTokyoJapan
- Center for Brain Integration ResearchTokyo Medical and Dental UniversityTokyoJapan
| | - Genichi Sugihara
- Department of Psychiatry and Behavioral SciencesTokyo Medical and Dental University Graduate SchoolTokyoJapan
| |
Collapse
|
11
|
Aggestrup AS, Svendsen SD, Præstegaard A, Løventoft P, Nørregaard L, Knorr U, Dam H, Frøkjær E, Danilenko K, Hageman I, Faurholt-Jepsen M, Kessing LV, Martiny K. Circadian Reinforcement Therapy in Combination With Electronic Self-Monitoring to Facilitate a Safe Postdischarge Period for Patients With Major Depression: Randomized Controlled Trial. JMIR Ment Health 2023; 10:e50072. [PMID: 37800194 DOI: 10.2196/50072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/10/2023] [Accepted: 10/03/2023] [Indexed: 10/07/2023] Open
Abstract
BACKGROUND Patients with major depression exhibit circadian disturbance of sleep and mood, and when they are discharged from inpatient wards, this disturbance poses a risk of relapse. We developed a circadian reinforcement therapy (CRT) intervention to facilitate the transition from the inpatient ward to the home for these patients. CRT focuses on increasing the zeitgeber strength for the circadian clock through social contact, physical activity, diet, daylight exposure, and sleep timing. OBJECTIVE In this study, we aimed to prevent the worsening of depression after discharge by using CRT, supported by an electronic self-monitoring system, to advance and stabilize sleep and improve mood. The primary outcome, which was assessed by a blinded rater, was the change in the Hamilton Depression Rating Scale scores from baseline to the end point. METHODS Participants were contacted while in the inpatient ward and randomized 1:1 to the CRT or the treatment-as-usual (TAU) group. For 4 weeks, participants in both groups electronically self-monitored their daily mood, physical activity, sleep, and medication using the Monsenso Daybuilder (MDB) system. The MDB allowed investigators and participants to simultaneously view a graphical display of registrations. An investigator phoned all participants weekly to coinspect data entry. In the CRT group, participants were additionally phoned between the scheduled calls if specific predefined trigger points for mood and sleep were observed during the daily inspection. Participants in the CRT group were provided with specialized CRT psychoeducation sessions immediately after inclusion, focusing on increasing the zeitgeber input to the circadian system; a PowerPoint presentation was presented; paper-based informative materials and leaflets were reviewed with the participants; and the CRT principles were used during all telephone consultations. In the TAU group, phone calls focused on data entry in the MDB system. When discharged, all patients were treated at a specialized affective disorders service. RESULTS Overall, 103 participants were included. Participants in the CRT group had a significantly larger reduction in Hamilton Depression Scale score (P=.04) than those in the TAU group. The self-monitored MDB data showed significantly improved evening mood (P=.02) and sleep quality (P=.04), earlier sleep onset (P=.009), and longer sleep duration (P=.005) in the CRT group than in the TAU group. The day-to-day variability of the daily and evening mood, sleep offset, sleep onset, and sleep quality were significantly lower in the CRT group (all P<.001) than in the TAU group. The user evaluation was positive for the CRT method and the MDB system. CONCLUSIONS We found significantly lower depression levels and improved sleep quality in the CRT group than in the TAU group. We also found significantly lower day-to-day variability in daily sleep, mood parameters, and activity parameters in the CRT group than in the TAU group. The delivery of the CRT intervention should be further refined and tested. TRIAL REGISTRATION ClinicalTrials.gov NCT02679768; https://clinicaltrials.gov/study/NCT02679768. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) RR2-10.1186/s12888-019-2101-z.
Collapse
Affiliation(s)
- Anne Sofie Aggestrup
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Signe Dunker Svendsen
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Præstegaard
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Philip Løventoft
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Lasse Nørregaard
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Ulla Knorr
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Henrik Dam
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Erik Frøkjær
- Department of Computer Science, University of Copenhagen, Copenhagen, Denmark
| | | | - Ida Hageman
- Mental Health Services, Copenhagen University Hospital, Copenhagen, Denmark
| | - Maria Faurholt-Jepsen
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Lars Vedel Kessing
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| | - Klaus Martiny
- Mental Health Centre Copenhagen, Copenhagen University Hospital, Frederiksberg, Denmark
| |
Collapse
|
12
|
Laurell GL, Plavén-Sigray P, Johansen A, Raval NR, Nasser A, Aabye Madsen C, Madsen J, Hansen HD, Donovan LL, Knudsen GM, Lammertsma AA, Ogden RT, Svarer C, Schain M. Kinetic models for estimating occupancy from single-scan PET displacement studies. J Cereb Blood Flow Metab 2023; 43:1544-1556. [PMID: 37070382 PMCID: PMC10414003 DOI: 10.1177/0271678x231168591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/01/2023] [Accepted: 03/05/2023] [Indexed: 04/19/2023]
Abstract
The traditional design of PET target engagement studies is based on a baseline scan and one or more scans after drug administration. We here evaluate an alternative design in which the drug is administered during an on-going scan (i.e., a displacement study). This approach results both in lower radiation exposure and lower costs. Existing kinetic models assume steady state. This condition is not present during a drug displacement and consequently, our aim here was to develop kinetic models for analysing PET displacement data. We modified existing compartment models to accommodate a time-variant increase in occupancy following the pharmacological in-scan intervention. Since this implies the use of differential equations that cannot be solved analytically, we developed instead one approximate and one numerical solution. Through simulations, we show that if the occupancy is relatively high, it can be estimated without bias and with good accuracy. The models were applied to PET data from six pigs where [11C]UCB-J was displaced by intravenous brivaracetam. The dose-occupancy relationship estimated from these scans showed good agreement with occupancies calculated with Lassen plot applied to baseline-block scans of two pigs. In summary, the proposed models provide a framework to determine target occupancy from a single displacement scan.
Collapse
Affiliation(s)
- Gjertrud Louise Laurell
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | | | - Annette Johansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Nakul Ravi Raval
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Arafat Nasser
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Clara Aabye Madsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Jacob Madsen
- Department of Clinical Physiology, Nuclear Medicine & PET, Copenhagen University, Copenhagen, Denmark
| | - Hanne Demant Hansen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- A. A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lene Lundgaard Donovan
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Gitte Moos Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Faculty of Health and Medical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Adriaan A Lammertsma
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
- Department of Nuclear Medicine and Molecular Imaging, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - R Todd Ogden
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Molecular Imaging and Neuropathology Division, The New York State Psychiatric Institute, New York, USA
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, USA
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
| | - Martin Schain
- Neurobiology Research Unit, Copenhagen University Hospital, Copenhagen, Denmark
- Antaros Medical, Mölndal, Sweden
| |
Collapse
|
13
|
Cincotta AH. Brain Dopamine-Clock Interactions Regulate Cardiometabolic Physiology: Mechanisms of the Observed Cardioprotective Effects of Circadian-Timed Bromocriptine-QR Therapy in Type 2 Diabetes Subjects. Int J Mol Sci 2023; 24:13255. [PMID: 37686060 PMCID: PMC10487918 DOI: 10.3390/ijms241713255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 09/10/2023] Open
Abstract
Despite enormous global efforts within clinical research and medical practice to reduce cardiovascular disease(s) (CVD), it still remains the leading cause of death worldwide. While genetic factors clearly contribute to CVD etiology, the preponderance of epidemiological data indicate that a major common denominator among diverse ethnic populations from around the world contributing to CVD is the composite of Western lifestyle cofactors, particularly Western diets (high saturated fat/simple sugar [particularly high fructose and sucrose and to a lesser extent glucose] diets), psychosocial stress, depression, and altered sleep/wake architecture. Such Western lifestyle cofactors are potent drivers for the increased risk of metabolic syndrome and its attendant downstream CVD. The central nervous system (CNS) evolved to respond to and anticipate changes in the external (and internal) environment to adapt survival mechanisms to perceived stresses (challenges to normal biological function), including the aforementioned Western lifestyle cofactors. Within the CNS of vertebrates in the wild, the biological clock circuitry surveils the environment and has evolved mechanisms for the induction of the obese, insulin-resistant state as a survival mechanism against an anticipated ensuing season of low/no food availability. The peripheral tissues utilize fat as an energy source under muscle insulin resistance, while increased hepatic insulin resistance more readily supplies glucose to the brain. This neural clock function also orchestrates the reversal of the obese, insulin-resistant condition when the low food availability season ends. The circadian neural network that produces these seasonal shifts in metabolism is also responsive to Western lifestyle stressors that drive the CNS clock into survival mode. A major component of this natural or Western lifestyle stressor-induced CNS clock neurophysiological shift potentiating the obese, insulin-resistant state is a diminution of the circadian peak of dopaminergic input activity to the pacemaker clock center, suprachiasmatic nucleus. Pharmacologically preventing this loss of circadian peak dopaminergic activity both prevents and reverses existing metabolic syndrome in a wide variety of animal models of the disorder, including high fat-fed animals. Clinically, across a variety of different study designs, circadian-timed bromocriptine-QR (quick release) (a unique formulation of micronized bromocriptine-a dopamine D2 receptor agonist) therapy of type 2 diabetes subjects improved hyperglycemia, hyperlipidemia, hypertension, immune sterile inflammation, and/or adverse cardiovascular event rate. The present review details the seminal circadian science investigations delineating important roles for CNS circadian peak dopaminergic activity in the regulation of peripheral fuel metabolism and cardiovascular biology and also summarizes the clinical study findings of bromocriptine-QR therapy on cardiometabolic outcomes in type 2 diabetes subjects.
Collapse
|
14
|
Pavicic M, Walker AM, Sullivan KA, Lagergren J, Cliff A, Romero J, Streich J, Garvin MR, Pestian J, McMahon B, Oslin DW, Beckham JC, Kimbrel NA, Jacobson DA. Using iterative random forest to find geospatial environmental and Sociodemographic predictors of suicide attempts. Front Psychiatry 2023; 14:1178633. [PMID: 37599888 PMCID: PMC10433206 DOI: 10.3389/fpsyt.2023.1178633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 06/21/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction Despite a recent global decrease in suicide rates, death by suicide has increased in the United States. It is therefore imperative to identify the risk factors associated with suicide attempts to combat this growing epidemic. In this study, we aim to identify potential risk factors of suicide attempt using geospatial features in an Artificial intelligence framework. Methods We use iterative Random Forest, an explainable artificial intelligence method, to predict suicide attempts using data from the Million Veteran Program. This cohort incorporated 405,540 patients with 391,409 controls and 14,131 attempts. Our predictive model incorporates multiple climatic features at ZIP-code-level geospatial resolution. We additionally consider demographic features from the American Community Survey as well as the number of firearms and alcohol vendors per 10,000 people to assess the contributions of proximal environment, access to means, and restraint decrease to suicide attempts. In total 1,784 features were included in the predictive model. Results Our results show that geographic areas with higher concentrations of married males living with spouses are predictive of lower rates of suicide attempts, whereas geographic areas where males are more likely to live alone and to rent housing are predictive of higher rates of suicide attempts. We also identified climatic features that were associated with suicide attempt risk by age group. Additionally, we observed that firearms and alcohol vendors were associated with increased risk for suicide attempts irrespective of the age group examined, but that their effects were small in comparison to the top features. Discussion Taken together, our findings highlight the importance of social determinants and environmental factors in understanding suicide risk among veterans.
