1
|
Tian Q, Ngamsombat C, Lee HH, Berger DR, Wu Y, Fan Q, Bilgic B, Li Z, Novikov DS, Fieremans E, Rosen BR, Lichtman JW, Huang SY. Quantifying axonal features of human superficial white matter from three-dimensional multibeam serial electron microscopy data assisted by deep learning. Neuroimage 2025; 313:121212. [PMID: 40222502 DOI: 10.1016/j.neuroimage.2025.121212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025] Open
Abstract
Short-range association fibers located in the superficial white matter play an important role in mediating higher-order cognitive function in humans. Detailed morphological characterization of short-range association fibers at the microscopic level promises to yield important insights into the axonal features driving cortico-cortical connectivity in the human brain yet has been difficult to achieve to date due to the challenges of imaging at nanometer-scale resolution over large tissue volumes. This work presents results from multi-beam scanning electron microscopy (EM) data acquired at 4 × 4 × 33 nm3 resolution in a volume of human superficial white matter measuring 200 × 200 × 112 μm3, leveraging automated analysis methods. Myelin and myelinated axons were automatically segmented using deep convolutional neural networks (CNNs), assisted by transfer learning and dropout regularization techniques. A total of 128,285 myelinated axons were segmented, of which 70,321 and 2102 were longer than 10 and 100 μm, respectively. Marked local variations in diameter (i.e., beading) and direction (i.e., undulation) were observed along the length of individual axons. Myelinated axons longer than 10 μm had inner diameters around 0.5 µm, outer diameters around 1 µm, and g-ratios around 0.5. This work fills a gap in knowledge of axonal morphometry in the superficial white matter and provides a large 3D human EM dataset and accurate segmentation results for a variety of future studies in different fields.
Collapse
Affiliation(s)
- Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, PR China; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Thailand
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Daniel R Berger
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Yuelong Wu
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Berkin Bilgic
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ziyu Li
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, NY, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, NY, NY, USA
| | - Els Fieremans
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, NY, NY, USA; Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, NY, NY, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jeff W Lichtman
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Cai TX, Williamson NH, Ravin R, Herberthson M, Özarslan E, Basser PJ. Measuring the velocity autocorrelation function using diffusion NMR. J Chem Phys 2025; 162:174203. [PMID: 40314284 PMCID: PMC12049238 DOI: 10.1063/5.0258081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/09/2025] [Indexed: 05/03/2025] Open
Abstract
Molecular self-diffusion in the presence of barriers results in time-dependent displacements that are controlled by barrier characteristics, such as thickness, arrangement, and permeability, which manifests itself in the form of the ensemble-average velocity autocorrelation function (VAF). We describe a direct method to measure the VAF based on a combination of diffusion-weighted nuclear magnetic resonance (NMR) measurements in which two time-shifted diffusion encodings are separated by a longitudinal storage period. The VAF estimated from simulated data is shown to agree with the known expression for impermeable parallel planes. Simulations of diffusion in periodically spaced, permeable planes and connected, box-shaped pores are also presented. We find that scaling of the VAF faster than t-1/2 is indicative of barrier permeation or exchange between domains and that this can be captured by the proposed method. As an experimental proof-of-concept, we present data from an ex vivo neonatal mouse spinal cord studied using a permanent magnet NMR MOUSE system. We report a transition from t-1/2 to t-3/2 scaling at t ≈ 10 ms, consistent perhaps with transmembrane water exchange. Compared to other NMR-based approaches, this method can potentially access several orders of magnitude in time (ms - s), revealing a wealth of VAF behaviors with one experimental paradigm.
Collapse
Affiliation(s)
- Teddy X. Cai
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | - Evren Özarslan
- Department of Biomedical Engineering, Linköping University, Linköping, Sweden
| | - Peter J. Basser
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
3
|
Zhu A, Michael ES, Li H, Sprenger T, Hua Y, Lee SK, Yeo DTB, McNab JA, Hennel F, Fieremans E, Wu D, Foo TKF, Novikov DS. Engineering clinical translation of OGSE diffusion MRI. Magn Reson Med 2025. [PMID: 40331336 DOI: 10.1002/mrm.30510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/06/2025] [Accepted: 03/09/2025] [Indexed: 05/08/2025]
Abstract
Oscillating gradient spin echo (OGSE) diffusion MRI (dMRI) can probe the diffusive dynamics on short time scales ≲10 ms, which translates into the sensitivity to tissue microstructure at the short length scales≲ 10 μ $$ \lesssim 10\kern0.3em \upmu $$ m. OGSE-based tissue microstructure imaging techniques able to characterize the cell diameter and cellular density have been established in pre-clinical studies. The unique image contrast of OGSE dMRI has been shown to differentiate tumor types and malignancies, enable early diagnosis of treatment effectiveness, and reveal different pathophysiology of lesions in stroke and neurological diseases. Recent innovations in high-performance gradient human MRI systems provide an opportunity to translate OGSE research findings in pre-clinical studies to human research and the clinic. The implementation of OGSE dMRI in human studies has the promise to advance our understanding of human brain microstructure and improve patient care. Compared to the clinical standard (pulsed gradient spin echo), engineering OGSE diffusion encoding for human imaging is more challenging. This review summarizes the impact of hardware and human biophysical safety considerations on the waveform design, imaging parameter space, and image quality of OGSE dMRI. Here we discuss the effects of the gradient amplitude, slew rate, peripheral nerve stimulation, cardiac stimulation, gradient driver, acoustic noise and mechanical vibration, eddy currents, gradient nonlinearity, concomitant gradient, motion and flow, and signal-to-noise ratio. We believe that targeted engineering for safe, high-quality, and reproducible imaging will enable the translation of OGSE dMRI techniques into the clinic.
Collapse
Affiliation(s)
- Ante Zhu
- Technology and Innovation Center, GE HealthCare, Niskayuna, New York, USA
| | - Eric S Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Hua Li
- Application Engineering, GE HealthCare, Waukesha, Wisconsin, USA
| | - Tim Sprenger
- MRI Clinical Solutions, GE HealthCare, Munich, Germany
| | - Yihe Hua
- Technology and Innovation Center, GE HealthCare, Niskayuna, New York, USA
| | - Seung-Kyun Lee
- Technology and Innovation Center, GE HealthCare, Niskayuna, New York, USA
| | | | - Jennifer A McNab
- Department of Radiology, Stanford University, Stanford, California, USA
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Dan Wu
- College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Thomas K F Foo
- Technology and Innovation Center, GE HealthCare, Niskayuna, New York, USA
| | - Dmitry S Novikov
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
4
|
Dong Z, Reese TG, Lee H, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: Rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale diffusion MRI and microstructure imaging. Magn Reson Med 2025; 93:1535-1555. [PMID: 39552568 PMCID: PMC11782731 DOI: 10.1002/mrm.30365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 08/28/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024]
Abstract
PURPOSE To overcome the major challenges in diffusion MRI (dMRI) acquisition, including limited SNR, distortion/blurring, and susceptibility to motion artifacts. THEORY AND METHODS A novel Romer-EPTI technique is developed to achieve SNR-efficient acquisition while providing distortion-free imaging, minimal spatial blurring, high motion robustness, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free Echo Planar Time-resolved Imaging (EPTI) readout. Romer enhances SNR through simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness via a high-fidelity, motion-aware super-resolution reconstruction. Instead of EPI, the in-plane encoding is performed using EPTI readout to prevent geometric distortion, T2/T2*-blurring, and importantly, dynamic distortions that could introduce additional blurring/artifacts after super-resolution reconstruction due to combining volumes with inconsistent geometries. This further improves effective spatial resolution and motion robustness. Additional developments include strategies to address slab-boundary artifacts, achieve minimized TE and optimized readout for additional SNR gain, and increase robustness to strong phase variations at high b-values. RESULTS Using Romer-EPTI, we demonstrated distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm isotropic [iso] resolution) and 7T (485-μm iso resolution) for the first time. Motion experiments demonstrated the technique's motion robustness and its ability to obtain high-resolution diffusion images in the presence of subject motion. Romer-EPTI also demonstrated high SNR gain and robustness in high b-value (b = 5000 s/mm2) and time-dependent dMRI. CONCLUSION The high SNR efficiency, improved image quality, and motion robustness of Romer-EPTI make it a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Hong‐Hsi Lee
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Health Sciences and TechnologyMITCambridgeMassachusettsUSA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Health Sciences and TechnologyMITCambridgeMassachusettsUSA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
- Harvard‐MIT Health Sciences and TechnologyMITCambridgeMassachusettsUSA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical ImagingMassachusetts General Hospital
CharlestownMassachusettsUSA
- Department of RadiologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
5
|
Lee HH, Novikov DS, Fieremans E, Huang SY. Revealing membrane integrity and cell size from diffusion kurtosis time dependence. Magn Reson Med 2025; 93:1329-1347. [PMID: 39473219 PMCID: PMC11955223 DOI: 10.1002/mrm.30335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 09/23/2024] [Indexed: 12/29/2024]
Abstract
PURPOSE The nonmonotonic dependence of diffusion kurtosis on diffusion time has been observed in biological tissues, yet its relation to membrane integrity and cellular geometry remains to be clarified. Here we establish and explain the characteristic asymmetric shape of the kurtosis peak. We also derive the relation between the peak timet peak $$ {t}_{\mathrm{peak}} $$ , when kurtosis reaches its maximum, and tissue parameters. METHODS The peak shape and its positiont peak $$ {t}_{\mathrm{peak}} $$ qualitatively follow from the adiabatic extension of the Kärger model onto the case of intra-cellular diffusivity time-dependence. This intuition is corroborated by the effective medium theory-based calculation, as well as by Monte Carlo simulations of diffusion and exchange in randomly and densely packed spheres for various values of permeability, cell fractions and sizes, and intrinsic diffusivity. RESULTS We establish thatt peak $$ {t}_{\mathrm{peak}} $$ is proportional to the geometric mean of two characteristic time scales: extra-cellular correlation time (determined by cell size) and intra-cellular residence time (determined by membrane permeability). When exchange is barrier-limited, the peak shape approaches a universal scaling form determined by the ratiot / t peak $$ t/{t}_{\mathrm{peak}} $$ . CONCLUSION Numerical simulations and theory provide an interpretation of a specific feature of kurtosis time-dependence, offering a potential biomarker for in vivo evaluation of pathology by disentangling the functional (permeability) and structural (cell size) integrity in tissues. This is relevant as the time-dependent diffusion cumulants are sensitive to pathological changes in membrane integrity and cellular structure in diseases, such as ischemic stroke, tumors, and Alzheimer's disease.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Dmitry S. Novikov
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Abdollahzadeh A, Coronado-Leija R, Lee HH, Sierra A, Fieremans E, Novikov DS. Scattering approach to diffusion quantifies axonal damage in brain injury. ARXIV 2025:arXiv:2501.18167v1. [PMID: 39975429 PMCID: PMC11838777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Early diagnosis and noninvasive monitoring of neurological disorders require sensitivity to elusive cellular-level alterations that occur much earlier than volumetric changes observable with the millimeter-resolution of medical imaging modalities. Morphological changes in axons, such as axonal varicosities or beadings, are observed in neurological disorders, as well as in development and aging. Here, we reveal the sensitivity of time-dependent diffusion MRI (dMRI) to axonal morphology at the micrometer scale. Scattering theory uncovers the two parameters that determine the diffusive dynamics of water in axons: the average reciprocal cross-section and the variance of long-range cross-sectional fluctuations. This theoretical development allowed us to predict dMRI metrics sensitive to axonal alterations across tens of thousands of axons in seconds rather than months of simulations in a rat model of traumatic brain injury. Our approach bridges the gap between micrometers and millimeters in resolution, offering quantitative, objective biomarkers applicable to a broad spectrum of neurological disorders.
Collapse
Affiliation(s)
- Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Alejandra Sierra
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
7
|
Lasič S, Chakwizira A, Lundell H, Westin CF, Nilsson M. Tuned exchange imaging: Can the filter exchange imaging pulse sequence be adapted for applications with thin slices and restricted diffusion? NMR IN BIOMEDICINE 2024; 37:e5208. [PMID: 38961745 PMCID: PMC12005830 DOI: 10.1002/nbm.5208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024]
Abstract
Filter exchange imaging (FEXI) is a double diffusion-encoding (DDE) sequence that is specifically sensitive to exchange between sites with different apparent diffusivities. FEXI uses a diffusion-encoding filtering block followed by a detection block at varying mixing times to map the exchange rate. Long mixing times enhance the sensitivity to exchange, but they pose challenges for imaging applications that require a stimulated echo sequence with crusher gradients. Thin imaging slices require strong crushers, which can introduce significant diffusion weighting and bias exchange rate estimates. Here, we treat the crushers as an additional encoding block and consider FEXI as a triple diffusion-encoding sequence. This allows the bias to be corrected in the case of multi-Gaussian diffusion, but not easily in the presence of restricted diffusion. Our approach addresses challenges in the presence of restricted diffusion and relies on the ability to independently gauge sensitivities to exchange and restricted diffusion for arbitrary gradient waveforms. It follows two principles: (i) the effects of crushers are included in the forward model using signal cumulant expansion; and (ii) timing parameters of diffusion gradients in filter and detection blocks are adjusted to maintain the same level of restriction encoding regardless of the mixing time. This results in the tuned exchange imaging (TEXI) protocol. The accuracy of exchange mapping with TEXI was assessed through Monte Carlo simulations in spheres of identical sizes and gamma-distributed sizes, and in parallel hexagonally packed cylinders. The simulations demonstrate that TEXI provides consistent exchange rates regardless of slice thickness and restriction size, even with strong crushers. However, the accuracy depends on b-values, mixing times, and restriction geometry. The constraints and limitations of TEXI are discussed, including suggestions for protocol adaptations. Further studies are needed to optimize the precision of TEXI and assess the approach experimentally in realistic, heterogeneous substrates.