Collapse
Affiliation(s)
- Mirko Pavicic
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Angelica M. Walker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Kyle A. Sullivan
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - John Lagergren
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Ashley Cliff
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Jonathon Romero
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville, Knoxville, TN, United States
| | - Jared Streich
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - Michael R. Garvin
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| | - John Pestian
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Benjamin McMahon
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, United States
| | - David W. Oslin
- VISN 4 Mental Illness Research, Education, and Clinical Center, Center of Excellence, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA, United States
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Jean C. Beckham
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness, Research, Education, and Clinical Center, Seattle, WA, United States
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, NC, United States
| | - Nathan A. Kimbrel
- Durham Veterans Affairs Health Care System, Durham, NC, United States
- VA Mid-Atlantic Mental Illness, Research, Education, and Clinical Center, Seattle, WA, United States
- Duke University School of Medicine, Duke University, Durham, NC, United States
- VA Health Services Research and Development Center of Innovation to Accelerate Discovery and Practice Transformation, Durham, NC, United States
| | - Daniel A. Jacobson
- Oak Ridge National Laboratory, Computational and Predictive Biology, Oak Ridge, TN, United States
| |
Collapse
|
15
|
Spies M, Murgaš M, Vraka C, Philippe C, Gryglewski G, Nics L, Balber T, Baldinger-Melich P, Hartmann AM, Rujescu D, Hacker M, Winkler-Pjrek E, Winkler D, Lanzenberger R. Impact of genetic variants within serotonin turnover enzymes on human cerebral monoamine oxidase A in vivo. Transl Psychiatry 2023; 13:208. [PMID: 37322010 PMCID: PMC10272199 DOI: 10.1038/s41398-023-02506-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/28/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Variants within the monoamine oxidase A (MAO-A, MAOA) and tryptophan hydroxylase 2 (TPH2) genes, the main enzymes in cerebral serotonin (5-HT) turnover, affect risk for depression. Depressed cohorts show increased cerebral MAO-A in positron emission tomography (PET) studies. TPH2 polymorphisms might also influence brain MAO-A because availability of substrates (i.e. monoamine concentrations) were shown to affect MAO-A levels. We assessed the effect of MAOA (rs1137070, rs2064070, rs6323) and TPH2 (rs1386494, rs4570625) variants associated with risk for depression and related clinical phenomena on global MAO-A distribution volume (VT) using [11C]harmine PET in 51 participants (21 individuals with seasonal affective disorder (SAD) and 30 healthy individuals (HI)). Statistical analyses comprised general linear models with global MAO-A VT as dependent variable, genotype as independent variable and age, sex, group (individuals with SAD, HI) and season as covariates. rs1386494 genotype significantly affected global MAO-A VT after correction for age, group and sex (p < 0.05, corr.), with CC homozygotes showing 26% higher MAO-A levels. The role of rs1386494 on TPH2 function or expression is poorly understood. Our results suggest rs1386494 might have an effect on either, assuming that TPH2 and MAO-A levels are linked by their common product/substrate, 5-HT. Alternatively, rs1386494 might influence MAO-A levels via another mechanism, such as co-inheritance of other genetic variants. Our results provide insight into how genetic variants within serotonin turnover translate to the cerebral serotonin system. Clinicaltrials.gov Identifier: NCT02582398. EUDAMED Number: CIV-AT-13-01-009583.
Collapse
Affiliation(s)
- Marie Spies
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Cecile Philippe
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
- Child Study Center, Yale University, New Haven, CT, USA
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Theresa Balber
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Comprehensive Center for Clinical Neurosciences and Mental Health (C3NMH), Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
16
|
Zhang R, Volkow ND. Seasonality of brain function: role in psychiatric disorders. Transl Psychiatry 2023; 13:65. [PMID: 36813773 PMCID: PMC9947162 DOI: 10.1038/s41398-023-02365-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/24/2023] Open
Abstract
Seasonality patterns are reported in various psychiatric disorders. The current paper summarizes findings on brain adaptations associated with seasonal changes, factors that contribute to individual differences and their implications for psychiatric disorders. Changes in circadian rhythms are likely to prominently mediate these seasonal effects since light strongly entrains the internal clock modifying brain function. Inability of circadian rhythms to accommodate to seasonal changes might increase the risk for mood and behavior problems as well as worse clinical outcomes in psychiatric disorders. Understanding the mechanisms that account for inter-individual variations in seasonality is relevant to the development of individualized prevention and treatment for psychiatric disorders. Despite promising findings, seasonal effects are still understudied and only controlled as a covariate in most brain research. Rigorous neuroimaging studies with thoughtful experimental designs, powered sample sizes and high temporal resolution alongside deep characterization of the environment are needed to better understand the seasonal adaptions of the human brain as a function of age, sex, and geographic latitude and to investigate the mechanisms underlying the alterations in seasonal adaptation in psychiatric disorders.
Collapse
Affiliation(s)
- Rui Zhang
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| | - Nora D Volkow
- Laboratory of Neuroimaging, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20892-1013, USA.
| |
Collapse
|
17
|
Yao Y, Shi S, Li W, Luo B, Yang Y, Li M, Zhang L, Yuan X, Zhou X, Liu H, Zhang K. Seasonality of hospitalization for schizophrenia and mood disorders: A single-center cross-sectional study in China. J Affect Disord 2023; 323:40-45. [PMID: 36436764 DOI: 10.1016/j.jad.2022.11.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Seasonal patterns exist in many disorders and even serve as potential drivers of some disorders, but in schizophrenia and affective disorders, there is no uniform conclusion on the seasonal pattern. METHODS A total of 100,621 inpatients were surveyed in this study over 16 years, and 21,668 inpatients were ultimately included in the count after standard exclusion criteria were applied. RESULTS There was an uneven seasonal distribution of mental illness admissions (χ2 = 48.299, df = 18, P < .001). The peak of schizophrenia admissions occurred in the winter and the trough in the spring (52.6 % vs 50 %, P < .05). The peaks for depression and bipolar disorder were in the fall and spring, respectively, while the troughs were in the winter and fall, respectively (24.7 % vs 21.7 %, P < .05; 15.2 % vs 13.2 %, P < .05). Admissions for childhood mood disorders peaked in the fall (P < .05). We also found that the length of stay was also correlated with the season of admission, and that this seasonal fluctuation was not consistent across male and female populations. LIMITATIONS To avoid the effect of repeated hospitalizations, we maintained a registry of each patient's first admission only, which also resulted in our inability to explore the seasonal pattern of each disease recurrence at the individual level. CONCLUSIONS We found that the seasonal distribution of psychiatric admissions was not uniform. And there was also an uneven seasonal distribution of length of stay for patients admitted in different seasons. This may imply that certain environmental factors that vary with the seasons are potential drivers of mental illness.
Collapse
Affiliation(s)
- Yitan Yao
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Shengya Shi
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Wenfei Li
- Anhui Mental Health Center, Hefei 230022, China
| | - Bei Luo
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Yating Yang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Mengdie Li
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Ling Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Xiaoping Yuan
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Xiaoqin Zhou
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China.
| | - Kai Zhang
- Department of Psychiatry, Chaohu Hospital of Anhui Medical University, Hefei 238000, China; Anhui Psychiatric Center, Anhui Medical University, Hefei 238000, China.
| |
Collapse
|
18
|
Handschuh PA, Murgaš M, Vraka C, Nics L, Hartmann AM, Winkler-Pjrek E, Baldinger-Melich P, Wadsak W, Winkler D, Hacker M, Rujescu D, Domschke K, Lanzenberger R, Spies M. Effect of MAOA DNA Methylation on Human in Vivo Protein Expression Measured by [11C]harmine Positron Emission Tomography. Int J Neuropsychopharmacol 2023; 26:116-124. [PMID: 36573644 PMCID: PMC9926052 DOI: 10.1093/ijnp/pyac085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/26/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Epigenetic modifications like DNA methylation are understood as an intermediary between environmental factors and neurobiology. Cerebral monoamine oxidase A (MAO-A) levels are altered in depression, as are DNA methylation levels within the MAOA gene, particularly in the promoter/exon I/intron I region. An effect of MAOA methylation on peripheral protein expression was shown, but the extent to which methylation affects brain MAO-A levels is not fully understood. METHODS Here, the influence of MAOA promoter/exon I/intron I region DNA methylation on global MAO-A distribution volume (VT), an index of MAO-A density, was assessed via [11C]harmine positron emission tomography in 22 patients (14 females) suffering from seasonal affective disorder and 30 healthy controls (17 females). RESULTS No significant influence of MAOA DNA methylation on global MAO-A VT was found, despite correction for health status, sex, season, and MAOA variable number of tandem repeat genotype. However, season affected average methylation in women, with higher levels in spring and summer (Puncorr = .03). We thus did not find evidence for an effect of MAOA DNA methylation on brain MAO-A VT. CONCLUSIONS In contrast to a previous study demonstrating an effect of methylation of a MAOA promoter region located further 5' on brain MAO-A, MAOA methylation of the region assessed here appears to affect brain protein levels to a limited extent at most. The observed effect of season on methylation levels is in accordance with extensive evidence for seasonal effects within the serotonergic system. CLINICALTRIALS.GOV IDENTIFIER NCT02582398 (https://clinicaltrials.gov/ct2/show/NCT02582398).
Collapse
Affiliation(s)
- Patricia A Handschuh
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Chrysoula Vraka
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Lukas Nics
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Annette M Hartmann
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Edda Winkler-Pjrek
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Pia Baldinger-Melich
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Wolfgang Wadsak
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
- Center for Biomarker Research in Medicine (CBmed), Graz, Austria
| | - Dietmar Winkler
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Austria
| | - Dan Rujescu
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Katharina Domschke
- Department of Psychiatry and Psychotherapy, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Centre for Basics in Neuromodulation, Faculty of Medicine, University of Freiburg, Germany
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| | - Marie Spies
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
| |
Collapse
|
19
|
Vraka C, Murgaš M, Rischka L, Geist BK, Lanzenberger R, Gryglewski G, Zenz T, Wadsak W, Mitterhauser M, Hacker M, Philippe C, Pichler V. Simultaneous radiomethylation of [ 11C]harmine and [ 11C]DASB and kinetic modeling approach for serotonergic brain imaging in the same individual. Sci Rep 2022; 12:3283. [PMID: 35228586 PMCID: PMC8885643 DOI: 10.1038/s41598-022-06906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/02/2022] [Indexed: 11/08/2022] Open
Abstract
Simultaneous characterization of pathologies by multi-tracer positron emission tomography (PET) is among the most promising applications in nuclear medicine. Aim of this work was the simultaneous production of two PET-tracers in one module and test the relevance for human application. [11C]harmine and [11C]DASB were concurrently synthesized in a 'two-in-one-pot' reaction in quality for application. Dual-tracer protocol was simulated using 16 single PET scans in different orders of tracer application separated by different time intervals. Volume of distribution was calculated for single- and dual-tracer measurements using Logan's plot and arterial input function in 13 brain regions. The 'two-in-one-pot' reaction yielded equivalent amounts of both radiotracers with comparable molar activities. The simulations of the dual-tracer application were comparable to the single bolus injections in 13 brain regions, when [11C]harmine was applied first and [11C]DASB second, with an injection time interval of 45 min (rxy = 0.90). Our study shows the successful simultaneous dual-tracer production leading to decreased radiation burden and costs. The simulation of dual subject injection to quantify the monoamine oxidase-A and serotonin transporter distribution proved its high potential. Multi-tracer imaging may drive more sophisticated study designs and diminish the day-to-day differences in the same individual as well as increase PET scanner efficiency.