Collapse
Affiliation(s)
- Samo Lasič
- Department of Diagnostic Radiology, Lund University, Lund, Sweden
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
| | - Arthur Chakwizira
- Department of Medical Radiation Physics, Lund, Lund University, Lund, Sweden
| | - Henrik Lundell
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark
- MR Section, DTU Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Markus Nilsson
- Department of Clinical Sciences Lund, Radiology, Lund University, Lund, Sweden
| |
Collapse
|
8
|
Veldmann M, Edwards LJ, Pine KJ, Ehses P, Ferreira M, Weiskopf N, Stoecker T. Improving MR axon radius estimation in human white matter using spiral acquisition and field monitoring. Magn Reson Med 2024; 92:1898-1912. [PMID: 38817204 DOI: 10.1002/mrm.30180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
PURPOSE To compare MR axon radius estimation in human white matter using a multiband spiral sequence combined with field monitoring to the current state-of-the-art echo-planar imaging (EPI)-based approach. METHODS A custom multiband spiral sequence was used for diffusion-weighted imaging at ultra-highb $$ b $$ -values. Field monitoring and higher order image reconstruction were employed to greatly reduce artifacts in spiral images. Diffusion weighting parameters were chosen to match a state-of-the art EPI-based axon radius mapping protocol. The spiral approach was compared to the EPI approach by comparing the image signal-to-noise ratio (SNR) and performing a test-retest study to assess the respective variability and repeatability of axon radius mapping. Effective axon radius estimates were compared over white matter voxels and along the left corticospinal tract. RESULTS Increased SNR and reduced artifacts in spiral images led to reduced variability in resulting axon radius maps, especially in low-SNR regions. Test-retest variability was reduced by a factor of approximately 1.5 using the spiral approach. Reduced repeatability due to significant bias was found for some subjects in both spiral and EPI approaches, and attributed to scanner instability, pointing to a previously unknown limitation of the state-of-the-art approach. CONCLUSION Combining spiral readouts with field monitoring improved mapping of the effective axon radius compared to the conventional EPI approach.
Collapse
Affiliation(s)
- Marten Veldmann
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Luke J Edwards
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Kerrin J Pine
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Philipp Ehses
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
| | - Mónica Ferreira
- Clinical Research, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- University of Bonn, Bonn, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth System Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Tony Stoecker
- MR Physics, German Center for Neurodegenerative Diseases (DZNE) e.V, Bonn, Germany
- Department of Physics & Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Cai TX, Williamson NH, Ravin R, Basser PJ. The Diffusion Exchange Ratio (DEXR): A minimal sampling of diffusion exchange spectroscopy to probe exchange, restriction, and time-dependence. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2024; 366:107745. [PMID: 39126819 DOI: 10.1016/j.jmr.2024.107745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/31/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
Water exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence (s) or signal model (s). In general, the trend has been towards data-intensive fitting of highly parameterized models. We take the opposite approach and show that a judicious sub-sample of diffusion exchange spectroscopy (DEXSY) data can be used to robustly quantify exchange, as well as restriction, in a data-efficient manner. This sampling produces a ratio of two points per mixing time: (i) one point with equal diffusion weighting in both encoding periods, which gives maximal exchange contrast, and (ii) one point with the same total diffusion weighting in just the first encoding period, for normalization. We call this quotient the Diffusion EXchange Ratio (DEXR). Furthermore, we show that it can be used to probe time-dependent diffusion by estimating the velocity autocorrelation function (VACF) over intermediate to long times (∼2-500ms). We provide a comprehensive theoretical framework for the design of DEXR experiments in the case of static or constant gradients. Data from Monte Carlo simulations and experiments acquired in fixed and viable ex vivo neonatal mouse spinal cord using a permanent magnet system are presented to test and validate this approach. In viable spinal cord, we report the following apparent parameters from just 6 data points: τk=17±4ms, fNG=0.72±0.01, Reff=1.05±0.01μm, and κeff=0.19±0.04μm/ms, which correspond to the exchange time, restricted or non-Gaussian signal fraction, an effective spherical radius, and permeability, respectively. For the VACF, we report a long-time, power-law scaling with ≈t-2.4, which is approximately consistent with disordered domains in 3-D. Overall, the DEXR method is shown to be highly efficient, capable of providing valuable quantitative diffusion metrics using minimal MR data.
Collapse
Affiliation(s)
- Teddy X Cai
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
| | - Nathan H Williamson
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
| | - Rea Ravin
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA; Celoptics, Inc., Rockville, 20850, MD, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA.
| |
Collapse
|
10
|
Cai TX, Williamson NH, Ravin R, Basser PJ. The Diffusion Exchange Ratio (DEXR): A minimal sampling of diffusion exchange spectroscopy to probe exchange, restriction, and time-dependence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.05.606620. [PMID: 39372756 PMCID: PMC11451752 DOI: 10.1101/2024.08.05.606620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Water exchange is increasingly recognized as an important biological process that can affect the study of biological tissue using diffusion MR. Methods to measure exchange, however, remain immature as opposed to those used to characterize restriction, with no consensus on the optimal pulse sequence(s) or signal model(s). In general, the trend has been towards data-intensive fitting of highly parameterized models. We take the opposite approach and show that a judicious sub-sample of diffusion exchange spectroscopy (DEXSY) data can be used to robustly quantify exchange, as well as restriction, in a data-efficient manner. This sampling produces a ratio of two points per mixing time: (i) one point with equal diffusion weighting in both encoding periods, which gives maximal exchange contrast, and (ii) one point with the same total diffusion weighting in just the first encoding period, for normalization. We call this quotient the Diffusion EXchange Ratio (DEXR). Furthermore, we show that it can be used to probe time-dependent diffusion by estimating the velocity autocorrelation function (VACF) over intermediate to long times (~ 2-500 ms). We provide a comprehensive theoretical framework for the design of DEXR experiments in the case of static or constant gradients. Data from Monte Carlo simulations and experiments acquired in fixed and viable ex vivo neonatal mouse spinal cord using a permanent magnet system are presented to test and validate this approach. In viable spinal cord, we report the following apparent parameters from just 6 data points:τ k = 17 ± 4 m s ,f N G = 0.71 ± 0.01 ,R e f f = 1.10 ± 0.01 μ m , andκ eff = 0.21 ± 0.06 μ m / m s , which correspond to the exchange time, restricted or non-Gaussian signal fraction, an effective spherical radius, and permeability, respectively. For the VACF, we report a long-time, power-law scaling with ≈ t - 2.4 , which is approximately consistent with disordered domains in 3-D. Overall, the DEXR method is shown to be highly efficient, capable of providing valuable quantitative diffusion metrics using minimal MR data.
Collapse
Affiliation(s)
- Teddy X. Cai
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
| | - Nathan H. Williamson
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
| | - Rea Ravin
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
- Celoptics, Inc., Rockville, 20850, MD, USA
| | - Peter J. Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, 20892, MD, USA
| |
Collapse
|
11
|
Bradfield C, Voo L, Bhaduri A, Ramesh KT. Validation of a computational biomechanical mouse brain model for rotational head acceleration. Biomech Model Mechanobiol 2024; 23:1347-1367. [PMID: 38662175 DOI: 10.1007/s10237-024-01843-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 03/17/2024] [Indexed: 04/26/2024]
Abstract
Recent mouse brain injury experiments examine diffuse axonal injury resulting from accelerative head rotations. Evaluating brain deformation during these events would provide valuable information on tissue level thresholds for brain injury, but there are many challenges to imaging the brain's mechanical response during dynamic loading events, such as a blunt head impact. To address this shortcoming, we present an experimentally validated computational biomechanics model of the mouse brain that predicts tissue deformation, given the motion of the mouse head during laboratory experiments. First, we developed a finite element model of the mouse brain that computes tissue strains, given the same head rotations as previously conducted in situ hemicephalic mouse brain experiments. Second, we calibrated the model using a single brain segment, and then validated the model based on the spatial and temporal strain responses of other regions. The result is a computational tool that will provide researchers with the ability to predict brain tissue strains that occur during mouse laboratory experiments, and to link the experiments to the resulting neuropathology, such as diffuse axonal injury.
Collapse
Affiliation(s)
- Connor Bradfield
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road.
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street.
| | - Liming Voo
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - Anindya Bhaduri
- Department of Civil Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| | - K T Ramesh
- Applied Physics Laboratory, Johns Hopkins University, Laurel, MD, 20723, USA, 11100 Johns Hopkins Road
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
- Hopkins Extreme Materials Institute, Johns Hopkins University, Baltimore, MD, 21218, USA, 3400 North Charles Street
| |
Collapse
|
12
|
Wu D, Lee HH, Ba R, Turnbill V, Wang X, Luo Y, Walczak P, Fieremans E, Novikov DS, Martin LJ, Northington FJ, Zhang J. In vivo mapping of cellular resolution neuropathology in brain ischemia with diffusion MRI. SCIENCE ADVANCES 2024; 10:eadk1817. [PMID: 39018390 PMCID: PMC466947 DOI: 10.1126/sciadv.adk1817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Noninvasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent advances in diffusion magnetic resonance imaging enabled in vivo examination of tissue microstructures well beyond the imaging resolution. Here, we proposed to use diffusion time-dependent diffusion kurtosis imaging (tDKI) to simultaneously assess cellular morphology and transmembrane permeability in hypoxic-ischemic (HI) brain injury. Through numerical simulations and organoid imaging, we demonstrated the feasibility of capturing effective size and permeability changes using tDKI. In vivo MRI of HI-injured mouse brains detected a shift of the tDKI peak to longer diffusion times, suggesting swelling of the cellular processes. Furthermore, we observed a faster decrease of the tDKI tail, reflecting increased transmembrane permeability associated with up-regulated water exchange or necrosis. Such information, unavailable from a single diffusion time, can predict salvageable tissues. Preliminary applications of tDKI in patients with ischemic stroke suggested increased transmembrane permeability in stroke regions, illustrating tDKI's potential for detecting pathological changes in the clinics.
Collapse
Affiliation(s)
- Dan Wu
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
- Department of Radiology, Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang, China
- Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, China
| | - Hong-Hsi Lee
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - Ruicheng Ba
- Key Laboratory for Biomedical Engineering of Ministry of Education, Department of Biomedical Engineering, College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Victoria Turnbill
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Xiaoli Wang
- School of Medical Imaging, Weifang Medical School, Weifang, Shandong, China
| | - Yu Luo
- Department of Radiology, Shanghai Fourth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Piotr Walczak
- Department of Radiology, University of Maryland, Baltimore, MD, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Lee J. Martin
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Frances J. Northington
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiangyang Zhang
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
13
|
Wang Y, Zhu Y, Luo L, He J. Q-space imaging based on Gaussian radial basis function with Laplace regularization. Magn Reson Med 2024; 92:128-144. [PMID: 38361281 DOI: 10.1002/mrm.30049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE To introduce the diffusion signal characteristics presented by spherical harmonics (SH) basis into the q-space imaging method based on Gaussian radial basis function (GRBF) to robustly reconstruct ensemble average diffusion propagator (EAP) in diffusion MRI (dMRI). METHODS We introduced the Laplacian regularization of the signal into the dMRI imaging method based on GRBF, and derived the relevant indicators of microstructure imaging and the orientation distribution function (ODF) providing fiber bundle direction information based on EAP. In addition, this method is combined with a multi-compartment model to calculate the diameter of fiber bundle axons. The evaluation of the results included qualitative comparisons and quantitative assessments of the signal fitting. RESULTS The results show that the proposed method achieves the more significant accuracy improvement in reconstructing signal. Meanwhile, ODFs estimated by the proposed method show the sharper profiles and less spurious peaks, even under the sparse and noisy conditions. In the 36 sets of axon diameter estimation experiments, 34 and 30 sets of results showed that the proposed method reduced the mean and SD of axon diameter estimates, respectively. Moreover, compared with the current state-of-the-art method, the mean and SD of axon diameter estimated by the proposed method are mostly lower, with 32 and 29 of 36 groups. CONCLUSION The proposed method outperforms the GRBF regarding signal fitting and the estimation of the EAP and ODF with multi-shell sparse samples. Moreover, it shows the potential to recover important features of microstructures with less uncertainty by using proposed method together with multi-compartment models.