Collapse
Affiliation(s)
- Chrysoula Vraka
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Matej Murgaš
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Lucas Rischka
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Barbara Katharina Geist
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Rupert Lanzenberger
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Gregor Gryglewski
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Vienna, Austria
| | - Thomas Zenz
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolfgang Wadsak
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- CBmed GmbH, Center for Biomarker Research in Medicine, Graz, Austria
| | - Markus Mitterhauser
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Ludwig Boltzmann Institute Applied Diagnostics, Vienna, Austria
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Cécile Philippe
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
| | - Verena Pichler
- Department of Pharmaceutical Sciences, Division of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
20
|
Hamit G, Ayca O, Omer B, Nevra O, Aynur O. Association of circadian locomotor output cycles kaput rs1801260 and hypocretin receptor 1 rs2271933 polymorphisms in patients with chronic migraine and sleep disorder. NEUROL SCI NEUROPHYS 2022. [DOI: 10.4103/nsn.nsn_195_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
21
|
Silva S, Bicker J, Falcão A, Fortuna A. Antidepressants and Circadian Rhythm: Exploring Their Bidirectional Interaction for the Treatment of Depression. Pharmaceutics 2021; 13:1975. [PMID: 34834391 PMCID: PMC8624696 DOI: 10.3390/pharmaceutics13111975] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/13/2021] [Accepted: 11/16/2021] [Indexed: 01/07/2023] Open
Abstract
Scientific evidence that circadian rhythms affect pharmacokinetics and pharmacodynamics has highlighted the importance of drug dosing-time. Circadian oscillations alter drug absorption, distribution, metabolism, and excretion (ADME) as well as intracellular signaling systems, target molecules (e.g., receptors, transporters, and enzymes), and gene transcription. Although several antidepressant drugs are clinically available, less than 50% of depressed patients respond to first-line pharmacological treatments. Chronotherapeutic approaches to enhance the effectiveness of antidepressants are not completely known. Even so, experimental results found until this day suggest a positive influence of drug dosing-time on the efficacy of depression therapy. On the other hand, antidepressants have also demonstrated to modulate circadian rhythmicity and sleep-wake cycles. This review aims to evidence the potential of chronotherapy to improve the efficacy and/or safety of antidepressants. It includes pre-clinical and clinical studies that demonstrate the relevance of determining the most appropriate time of administration for antidepressant drugs. In parallel, their positive influence on the resynchronization of disrupted circadian rhythms is also herein discussed. It is expected that this review will promote the investigation of chronotherapy for the treatment of depression, contribute to a better understanding of the relationship between antidepressants and circadian rhythms, and consequently promote the development of new therapeutics.
Collapse
Affiliation(s)
- Soraia Silva
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Joana Bicker
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Amílcar Falcão
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| | - Ana Fortuna
- Laboratory of Pharmacology, Faculty of Pharmacy, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal; (S.S.); (A.F.); (A.F.)
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Azinhaga Sta. Comba, 3000-548 Coimbra, Portugal
| |
Collapse
|
22
|
Kohne S, Reimers L, Müller M, Diekhof EK. Daytime and season do not affect reinforcement learning capacity in a response time adjustment task. Chronobiol Int 2021; 38:1738-1744. [PMID: 34334067 DOI: 10.1080/07420528.2021.1953048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Seasonal and circadian rhythms have a broad impact on physiological aspects, such as dopamine neurotransmission, and may be involved in the etiology of mood disorders. Considering this, studies on the influence of season and daytime on cognitive function are rare. The present study aimed to assess the impact of seasonal and diurnal effects on the ability to maximize reward outcomes by optimizing response times adaptively. For this purpose, a reward-based learning task that required an adaptation of response time to either a fast or a slow response was used. Eighty German participants (mean age ± SD = 21.86 ± 1.89 years, 41 women) were examined twice, in the morning and in the evening. Half of the participants were tested during the summer, while the other half performed the test in the winter. No impact of daytime, season or of the external factors photoperiodicity and temperature on reinforcement learning could be found. However, a generally slower response speed in the morning compared to the evening appeared. Previously conducted tasks could not display behavioral differences in both times of season and daytime, although neurophysiological findings suggest it.
Collapse
Affiliation(s)
- Sina Kohne
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Zoology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Luise Reimers
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Zoology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Malika Müller
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Zoology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| | - Esther K Diekhof
- Faculty of Mathematics, Informatics and Natural Sciences, Department of Biology, Institute of Zoology, Neuroendocrinology and Human Biology Unit, Universität Hamburg, Hamburg, Germany
| |
Collapse
|
23
|
Seasonal Variation in the Brain μ-Opioid Receptor Availability. J Neurosci 2021; 41:1265-1273. [PMID: 33361461 PMCID: PMC7888218 DOI: 10.1523/jneurosci.2380-20.2020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/19/2020] [Accepted: 12/07/2020] [Indexed: 02/08/2023] Open
Abstract
Seasonal rhythms influence mood and sociability. The brain μ-opioid receptor (MOR) system modulates a multitude of seasonally varying socioemotional functions, but its seasonal variation remains elusive with no previously reported in vivo evidence. Here, we first conducted a cross-sectional study with previously acquired human [11C]carfentanil PET imaging data (132 male and 72 female healthy subjects) to test whether there is seasonal variation in MOR availability. We then investigated experimentally whether seasonal variation in daylength causally influences brain MOR availability in rats. Rats (six male and three female rats) underwent daylength cycle simulating seasonal changes; control animals (two male and one female rats) were kept under constant daylength. Animals were scanned repeatedly with [11C]carfentanil PET imaging. Seasonally varying daylength had an inverted U-shaped functional relationship with brain MOR availability in humans. Brain regions sensitive to daylength spanned the socioemotional brain circuits, where MOR availability peaked during spring. In rats, MOR availabilities in the brain neocortex, thalamus, and striatum peaked at intermediate daylength. Varying daylength also affected the weight gain and stress hormone levels. We conclude that cerebral MOR availability in humans and rats shows significant seasonal variation, which is predominately associated with seasonal photoperiodic variation. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.SIGNIFICANCE STATEMENT Seasonal rhythms influence emotion and sociability. The central μ-opioid receptor (MOR) system modulates numerous seasonally varying socioemotional functions, but its seasonal variation remains elusive. Here we used positron emission tomography to show that MOR levels in both human and rat brains show daylength-dependent seasonal variation. The highest MOR availability was observed at intermediate daylengths. Given the intimate links between MOR signaling and socioemotional behavior, these results suggest that the MOR system might underlie seasonal variation in human mood and social behavior.
Collapse
|
24
|
Rosenthal SJ, Josephs T, Kovtun O, McCarty R. Seasonal effects on bipolar disorder: A closer look. Neurosci Biobehav Rev 2020; 115:199-219. [DOI: 10.1016/j.neubiorev.2020.05.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 05/22/2020] [Accepted: 05/25/2020] [Indexed: 11/15/2022]
|
25
|
Abstract
Fundamental aspects of neurobiology are time-of-day regulated. Therefore, it is not surprising that neurodegenerative and psychiatric diseases are accompanied by sleep and circadian rhythm disruption. Although the direction of causation remains unclear, abnormal sleep-wake patterns often occur early in disease, exacerbate progression, and are a common primary complaint from patients. Circadian medicine incorporates knowledge of 24-hour biological rhythms to improve treatment. This article highlights how research and technologic advances in circadian biology might translate to improved patient care.
Collapse
|
26
|
Bauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Ayhan Y, Baethge C, Bauer R, Baune BT, Becerra-Palars C, Bellivier F, Belmaker RH, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Cabrera J, Wo Cheung EY, Del Zompo M, Dodd S, Donix M, Etain B, Fagiolini A, Fountoulakis KN, Frye MA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Harima H, Henry C, Isometsä ET, Janno S, Kapczinski F, Kardell M, Khaldi S, Kliwicki S, König B, Kot TL, Krogh R, Kunz M, Lafer B, Landén M, Larsen ER, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nery FG, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Sørensen HØ, Ouali U, Ruiz YP, Pilhatsch M, Pinna M, da Ponte FDR, Quiroz D, Ramesar R, Rasgon N, Reddy MS, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Raghuraman BS, Scippa ÂM, Severus E, Simhandl C, Stackhouse PW, Stein DJ, Strejilevich S, Subramaniam M, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Tondo L, Torrent C, Vaaler AE, Vares E, Veeh J, Vieta E, et alBauer M, Glenn T, Alda M, Andreassen OA, Angelopoulos E, Ardau R, Ayhan Y, Baethge C, Bauer R, Baune BT, Becerra-Palars C, Bellivier F, Belmaker RH, Berk M, Bersudsky Y, Bicakci Ş, Birabwa-Oketcho H, Bjella TD, Cabrera J, Wo Cheung EY, Del Zompo M, Dodd S, Donix M, Etain B, Fagiolini A, Fountoulakis KN, Frye MA, Gonzalez-Pinto A, Gottlieb JF, Grof P, Harima H, Henry C, Isometsä ET, Janno S, Kapczinski F, Kardell M, Khaldi S, Kliwicki S, König B, Kot TL, Krogh R, Kunz M, Lafer B, Landén M, Larsen ER, Lewitzka U, Licht RW, Lopez-Jaramillo C, MacQueen G, Manchia M, Marsh W, Martinez-Cengotitabengoa M, Melle I, Meza-Urzúa F, Ming MY, Monteith S, Morken G, Mosca E, Mozzhegorov AA, Munoz R, Mythri SV, Nacef F, Nadella RK, Nery FG, Nielsen RE, O'Donovan C, Omrani A, Osher Y, Sørensen HØ, Ouali U, Ruiz YP, Pilhatsch M, Pinna M, da Ponte FDR, Quiroz D, Ramesar R, Rasgon N, Reddy MS, Reif A, Ritter P, Rybakowski JK, Sagduyu K, Raghuraman BS, Scippa ÂM, Severus E, Simhandl C, Stackhouse PW, Stein DJ, Strejilevich S, Subramaniam M, Sulaiman AH, Suominen K, Tagata H, Tatebayashi Y, Tondo L, Torrent C, Vaaler AE, Vares E, Veeh J, Vieta E, Viswanath B, Yoldi-Negrete M, Zetin M, Zgueb Y, Whybrow PC. Association between solar insolation and a history of suicide attempts in bipolar I disorder. J Psychiatr Res 2019; 113:1-9. [PMID: 30878786 DOI: 10.1016/j.jpsychires.2019.03.001] [Show More Authors] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 02/05/2019] [Accepted: 03/01/2019] [Indexed: 12/28/2022]
Abstract
In many international studies, rates of completed suicide and suicide attempts have a seasonal pattern that peaks in spring or summer. This exploratory study investigated the association between solar insolation and a history of suicide attempt in patients with bipolar I disorder. Solar insolation is the amount of electromagnetic energy from the Sun striking a surface area on Earth. Data were collected previously from 5536 patients with bipolar I disorder at 50 collection sites in 32 countries at a wide range of latitudes in both hemispheres. Suicide related data were available for 3365 patients from 310 onset locations in 51 countries. 1047 (31.1%) had a history of suicide attempt. There was a significant inverse association between a history of suicide attempt and the ratio of mean winter solar insolation/mean summer solar insolation. This ratio is smallest near the poles where the winter insolation is very small compared to the summer insolation. This ratio is largest near the equator where there is relatively little variation in the insolation over the year. Other variables in the model that were positively associated with suicide attempt were being female, a history of alcohol or substance abuse, and being in a younger birth cohort. Living in a country with a state-sponsored religion decreased the association. (All estimated coefficients p < 0.01). In summary, living in locations with large changes in solar insolation between winter and summer may be associated with increased suicide attempts in patients with bipolar disorder. Further investigation of the impacts of solar insolation on the course of bipolar disorder is needed.
Collapse
Affiliation(s)
- Michael Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.
| | - Tasha Glenn
- ChronoRecord Association, Fullerton, CA, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Elias Angelopoulos
- Department of Psychiatry, National and Capodistrian University of Athens, Medical School, Eginition Hospital, Athens, Greece
| | - Raffaella Ardau
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Yavuz Ayhan
- Department of Psychiatry, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Christopher Baethge
- Department of Psychiatry and Psychotherapy, University of Cologne Medical School, Cologne, Germany
| | - Rita Bauer
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bernhard T Baune
- Department of Psychiatry, School of Medicine, University of Adelaide, Adelaide, Australia
| | | | - Frank Bellivier
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Robert H Belmaker
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Berk
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, Orygen, the National Centre for Excellence in Youth Mental Health, the Centre for Youth Mental Health and the Florey Institute for Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Yuly Bersudsky
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | - Thomas D Bjella
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Jorge Cabrera
- Mood Disorders Clinic, Dr. Jose Horwitz Psychiatric Institute, Santiago de Chile, Chile
| | - Eric Y Wo Cheung
- Department of General Adult Psychiatry, Castle Peak Hospital, Hong Kong
| | - Maria Del Zompo
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | - Seetal Dodd
- Deakin University, IMPACT Strategic Research Centre, School of Medicine, Barwon Health, Geelong, Victoria, Australia; Department of Psychiatry, University of Melbourne, Parkville, Victoria, Australia
| | - Markus Donix
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Bruno Etain
- Psychiatry and Addiction Medicine. Assistance Publique - Hôpitaux de Paris, INSERM UMR-S1144, Denis Diderot University, René Descartes University, FondaMental Foundation, Paris, France
| | - Andrea Fagiolini
- Department of Molecular Medicine and Department of Mental Health (DAI), University of Siena and University of Siena Medical Center (AOUS), Siena, Italy
| | - Kostas N Fountoulakis
- Division of Neurosciences, 3rd Department of Psychiatry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Mark A Frye
- Department of Psychiatry & Psychology, Mayo Clinic Depression Center, Mayo Clinic, Rochester, MN, USA
| | - Ana Gonzalez-Pinto
- Department of Psychiatry, University Hospital of Alava, University of the Basque Country, CIBERSAM, Vitoria, Spain
| | - John F Gottlieb
- Department of Psychiatry, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Paul Grof
- Mood Disorders Center of Ottawa, University of Toronto, Toronto, ON, Canada
| | - Hirohiko Harima
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Chantal Henry
- AP-HP, Hopitaux Universitaires Henri Mondor and INSERM U955 (IMRB) and Université Paris Est and Institut Pasteur, Unité Perception et Mémoire, Paris, France
| | - Erkki T Isometsä
- Department of Psychiatry, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; National Institute for Health and Welfare, Helsinki, Finland
| | - Sven Janno
- Department of Psychiatry, University of Tartu, Tartu, Estonia
| | - Flávio Kapczinski
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Mathias Kardell
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Sebastian Kliwicki
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Barbara König
- BIPOLAR Zentrum Wiener Neustadt, Wiener Neustadt, Austria
| | - Timur L Kot
- Khanty-Mansiysk Clinical Psychoneurological Hospital, Khanty-Mansiysk, Russia
| | - Rikke Krogh
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Mauricio Kunz
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Beny Lafer
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy, University of Gothenburg, Gothenburg and Mölndal, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm, Sweden
| | - Erik R Larsen
- Department of Affective Disorders, Q, Mood Disorders Research Unit, Aarhus University Hospital, Aarhus, Denmark
| | - Ute Lewitzka
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Rasmus W Licht
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Carlos Lopez-Jaramillo
- Mood Disorders Program, Hospital Universitario San Vicente Fundación, Research Group in Psychiatry, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellín, Colombia
| | - Glenda MacQueen
- Department of Psychiatry, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Mirko Manchia
- Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada; Section of Psychiatry, Department of Medical Science and Public Health, University of Cagliari, Cagliari, Italy
| | - Wendy Marsh
- Department of Psychiatry, University of Massachusetts, Worcester, MA, USA
| | | | - Ingrid Melle
- NORMENT - K.G. Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Fátima Meza-Urzúa
- National Institute of Psychiatry '"Ramón de la Fuente Muñiz", Mexico City, Mexico
| | - Mok Yee Ming
- Department of General Psychiatry, Mood Disorders Unit, Institute of Mental Health, Singapore City, Singapore
| | - Scott Monteith
- Michigan State University College of Human Medicine, Traverse City Campus, Traverse City, MI, USA
| | - Gunnar Morken
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Enrica Mosca
- Section of Neurosciences and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Sardinia, Italy
| | | | - Rodrigo Munoz
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | | | - Fethi Nacef
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Fabiano G Nery
- Bipolar Disorder Research Program, Department of Psychiatry, University of São Paulo Medical School, São Paulo, Brazil
| | - René E Nielsen
- Unit for Psychiatric Research, Aalborg University Hospital, Psychiatry, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark
| | - Claire O'Donovan
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Adel Omrani
- Tunisian Bipolar Forum, Érable Médical Cabinet 324, Lac 2, Tunis, Tunisia
| | - Yamima Osher
- Department of Psychiatry, Faculty of Health Sciences, Beer Sheva Mental Health Center, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | - Uta Ouali
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | | | - Maximilian Pilhatsch
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Marco Pinna
- Lucio Bini Mood Disorder Center, Cagliari, Italy
| | - Francisco D R da Ponte
- Department of Psychiatry, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Danilo Quiroz
- Deparment of Psychiatry, Diego Portales University, Santiago de Chile, Chile
| | - Raj Ramesar
- UCT/MRC Human Genetics Research Unit, Division of Human Genetics, Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Natalie Rasgon
- Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Palo Alto, CA, USA
| | - M S Reddy
- Asha Bipolar Clinic, Asha Hospital, Hyderabad, Telangana, India
| | - Andreas Reif
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Philipp Ritter
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Janusz K Rybakowski
- Department of Adult Psychiatry, Poznan University of Medical Sciences, Poznan, Poland
| | - Kemal Sagduyu
- Department of Psychiatry, University of Missouri Kansas City School of Medicine, Kansas City, MO, USA
| | | | - Ângela M Scippa
- Department of Neuroscience and Mental Health, Federal University of Bahia, Salvador, Brazil
| | - Emanuel Severus
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | | | - Paul W Stackhouse
- Science Directorate/Climate Science Branch, NASA Langley Research Center, Hampton, VA, USA
| | - Dan J Stein
- Department of Psychiatry, MRC Unit on Risk & Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sergio Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina
| | | | - Ahmad Hatim Sulaiman
- Department of Psychological Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kirsi Suominen
- Department of Social Services and Health Care, Psychiatry, City of Helsinki, Finland
| | - Hiromi Tagata
- Department of Psychiatry, Tokyo Metropolitan Matsuzawa Hospital, Setagaya, Tokyo, Japan
| | - Yoshitaka Tatebayashi
- Schizophrenia & Affective Disorders Research Project, Tokyo Metropolitan Institute of Medical Science, Seatagaya, Tokyo, Japan
| | - Leonardo Tondo
- McLean Hospital-Harvard Medical School, Boston, MA, USA; Mood Disorder Lucio Bini Centers, Cagliari e Roma, Italy
| | - Carla Torrent
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - Arne E Vaaler
- Department of Mental Health, Norwegian University of Science and Technology - NTNU, Trondheim, Norway; Department of Psychiatry, St Olavs' University Hospital, Trondheim, Norway
| | - Edgar Vares
- Department of Psychiatry and Psychotherapy, University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Julia Veeh
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Johann Wolfgang Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Eduard Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | | | - Maria Yoldi-Negrete
- Consejo Nacional de Ciencia y Tecnología - Instituto Nacional de Psiquiatría Ramón de la Fuente Muñiz, Ciudad de México, Mexico
| | - Mark Zetin
- Department of Psychology, Chapman University, Orange, CA, USA
| | - Yosra Zgueb
- Razi Hospital, Faculty of Medicine, University of Tunis-El Manar, Tunis, Tunisia
| | - Peter C Whybrow
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
27
|
Yan L, Lonstein JS, Nunez AA. Light as a modulator of emotion and cognition: Lessons learned from studying a diurnal rodent. Horm Behav 2019; 111:78-86. [PMID: 30244030 PMCID: PMC6456444 DOI: 10.1016/j.yhbeh.2018.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/13/2018] [Accepted: 09/17/2018] [Indexed: 01/03/2023]
Abstract
Light profoundly affects the behavior and physiology of almost all animals, including humans. One such effect in humans is that the level of illumination during the day positively contributes to affective well-being and cognitive function. However, the neural mechanisms underlying the effects of daytime light intensity on affect and cognition are poorly understood. One barrier for progress in this area is that almost all laboratory animal models studied are nocturnal. There are substantial differences in how light affects nocturnal and diurnal species, e.g., light induces sleep in nocturnal mammals but wakefulness in diurnal ones, like humans. Therefore, the mechanisms through which light modulates affect and cognition must differ between the chronotypes. To further understand the neural pathways mediating how ambient light modulates affect and cognition, our recent work has developed a diurnal rodent model, the Nile grass rat (Arvicanthis niloticus), in which daytime light intensity is chronically manipulated in grass rats housed under the same 12:12 hour light/dark cycle. This simulates lighting conditions during summer-like bright sunny days vs. winter-like dim cloudy days. Our work has revealed that chronic dim daylight intensity results in higher depression- and anxiety-like behaviors, as well as impaired spatial learning and memory. Furthermore, we have found that hypothalamic orexin is a mediator of these effects. A better understanding of how changes in daytime light intensity impinge upon the neural substrates involved in affect and cognition will lead to novel preventive and therapeutic strategies for seasonal affective disorder, as well as for non-seasonal emotional or cognitive impairments associated with light deficiency.
Collapse
Affiliation(s)
- Lily Yan
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA.
| | - Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| | - Antonio A Nunez
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
28
|
Wortzel JR, Norden JG, Turner BE, Haynor DR, Kent ST, Al-Hamdan MZ, Avery DH, Norden MJ. Ambient temperature and solar insolation are associated with decreased prevalence of SSRI-treated psychiatric disorders. J Psychiatr Res 2019; 110:57-63. [PMID: 30594025 DOI: 10.1016/j.jpsychires.2018.12.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 11/02/2018] [Accepted: 12/12/2018] [Indexed: 12/31/2022]
Abstract
Serotonergic function is known to fluctuate in association with light and temperature. Serotonin-related behaviors and disorders similarly vary with climatic exposure, but the associations are complex. This complexity may reflect the importance of dose and timing of exposure, as well as acclimation. This cross-sectional study tests how average climate exposures (ambient temperature and solar insolation) vary with the prevalence of a group of SSRI-treated disorders. For comparison, we similarly studied a group of disorders not treated by SSRIs (i.e substance use disorders). Psychiatric prevalence data were obtained from the Collaborative Psychiatric Epidemiology Surveys (CPES). Average yearly solar insolation was obtained from NASA's NLDAS-2 Forcing Dataset Information. Average yearly temperature was obtained from NOAA's US Climate Normals. Logistic regression models were generated to assess the relationship between these two climatic factors and the prevalence of SSRI-treated and substance use disorders. Age, gender, race, income, and education were included in the models to control for possible confounding. Temperature and insolation were significantly associated with the SSRI-responsive group. For an average 1 GJ/m2/year increase, OR was 0.90 (95% CI 0.85-0.96, p = 0.001), and for an average 10 °F increase, OR was 0.93 (95% CI 0.88-0.97, p = 0.001). This relationship was not seen with substance use disorders (insolation OR: 0.97, p = 0.682; temperature OR: 0.96, p = 0.481). These results warrant further investigation, but they support the hypothesis that chronic exposure to increased temperature and light positively impact serotonin function, and are associated with reduced prevalence of some psychiatric disorders. They also support further investigation of light and hyperthermia treatments.