Collapse
Affiliation(s)
- Yuanjun Wang
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yuemin Zhu
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Lingli Luo
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Jianglin He
- Institute of Medical Imaging Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
14
|
Canales-Rodríguez EJ, Pizzolato M, Zhou FL, Barakovic M, Thiran JP, Jones DK, Parker GJM, Dyrby TB. Pore size estimation in axon-mimicking microfibers with diffusion-relaxation MRI. Magn Reson Med 2024; 91:2579-2596. [PMID: 38192108 PMCID: PMC7617479 DOI: 10.1002/mrm.29991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE This study aims to evaluate two distinct approaches for fiber radius estimation using diffusion-relaxation MRI data acquired in biomimetic microfiber phantoms that mimic hollow axons. The methods considered are the spherical mean power-law approach and a T2-based pore size estimation technique. THEORY AND METHODS A general diffusion-relaxation theoretical model for the spherical mean signal from water molecules within a distribution of cylinders with varying radii was introduced, encompassing the evaluated models as particular cases. Additionally, a new numerical approach was presented for estimating effective radii (i.e., MRI-visible mean radii) from the ground truth radii distributions, not reliant on previous theoretical approximations and adaptable to various acquisition sequences. The ground truth radii were obtained from scanning electron microscope images. RESULTS Both methods show a linear relationship between effective radii estimated from MRI data and ground-truth radii distributions, although some discrepancies were observed. The spherical mean power-law method overestimated fiber radii. Conversely, the T2-based method exhibited higher sensitivity to smaller fiber radii, but faced limitations in accurately estimating the radius in one particular phantom, possibly because of material-specific relaxation changes. CONCLUSION The study demonstrates the feasibility of both techniques to predict pore sizes of hollow microfibers. The T2-based technique, unlike the spherical mean power-law method, does not demand ultra-high diffusion gradients, but requires calibration with known radius distributions. This research contributes to the ongoing development and evaluation of neuroimaging techniques for fiber radius estimation, highlights the advantages and limitations of both methods, and provides datasets for reproducible research.
Collapse
Affiliation(s)
- Erick J Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Marco Pizzolato
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| | - Feng-Lei Zhou
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- MicroPhantoms Limited, Cambridge, UK
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d'Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK
| | - Geoffrey J M Parker
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London (UCL), London, UK
- Department of Neuroinflammation, Queen Square Institute of Neurology, University College London (UCL), London, UK
- Bioxydyn Limited, Manchester, UK
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
- Department of Applied Mathematics and Computer Science, Technical University of Denmark (DTU), Kongens Lyngby, Denmark
| |
Collapse
|
15
|
Johnson JTE, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. Hum Brain Mapp 2024; 45:e26697. [PMID: 38726888 PMCID: PMC11082920 DOI: 10.1002/hbm.26697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 05/13/2024] Open
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency,ω $$ \omega $$ , in addition to the diffusion tensor,D $$ \mathbf{D} $$ , and relaxation,R 1 $$ {R}_1 $$ ,R 2 $$ {R}_2 $$ , correlations. AD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on theirD ω - R 1 - R 2 $$ \mathbf{D}\left(\omega \right)-{R}_1-{R}_2 $$ distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T. E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of HealthBethesdaMarylandUSA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of HealthBaltimoreMarylandUSA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich‐Alexander‐Universität Erlangen‐Nürnberg (FAU)ErlangenGermany
| | - Jan Martin
- Department of ChemistryLund UniversityLundSweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIHBaltimoreMarylandUSA
| |
Collapse
|
16
|
Oshiro H, Hata J, Nakashima D, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Influence of Diffusion Time and Temperature on Restricted Diffusion Signal: A Phantom Study. Magn Reson Med Sci 2024; 23:136-145. [PMID: 36754420 PMCID: PMC11024708 DOI: 10.2463/mrms.mp.2022-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 12/17/2022] [Indexed: 02/10/2023] Open
Abstract
PURPOSE Diffusion MRI is a physical measurement method that quantitatively indicates the displacement of water molecules diffusing in voxels. However, there are insufficient data to characterize the diffusion process physically in a uniform structure such as a phantom. This study investigated the transitional relationship between structure scale, temperature, and diffusion time for simple restricted diffusion using a capillary phantom. METHODS We performed diffusion-weighted pulsed-gradient stimulated-echo acquisition mode (STEAM) MRI with a 9.4 Tesla MRI system (Bruker BioSpin, Ettlingen, Germany) and a quadrature coil with an inner diameter of 86 mm (Bruker BioSpin). We measured the diffusion coefficients (radial diffusivity [RD]) of capillary plates (pore sizes 6, 12, 25, 50, and 100 μm) with uniformly restricted structures at various temperatures (10ºC, 20ºC, 30ºC, and 40ºC) and multiple diffusion times (12-800 ms). We evaluated the characteristics of scale, temperature, and diffusion time for restricted diffusion. RESULTS The RD decayed and became constant depending on the structural scale. Diffusion coefficient fluctuations with temperature occurred mostly under conditions of a large structural scale and short diffusion time. We obtained data suggesting that temperature-dependent changes in the diffusion coefficients follow physical laws. CONCLUSION No water molecules were observed outside the glass tubes in the capillary plates, and the capillary plates only reflected a restricted diffusion process within the structure.We experimentally evaluated the characteristics of simple restricted diffusion to reveal the transitional relationship of the diffusion coefficient with diffusion time, structure scale, and temperature through composite measurement.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Yawara Haga
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Kei Hagiya
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- Center for Brain Science, RIKEN, Wako, Saitama, Japan
- School of Medicine, Keio University, Tokyo, Japan
| |
Collapse
|
17
|
Dong Z, Reese TG, Lee HH, Huang SY, Polimeni JR, Wald LL, Wang F. Romer-EPTI: rotating-view motion-robust super-resolution EPTI for SNR-efficient distortion-free in-vivo mesoscale dMRI and microstructure imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.26.577343. [PMID: 38352481 PMCID: PMC10862730 DOI: 10.1101/2024.01.26.577343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/19/2024]
Abstract
Purpose To overcome the major challenges in dMRI acquisition, including low SNR, distortion/blurring, and motion vulnerability. Methods A novel Romer-EPTI technique is developed to provide distortion-free dMRI with significant SNR gain, high motion-robustness, sharp spatial resolution, and simultaneous multi-TE imaging. It introduces a ROtating-view Motion-robust supEr-Resolution technique (Romer) combined with a distortion/blurring-free EPTI encoding. Romer enhances SNR by a simultaneous multi-thick-slice acquisition with rotating-view encoding, while providing high motion-robustness through a motion-aware super-resolution reconstruction, which also incorporates slice-profile and real-value diffusion, to resolve high-isotropic-resolution volumes. The in-plane encoding is performed using distortion/blurring-free EPTI, which further improves effective spatial resolution and motion robustness by preventing not only T2/T2*-blurring but also additional blurring resulting from combining encoded volumes with inconsistent geometries caused by dynamic distortions. Self-navigation was incorporated to enable efficient phase correction. Additional developments include strategies to address slab-boundary artifacts, achieve minimal TE for SNR gain at 7T, and achieve high robustness to strong phase variations at high b-values. Results Using Romer-EPTI, we demonstrate distortion-free whole-brain mesoscale in-vivo dMRI at both 3T (500-μm-iso) and 7T (485-μm-iso) for the first time, with high SNR efficiency (e.g., 25 × ), and high image quality free from distortion and slab-boundary artifacts with minimal blurring. Motion experiments demonstrate Romer-EPTI's high motion-robustness and ability to recover sharp images in the presence of motion. Romer-EPTI also demonstrates significant SNR gain and robustness in high b-value (b=5000s/mm2) and time-dependent dMRI. Conclusion Romer-EPTI significantly improves SNR, motion-robustness, and image quality, providing a highly efficient acquisition for high-resolution dMRI and microstructure imaging.
Collapse
Affiliation(s)
- Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Timothy G. Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Lawrence L. Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
18
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The effects of axonal beading and undulation on axonal diameter estimation from diffusion MRI: Insights from simulations in human axons segmented from three-dimensional electron microscopy. NMR IN BIOMEDICINE 2024; 37:e5087. [PMID: 38168082 PMCID: PMC10942763 DOI: 10.1002/nbm.5087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/19/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
The increasing availability of high-performance gradient systems in human MRI scanners has generated great interest in diffusion microstructural imaging applications such as axonal diameter mapping. Practically, sensitivity to axon diameter in diffusion MRI is attained at strong diffusion weightings b , where the deviation from the expected 1 / b scaling in white matter yields a finite transverse diffusivity, which is then translated into an axon diameter estimate. While axons are usually modeled as perfectly straight, impermeable cylinders, local variations in diameter (caliber variation or beading) and direction (undulation) are known to influence axonal diameter estimates and have been observed in microscopy data of human axons. In this study, we performed Monte Carlo simulations of diffusion in axons reconstructed from three-dimensional electron microscopy of a human temporal lobe specimen using simulated sequence parameters matched to the maximal gradient strength of the next-generation Connectome 2.0 human MRI scanner ( ≲ 500 mT/m). We show that axon diameter estimation is accurate for nonbeaded, nonundulating fibers; however, in fibers with caliber variations and undulations, the axon diameter is heavily underestimated due to caliber variations, and this effect overshadows the known overestimation of the axon diameter due to undulations. This unexpected underestimation may originate from variations in the coarse-grained axial diffusivity due to caliber variations. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard–MIT Health Sciences and Technology, Cambridge, Massachusetts, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, New York, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
19
|
Oshiro H, Hata J, Nakashima D, Oshiro R, Hayashi N, Haga Y, Hagiya K, Yoshimaru D, Okano H. Restricted diffusion characteristics in oscillating gradient spin echo with mesoscopic phantom. Heliyon 2024; 10:e26391. [PMID: 38434080 PMCID: PMC10906284 DOI: 10.1016/j.heliyon.2024.e26391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/04/2024] [Accepted: 02/12/2024] [Indexed: 03/05/2024] Open
Abstract
In diffusion magnetic resonance imaging, oscillating gradient spin echo (OGSE) has an extremely short diffusion time if motion probing gradient (MPG) is applied to the waveform. Further, it can detect microstructural specificity. OGSE changes sensitivity to spin displacement velocity based on the MPG phase. The current study aimed to investigate the restricted diffusion characteristics of each OGSE waveform using the capillary phantom with various b-values, frequencies, and MPG phases. We performed OGSE (b-value = 300, 500, 800, 1200, 1600, and 2000 s/mm2) for the sine and cosine waveforms using the capillary phantom (6, 12, 25, 50, and 100 μm and free water) with a 9.4-T experimental magnetic resonance imaging system and a solenoid coil. We evaluated the axial and radial diffusivity (AD, RD) of each structure size. The output current of the MPG was assessed with an oscilloscope and analyzed with the gradient modulation power spectra by fast Fourier transform. In sine, the sidelobe spectrum was enhanced with increasing frequency, and the central spectrum slightly increased. The difference in RD was detected at 6 and 12 μm; however, it did not depend on the structure scale at 50 or 100 μm and free water. In cosine, the diffusion spectrum was enhanced, whereas the central spectrum decreased with increasing frequency. Both AD and RD in cosine had a frequency dependence, and AD and RD increased with a higher frequency regardless of structure size. AD and RD in either sine or cosine had no evident b-value dependence. We evaluated the OGSE-restricted diffusion characteristics. The measurements obtained diffusion information similar to the pulsed gradient spin echo. Hence, the cosine measurements indicated that a higher frequency could capture faster diffusion within the diffusion phenomena.
Collapse
Affiliation(s)
- Hinako Oshiro
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Junichi Hata
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | | | - Rintaro Oshiro
- Department of Physics, Faculty of Science and Technology, Keio University, Japan
| | - Naoya Hayashi
- Graduate School of Human Health Sciences, Tokyo Metropolitan University, Tokyo, Japan
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Yawara Haga
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| | - Kei Hagiya
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
| | - Daisuke Yoshimaru
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
- Division of Regenerative Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Hideyuki Okano
- RIKEN, Center for Brain Science, Wako, Saitama, Japan
- Keio University, School of Medicine, Tokyo, Japan
| |
Collapse
|
20
|
Li MG, Hu M, Fan LM, Bao JD, Li PC. Quantifying the energy landscape in weakly and strongly disordered frictional media. J Chem Phys 2024; 160:024903. [PMID: 38189619 DOI: 10.1063/5.0178092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/19/2023] [Indexed: 01/09/2024] Open
Abstract
We investigate the "roughness" of the energy landscape of a system that diffuses in a heterogeneous medium with a random position-dependent friction coefficient α(x). This random friction acting on the system stems from spatial inhomogeneity in the surrounding medium and is modeled using the generalized Caldira-Leggett model. For a weakly disordered medium exhibiting a Gaussian random diffusivity D(x) = kBT/α(x) characterized by its average value ⟨D(x)⟩ and a pair-correlation function ⟨D(x1)D(x2)⟩, we find that the renormalized intrinsic diffusion coefficient is lower than the average one due to the fluctuations in diffusivity. The induced weak internal friction leads to increased roughness in the energy landscape. When applying this idea to diffusive motion in liquid water, the dissociation energy for a hydrogen bond gradually approaches experimental findings as fluctuation parameters increase. Conversely, for a strongly disordered medium (i.e., ultrafast-folding proteins), the energy landscape ranges from a few to a few kcal/mol, depending on the strength of the disorder. By fitting protein folding dynamics to the escape process from a metastable potential, the decreased escape rate conceptualizes the role of strong internal friction. Studying the energy landscape in complex systems is helpful because it has implications for the dynamics of biological, soft, and active matter systems.
Collapse
Affiliation(s)
- Ming-Gen Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| | - Meng Hu
- Department of Mathematics and Physics, North China Electric Power University, Baoding 071003, China
| | - Li-Ming Fan
- College of Physical Science and Technology, Shenyang Normal University, Shenyang 110034, China
| | - Jing-Dong Bao
- Department of Physics, Beijing Normal University, Beijing 100048, China
| | - Peng-Cheng Li
- Department of Physics, Shantou University, Shantou, Guangdong 515063, China
| |
Collapse
|
21
|
Cerdán Cerdá A, Toschi N, Treaba CA, Barletta V, Herranz E, Mehndiratta A, Gomez-Sanchez JA, Mainero C, De Santis S. A translational MRI approach to validate acute axonal damage detection as an early event in multiple sclerosis. eLife 2024; 13:e79169. [PMID: 38192199 PMCID: PMC10776086 DOI: 10.7554/elife.79169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 12/05/2023] [Indexed: 01/10/2024] Open
Abstract
Axonal degeneration is a central pathological feature of multiple sclerosis and is closely associated with irreversible clinical disability. Current noninvasive methods to detect axonal damage in vivo are limited in their specificity and clinical applicability, and by the lack of proper validation. We aimed to validate an MRI framework based on multicompartment modeling of the diffusion signal (AxCaliber) in rats in the presence of axonal pathology, achieved through injection of a neurotoxin damaging the neuronal terminal of axons. We then applied the same MRI protocol to map axonal integrity in the brain of multiple sclerosis relapsing-remitting patients and age-matched healthy controls. AxCaliber is sensitive to acute axonal damage in rats, as demonstrated by a significant increase in the mean axonal caliber along the targeted tract, which correlated with neurofilament staining. Electron microscopy confirmed that increased mean axonal diameter is associated with acute axonal pathology. In humans with multiple sclerosis, we uncovered a diffuse increase in mean axonal caliber in most areas of the normal-appearing white matter, preferentially affecting patients with short disease duration. Our results demonstrate that MRI-based axonal diameter mapping is a sensitive and specific imaging biomarker that links noninvasive imaging contrasts with the underlying biological substrate, uncovering generalized axonal damage in multiple sclerosis as an early event.
Collapse
Affiliation(s)
| | - Nicola Toschi
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
- Department of Biomedicine and Prevention, University of Rome Tor VergataRomeItaly
| | - Constantina A Treaba
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Valeria Barletta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Elena Herranz
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Ambica Mehndiratta
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Jose A Gomez-Sanchez
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
- Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL)AlicanteSpain
- Millennium Nucleus for the Study of Pain (MiNuSPain)SantiagoChile
| | - Caterina Mainero
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical SchoolBostonUnited States
| | - Silvia De Santis
- Instituto de Neurociencias de Alicante, CSIC-UMHSan Juan de AlicanteSpain
| |
Collapse
|
22
|
Johnson JT, Irfanoglu MO, Manninen E, Ross TJ, Yang Y, Laun FB, Martin J, Topgaard D, Benjamini D. In vivo disentanglement of diffusion frequency-dependence, tensor shape, and relaxation using multidimensional MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561702. [PMID: 37987005 PMCID: PMC10659440 DOI: 10.1101/2023.10.10.561702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Diffusion MRI with free gradient waveforms, combined with simultaneous relaxation encoding, referred to as multidimensional MRI (MD-MRI), offers microstructural specificity in complex biological tissue. This approach delivers intravoxel information about the microstructure, local chemical composition, and importantly, how these properties are coupled within heterogeneous tissue containing multiple microenvironments. Recent theoretical advances incorporated diffusion time dependency and integrated MD-MRI with concepts from oscillating gradients. This framework probes the diffusion frequency, ω , in addition to the diffusion tensor, D , and relaxation, R 1 , R 2 , correlations. A D ( ω ) - R 1 - R 2 clinical imaging protocol was then introduced, with limited brain coverage and 3 mm3 voxel size, which hinder brain segmentation and future cohort studies. In this study, we introduce an efficient, sparse in vivo MD-MRI acquisition protocol providing whole brain coverage at 2 mm3 voxel size. We demonstrate its feasibility and robustness using a well-defined phantom and repeated scans of five healthy individuals. Additionally, we test different denoising strategies to address the sparse nature of this protocol, and show that efficient MD-MRI encoding design demands a nuanced denoising approach. The MD-MRI framework provides rich information that allows resolving the diffusion frequency dependence into intravoxel components based on their D ( ω ) - R 1 - R 2 distribution, enabling the creation of microstructure-specific maps in the human brain. Our results encourage the broader adoption and use of this new imaging approach for characterizing healthy and pathological tissues.
Collapse
Affiliation(s)
- Jessica T.E. Johnson
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - M. Okan Irfanoglu
- Quantitative Medical Imaging Section, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, USA
| | - Eppu Manninen
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, USA
| | - Frederik B. Laun
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Martin
- Department of Chemistry, Lund University, Lund, Sweden
| | | | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
23
|
Kundu S, Barsoum S, Ariza J, Nolan AL, Latimer CS, Keene CD, Basser PJ, Benjamini D. Mapping the individual human cortex using multidimensional MRI and unsupervised learning. Brain Commun 2023; 5:fcad258. [PMID: 37953850 PMCID: PMC10638106 DOI: 10.1093/braincomms/fcad258] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Human evolution has seen the development of higher-order cognitive and social capabilities in conjunction with the unique laminar cytoarchitecture of the human cortex. Moreover, early-life cortical maldevelopment has been associated with various neurodevelopmental diseases. Despite these connections, there is currently no noninvasive technique available for imaging the detailed cortical laminar structure. This study aims to address this scientific and clinical gap by introducing an approach for imaging human cortical lamina. This method combines diffusion-relaxation multidimensional MRI with a tailored unsupervised machine learning approach that introduces enhanced microstructural sensitivity. This new imaging method simultaneously encodes the microstructure, the local chemical composition and importantly their correlation within complex and heterogenous tissue. To validate our approach, we compared the intra-cortical layers obtained using our ex vivo MRI-based method with those derived from Nissl staining of postmortem human brain specimens. The integration of unsupervised learning with diffusion-relaxation correlation MRI generated maps that demonstrate sensitivity to areal differences in cytoarchitectonic features observed in histology. Significantly, our observations revealed layer-specific diffusion-relaxation signatures, showing reductions in both relaxation times and diffusivities at the deeper cortical levels. These findings suggest a radial decrease in myelin content and changes in cell size and anisotropy, reflecting variations in both cytoarchitecture and myeloarchitecture. Additionally, we demonstrated that 1D relaxation and high-order diffusion MRI scalar indices, even when aggregated and used jointly in a multimodal fashion, cannot disentangle the cortical layers. Looking ahead, our technique holds the potential to open new avenues of research in human neurodevelopment and the vast array of disorders caused by disruptions in neurodevelopment.
Collapse
Affiliation(s)
- Shinjini Kundu
- Department of Radiology, The Johns Hopkins Hospital, Baltimore, MD 21287, USA
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Stephanie Barsoum
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Amber L Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Peter J Basser
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, USA
| | - Dan Benjamini
- Multiscale Imaging and Integrative Biophysics Unit, Laboratory of Behavioral Neuroscience, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| |
Collapse
|
24
|
Dai E, Zhu A, Yang GK, Quah K, Tan ET, Fiveland E, Foo TKF, McNab JA. Frequency-dependent diffusion kurtosis imaging in the human brain using an oscillating gradient spin echo sequence and a high-performance head-only gradient. Neuroimage 2023; 279:120328. [PMID: 37586445 PMCID: PMC10529993 DOI: 10.1016/j.neuroimage.2023.120328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/17/2023] [Accepted: 08/12/2023] [Indexed: 08/18/2023] Open
Abstract
Measuring the time/frequency dependence of diffusion MRI is a promising approach to distinguish between the effects of different tissue microenvironments, such as membrane restriction, tissue heterogeneity, and compartmental water exchange. In this study, we measure the frequency dependence of diffusivity (D) and kurtosis (K) with oscillating gradient diffusion encoding waveforms and a diffusion kurtosis imaging (DKI) model in human brains using a high-performance, head-only MAGNUS gradient system, with a combination of b-values, oscillating frequencies (f), and echo time that has not been achieved in human studies before. Frequency dependence of diffusivity and kurtosis are observed in both global and local white matter (WM) and gray matter (GM) regions and characterized with a power-law model ∼Λ*fθ. The frequency dependences of diffusivity and kurtosis (including changes between fmin and fmax, Λ, and θ) vary over different WM and GM regions, indicating potential microstructural differences between regions. A trend of decreasing kurtosis over frequency in the short-time limit is successfully captured for in vivo human brains. The effects of gradient nonlinearity (GNL) on frequency-dependent diffusivity and kurtosis measurements are investigated and corrected. Our results show that the GNL has prominent scaling effects on the measured diffusivity values (3.5∼5.5% difference in the global WM and 6∼8% difference in the global cortex) and subsequently affects the corresponding power-law parameters (Λ, θ) while having a marginal influence on the measured kurtosis values (<0.05% difference) and power-law parameters (Λ, θ). This study expands previous OGSE studies and further demonstrates the translatability of frequency-dependent diffusivity and kurtosis measurements to human brains, which may provide new opportunities to probe human brain microstructure in health and disease.
Collapse
Affiliation(s)
- Erpeng Dai
- Department of Radiology, Stanford University, Stanford, CA, USA.
| | | | - Grant K Yang
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Kristin Quah
- Department of Radiology, Stanford University, Stanford, CA, USA; Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Ek T Tan
- Department of Radiology and Imaging, Hospital for Special Surgery, New York, NY, USA
| | | | | | | |
Collapse
|
25
|
Raven EP, Veraart J, Kievit RA, Genc S, Ward IL, Hall J, Cunningham A, Doherty J, van den Bree MBM, Jones DK. In vivo evidence of microstructural hypo-connectivity of brain white matter in 22q11.2 deletion syndrome. Mol Psychiatry 2023; 28:4342-4352. [PMID: 37495890 PMCID: PMC7615578 DOI: 10.1038/s41380-023-02178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 06/26/2023] [Accepted: 07/03/2023] [Indexed: 07/28/2023]
Abstract
22q11.2 deletion syndrome, or 22q11.2DS, is a genetic syndrome associated with high rates of schizophrenia and autism spectrum disorders, in addition to widespread structural and functional abnormalities throughout the brain. Experimental animal models have identified neuronal connectivity deficits, e.g., decreased axonal length and complexity of axonal branching, as a primary mechanism underlying atypical brain development in 22q11.2DS. However, it is still unclear whether deficits in axonal morphology can also be observed in people with 22q11.2DS. Here, we provide an unparalleled in vivo characterization of white matter microstructure in participants with 22q11.2DS (12-15 years) and those undergoing typical development (8-18 years) using a customized magnetic resonance imaging scanner which is sensitive to axonal morphology. A rich array of diffusion MRI metrics are extracted to present microstructural profiles of typical and atypical white matter development, and provide new evidence of connectivity differences in individuals with 22q11.2DS. A recent, large-scale consortium study of 22q11.2DS identified higher diffusion anisotropy and reduced overall diffusion mobility of water as hallmark microstructural alterations of white matter in individuals across a wide age range (6-52 years). We observed similar findings across the white matter tracts included in this study, in addition to identifying deficits in axonal morphology. This, in combination with reduced tract volume measurements, supports the hypothesis that abnormal microstructural connectivity in 22q11.2DS may be mediated by densely packed axons with disproportionately small diameters. Our findings provide insight into the in vivo white matter phenotype of 22q11.2DS, and promote the continued investigation of shared features in neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Erika P Raven
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK.
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Jelle Veraart
- Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Rogier A Kievit
- Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Cognitive Neuroscience Department, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Neuroscience Advanced Clinical Imaging Service (NACIS), Department of Neurosurgery, The Royal Children's Hospital, Parkville, VIC, Australia
| | - Isobel L Ward
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| | - Jessica Hall
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Adam Cunningham
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Joanne Doherty
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Division of Psychological Medicine and Clinical Neurosciences, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Derek K Jones
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff, UK
| |
Collapse
|
26
|
Barakovic M, Pizzolato M, Tax CMW, Rudrapatna U, Magon S, Dyrby TB, Granziera C, Thiran JP, Jones DK, Canales-Rodríguez EJ. Estimating axon radius using diffusion-relaxation MRI: calibrating a surface-based relaxation model with histology. Front Neurosci 2023; 17:1209521. [PMID: 37638307 PMCID: PMC10457121 DOI: 10.3389/fnins.2023.1209521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 07/24/2023] [Indexed: 08/29/2023] Open
Abstract
Axon radius is a potential biomarker for brain diseases and a crucial tissue microstructure parameter that determines the speed of action potentials. Diffusion MRI (dMRI) allows non-invasive estimation of axon radius, but accurately estimating the radius of axons in the human brain is challenging. Most axons in the brain have a radius below one micrometer, which falls below the sensitivity limit of dMRI signals even when using the most advanced human MRI scanners. Therefore, new MRI methods that are sensitive to small axon radii are needed. In this proof-of-concept investigation, we examine whether a surface-based axonal relaxation process could mediate a relationship between intra-axonal T2 and T1 times and inner axon radius, as measured using postmortem histology. A unique in vivo human diffusion-T1-T2 relaxation dataset was acquired on a 3T MRI scanner with ultra-strong diffusion gradients, using a strong diffusion-weighting (i.e., b = 6,000 s/mm2) and multiple inversion and echo times. A second reduced diffusion-T2 dataset was collected at various echo times to evaluate the model further. The intra-axonal relaxation times were estimated by fitting a diffusion-relaxation model to the orientation-averaged spherical mean signals. Our analysis revealed that the proposed surface-based relaxation model effectively explains the relationship between the estimated relaxation times and the histological axon radius measured in various corpus callosum regions. Using these histological values, we developed a novel calibration approach to predict axon radius in other areas of the corpus callosum. Notably, the predicted radii and those determined from histological measurements were in close agreement.