Collapse
Affiliation(s)
- J R Wortzel
- School of Medicine, Stanford University, Stanford, CA, 94305, USA.
| | - J G Norden
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - B E Turner
- School of Medicine, Stanford University, Stanford, CA, 94305, USA
| | - D R Haynor
- University of Washington, Seattle, WA, 98195, USA
| | - S T Kent
- School of Public Health, University of Alabama at Birmingham Universities, AL, 35294, USA
| | - M Z Al-Hamdan
- Space Research Association, NASA Marshall Space Flight Center, Huntsville, AL, 35812, USA
| | - D H Avery
- University of Washington, Seattle, WA, 98195, USA
| | - M J Norden
- University of Washington, Retired Associate Professor on the Axillary Faculty, USA
| |
Collapse
|
29
|
Boo J, Matsubayashi T, Ueda M. Diurnal variation in suicide timing by age and gender: Evidence from Japan across 41 years. J Affect Disord 2019; 243:366-374. [PMID: 30266028 DOI: 10.1016/j.jad.2018.09.030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/10/2018] [Accepted: 09/15/2018] [Indexed: 12/29/2022]
Abstract
BACKGROUND Previous research on hourly diurnal variation in suicide frequency has often suffered from geographical and time-span limitations in the data. We studied diurnal and daily variations of suicide by analyzing a large dataset based on the national death registry in Japan between 1974 and 2014. METHODS The diurnal and daily patterns of 873,268 suicide deaths over 41 years were examined by sex and age group through Poisson regression and visual inspection. We also investigated whether these patterns are related to Japan's economic conditions. RESULTS Suicide by middle-aged males was most frequent in the early morning especially on Mondays after the end of Japan's high growth period. We also observed large midnight peaks in suicides among young and middle-aged males. The proportion of early morning suicide deaths by young and middle-aged males increased as the country's unemployment rose. Females and elderly males were more likely to die by suicide during the day than at night. LIMITATION Our study examined time of death, not time of suicide attempt. It is possible that there is a discrepancy between the two. CONCLUSIONS Different subpopulations die by suicide at different times of the day and days of the week. Time patterns of suicide varied considerably over time, suggesting that they cannot be explained by biological circadian rhythm alone. Our findings suggest that the patterns are partly explained by economic conditions. Future suicide prevention efforts should consider the time patterns of suicide unique to each subpopulation, especially when economic growth is depressed.
Collapse
Affiliation(s)
- Jeremy Boo
- Graduate School of Political Science, Waseda University, Building No. 3, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan.
| | - Tetsuya Matsubayashi
- Osaka School of International Public Policy, Osaka University, 1-31 Machikaneyama, Toyonaka, Osaka, 560-0043, Japan.
| | - Michiko Ueda
- Faculty of Political Science and Economics, Waseda University, Building No. 3, 1-6-1 Nishiwaseda, Shinjuku-ku, Tokyo 169-8050, Japan.
| |
Collapse
|
30
|
Barbato G, Cirace F, Monteforte E, Costanzo A. Seasonal variation of spontaneous blink rate and beta EEG activity. Psychiatry Res 2018; 270:126-133. [PMID: 30245376 DOI: 10.1016/j.psychres.2018.08.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 06/27/2018] [Accepted: 08/13/2018] [Indexed: 12/19/2022]
Abstract
Seasonal variations of the photoperiod have been shown to regulate biological and behavioral functions, with also effects on clinical symptom and course of several psychiatric conditions. Although melatonin is considered the principal signal used to transmit informations about the light and dark cycle, a dopamine (DA) role in regulating seasonal changes has been suggested. Few studies have addressed a seasonal pattern of dopamine, and human studies have been conducted on inter-subject differences, comparing measures obtained during fall-winter with those of spring-summer. We studied within-subject seasonal changes of blink rate (BR), a indirect marker of central DA activity, in 26 normal subjects (15 females and 11 males, mean age: 24.7 ± 4.0) during winter, spring, summer and fall. Occipital EEG activity and subjective measures of vigilance and mood were also assessed to account for variations on arousal and fatigue. A significant seasonal effect was found for BR, with higher rate in summer, and for EEG beta activity, with higher activity in spring and summer. Subjective fatigue was found higher in winter. According to our data, it is possible that higher BR and increased EEG beta activity result by an arousal activation sustained by dopamine systems during the months with a long photoperiod.
Collapse
Affiliation(s)
- Giuseppe Barbato
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| | - Fulvio Cirace
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Erika Monteforte
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Antonio Costanzo
- Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| |
Collapse
|
31
|
Hrovat A, De Keuster T, Kooistra HS, Duchateau L, Oyama MA, Peremans K, Daminet S. Behavior in dogs with spontaneous hypothyroidism during treatment with levothyroxine. J Vet Intern Med 2018; 33:64-71. [PMID: 30499213 PMCID: PMC6335523 DOI: 10.1111/jvim.15342] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/15/2018] [Indexed: 11/27/2022] Open
Abstract
Background Thyroid hormone supplementation anecdotally has been described as a valid treatment option for dogs with aggression‐related problems. However, prospective, controlled, and blinded trials evaluating behavior and neurohormonal status in hypothyroid dogs during treatment with levothyroxine are lacking. Objective Levothyroxine supplementation will have a significant influence on the behavior and neurohormonal status of dogs with spontaneous hypothyroidism. Animals Twenty client‐owned dogs diagnosed with spontaneous hypothyroidism. Methods This prospective study was to evaluate the behavior of dogs, which was screened at initial presentation, and after 6 weeks, and 6 months of treatment with levothyroxine (starting dosage 10 μg/kg PO q12h) using the standardized Canine Behavioral Assessment and Research Questionnaire (C‐BARQ). At each time period, circulating serotonin and prolactin (PRL) concentrations were evaluated using a commercially validated ELISA kit and heterologous radioimmunoassay, respectively. Results After 6 weeks of thyroid hormone supplementation, C‐BARQ scores demonstrated a significant increase in activity of hypothyroid dogs (P < .01). No significant change in any of the behavioral signs was observed after 6 months of treatment. No significant difference in circulating concentrations of serotonin (P > .99 and P = .46) and PRL (P = .99 and P = .37) were noted between the 6‐week and 6‐month periods compared with baseline. Conclusions and Clinical Importance The results of this study indicate increased activity of hypothyroid dogs after 6 weeks of thyroid hormone supplementation. None of the hypothyroid dogs in this cohort showed a significant change in any of the evaluated behavioral signs and neurohormonal status after 6 months of thyroid hormone supplementation.
Collapse
Affiliation(s)
- Alenka Hrovat
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Tiny De Keuster
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Hans S Kooistra
- Department of Clinical Sciences of Companion Animals, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Luc Duchateau
- Biometrics Research Group, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Mark A Oyama
- Department of Clinical Studies-Philadelphia, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kathelijne Peremans
- Department of Veterinary Medical Imaging and Small Animal Orthopedics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Sylvie Daminet
- Small Animal Department, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
32
|
Griffioen G, Matheson GJ, Cervenka S, Farde L, Borg J. Serotonin 5-HT 1A receptor binding and self-transcendence in healthy control subjects-a replication study using Bayesian hypothesis testing. PeerJ 2018; 6:e5790. [PMID: 30479884 PMCID: PMC6241390 DOI: 10.7717/peerj.5790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 09/19/2018] [Indexed: 12/19/2022] Open
Abstract
Objective A putative relationship between markers for the serotonin system and the personality scale self-transcendence (ST) and its subscale spiritual acceptance (SA) has been demonstrated in a previous PET study of 5-HT1A receptor binding in healthy control subjects. The results could however not be replicated in a subsequent PET study at an independent centre. In this study, we performed a replication of our original study in a larger sample using Bayesian hypothesis testing to evaluate relative evidence both for and against this hypothesis. Methods Regional 5-HT1A receptor binding potential (BPND) was examined in 50 healthy male subjects using PET with the radioligand [11C]WAY100635. 5-HT1Aavailability was calculated using the simplified reference tissue model (SRTM) yielding regional BPND. ST and SA were measured using the Temperament and Character Inventory (TCI) questionnaire. Correlations between ST/SA scores and 5-HT1ABPND in frontal cortex, hippocampus and raphe nuclei were examined by calculation of default correlation Bayes factors (BFs) and replication BFs. Results There were no significant correlations between 5-HT1A receptor binding and ST/SA scores. Rather, five of six replication BFs provided moderate to strong evidence for no association between 5-HT1A availability and ST/SA, while the remaining BF provided only weak evidence. Conclusion We could not replicate our previous findings of an association between 5-HT1A availability and the personality trait ST/SA. Rather, the Bayesian analysis provided evidence for a lack of correlation. Further research should focus on whether other components of the serotonin system may be related to ST or SA. This study also illustrates how Bayesian hypothesis testing allows for greater flexibility and more informative conclusions than traditional p-values, suggesting that this approach may be advantageous for analysis of molecular imaging data.
Collapse
Affiliation(s)
- Gina Griffioen
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Capio Psykiatri Stockholm, Stockholm, Sweden
| | - Granville J Matheson
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| | - Lars Farde
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden.,Personalised Healthcare and Biomarkers, AstraZeneca PET Science Centre, Karolinska Institutet, Sweden
| | - Jacqueline Borg
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet and Stockholm County Council, Stockholm, Sweden
| |
Collapse
|
33
|
Mc Mahon B, Nørgaard M, Svarer C, Andersen SB, Madsen MK, Baaré WFC, Madsen J, Frokjaer VG, Knudsen GM. Seasonality-resilient individuals downregulate their cerebral 5-HT transporter binding in winter - A longitudinal combined 11C-DASB and 11C-SB207145 PET study. Eur Neuropsychopharmacol 2018; 28:1151-1160. [PMID: 30077433 DOI: 10.1016/j.euroneuro.2018.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 05/17/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022]
Abstract
We have recently shown that the emergence and severity of seasonal affective disorder (SAD) symptoms in the winter is associated with an increase in cerebral serotonin (5-HT) transporter (SERT) binding. Intriguingly, we also found that individuals resilient to SAD downregulate their cerebral SERT binding in the winter. In the present paper, we provide an analysis of the SERT- and 5-HT dynamics as indexed by 5-HT4 receptor (5-HT4R) binding related to successful stress coping. We included 46 11C-DASB positron emission tomography (PET) scans (N = 23, 13 women, age: 26 ± 6 years) and 14 11C-SB207145 PET scans (7 participants, 3 women, age: 25 ± 3 years) from 23 SAD-resilient Danes. Data was collected longitudinally in summer and winter. We found that compared to the summer, raphe nuclei and global brain SERT binding decreased significantly in the winter (praphe = 0.003 and pglobal = 0.003) and the two measures were positively correlated across seasons (summer: R2 = 0.33, p = .004, winter: R2 = 0.24, p = .018). A voxel-based analysis revealed prominent changes in SERT in clusters covering both angular gyri (0.0005 < pcorrected < 0.0016), prefrontal cortices (0.00087 < pcorrected < 0.0039) and the posterior temporal and adjacent occipital cortices (0.0001 < pcorrected < 0.0066). We did not observe changes in 5-HT4R binding, suggesting that 5-HT levels remained stable across seasons. We conclude that resilience to SAD is associated with a global downregulation of SERT levels in winter which serves to keep 5-HT levels across seasons.
Collapse
Affiliation(s)
- Brenda Mc Mahon
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| | - Martin Nørgaard
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Sofie B Andersen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - Martin K Madsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | - William F C Baaré
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Kettegårds Allé 30, 2650 Hvidovre, Denmark
| | - Jacob Madsen
- PET and Cyclotron Unit, Rigshospitalet, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark
| | - Gitte M Knudsen
- Neurobiology Research Unit, Rigshospitalet and Center for Integrated Molecular Brain Imaging, Section 6931, Blegdamsvej 9, 2100 Copenhagen, Denmark; Faculty of Health and Medical Sciences, University of Copenhagen, Denmark.
| |
Collapse
|
34
|
Brain monoamine oxidase A in seasonal affective disorder and treatment with bright light therapy. Transl Psychiatry 2018; 8:198. [PMID: 30242221 PMCID: PMC6155094 DOI: 10.1038/s41398-018-0227-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 04/23/2018] [Accepted: 06/12/2018] [Indexed: 12/13/2022] Open
Abstract
Increased cerebral monoamine oxidase A (MAO-A) levels have been shown in non-seasonal depression using positron emission tomography (PET). Seasonal affective disorder (SAD) is a sub-form of major depressive disorder and is typically treated with bright light therapy (BLT). The serotonergic system is affected by season and light. Hence, this study aims to assess the relevance of brain MAO-A levels to the pathophysiology and treatment of SAD. Changes to cerebral MAO-A distribution (1) in SAD in comparison to healthy controls (HC), (2) after treatment with BLT and (3) between the seasons, were investigated in 24 patients with SAD and 27 HC using [11C]harmine PET. PET scans were performed in fall/winter before and after 3 weeks of placebo-controlled BLT, as well as in spring/summer. Cerebral MAO-A distribution volume (VT, an index of MAO-A density) did not differ between patients and HC at any of the three time-points. However, MAO-A VT decreased from fall/winter to spring/summer in the HC group (F1, 187.84 = 4.79, p < 0.050), while SAD showed no change. In addition, BLT, but not placebo, resulted in a significant reduction in MAO-A VT (F1, 208.92 = 25.96, p < 0.001). This is the first study to demonstrate an influence of BLT on human cerebral MAO-A levels in vivo. Furthermore, we show that SAD may lack seasonal dynamics in brain MAO-A levels. The lack of a cross-sectional difference between patients and HC, in contrast to studies in non-seasonal depression, may be due to the milder symptoms typically shown by patients with SAD.
Collapse
|
35
|
The Timing of Melatonin Administration Is Crucial for Its Antidepressant-Like Effect in Mice. Int J Mol Sci 2018; 19:ijms19082278. [PMID: 30081472 PMCID: PMC6121277 DOI: 10.3390/ijms19082278] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/17/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022] Open
Abstract
Melatonin is synthesized by the pineal gland with a circadian rhythm in synchrony with the environmental light/dark cycle. A gradual increase in circulating levels of melatonin occur after lights off, reaching its maximum around the middle of the dark phase. Agonists of melatonin receptors have proved effectiveness as antidepressants in clinical trials. However, there is contradictory evidence about the potential antidepressant effect of melatonin itself. Herein we studied melatonin administration in mice at two zeitgeber times (ZT; ZT = 0 lights on; 12:12 L/D), one hour before the beginning (ZT11) and at the middle (ZT18) of the dark phase after either a single or a three-dose protocol. Behavioral despair was assessed through a forced-swimming test (FST) or a tail suspension test (TST), at ZT18.5. A single dose of 4 mg/kg melatonin at ZT11 was effective to reduce the immobility time in both tests. However, acute administration of melatonin at ZT18 was not effective in mice subjected to FST, and a higher dose (16 mg/kg) was required to reduce immobility time in the TST. A three-dose administration protocol of 16 mg/kg melatonin (ZT18, ZT11, and ZT18) significantly reduced immobility time in FST. Data indicate that the timely administration of melatonin could improve its antidepressant-like effect.
Collapse
|
36
|
van der Aart J, Golla SSV, van der Pluijm M, Schwarte LA, Schuit RC, Klein PJ, Metaxas A, Windhorst AD, Boellaard R, Lammertsma AA, van Berckel BNM. First in human evaluation of [ 18F]PK-209, a PET ligand for the ion channel binding site of NMDA receptors. EJNMMI Res 2018; 8:69. [PMID: 30054846 PMCID: PMC6063804 DOI: 10.1186/s13550-018-0424-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 07/06/2018] [Indexed: 12/05/2022] Open
Abstract
Background Efforts to develop suitable positron emission tomography (PET) tracers for the ion channel site of human N-methyl-d-aspartate (NMDA) receptors have had limited success. [18F]PK-209 is a GMOM derivative that binds to the intrachannel phencyclidine site with high affinity and selectivity. Primate PET studies have shown that the volume of distribution in the brain was reduced by administration of the NMDA receptor antagonist MK-801, consistent with substantial specific binding. The purpose of the present study was to evaluate [18F]PK-209 in 10 healthy humans by assessing test–retest reproducibility and binding specificity following intravenous S-ketamine administration (0.5 mg ∙ kg−1). Five healthy subjects underwent a test–retest protocol, and five others a baseline-ketamine protocol. In all cases dynamic, 120-min PET scans were acquired together with metabolite-corrected arterial plasma input functions. Additional input functions were tested based on within-subject and population-average parent fractions. Results Best fits of the brain time-activity curves were obtained using an irreversible two-tissue compartment model with additional blood volume parameter. Mean test–retest variability of the net rate of influx Ki varied between 7 and 24% depending on the input function. There were no consistent changes in [18F]PK-209 PET parameters following ketamine administration, which may be a consequence of the complex endogenous ligand processes that affect channel gating. Conclusions The molecular interaction between [18F]PK-209 and the binding site within the NMDA receptor ion channel is insufficiently reproducible and specific to be a reliable imaging agent for its quantification. Trial registration EudraCT 2014-001735-36. Registered 28 April 2014
Collapse
Affiliation(s)
- Jasper van der Aart
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands. .,Centre for Human Drug Research, Leiden, The Netherlands.
| | - Sandeep S V Golla
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Marieke van der Pluijm
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Lothar A Schwarte
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Robert C Schuit
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Pieter J Klein
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Athanasios Metaxas
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Albert D Windhorst
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Ronald Boellaard
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Adriaan A Lammertsma
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Department of Radiology & Nuclear Medicine, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
37
|
Prevot V, Dehouck B, Sharif A, Ciofi P, Giacobini P, Clasadonte J. The Versatile Tanycyte: A Hypothalamic Integrator of Reproduction and Energy Metabolism. Endocr Rev 2018; 39:333-368. [PMID: 29351662 DOI: 10.1210/er.2017-00235] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 01/12/2018] [Indexed: 12/16/2022]
Abstract
The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Bénédicte Dehouck
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Ariane Sharif
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Philippe Ciofi
- Inserm, Neurocentre Magendie, Bordeaux, France.,Université de Bordeaux, Bordeaux, France
| | - Paolo Giacobini
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| | - Jerome Clasadonte
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Jean-Pierre Aubert Research Center, Lille, France.,University of Lille, FHU 1000 Days for Health, School of Medicine, Lille, France
| |
Collapse
|
38
|
Schain M, Zanderigo F, Todd Ogden R. Likelihood estimation of drug occupancy for brain PET studies. Neuroimage 2018; 178:255-265. [PMID: 29753104 DOI: 10.1016/j.neuroimage.2018.05.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 03/27/2018] [Accepted: 05/05/2018] [Indexed: 11/16/2022] Open
Abstract
Neuroimaging with PET is unique in its capability to measure in vivo the occupancy of a drug. The occupancy is typically obtained by conducting PET measurements before and after administration of the drug. For radioligands for which no reference region exists, however, the only established procedure to estimate the occupancy from these data is via linear regression analysis, forming the basis for the so-called Lassen plot. There are several reasons why simple linear regression analysis is not ideal for analyzing these data, including regression attenuation and correlated errors. Here, we propose the use of Likelihood Estimation of Occupancy (LEO) in such a situation. Similar to the Lassen plot, LEO uses the total distribution volume estimates at baseline and at block condition as input, but estimates the non-displaceable distribution volume (VND) and fractional occupancy (Δ) via direct maximum likelihood estimation (MLE). This study outlines the rationale for using MLE to estimate Δ and VND from PET data, and evaluates its performance in relation to the Lassen Plot via two separate simulation experiments. Finally, LEO and Lassen plot are applied to a PET dataset acquired with [11C]WAY-100635. LEO can exploit the covariance structure of the data to improve the accuracy and precision of the estimates of Δ and VND. Theoretically, the covariance matrix can be extracted from a test-retest dataset for the radioligand at hand. Several procedures to estimate the covariance matrix were considered as part of the simulation experiments, and the effect of the test-retest sample size was also assessed. The results are conclusive in that MLE can be used to estimate Δ and VND from PET data, avoiding the limitations associated with linear regression. The performance of LEO was, naturally, dependent on the procedure used to estimate the covariance matrix, and the test-retest sample size. Given a test-retest sample size of at least 5, but preferably 10 individuals, LEO provides higher accuracy and precision than Lassen plot in the estimation of Δ and VND. We conclude that LEO is valuable in drug occupancy studies.
Collapse
Affiliation(s)
- Martin Schain
- Department of Psychiatry, Columbia University, New York, NY, USA.
| | - Francesca Zanderigo
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, NY, USA; Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, New York, NY, USA; Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY, USA
| |
Collapse
|
39
|
Farde L, Plavén-Sigray P, Borg J, Cervenka S. Brain neuroreceptor density and personality traits: towards dimensional biomarkers for psychiatric disorders. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170156. [PMID: 29483342 PMCID: PMC5832682 DOI: 10.1098/rstb.2017.0156] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 02/06/2023] Open
Abstract
Positron emission tomography has, for 30 years, been used in numerous case-control studies searching for hypothesized differences in the density of neuroreceptor or transporter proteins in psychiatric disorders such as schizophrenia and depression. In most cases, the results have not been conclusive. One reason could be the sizeable interindividual variability in biochemical markers, which in twin studies have shown to emanate from both environmental and genetic factors, leading to low statistical power for the detection of group effects. On the other hand, the same interindividual variability has served as an opportunity for correlative studies on the biological underpinning of behaviour. Using this approach, a series of studies has linked markers for the dopamine and serotonin system to personality traits associated with psychiatric conditions. Based on increasing evidence for the view that many psychopathological states represent extremes of a continuum rather than distinct categories, this research strategy may lead to new biological insights about the vulnerability to and pathophysiology of major psychiatric disorders.This article is part of the theme issue 'Diverse perspectives on diversity: multi-disciplinary approaches to taxonomies of individual differences'.