Collapse
Affiliation(s)
- Muhamed Barakovic
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Chantal M. W. Tax
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Umesh Rudrapatna
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Stefano Magon
- Roche Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center, Basel, Switzerland
| | - Tim B. Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
- Danish Research Centre for Magnetic Resonance (DRCMR), Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Basel, Switzerland
- Department of Neurology, University Hospital Basel, Basel, Switzerland
- Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Basel, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Radiology Department, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Centre d’Imagerie Biomédicale (CIBM), EPFL, Lausanne, Switzerland
| | - Derek K. Jones
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, Wales, United Kingdom
| | - Erick J. Canales-Rodríguez
- Signal Processing Laboratory 5 (LTS5), Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
27
|
Wu D, Turnbill V, Lee HH, Wang X, Ba R, Walczak P, Martin LJ, Fieremans E, Novikov DS, Northington FJ, Zhang J. In vivo Mapping of Cellular Resolution Neuropathology in Brain Ischemia by Diffusion MRI. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.08.552374. [PMID: 37609182 PMCID: PMC10441332 DOI: 10.1101/2023.08.08.552374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Non-invasive mapping of cellular pathology can provide critical diagnostic and prognostic information. Recent developments in diffusion MRI have produced new tools for examining tissue microstructure at a level well below the imaging resolution. Here, we report the use of diffusion time ( t )-dependent diffusion kurtosis imaging ( t DKI) to simultaneously assess the morphology and transmembrane permeability of cells and their processes in the context of pathological changes in hypoxic-ischemic brain (HI) injury. Through Monte Carlo simulations and cell culture organoid imaging, we demonstrate feasibility in measuring effective size and permeability changes based on the peak and tail of t DKI curves. In a mouse model of HI, in vivo imaging at 11.7T detects a marked shift of the t DKI peak to longer t in brain edema, suggesting swelling and beading associated with the astrocytic processes and neuronal neurites. Furthermore, we observed a faster decrease of the t DKI tail in injured brain regions, reflecting increased membrane permeability that was associated with upregulated water exchange upon astrocyte activation at acute stage as well as necrosis with disrupted membrane integrity at subacute stage. Such information, unavailable with conventional diffusion MRI at a single t, can predict salvageable tissues. For a proof-of-concept, t DKI at 3T on an ischemic stroke patient suggested increased membrane permeability in the stroke region. This work therefore demonstrates the potential of t DKI for in vivo detection of the pathological changes in microstructural morphology and transmembrane permeability after ischemic injury using a clinically translatable protocol.
Collapse
|
28
|
Xu J, Xie J, Semmineh NB, Devan SP, Jiang X, Gore JC. Diffusion time dependency of extracellular diffusion. Magn Reson Med 2023; 89:2432-2440. [PMID: 36740894 PMCID: PMC10392121 DOI: 10.1002/mrm.29594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 12/10/2022] [Accepted: 01/09/2023] [Indexed: 02/07/2023]
Abstract
PURPOSE To quantify the variations of the power-law dependences on diffusion time t or gradient frequencyf $$ f $$ of extracellular water diffusion measured by diffusion MRI (dMRI). METHODS Model cellular systems containing only extracellular water were used to investigate thet / f $$ t/f $$ dependence ofD ex $$ {D}_{ex} $$ , the extracellular diffusion coefficient. Computer simulations used a randomly packed tissue model with realistic intracellular volume fractions and cell sizes. DMRI measurements were performed on samples consisting of liposomes containing heavy water(D2 O, deuterium oxide) dispersed in regular water (H2 O).D ex $$ {D}_{ex} $$ was obtained over a broadt $$ t $$ range (∼1-1000 ms) and then fit power-law equationsD ex ( t ) = D const + const · t - ϑ t $$ {D}_{ex}(t)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {t}^{-{\vartheta}_t} $$ andD ex ( f ) = D const + const · f ϑ f $$ {D}_{ex}(f)={D}_{\mathrm{const}}+\mathrm{const}\cdotp {f}^{\vartheta_f} $$ . RESULTS Both simulated and experimental results suggest that no single power-law adequately describes the behavior ofD ex $$ {D}_{ex} $$ over the range of diffusion times of most interest in practical dMRI. Previous theoretical predictions are accurate over only limitedt $$ t $$ ranges; for example,θ t = θ f = - 1 2 $$ {\theta}_t={\theta}_f=-\frac{1}{2} $$ is valid only for short times, whereasθ t = 1 $$ {\theta}_t=1 $$ orθ f = 3 2 $$ {\theta}_f=\frac{3}{2} $$ is valid only for long times but cannot describe other ranges simultaneously. For the specifict $$ t $$ range of 5-70 ms used in typical human dMRI measurements,θ t = θ f = 1 $$ {\theta}_t={\theta}_f=1 $$ matches the data well empirically. CONCLUSION The optimal power-law fit of extracellular diffusion varies with diffusion time. The dependency obtained at short or longt $$ t $$ limits cannot be applied to typical dMRI measurements in human cancer or liver. It is essential to determine the appropriate diffusion time range when modeling extracellular diffusion in dMRI-based quantitative microstructural imaging.
Collapse
Affiliation(s)
- Junzhong Xu
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| | - Jingping Xie
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Sean P. Devan
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xiaoyu Jiang
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
| | - John C. Gore
- Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
- Department of Physics and Astronomy, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
29
|
Lee HH, Tian Q, Sheft M, Coronado-Leija R, Ramos-Llorden G, Abdollahzadeh A, Fieremans E, Novikov DS, Huang SY. The influence of axonal beading and undulation on axonal diameter mapping. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537494. [PMID: 37131702 PMCID: PMC10153226 DOI: 10.1101/2023.04.19.537494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We consider the effect of non-cylindrical axonal shape on axonal diameter mapping with diffusion MRI. Practical sensitivity to axon diameter is attained at strong diffusion weightings b , where the deviation from the 1 / b scaling yields the finite transverse diffusivity, which is then translated into axon diameter. While axons are usually modeled as perfectly straight, impermeable cylinders, the local variations in diameter (caliber variation or beading) and direction (undulation) have been observed in microscopy data of human axons. Here we quantify the influence of cellular-level features such as caliber variation and undulation on axon diameter estimation. For that, we simulate the diffusion MRI signal in realistic axons segmented from 3-dimensional electron microscopy of a human brain sample. We then create artificial fibers with the same features and tune the amplitude of their caliber variations and undulations. Numerical simulations of diffusion in fibers with such tunable features show that caliber variations and undulations result in under- and over-estimation of axon diameters, correspondingly; this bias can be as large as 100%. Given that increased axonal beading and undulations have been observed in pathological tissues, such as traumatic brain injury and ischemia, the interpretation of axon diameter alterations in pathology may be significantly confounded.
Collapse
Affiliation(s)
- Hong-Hsi Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Maxina Sheft
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard-MIT Health Sciences and Technology, Cambridge, MA 02139, USA
| | - Ricardo Coronado-Leija
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Gabriel Ramos-Llorden
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| | - Ali Abdollahzadeh
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Els Fieremans
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Dmitry S. Novikov
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA
- Center for Advanced Imaging Innovation and Research (CAI2R), New York University School of Medicine, New York, NY 10016, USA
| | - Susie Y. Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA 02129,USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Li C, Fieremans E, Novikov DS, Ge Y, Zhang J. Measuring water exchange on a preclinical MRI system using filter exchange and diffusion time dependent kurtosis imaging. Magn Reson Med 2023; 89:1441-1455. [PMID: 36404493 PMCID: PMC9892228 DOI: 10.1002/mrm.29536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/22/2022]
Abstract
PURPOSE Filter exchange imaging (FEXI) and diffusion time (t)-dependent diffusion kurtosis imaging (DKI(t)) are both sensitive to water exchange between tissue compartments. The restrictive effects of tissue microstructure, however, introduce bias to the exchange rate obtained by these two methods, as their interpretation conventionally rely on the Kärger model of barrier limited exchange between Gaussian compartments. Here, we investigated whether FEXI and DKI(t) can provide comparable exchange rates in ex vivo mouse brains. THEORY AND METHODS FEXI and DKI(t) data were acquired from ex vivo mouse brains on a preclinical MRI system. Phase cycling and negative slice prewinder gradients were used to minimize the interferences from imaging gradients. RESULTS In the corpus callosum, apparent exchange rate (AXR) from FEXI correlated with the exchange rate (the inverse of exchange time, 1/τex ) from DKI(t) along the radial direction. In comparison, discrepancies between FEXI and DKI(t) were found in the cortex due to low filter efficiency and confounding effects from tissue microstructure. CONCLUSION The results suggest that FEXI and DKI(t) are sensitive to the same exchange processes in white matter when separated from restrictive effects of microstructure. The complex microstructure in gray matter, with potential exchange among multiple compartments and confounding effects of microstructure, still pose a challenge for FEXI and DKI(t).
Collapse
Affiliation(s)
- Chenyang Li
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
- Vilcek Institute of Graduate Biomedical Sciences, NYU Grossman School of Medicine, New York, NY, USA
| | - Els Fieremans
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Dmitry S. Novikov
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Yulin Ge
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| | - Jiangyang Zhang
- Department of Radiology, Center for Biomedical Imaging, NYU Grossman School of Medicine, New York, NY, USA
| |
Collapse
|
31
|
Wichtmann BD, Fan Q, Eskandarian L, Witzel T, Attenberger UI, Pieper CC, Schad L, Rosen BR, Wald LL, Huang SY, Nummenmaa A. Linear multi-scale modeling of diffusion MRI data: A framework for characterization of oriented structures across length scales. Hum Brain Mapp 2023; 44:1496-1514. [PMID: 36477997 PMCID: PMC9921225 DOI: 10.1002/hbm.26143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DW-MRI) has evolved to provide increasingly sophisticated investigations of the human brain's structural connectome in vivo. Restriction spectrum imaging (RSI) is a method that reconstructs the orientation distribution of diffusion within tissues over a range of length scales. In its original formulation, RSI represented the signal as consisting of a spectrum of Gaussian diffusion response functions. Recent technological advances have enabled the use of ultra-high b-values on human MRI scanners, providing higher sensitivity to intracellular water diffusion in the living human brain. To capture the complex diffusion time dependence of the signal within restricted water compartments, we expand upon the RSI approach to represent restricted water compartments with non-Gaussian response functions, in an extended analysis framework called linear multi-scale modeling (LMM). The LMM approach is designed to resolve length scale and orientation-specific information with greater specificity to tissue microstructure in the restricted and hindered compartments, while retaining the advantages of the RSI approach in its implementation as a linear inverse problem. Using multi-shell, multi-diffusion time DW-MRI data acquired with a state-of-the-art 3 T MRI scanner equipped with 300 mT/m gradients, we demonstrate the ability of the LMM approach to distinguish different anatomical structures in the human brain and the potential to advance mapping of the human connectome through joint estimation of the fiber orientation distributions and compartment size characteristics.
Collapse
Affiliation(s)
- Barbara D. Wichtmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Qiuyun Fan
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Department of Biomedical Engineering, College of Precision Instruments and Optoelectronics EngineeringTianjin UniversityTianjinChina
| | - Laleh Eskandarian
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Ulrike I. Attenberger
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Claus C. Pieper
- Department of Diagnostic and Interventional RadiologyUniversity Hospital BonnBonnGermany
| | - Lothar Schad
- Computer Assisted Clinical Medicine, Mannheim Institute for Intelligent Systems in Medicine, Medical Faculty MannheimHeidelberg UniversityMannheimGermany
| | - Bruce R. Rosen
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| | - Lawrence L. Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Susie Y. Huang
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
- Harvard‐MIT Division of Health Sciences and TechnologyMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Aapo Nummenmaa
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General HospitalCharlestownMassachusettsUSA
| |
Collapse
|
32
|
Hennel F, Dillinger H, Leupold J, Pruessmann KP. Fourier transform temporal diffusion spectroscopy. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2023; 348:107401. [PMID: 36774713 DOI: 10.1016/j.jmr.2023.107401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/04/2023] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
Temporal diffusion spectroscopy (TDS) currently uses the oscillating gradient spin echo (OGSE) experiment to measure the spectral density of translational velocity autocorrelation at single frequencies. Due to timing restrictions imposed by the transverse relaxation, the frequency selectivity and the sampling density of OGSE are limited, especially at low frequencies. We propose to overcome this problem by adopting the principles of Fourier transform spectroscopy. The new method of Fourier transform TDS (FTDS) uses two broadband gradient waveforms with different relative delays to make the spin echo attenuation sensitive to a broad range of diffusion frequencies with different harmonic modulations and calculates the spectrum by discrete Fourier transform. The method was validated by a measurement of diffusion spectra in highly restrictive tissues of a celery stalk and provided results consistent with OGSE, however, on a denser frequency grid.
Collapse
Affiliation(s)
- Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Hannes Dillinger
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Jochen Leupold
- Division of Medical Physics, Department of Diagnostic and Interventional Radiology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Klaas P Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
33
|
Pizzolato M, Canales-Rodríguez EJ, Andersson M, Dyrby TB. Axial and radial axonal diffusivities and radii from single encoding strongly diffusion-weighted MRI. Med Image Anal 2023; 86:102767. [PMID: 36867913 DOI: 10.1016/j.media.2023.102767] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 12/13/2022] [Accepted: 02/08/2023] [Indexed: 02/18/2023]
Abstract
We enable the estimation of the per-axon axial diffusivity from single encoding, strongly diffusion-weighted, pulsed gradient spin echo data. Additionally, we improve the estimation of the per-axon radial diffusivity compared to estimates based on spherical averaging. The use of strong diffusion weightings in magnetic resonance imaging (MRI) allows to approximate the signal in white matter as the sum of the contributions from only axons. At the same time, spherical averaging leads to a major simplification of the modeling by removing the need to explicitly account for the unknown distribution of axonal orientations. However, the spherically averaged signal acquired at strong diffusion weightings is not sensitive to the axial diffusivity, which cannot therefore be estimated although needed for modeling axons - especially in the context of multi-compartmental modeling. We introduce a new general method for the estimation of both the axial and radial axonal diffusivities at strong diffusion weightings based on kernel zonal modeling. The method could lead to estimates that are free from partial volume bias with gray matter or other isotropic compartments. The method is tested on publicly available data from the MGH Adult Diffusion Human Connectome project. We report reference values of axonal diffusivities based on 34 subjects, and derive estimates of axonal radii from only two shells. The estimation problem is also addressed from the angle of the required data preprocessing, the presence of biases related to modeling assumptions, current limitations, and future possibilities.
Collapse
Affiliation(s)
- Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark.
| | | | - Mariam Andersson
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| | - Tim B Dyrby
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kgs. Lyngby, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Copenhagen, Denmark
| |
Collapse
|
34
|
Gomolka RS, Hablitz LM, Mestre H, Giannetto M, Du T, Hauglund NL, Xie L, Peng W, Martinez PM, Nedergaard M, Mori Y. Loss of aquaporin-4 results in glymphatic system dysfunction via brain-wide interstitial fluid stagnation. eLife 2023; 12:e82232. [PMID: 36757363 PMCID: PMC9995113 DOI: 10.7554/elife.82232] [Citation(s) in RCA: 71] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 02/08/2023] [Indexed: 02/10/2023] Open
Abstract
The glymphatic system is a fluid transport network of cerebrospinal fluid (CSF) entering the brain along arterial perivascular spaces, exchanging with interstitial fluid (ISF), ultimately establishing directional clearance of interstitial solutes. CSF transport is facilitated by the expression of aquaporin-4 (AQP4) water channels on the perivascular endfeet of astrocytes. Mice with genetic deletion of AQP4 (AQP4 KO) exhibit abnormalities in the brain structure and molecular water transport. Yet, no studies have systematically examined how these abnormalities in structure and water transport correlate with glymphatic function. Here, we used high-resolution 3D magnetic resonance (MR) non-contrast cisternography, diffusion-weighted MR imaging (MR-DWI) along with intravoxel-incoherent motion (IVIM) DWI, while evaluating glymphatic function using a standard dynamic contrast-enhanced MR imaging to better understand how water transport and glymphatic function is disrupted after genetic deletion of AQP4. AQP4 KO mice had larger interstitial spaces and total brain volumes resulting in higher water content and reduced CSF space volumes, despite similar CSF production rates and vascular density compared to wildtype mice. The larger interstitial fluid volume likely resulted in increased slow but not fast MR diffusion measures and coincided with reduced glymphatic influx. This markedly altered brain fluid transport in AQP4 KO mice may result from a reduction in glymphatic clearance, leading to enlargement and stagnation of fluid in the interstitial space. Overall, diffusion MR is a useful tool to evaluate glymphatic function and may serve as valuable translational biomarker to study glymphatics in human disease.
Collapse
Affiliation(s)
| | - Lauren M Hablitz
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Humberto Mestre
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- Department of Neurology, University of PennsylvaniaPhiladelphiaUnited States
| | - Michael Giannetto
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Ting Du
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
- School of Pharmacy, China Medical UniversityShenyangChina
| | | | - Lulu Xie
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Weiguo Peng
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | | | - Maiken Nedergaard
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
- Center for Translational Neuromedicine, University of Rochester Medical CenterRochesterUnited States
| | - Yuki Mori
- Center for Translational Neuromedicine, University of CopenhagenCopenhagenDenmark
| |
Collapse
|
35
|
Shih NC, Kurniawan ND, Cabeen RP, Korobkova L, Wong E, Chui HC, Clark KA, Miller CA, Hawes D, Jones KT, Sepehrband F. Microstructural mapping of dentate gyrus pathology in Alzheimer's disease: A 16.4 Tesla MRI study. Neuroimage Clin 2023; 37:103318. [PMID: 36630864 PMCID: PMC9841366 DOI: 10.1016/j.nicl.2023.103318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/07/2023]
Abstract
The dentate gyrus (DG) is an integral portion of the hippocampal formation, and it is composed of three layers. Quantitative magnetic resonance (MR) imaging has the capability to map brain tissue microstructural properties which can be exploited to investigate neurodegeneration in Alzheimer's disease (AD). However, assessing subtle pathological changes within layers requires high resolution imaging and histological validation. In this study, we utilized a 16.4 Tesla scanner to acquire ex vivo multi-parameter quantitative MRI measures in human specimens across the layers of the DG. Using quantitative diffusion tensor imaging (DTI) and multi-parameter MR measurements acquired from AD (N = 4) and cognitively normal control (N = 6) tissues, we performed correlation analyses with histological measurements. Here, we found that quantitative MRI measures were significantly correlated with neurofilament and phosphorylated Tau density, suggesting sensitivity to layer-specific changes in the DG of AD tissues.
Collapse
Affiliation(s)
- Nien-Chu Shih
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Nyoman D Kurniawan
- Center for Advanced Imaging, The University of Queensland, Brisbane 4072, Australia
| | - Ryan P Cabeen
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Laura Korobkova
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA 90089. USA
| | - Ellen Wong
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Neurology, Rancho Los Amigos National Rehabilitation Center, Downey, CA 90242, USA
| | - Helena C Chui
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Kristi A Clark
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Carol A Miller
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Debra Hawes
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Department of Pathology and Laboratory Medicine, Children's Hospital of Los Angeles, Los Angeles, CA 90033, USA
| | - Kymry T Jones
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| | - Farshid Sepehrband
- USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA.
| |
Collapse
|
36
|
Chakwizira A, Westin C, Brabec J, Lasič S, Knutsson L, Szczepankiewicz F, Nilsson M. Diffusion MRI with pulsed and free gradient waveforms: Effects of restricted diffusion and exchange. NMR IN BIOMEDICINE 2023; 36:e4827. [PMID: 36075110 PMCID: PMC10078514 DOI: 10.1002/nbm.4827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 08/27/2022] [Accepted: 09/06/2022] [Indexed: 05/06/2023]
Abstract
Monitoring time dependence with diffusion MRI yields observables sensitive to compartment sizes (restricted diffusion) and membrane permeability (water exchange). However, restricted diffusion and exchange have opposite effects on the diffusion-weighted signal, which can lead to errors in parameter estimates. In this work, we propose a signal representation that incorporates the effects of both restricted diffusion and exchange up to second order in b-value and is compatible with gradient waveforms of arbitrary shape. The representation features mappings from a gradient waveform to two scalars that separately control the sensitivity to restriction and exchange. We demonstrate that these scalars span a two-dimensional space that can be used to choose waveforms that selectively probe restricted diffusion or exchange, eliminating the correlation between the two phenomena. We found that waveforms with specific but unconventional shapes provide an advantage over conventional pulsed and oscillating gradient acquisitions. We also show that parametrization of waveforms into a two-dimensional space can be used to understand protocols from other approaches that probe restricted diffusion and exchange. For example, we found that the variation of mixing time in filter-exchange imaging corresponds to variation of our exchange-weighting scalar at a fixed value of the restriction-weighting scalar. The proposed signal representation was evaluated using Monte Carlo simulations in identical parallel cylinders with hexagonal and random packing as well as parallel cylinders with gamma-distributed radii. Results showed that the approach is sensitive to sizes in the interval 4-12 μm and exchange rates in the simulated range of 0 to 20 s - 1 , but also that there is a sensitivity to the extracellular geometry. The presented theory constitutes a simple and intuitive description of how restricted diffusion and exchange influence the signal as well as a guide to protocol design capable of separating the two effects.
Collapse
Affiliation(s)
- Arthur Chakwizira
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Carl‐Fredrik Westin
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Jan Brabec
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
| | - Samo Lasič
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital ‐ Amager and HvidovreCopenhagenDenmark
- Random Walk Imaging ABLundSweden
| | - Linda Knutsson
- Department of Medical Radiation Physics, LundLund UniversityLundSweden
- Russell H. Morgan Department of Radiology and Radiological ScienceJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- F. M. Kirby Research Center for Functional Brain ImagingKennedy Krieger InstituteBaltimoreMarylandUSA
| | | | - Markus Nilsson
- Department of Clinical Sciences Lund, RadiologyLund UniversityLundSweden
| |
Collapse
|
37
|
Jelescu IO, de Skowronski A, Geffroy F, Palombo M, Novikov DS. Neurite Exchange Imaging (NEXI): A minimal model of diffusion in gray matter with inter-compartment water exchange. Neuroimage 2022; 256:119277. [PMID: 35523369 PMCID: PMC10363376 DOI: 10.1016/j.neuroimage.2022.119277] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/26/2022] [Accepted: 05/01/2022] [Indexed: 01/18/2023] Open
Abstract
Biophysical models of diffusion in white matter have been center-stage over the past two decades and are essentially based on what is now commonly referred to as the "Standard Model" (SM) of non-exchanging anisotropic compartments with Gaussian diffusion. In this work, we focus on diffusion MRI in gray matter, which requires rethinking basic microstructure modeling blocks. In particular, at least three contributions beyond the SM need to be considered for gray matter: water exchange across the cell membrane - between neurites and the extracellular space; non-Gaussian diffusion along neuronal and glial processes - resulting from structural disorder; and signal contribution from soma. For the first contribution, we propose Neurite Exchange Imaging (NEXI) as an extension of the SM of diffusion, which builds on the anisotropic Kärger model of two exchanging compartments. Using datasets acquired at multiple diffusion weightings (b) and diffusion times (t) in the rat brain in vivo, we investigate the suitability of NEXI to describe the diffusion signal in the gray matter, compared to the other two possible contributions. Our results for the diffusion time window 20-45 ms show minimal diffusivity time-dependence and more pronounced kurtosis decay with time, which is well fit by the exchange model. Moreover, we observe lower signal for longer diffusion times at high b. In light of these observations, we identify exchange as the mechanism that best explains these signal signatures in both low-b and high-b regime, and thereby propose NEXI as the minimal model for gray matter microstructure mapping. We finally highlight multi-b multi-t acquisition protocols as being best suited to estimate NEXI model parameters reliably. Using this approach, we estimate the inter-compartment water exchange time to be 15 - 60 ms in the rat cortex and hippocampus in vivo, which is of the same order or shorter than the diffusion time in typical diffusion MRI acquisitions. This suggests water exchange as an essential component for interpreting diffusion MRI measurements in gray matter.
Collapse
Affiliation(s)
- Ileana O Jelescu
- CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland; Department of Radiology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; School of Biology and Medicine, University of Lausanne (UNIL), Lausanne, Switzerland.
| | - Alexandre de Skowronski
- CIBM Center for Biomedical Imaging, Animal Imaging and Technology, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | | | - Marco Palombo
- School of Psychology, Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, UK; School of Computer Science and Informatics, Cardiff University, Cardiff, UK; Department of Computer Science, Centre for Medical Image Computing, University College London, London, UK
| | - Dmitry S Novikov
- Department of Radiology, Center for Biomedical Imaging, New York University School of Medicine, New York, NY, USA
| |
Collapse
|
38
|
Yendiki A, Aggarwal M, Axer M, Howard AF, van Cappellen van Walsum AM, Haber SN. Post mortem mapping of connectional anatomy for the validation of diffusion MRI. Neuroimage 2022; 256:119146. [PMID: 35346838 PMCID: PMC9832921 DOI: 10.1016/j.neuroimage.2022.119146] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 03/02/2022] [Accepted: 03/23/2022] [Indexed: 01/13/2023] Open
Abstract
Diffusion MRI (dMRI) is a unique tool for the study of brain circuitry, as it allows us to image both the macroscopic trajectories and the microstructural properties of axon bundles in vivo. The Human Connectome Project ushered in an era of impressive advances in dMRI acquisition and analysis. As a result of these efforts, the quality of dMRI data that could be acquired in vivo improved substantially, and large collections of such data became widely available. Despite this progress, the main limitation of dMRI remains: it does not image axons directly, but only provides indirect measurements based on the diffusion of water molecules. Thus, it must be validated by methods that allow direct visualization of axons but that can only be performed in post mortem brain tissue. In this review, we discuss methods for validating the various features of connectional anatomy that are extracted from dMRI, both at the macro-scale (trajectories of axon bundles), and at micro-scale (axonal orientations and other microstructural properties). We present a range of validation tools, including anatomic tracer studies, Klingler's dissection, myelin stains, label-free optical imaging techniques, and others. We provide an overview of the basic principles of each technique, its limitations, and what it has taught us so far about the accuracy of different dMRI acquisition and analysis approaches.