Collapse
Affiliation(s)
- Lars Farde
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- Precision Medicine and Genomics, AstraZeneca, PET Science Centre, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Pontus Plavén-Sigray
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Simon Cervenka
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| |
Collapse
|
40
|
Zanderigo F, Pantazatos S, Rubin-Falcone H, Ogden RT, Chhetry BT, Sullivan G, Oquendo M, Miller JM, Mann JJ. In vivo relationship between serotonin 1A receptor binding and gray matter volume in the healthy brain and in major depressive disorder. Brain Struct Funct 2018; 223:2609-2625. [PMID: 29550938 DOI: 10.1007/s00429-018-1649-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 03/09/2018] [Indexed: 12/17/2022]
Abstract
Serotonin 1A (5-HT1A) receptors mediate serotonin trophic role in brain neurogenesis. Gray matter volume (GMV) loss and 5-HT1A receptor binding alterations have been identified in major depressive disorder (MDD). Here we investigated the relationship between 5-HT1A receptor binding and GMV in 40 healthy controls (HCs) and, for the first time, 47 antidepressant-free MDD patients using Voxel-Based Morphometry and [11C]WAY100635 Positron Emission Tomography. Values of GMV and 5-HT1A binding (expressed as BPF, one of the types of binding potentials that refer to displaceable or specific binding that can be quantified in vivo with PET) were obtained in 13 regions of interest, including raphe, and at the voxel level. We used regression analysis within each group to predict GMV from BPF, while covarying for age, sex, total gray matter volume and medication status. In the HCs group, we found overall a positive correlation between terminal field 5-HT1A receptor binding and GMV, which reached statistical significance in regions such as hippocampus, insula, orbital prefrontal cortex, and parietal lobe. We observed a trend towards inverse correlation between raphe 5-HT1A autoreceptor binding and anterior cingulate GMV in both groups, and a statistically significant positive correlation between raphe 5-HT1A binding and temporal GMV in MDD. Analysis of covariance at the voxel-level revealed a trend towards interaction between diagnosis and raphe 5-HT1A binding in predicting GMV in cerebellum and supramarginal gyrus (higher correlation in HCs compared with MDD). Our results replicated previous findings in the normative brain, but did not extend them to the brain in MDD, and indicated a trend towards dissociation between MDD and HCs in the relationship of raphe 5-HT1A binding with postsynaptic GMV. These results suggest that 5-HT1A receptors contribute to altered neuroplasticity in MDD, possibly via effects predating depression onset.
Collapse
Affiliation(s)
- Francesca Zanderigo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA. .,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.
| | - Spiro Pantazatos
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Harry Rubin-Falcone
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - R Todd Ogden
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Biostatistics, Columbia University, Mailman School of Public Health, 722 W 168th Street, New York, NY, 10032, USA
| | - Binod Thapa Chhetry
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Gregory Sullivan
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Maria Oquendo
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - Jeffrey M Miller
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA
| | - J John Mann
- Molecular Imaging and Neuropathology Division, New York State Psychiatric Institute, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Psychiatry, Columbia University, 1051 Riverside Drive, New York, NY, 10032, USA.,Department of Radiology, Columbia University, 622 W 168th Street, New York, NY, 10032, USA
| |
Collapse
|
41
|
Chitty KM, Kirby K, Osborne NJ, Isbister GK, Buckley NA. Co-ingested alcohol and the timing of deliberate self-poisonings. Aust N Z J Psychiatry 2018; 52:271-278. [PMID: 28762278 DOI: 10.1177/0004867417722639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Investigating diurnal variation in the timing of suicidal behaviours offers opportunity to better understand its various proximal risk factors. Acute use of alcohol is a potent proximal risk factor for suicidal behaviour, though the nature of this risk is poorly understood. The aim of this study was to compare the diurnal variation in time of poison ingestion between deliberate self-poisonings that involve alcohol versus those that do not. METHODS A retrospective analysis of consecutive presentations to a toxicology service following deliberate self-poisoning, 1996-2016. An independent samples Kolmogorov-Smirnov test was performed to test the null hypothesis that the diurnal distribution of poison ingestion time was equal across self-poisonings that did and did not involve alcohol co-ingestion. Presence of circadian rhythmicity was established using cosinor analysis. RESULTS A total of 11,088 deliberate self-poisoning records, for 7467 patients (60.8% females), were included in the analysis. In all, 31.3% of the total records involved alcohol co-ingestion. Distribution of exposure time was significantly different between deliberate self-poisonings that did and did not involve alcohol ( p < 0.001). The alcohol co-ingestion group showed a significantly greater prominent peak with poisoning occurring later in the evening (~20:00 hours) compared to poisonings that did not involve alcohol (~18:00 hours). CONCLUSION This study exposed the differential diurnal patterns in deliberate self-poisoning according to the presence of alcohol co-ingestion. This analysis adds to the accumulating evidence that suicidal behaviour that involves alcohol co-ingestion represents a distinct subtype, which may be driven by alcohol consumption patterns in society. This also means that this large proportion of deliberate self-poisonings may not otherwise have occurred if it were not for alcohol consumption, underscoring the importance of drug and alcohol services for alcohol-related self-harm.
Collapse
Affiliation(s)
- Kate M Chitty
- 1 Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Katharine Kirby
- 1 Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| | - Nicholas J Osborne
- 1 Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia.,2 European Centre for Environment and Human Health, Medical School, University of Exeter, Truro, UK
| | - Geoffrey K Isbister
- 3 Clinical Toxicology Research Group, University of Newcastle, Newcastle, NSW, Australia
| | - Nicholas A Buckley
- 1 Translational Australian Clinical Toxicology (TACT) Research Group, Discipline of Pharmacology, Sydney Medical School, The University of Sydney, Camperdown, NSW, Australia
| |
Collapse
|
42
|
Wirz-Justice A. Seasonality in affective disorders. Gen Comp Endocrinol 2018; 258:244-249. [PMID: 28711512 DOI: 10.1016/j.ygcen.2017.07.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Revised: 06/14/2017] [Accepted: 07/12/2017] [Indexed: 12/28/2022]
Abstract
Humans retain neurobiological responses to circadian day-night cycles and seasonal changes in daylength in spite of a life-style usually independent of dawn-dusk signals. Seasonality has been documented in many functions, from mood to hormones to gene expression. Research on seasonal affective disorder initiated the first use of timed bright light as therapy, a treatment since extended to non-seasonal major depression and sleep-wake cycle disturbances in many psychiatric and medical illnesses. The growing recognition that sufficient light is important for psychological and somatic well-being is leading to the development of novel lighting solutions in architecture as well as focus on a more conscious exposure to natural daylight.
Collapse
Affiliation(s)
- Anna Wirz-Justice
- Centre for Chronobiology, Psychiatric Clinics, University of Basel, 4025, Switzerland.
| |
Collapse
|
43
|
Aparicio-Ugarriza R, Rumi C, Luzardo-Socorro R, Mielgo-Ayuso J, Palacios G, Bibiloni MM, Julibert A, Argelich E, Tur JA, González-Gross M. Seasonal variation and diet quality among Spanish people aged over 55 years. J Physiol Biochem 2017; 74:179-188. [PMID: 29143243 DOI: 10.1007/s13105-017-0599-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 11/06/2017] [Indexed: 01/13/2023]
Abstract
There is evidence supporting the importance of a healthy diet; however, there are few studies analyzing the seasonal variation of food intake. The present study was aimed to evaluate seasonal variation of food and energy intake in Spanish elderly also to investigate diet quality based on the Healthy Eating Index (HEI) score. From a cross-sectional study, 28 individuals (39% males) aged over 55 years volunteered for a longitudinal follow-up. Dietary assessment was evaluated through 24-h dietary recalls. Energy and nutrient intake were calculated using DIAL software. Furthermore, diet quality was measured using HEI. Data was analyzed considering the interaction of sex, age, fitness status, and body composition. Cereals intake was significantly lower in summer than in winter and autumn (both p < 0.05); whereas, drinks intake was significantly higher in summer than in winter, spring, and autumn (all p < 0.01). Daily energy intake was significant higher in spring than in summer, and in autumn than in summer (p < 0.05), and energy intake from lunch was also statistically higher in spring than in summer (p < 0.01). The HEI was classified as good; however, a negative and significant association was observed between HEI and cholesterol, alcohol, and monounsaturated fatty acids intake (p < 0.01). Cereals and drinks intake and total daily energy intake changed according to seasons. This should be considered in nutritional studies. Diet quality seems not to be affected by these seasonal changes, and HEI did not show a good association with the majority of foods and macro- and micronutrients.
Collapse
Affiliation(s)
- R Aparicio-Ugarriza
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain
| | - C Rumi
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain
| | - R Luzardo-Socorro
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain
| | - J Mielgo-Ayuso
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain
| | - G Palacios
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain.,CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Madrid, Spain
| | - M M Bibiloni
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Madrid, Spain.,Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of the Balearic Islands, Palma de Mallorca, Spain
| | - A Julibert
- Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of the Balearic Islands, Palma de Mallorca, Spain
| | - E Argelich
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Madrid, Spain.,Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of the Balearic Islands, Palma de Mallorca, Spain
| | - J A Tur
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Madrid, Spain.,Research Group on Community Nutrition and Oxidative Stress (NUCOX), University of the Balearic Islands, Palma de Mallorca, Spain
| | - M González-Gross
- ImFINE Research Group, Department of Health and Human Performance, Faculty of Physical Activity and Sport Science-INEF, Universidad Politécnica de Madrid, C/Martin Fierro no. 7, E-28040, Madrid, Spain. .,CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Madrid, Spain.
| |
Collapse
|
44
|
Nørgaard M, Ganz M, Svarer C, Fisher PM, Churchill NW, Beliveau V, Grady C, Strother SC, Knudsen GM. Brain Networks Implicated in Seasonal Affective Disorder: A Neuroimaging PET Study of the Serotonin Transporter. Front Neurosci 2017; 11:614. [PMID: 29163018 PMCID: PMC5682039 DOI: 10.3389/fnins.2017.00614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 10/20/2017] [Indexed: 11/13/2022] Open
Abstract
Background: Seasonal Affective Disorder (SAD) is a subtype of Major Depressive Disorder characterized by seasonally occurring depression that often presents with atypical vegetative symptoms such as hypersomnia and carbohydrate craving. It has recently been shown that unlike healthy people, patients with SAD fail to globally downregulate their cerebral serotonin transporter (5-HTT) in winter, and that this effect seemed to be particularly pronounced in female S-carriers of the 5-HTTLPR genotype. The purpose of this study was to identify a 5-HTT brain network that accounts for the adaption to the environmental stressor of winter in females with the short 5-HTTLPR genotype, a specific subgroup previously reported to be at increased risk for developing SAD. Methods: Nineteen females, either S' carriers (LG- and S-carriers) without SAD (N = 13, mean age 23.6 ± 3.2 year, range 19-28) or S' carriers with SAD (N = 6, mean age 23.7 ± 2.4, range 21-26) were PET-scanned with [11C]DASB during both summer and winter seasons (asymptomatic and symptomatic phase, 38 scans in total) in randomized order, defined as a 12-week interval centered on summer or winter solstice. We used a multivariate Partial Least Squares (PLS) approach with NPAIRS split-half cross-validation, to identify and map a whole-brain pattern of 5-HTT levels that distinguished the brains of females without SAD from females suffering from SAD. Results: We identified a pattern of 5-HTT levels, distinguishing females with SAD from those without SAD; it included the right superior frontal gyrus, brainstem, globus pallidus (bilaterally) and the left hippocampus. Across seasons, female S' carriers without SAD showed nominally higher 5-HTT levels in these regions compared to female S' carriers with SAD, but the group difference was only significant in the winter. Female S' carriers with SAD, in turn, displayed robustly increased 5-HTT levels in the ventral striatum (bilaterally), right orbitofrontal cortex, middle frontal gyrus (bilaterally), extending to the left supramarginal gyrus, left precentral gyrus and left postcentral gyrus during winter compared to female S' carriers without SAD. Limitations: The study is preliminary and limited by small sample size in the SAD group (N = 6). Conclusions: These findings provide novel exploratory evidence for a wintertime state-dependent difference in 5-HTT levels that may leave SAD females with the short 5-HTTLPR genotype more vulnerable to persistent stressors like winter. The affected brain regions comprise a distributed set of areas responsive to emotion, voluntary, and planned movement, executive function, and memory. The preliminary findings provide additional insight into the neurobiological components through which the anatomical distribution of serotonergic discrepancies between individuals genetically predisposed to SAD, but with different phenotypic presentations during the environmental stressor of winter, may constitute a potential biomarker for resilience against developing SAD.