Collapse
Affiliation(s)
- Anastasia Yendiki
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States,Corresponding author (A. Yendiki)
| | - Manisha Aggarwal
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Markus Axer
- Forschungszentrum Jülich, Institute of Neuroscience and Medicine, Jülich, Germany,Department of Physics, University of Wuppertal Germany
| | - Amy F.D. Howard
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Anne-Marie van Cappellen van Walsum
- Department of Medical Imaging, Anatomy, Radboud University Medical Center, Nijmegen, the Netherland,Cognition and Behaviour, Donders Institute for Brain, Nijmegen, the Netherland
| | - Suzanne N. Haber
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY, United States,McLean Hospital, Belmont, MA, United States
| |
Collapse
|
39
|
Filipiak P, Shepherd T, Lin YC, Placantonakis DG, Boada FE, Baete SH. Performance of orientation distribution function-fingerprinting with a biophysical multicompartment diffusion model. Magn Reson Med 2022; 88:418-435. [PMID: 35225365 PMCID: PMC9142101 DOI: 10.1002/mrm.29208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022]
Abstract
PURPOSE Orientation Distribution Function (ODF) peak finding methods typically fail to reconstruct fibers crossing at shallow angles below 40°, leading to errors in tractography. ODF-Fingerprinting (ODF-FP) with the biophysical multicompartment diffusion model allows for breaking this barrier. METHODS A randomized mechanism to generate a multidimensional ODF-dictionary that covers biologically plausible ranges of intra- and extra-axonal diffusivities and fraction volumes is introduced. This enables ODF-FP to address the high variability of brain tissue. The performance of the proposed approach is evaluated on both numerical simulations and a reconstruction of major fascicles from high- and low-resolution in vivo diffusion images. RESULTS ODF-FP with the suggested modifications correctly identifies fibers crossing at angles as shallow as 10 degrees in the simulated data. In vivo, our approach reaches 56% of true positives in determining fiber directions, resulting in visibly more accurate reconstruction of pyramidal tracts, arcuate fasciculus, and optic radiations than the state-of-the-art techniques. Moreover, the estimated diffusivity values and fraction volumes in corpus callosum conform with the values reported in the literature. CONCLUSION The modified ODF-FP outperforms commonly used fiber reconstruction methods at shallow angles, which improves deterministic tractography outcomes of major fascicles. In addition, the proposed approach allows for linearization of the microstructure parameters fitting problem.
Collapse
Affiliation(s)
- Patryk Filipiak
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Timothy Shepherd
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Ying-Chia Lin
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, NYU Langone Health, New York, NY, USA
| | - Dimitris G. Placantonakis
- Department of Neurosurgery, Perlmutter Cancer Center, Neuroscience Institute, Kimmel Center for Stem Cell Biology, NYU Langone Health, New York, NY, USA
| | - Fernando E. Boada
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, NYU Langone Health, New York, NY, USA
- Radiological Sciences Laboratory and Molecular Imaging Program at Stanford, Department of Radiology, Stanford University, Stanford, CA
| | - Steven H. Baete
- Center for Advanced Imaging Innovation and Research (CAIR), Department of Radiology, NYU Langone Health, New York, NY, USA
| |
Collapse
|
40
|
Olesen JL, Østergaard L, Shemesh N, Jespersen SN. Diffusion time dependence, power-law scaling, and exchange in gray matter. Neuroimage 2022; 251:118976. [PMID: 35168088 PMCID: PMC8961002 DOI: 10.1016/j.neuroimage.2022.118976] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/24/2021] [Accepted: 02/04/2022] [Indexed: 12/27/2022] Open
Abstract
Characterizing neural tissue microstructure is a critical goal for future neuroimaging. Diffusion MRI (dMRI) provides contrasts that reflect diffusing spins' interactions with myriad microstructural features of biological systems. However, the specificity of dMRI remains limited due to the ambiguity of its signals vis-à-vis the underlying microstructure. To improve specificity, biophysical models of white matter (WM) typically express dMRI signals according to the Standard Model (SM) and have more recently in gray matter (GM) taken spherical compartments into account (the SANDI model) in attempts to represent cell soma. The validity of the assumptions underlying these models, however, remains largely undetermined, especially in GM. To validate these assumptions experimentally, observing their unique, functional properties, such as the b-1/2 power-law associated with one-dimensional diffusion, has emerged as a fruitful strategy. The absence of this signature in GM, in turn, has been explained by neurite water exchange, non-linear morphology, and/or by obscuring soma signal contributions. Here, we present diffusion simulations in realistic neurons demonstrating that curvature and branching does not destroy the stick power-law behavior in impermeable neurites, but also that their signal is drowned by the soma signal under typical experimental conditions. Nevertheless, by studying the GM dMRI signal's behavior as a function of diffusion weighting as well as time, we identify an attainable experimental regime in which the neurite signal dominates. Furthermore, we find that exchange-driven time dependence produces a signal behavior opposite to that which would be expected from restricted diffusion, thereby providing a functional signature that disambiguates the two effects. We present data from dMRI experiments in ex vivo rat brain at ultrahigh field of 16.4T and observe a time dependence that is consistent with substantial exchange but also with a GM stick power-law. The first finding suggests significant water exchange between neurites and the extracellular space while the second suggests a small sub-population of impermeable neurites. To quantify these observations, we harness the Kärger exchange model and incorporate the corresponding signal time dependence in the SM and SANDI models.
Collapse
Affiliation(s)
- Jonas L Olesen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Noam Shemesh
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Sune N Jespersen
- Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark.
| |
Collapse
|
41
|
Spees WM, Sukstanskii AL, Bretthorst GL, Neil JJ, Ackerman JJH. Rat Brain Global Ischemia-Induced Diffusion Changes Revisited: Biophysical Modeling of the Water and NAA MR "Diffusion Signal". Magn Reson Med 2022; 88:1333-1346. [PMID: 35452137 DOI: 10.1002/mrm.29262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 11/06/2022]
Abstract
PURPOSE To assess changes in intracellular diffusion as a mechanism for the reduction in water ADC that accompanies brain injury. Using NAA as a marker of neuronal cytoplasmic diffusion, NAA diffusion was measured before and after global ischemia (immediately postmortem) in the female Sprague-Dawley rat. METHODS Diffusion-weighted PRESS spectra, with diffusion encoding in a single direction, were acquired from large voxels of rat brain gray matter in vivo and postischemia employing either pairs of pulsed half-sine-shaped gradients (in vivo and postischemia, bmax = 19 ms/μm2 ) or sinusoidal oscillating gradients (in vivo only) with frequencies of 99.2-250 Hz. A 2D randomly oriented cylinder (neurite) model gave estimates of longitudinal and transverse diffusivities (DL and DT , respectively). In this model, DL represents the "free" diffusivity of NAA, whereas DT reflects highly restricted diffusion. Using oscillating gradients, the frequency dependence of DT [DT (ω)] gave estimates of the cylinder (axon/dendrite) radius. RESULTS A 10% decrease in DL,NAA followed global ischemia, dropping from 0.391 ± 0.012 μm2 /ms to 0.350 ± 0.009 μm2 /ms. Modeling DT,NAA (ω) provided an estimate of the neurite radius of 1.0 ± 0.6 μm. CONCLUSION Whereas the increase in apparent intraneuronal viscosity suggested by changes in DL,NAA may contribute to the overall reduction in water ADC associated with brain injury, it is not sufficient to be the sole explanation. Estimates of neurite radius based on DT (ω) were consistent with literature values.
Collapse
Affiliation(s)
- William M Spees
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Alex L Sukstanskii
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - G Larry Bretthorst
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Jeffrey J Neil
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Neurology, Washington University School of Medicine, St. Louis, Missouri.,Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri
| | - Joseph J H Ackerman
- Biomedical MR Laboratory, Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri.,Department of Chemistry, Washington University, St. Louis, Missouri.,Department of Internal Medicine, Washington University School of Medicine, St. Louis, Missouri.,Alvin J Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
42
|
Oliveira R, Pelentritou A, Di Domenicantonio G, De Lucia M, Lutti A. In vivo Estimation of Axonal Morphology From Magnetic Resonance Imaging and Electroencephalography Data. Front Neurosci 2022; 16:874023. [PMID: 35527816 PMCID: PMC9070985 DOI: 10.3389/fnins.2022.874023] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/24/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose We present a novel approach that allows the estimation of morphological features of axonal fibers from data acquired in vivo in humans. This approach allows the assessment of white matter microscopic properties non-invasively with improved specificity. Theory The proposed approach is based on a biophysical model of Magnetic Resonance Imaging (MRI) data and of axonal conduction velocity estimates obtained with Electroencephalography (EEG). In a white matter tract of interest, these data depend on (1) the distribution of axonal radius [P(r)] and (2) the g-ratio of the individual axons that compose this tract [g(r)]. P(r) is assumed to follow a Gamma distribution with mode and scale parameters, M and θ, and g(r) is described by a power law with parameters α and β. Methods MRI and EEG data were recorded from 14 healthy volunteers. MRI data were collected with a 3T scanner. MRI-measured g-ratio maps were computed and sampled along the visual transcallosal tract. EEG data were recorded using a 128-lead system with a visual Poffenberg paradigm. The interhemispheric transfer time and axonal conduction velocity were computed from the EEG current density at the group level. Using the MRI and EEG measures and the proposed model, we estimated morphological properties of axons in the visual transcallosal tract. Results The estimated interhemispheric transfer time was 11.72 ± 2.87 ms, leading to an average conduction velocity across subjects of 13.22 ± 1.18 m/s. Out of the 4 free parameters of the proposed model, we estimated θ – the width of the right tail of the axonal radius distribution – and β – the scaling factor of the axonal g-ratio, a measure of fiber myelination. Across subjects, the parameter θ was 0.40 ± 0.07 μm and the parameter β was 0.67 ± 0.02 μm−α. Conclusion The estimates of axonal radius and myelination are consistent with histological findings, illustrating the feasibility of this approach. The proposed method allows the measurement of the distribution of axonal radius and myelination within a white matter tract, opening new avenues for the combined study of brain structure and function, and for in vivo histological studies of the human brain.
Collapse
|
43
|
Yang Q, Reutens DC, Vegh V. Generalisation of continuous time random walk to anomalous diffusion MRI models with an age-related evaluation of human corpus callosum. Neuroimage 2022; 250:118903. [PMID: 35033674 DOI: 10.1016/j.neuroimage.2022.118903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/07/2021] [Accepted: 01/10/2022] [Indexed: 12/22/2022] Open
Abstract
Diffusion MRI measures of the human brain provide key insight into microstructural variations across individuals and into the impact of central nervous system diseases and disorders. One approach to extract information from diffusion signals has been to use biologically relevant analytical models to link millimetre scale diffusion MRI measures with microscale influences. The other approach has been to represent diffusion as an anomalous transport process and infer microstructural information from the different anomalous diffusion equation parameters. In this study, we investigated how parameters of various anomalous diffusion models vary with age in the human brain white matter, particularly focusing on the corpus callosum. We first unified several established anomalous diffusion models (the super-diffusion, sub-diffusion, quasi-diffusion and fractional Bloch-Torrey models) under the continuous time random walk modelling framework. This unification allows a consistent parameter fitting strategy to be applied from which meaningful model parameter comparisons can be made. We then provided a novel way to derive the diffusional kurtosis imaging (DKI) model, which is shown to be a degree two approximation of the sub-diffusion model. This link between the DKI and sub-diffusion models led to a new robust technique for generating maps of kurtosis and diffusivity using the sub-diffusion parameters βSUB and DSUB. Superior tissue contrast is achieved in kurtosis maps based on the sub-diffusion model. 7T diffusion weighted MRI data for 65 healthy participants in the age range 19-78 years was used in this study. Results revealed that anomalous diffusion model parameters α and β have shown consistent positive correlation with age in the corpus callosum, indicating α and β are sensitive to tissue microstructural changes in ageing.