Collapse
Affiliation(s)
- Martin Nørgaard
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Melanie Ganz
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Claus Svarer
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | - Patrick M. Fisher
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
| | | | - Vincent Beliveau
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Cheryl Grady
- Rotman Research Institute, Baycrest and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Stephen C. Strother
- Rotman Research Institute, Baycrest and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gitte M. Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark
- Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
45
|
Tangen Ä, Borg J, Tiger M, Varnäs K, Sorjonen K, Lindefors N, Halldin C, Lundberg J. Associations between cognition and serotonin receptor 1B binding in patients with major depressive disorder - A pilot study. Psychiatry Res Neuroimaging 2017; 267:15-21. [PMID: 28688337 DOI: 10.1016/j.pscychresns.2017.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 05/28/2017] [Accepted: 06/01/2017] [Indexed: 11/22/2022]
Affiliation(s)
- Ämma Tangen
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden.
| | - Jacqueline Borg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Mikael Tiger
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Katarina Varnäs
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Kimmo Sorjonen
- Department of Clinical Neuroscience, Divison of Psychology, Karolinska Institutet, Stockholm, Sweden
| | - Nils Lindefors
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Christer Halldin
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| | - Johan Lundberg
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, SE-171 76 Stockholm, Sweden
| |
Collapse
|
46
|
DeLorenzo C, Gallezot JD, Gardus J, Yang J, Planeta B, Nabulsi N, Ogden RT, Labaree DC, Huang YH, Mann JJ, Gasparini F, Lin X, Javitch JA, Parsey RV, Carson RE, Esterlis I. In vivo variation in same-day estimates of metabotropic glutamate receptor subtype 5 binding using [ 11C]ABP688 and [ 18F]FPEB. J Cereb Blood Flow Metab 2017; 37:2716-2727. [PMID: 27742888 PMCID: PMC5536783 DOI: 10.1177/0271678x16673646] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/02/2016] [Accepted: 09/12/2016] [Indexed: 01/11/2023]
Abstract
Positron emission tomography tracers [11C]ABP688 and [18F]FPEB target the metabotropic glutamate receptor subtype 5 providing quantification of the brain glutamatergic system in vivo. Previous [11C]ABP688 positron emission tomography human test-retest studies indicate that, when performed on the same day, significant binding increases are observed; however, little deviation is reported when scans are >7 days apart. Due to the small cohorts examined previously (eight and five males, respectively), we aimed to replicate the same-day test-retest studies in a larger cohort including both males and females. Results confirmed large within-subject binding differences (ranging from -23% to 108%), suggesting that measurements are greatly affected by study design. We further investigated whether this phenomenon was specific to [11C]ABP688. Using [18F]FPEB and methodology that accounts for residual radioactivity from the test scan, four subjects were scanned twice on the same day. In these subjects, binding estimates increased between 5% and 39% between scans. Consistent with [11C]ABP688, mean absolute test-retest variability was previously reported as <12% when scans were >21 days apart. This replication study and pilot extension to [18F]FPEB suggest that observed within-day binding variation may be due to characteristics of mGluR5; for example, diurnal variation in mGluR5 may affect measurement of this receptor.
Collapse
Affiliation(s)
- Christine DeLorenzo
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Department of Psychiatry, Columbia University, New York, USA
| | | | - John Gardus
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
| | - Jie Yang
- Department of Preventive Medicine, Stony Brook University, Stony Brook, USA
| | - Beata Planeta
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Nabeel Nabulsi
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - R Todd Ogden
- Department of Psychiatry, Columbia University, New York, USA
| | - David C Labaree
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - Yiyun H Huang
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
| | - J John Mann
- Department of Psychiatry, Columbia University, New York, USA
| | | | - Xin Lin
- Department of Psychiatry, Columbia University, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
| | - Jonathan A Javitch
- Department of Psychiatry, Columbia University, New York, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, USA
- Department of Pharmacology, Columbia University, New York, USA
| | - Ramin V Parsey
- Department of Psychiatry, Stony Brook University, Stony Brook, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, USA
- Department of Radiology, Stony Brook University, Stony Brook, USA
| | - Richard E Carson
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
- Department of Biomedical Engineering, Yale University, New Haven, USA
| | - Irina Esterlis
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, USA
- Department of Psychiatry, Yale University, New Haven, USA
| |
Collapse
|
47
|
Makris GD, Reutfors J, Andersen M, White RA, Ekselius L, Papadopoulos FC. Season of treatment initiation with antidepressants and suicidal behavior: A population-based cohort study in Sweden. J Affect Disord 2017; 215:245-255. [PMID: 28343052 DOI: 10.1016/j.jad.2017.03.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 02/19/2017] [Accepted: 03/08/2017] [Indexed: 10/20/2022]
Abstract
BACKGROUND Decreased binding capacity of SERT in the prefrontal cortex has been observed in both suicide victims and suicide attempters. Moreover, some studies have shown that SERT has a seasonal variation with lower binding capacity in the spring and summer, which coincides with a seasonal peak of suicides. Our aim was to explore whether the season of treatment initiation with antidepressants is associated with suicide or suicide attempt and compare it with the underlying suicide seasonality in the general population. METHODS Using Swedish registers, patients who initiated treatment with an antidepressant were followed up to three months for suicidal behavior. Cox regression analyses were used. Results were compared with the underlying seasonal pattern by calculating standardized mortality ratios (SMRs) for suicides and standardized incidence ratios (SIRs) for suicide attempts. RESULTS Patients aged ≥65 years had higher risk for suicide when initiating antidepressant treatment in the summer, and also a higher risk for suicide attempt when initiating treatment in the spring and summer. Young patients (0-24 years) presented a higher risk for suicide attempt when initiating treatment in the autumn. Patients with previous suicide attempt had a seasonal pattern, with a higher risk to carry out a suicide attempt in the summer and autumn. Results from the SMR and SIR calculations numerically support these findings. LIMITATIONS We used information of filling an antidepressant prescription as a proxy of actual antidepressant treatment. Patients with combination, augmentation therapy or those switching antidepressant during follow-up were excluded. Thus, our results refer to less complicated psychopathology. CONCLUSIONS Our results indicate an interaction between biological and health care-related factors for the observed seasonal pattern of suicidal behavior in the elderly, whereas psychological and societal factors may be more important for the seasonality observed in the younger patients.
Collapse
Affiliation(s)
- Georgios D Makris
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala University, Uppsala, Sweden.
| | - Johan Reutfors
- Centre for Pharmacoepidemiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Morten Andersen
- Centre for Pharmacoepidemiology, Department of Medicine Solna, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | | | - Lisa Ekselius
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| | - Fotios C Papadopoulos
- Department of Neuroscience, Psychiatry, Uppsala University Hospital, Uppsala University, Uppsala, Sweden
| |
Collapse
|
48
|
Simple and rapid quantification of serotonin transporter binding using [ 11C]DASB bolus plus constant infusion. Neuroimage 2017; 149:23-32. [PMID: 28119137 DOI: 10.1016/j.neuroimage.2017.01.050] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/13/2016] [Accepted: 01/20/2017] [Indexed: 11/21/2022] Open
Abstract
INTRODUCTION In-vivo quantification of serotonin transporters (SERT) in human brain has been a mainstay of molecular imaging in the field of neuropsychiatric disorders and helped to explore the underpinnings of several medical conditions, therapeutic and environmental influences. The emergence of PET/MR hybrid systems and the heterogeneity of SERT binding call for the development of efficient methods making the investigation of larger or vulnerable populations with limited scanner time and simultaneous changes in molecular and functional measures possible. We propose [11C]DASB bolus plus constant infusion for these applications and validate it against standard analyses of dynamic PET data. METHODS [11C]DASB bolus/infusion optimization was performed on data acquired after [11C]DASB bolus in 8 healthy subjects. Subsequently, 16 subjects underwent one scan using [11C]DASB bolus plus constant infusion with Kbol 160-179min and one scan after [11C]DASB bolus for inter-method reliability analysis. Arterial blood sampling and metabolite analysis were performed for all scans. Distribution volumes (VT) were obtained using Logan plots for bolus scans and ratios between tissue and plasma parent activity for bolus plus infusion scans for different time spans of the scan (VT-70 for 60-70min after start of tracer infusion, VT-90 for 75-90min, VT-120 for 100-120min) in 9 subjects. Omitting blood data, binding potentials (BPND) obtained using multilinear reference tissue modeling (MRTM2) and cerebellar gray matter as reference region were compared in 11 subjects. RESULTS A Kbol of 160min was observed to be optimal for rapid equilibration in thalamus and striatum. VT-70 showed good intraclass correlation coefficients (ICCs) of 0.61-0.70 for thalamus, striatal regions and olfactory cortex with bias ≤5.1% compared to bolus scans. ICCs increased to 0.72-0.78 for VT-90 and 0.77-0.93 for VT-120 in these regions. BPND-90 had negligible bias ≤2.5%, low variability ≤7.9% and ICCs of 0.74-0.87; BPND-120 had ICCs of 0.73-0.90. Low-binding cortical regions and cerebellar gray matter showed a positive bias of ~8% and ICCs 0.57-0.68 at VT-90. Cortical BPND suffered from high variability and bias, best results were obtained for olfactory cortex and anterior cingulate cortex with ICC=0.74-0.75 for BPND-90. High-density regions amygdala and midbrain had a negative bias of -5.5% and -22.5% at VT-90 with ICC 0.70 and 0.63, respectively. CONCLUSIONS We have optimized the equilibrium method with [11C]DASB bolus plus constant infusion and demonstrated good inter-method reliability with accepted standard methods and for SERT quantification using both VT and BPND in a range of different brain regions. With as little as 10-15min of scanning valid estimates of SERT VT and BPND in thalamus, amygdala, striatal and high-binding cortical regions could be obtained. Blood sampling seems vital for valid quantification of SERT in low-binding cortical regions. These methods allow the investigation of up to three subjects with a single radiosynthesis.
Collapse
|
49
|
Bollettini I, Melloni EMT, Aggio V, Poletti S, Lorenzi C, Pirovano A, Vai B, Dallaspezia S, Colombo C, Benedetti F. Clock genes associate with white matter integrity in depressed bipolar patients. Chronobiol Int 2016; 34:212-224. [DOI: 10.1080/07420528.2016.1260026] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Irene Bollettini
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Philosophy and Sciences of Mind, University Vita-Salute San Raffaele, Milan, Italy
| | - Elisa Maria Teresa Melloni
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Molecular Medicine, University Vita-Salute San Raffaele, Milan, Italy
| | - Veronica Aggio
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Sara Poletti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Lorenzi
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Adele Pirovano
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Benedetta Vai
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
- PhD program in Evolutionary Psychopathology, Libera Università Maria SS. Assunta, Rome, Italy
| | - Sara Dallaspezia
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| | - Cristina Colombo
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
| | - Francesco Benedetti
- Department of Clinical Neurosciences, Scientific Institute and University Vita-Salute San Raffaele, Milan, Italy
- C.E.R.M.A.C. (Centro di Eccellenza Risonanza Magnetica ad Alto Campo), University Vita-Salute San Raffaele, Milan, Italy
| |
Collapse
|
50
|
Mc Mahon B, Andersen SB, Madsen MK, Hjordt LV, Hageman I, Dam H, Svarer C, da Cunha-Bang S, Baaré W, Madsen J, Hasholt L, Holst K, Frokjaer VG, Knudsen GM. Seasonal difference in brain serotonin transporter binding predicts symptom severity in patients with seasonal affective disorder. Brain 2016; 139:1605-14. [DOI: 10.1093/brain/aww043] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/28/2016] [Indexed: 11/14/2022] Open
|