Collapse
Affiliation(s)
- Qianqian Yang
- School of Mathematical Sciences, Faculty of Science, Queensland University of Technology, Brisbane 4000, Australia.
| | - David C Reutens
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane 4072, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, University of Queensland, Brisbane 4072, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, Brisbane 4072, Australia
| |
Collapse
|
44
|
Novello L, Henriques RN, Ianuş A, Feiweier T, Shemesh N, Jovicich J. In vivo Correlation Tensor MRI reveals microscopic kurtosis in the human brain on a clinical 3T scanner. Neuroimage 2022; 254:119137. [PMID: 35339682 DOI: 10.1016/j.neuroimage.2022.119137] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/17/2022] [Accepted: 03/22/2022] [Indexed: 12/15/2022] Open
Abstract
Diffusion MRI (dMRI) has become one of the most important imaging modalities for noninvasively probing tissue microstructure. Diffusional Kurtosis MRI (DKI) quantifies the degree of non-gaussian diffusion, which in turn has been shown to increase sensitivity towards, e.g., disease and orientation mapping in neural tissue. However, the specificity of DKI is limited as different sources can contribute to the total intravoxel diffusional kurtosis, including: variance in diffusion tensor magnitudes (Kiso), variance due to diffusion anisotropy (Kaniso), and microscopic kurtosis (μK) related to restricted diffusion, microstructural disorder, and/or exchange. Interestingly, μK is typically ignored in diffusion MRI signal modeling as it is assumed to be negligible in neural tissues. However, recently, Correlation Tensor MRI (CTI) based on Double-Diffusion-Encoding (DDE) was introduced for kurtosis source separation, revealing non negligible μK in preclinical imaging. Here, we implemented CTI for the first time on a clinical 3T scanner and investigated the sources of total kurtosis in healthy subjects. A robust framework for kurtosis source separation in humans is introduced, followed by estimation of μK (and the other kurtosis sources) in the healthy brain. Using this clinical CTI approach, we find that μK significantly contributes to total diffusional kurtosis both in gray and white matter tissue but, as expected, not in the ventricles. The first μK maps of the human brain are presented, revealing that the spatial distribution of μK provides a unique source of contrast, appearing different from isotropic and anisotropic kurtosis counterparts. Moreover, group average templates of these kurtosis sources have been generated for the first time, which corroborated our findings at the underlying individual-level maps. We further show that the common practice of ignoring μK and assuming the multiple gaussian component approximation for kurtosis source estimation introduces significant bias in the estimation of other kurtosis sources and, perhaps even worse, compromises their interpretation. Finally, a twofold acceleration of CTI is discussed in the context of potential future clinical applications. We conclude that CTI has much potential for future in vivo microstructural characterizations in healthy and pathological tissue.
Collapse
Affiliation(s)
- Lisa Novello
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy.
| | | | - Andrada Ianuş
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | | | - Noam Shemesh
- Champalimaud Research, Champalimaud Foundation, Lisbon, Portugal
| | - Jorge Jovicich
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Rovereto, Italy
| |
Collapse
|
45
|
Agdestein SD, Tran TN, Li JR. Practical computation of the diffusion MRI signal based on Laplace eigenfunctions: permeable interfaces. NMR IN BIOMEDICINE 2022; 35:e4646. [PMID: 34796990 DOI: 10.1002/nbm.4646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 09/29/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
The complex transverse water proton magnetization subject to diffusion-encoding magnetic field gradient pulses in a heterogeneous medium such as brain tissue can be modeled by the Bloch-Torrey partial differential equation. The spatial integral of the solution of this equation in realistic geometry provides a gold-standard reference model for the diffusion MRI signal arising from different tissue micro-structures of interest. A closed form representation of this reference diffusion MRI signal, called matrix formalism, which makes explicit the link between the Laplace eigenvalues and eigenfunctions of the tissue geometry and its diffusion MRI signal, was derived 20 years ago. In addition, once the Laplace eigendecomposition has been computed and saved, the diffusion MRI signal can be calculated for arbitrary diffusion-encoding sequences and b-values at negligible additional cost. In a previous publication, we presented a simulation framework that we implemented inside the MATLAB-based diffusion MRI simulator SpinDoctor that efficiently computes the matrix formalism representation for biological cells subject to impermeable membrane boundary conditions. In this work, we extend our simulation framework to include geometries that contain permeable cell membranes. We describe the new computational techniques that allowed this generalization and we analyze the effects of the magnitude of the permeability coefficient on the eigendecomposition of the diffusion and Bloch-Torrey operators. This work is another step in bringing advanced mathematical tools and numerical method development to the simulation and modeling of diffusion MRI.
Collapse
Affiliation(s)
| | | | - Jing-Rebecca Li
- INRIA Saclay-Equipe DEFI, CMAP, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
46
|
Ji Y, Hoge WS, Gagoski B, Westin CF, Rathi Y, Ning L. Accelerating joint relaxation-diffusion MRI by integrating time division multiplexing and simultaneous multi-slice (TDM-SMS) strategies. Magn Reson Med 2022; 87:2697-2709. [PMID: 35092081 DOI: 10.1002/mrm.29160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 12/01/2021] [Accepted: 12/27/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE To accelerate the acquisition of relaxation-diffusion imaging by integrating time-division multiplexing (TDM) with simultaneous multi-slice (SMS) for EPI and evaluate imaging quality and diffusion measures. METHODS The time-division multiplexing (TDM) technique and SMS method were integrated to achieve a high slice-acceleration (e.g., 6×) factor for acquiring relaxation-diffusion MRI. Two variants of the sequence, referred to as TDM3e-SMS and TDM2s-SMS, were developed to simultaneously acquire slice groups with three distinct TEs and two slice groups with the same TE, respectively. Both sequences were evaluated on a 3T scanner with in vivo human brains and compared with standard single-band (SB) -EPI and SMS-EPI using diffusion measures and tractography results. RESULTS Experimental results showed that the TDM3e-SMS sequence with total slice acceleration of 6 (multiplexing factor (MP) = 3 × multi-band factor (MB) = 2) provided similar image intensity and microstructure measures compared to standard SMS-EPI with MB = 2, and yielded less bias in intensity compared to standard SMS-EPI with MB = 4. The three sequences showed a similar positive correlation between TE and mean kurtosis (MK) and a negative correlation between TE and mean diffusivity (MD) in white matter. Multi-fiber tractography also shows consistency of results in TE-dependent measures between different sequences. The TDM2s-SMS sequence (MP = 2, MB = 2) also provided imaging measures similar to standard SMS-EPI sequences (MB = 2) for single-TE diffusion imaging. CONCLUSIONS The TDM-SMS sequence can provide additional 2× to 3× acceleration to SMS without degrading imaging quality. With the significant reduction in scan time, TDM-SMS makes joint relaxation-diffusion MRI a feasible technique in neuroimaging research to investigate new markers of brain disorders.
Collapse
Affiliation(s)
- Yang Ji
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Wellcome Centre for Integrative Neuroimaging, FMRIB Division, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - W Scott Hoge
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Borjan Gagoski
- Fetal-Neonatal Neuroimaging and Developmental Science Center, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Carl-Fredrik Westin
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Lipeng Ning
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
47
|
Michael ES, Hennel F, Pruessmann KP. Evaluating diffusion dispersion across an extended range of b-values and frequencies: Exploiting gap-filled OGSE shapes, strong gradients, and spiral readouts. Magn Reson Med 2022; 87:2710-2723. [PMID: 35049104 PMCID: PMC9306807 DOI: 10.1002/mrm.29161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/15/2022]
Abstract
Purpose To address the long echo times and relatively weak diffusion sensitization that typically limit oscillating gradient spin‐echo (OGSE) experiments, an OGSE implementation combining spiral readouts, gap‐filled oscillating gradient shapes providing stronger diffusion encoding, and a high‐performance gradient system is developed here and utilized to investigate the tradeoff between b‐value and maximum OGSE frequency in measurements of diffusion dispersion (i.e., the frequency dependence of diffusivity) in the in vivo human brain. In addition, to assess the effects of the marginal flow sensitivity introduced by these OGSE waveforms, flow‐compensated variants are devised for experimental comparison. Methods Using DTI sequences, OGSE acquisitions were performed on three volunteers at b‐values of 300, 500, and 1000 s/mm2 and frequencies up to 125, 100, and 75 Hz, respectively; scans were performed for gap‐filled oscillating gradient shapes with and without flow sensitivity. Pulsed gradient spin‐echo DTI acquisitions were also performed at each b‐value. Upon reconstruction, mean diffusivity (MD) maps and maps of the diffusion dispersion rate were computed. Results The power law diffusion dispersion model was found to fit best to MD measurements acquired at b = 1000 s/mm2 despite the associated reduction of the spectral range; this observation was consistent with Monte Carlo simulations. Furthermore, diffusion dispersion rates without flow sensitivity were slightly higher than flow‐sensitive measurements. Conclusion The presented OGSE implementation provided an improved depiction of diffusion dispersion and demonstrated the advantages of measuring dispersion at higher b‐values rather than higher frequencies within the regimes employed in this study.
Collapse
Affiliation(s)
- Eric Seth Michael
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Franciszek Hennel
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Klaas Paul Pruessmann
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
48
|
Tian Q, Fan Q, Witzel T, Polackal MN, Ohringer NA, Ngamsombat C, Russo AW, Machado N, Brewer K, Wang F, Setsompop K, Polimeni JR, Keil B, Wald LL, Rosen BR, Klawiter EC, Nummenmaa A, Huang SY. Comprehensive diffusion MRI dataset for in vivo human brain microstructure mapping using 300 mT/m gradients. Sci Data 2022; 9:7. [PMID: 35042861 PMCID: PMC8766594 DOI: 10.1038/s41597-021-01092-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 10/25/2021] [Indexed: 12/27/2022] Open
Abstract
Strong gradient systems can improve the signal-to-noise ratio of diffusion MRI measurements and enable a wider range of acquisition parameters that are beneficial for microstructural imaging. We present a comprehensive diffusion MRI dataset of 26 healthy participants acquired on the MGH-USC 3 T Connectome scanner equipped with 300 mT/m maximum gradient strength and a custom-built 64-channel head coil. For each participant, the one-hour long acquisition systematically sampled the accessible diffusion measurement space, including two diffusion times (19 and 49 ms), eight gradient strengths linearly spaced between 30 mT/m and 290 mT/m for each diffusion time, and 32 or 64 uniformly distributed directions. The diffusion MRI data were preprocessed to correct for gradient nonlinearity, eddy currents, and susceptibility induced distortions. In addition, scan/rescan data from a subset of seven individuals were also acquired and provided. The MGH Connectome Diffusion Microstructure Dataset (CDMD) may serve as a test bed for the development of new data analysis methods, such as fiber orientation estimation, tractography and microstructural modelling.
Collapse
Affiliation(s)
- Qiyuan Tian
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Qiuyun Fan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Maya N Polackal
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Ned A Ohringer
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Chanon Ngamsombat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
| | - Andrew W Russo
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Natalya Machado
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Kristina Brewer
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Boris Keil
- Department of Life Science Engineering, Institute of Medical Physics and Radiation Protection, Giessen, Germany
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
| | - Eric C Klawiter
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
- Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, United States
| | - Aapo Nummenmaa
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States
- Harvard Medical School, Boston, Massachusetts, United States
| | - Susie Y Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, Massachusetts, United States.
- Harvard Medical School, Boston, Massachusetts, United States.
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States.
| |
Collapse
|
49
|
Mordhorst L, Morozova M, Papazoglou S, Fricke B, Oeschger JM, Tabarin T, Rusch H, Jäger C, Geyer S, Weiskopf N, Morawski M, Mohammadi S. Towards a representative reference for MRI-based human axon radius assessment using light microscopy. Neuroimage 2022; 249:118906. [PMID: 35032659 DOI: 10.1016/j.neuroimage.2022.118906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 11/26/2022] Open
Abstract
Non-invasive assessment of axon radii via MRI bears great potential for clinical and neuroscience research as it is a main determinant of the neuronal conduction velocity. However, there is a lack of representative histological reference data at the scale of the cross-section of MRI voxels for validating the MRI-visible, effective radius (reff). Because the current gold standard stems from neuroanatomical studies designed to estimate the bulk-determined arithmetic mean radius (rarith) on small ensembles of axons, it is unsuited to estimate the tail-weighted reff. We propose CNN-based segmentation on high-resolution, large-scale light microscopy (lsLM) data to generate a representative reference for reff. In a human corpus callosum, we assessed estimation accuracy and bias of rarith and reff. Furthermore, we investigated whether mapping anatomy-related variation of rarith and reff is confounded by low-frequency variation of the image intensity, e.g., due to staining heterogeneity. Finally, we analyzed the error due to outstandingly large axons in reff. Compared to rarith, reff was estimated with higher accuracy (maximum normalized-root-mean-square-error of reff: 8.5 %; rarith: 19.5 %) and lower bias (maximum absolute normalized-mean-bias-error of reff: 4.8 %; rarith: 13.4 %). While rarith was confounded by variation of the image intensity, variation of reff seemed anatomy-related. The largest axons contributed between 0.8 % and 2.9 % to reff. In conclusion, the proposed method is a step towards representatively estimating reff at MRI voxel resolution. Further investigations are required to assess generalization to other brains and brain areas with different axon radii distributions.
Collapse
Affiliation(s)
- Laurin Mordhorst
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Maria Morozova
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Sebastian Papazoglou
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Björn Fricke
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Malte Oeschger
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Thibault Tabarin
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Henriette Rusch
- Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Carsten Jäger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Stefan Geyer
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| | - Markus Morawski
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; Paul Flechsig Institute of Brain Research, Medical Faculty, Leipzig University, Leipzig, Germany
| | - Siawoosh Mohammadi
- Institute of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany; Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
50
|
Correlation Tensor MRI deciphers underlying kurtosis sources in stroke. Neuroimage 2021; 247:118833. [PMID: 34929382 DOI: 10.1016/j.neuroimage.2021.118833] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 02/06/2023] Open
Abstract
Noninvasively detecting and characterizing modulations in cellular scale micro-architecture remains a desideratum for contemporary neuroimaging. Diffusion MRI (dMRI) has become the mainstay methodology for probing microstructure, and, in ischemia, its contrasts have revolutionized stroke management. Diffusion kurtosis imaging (DKI) has been shown to significantly enhance the sensitivity of stroke detection compared to its diffusion tensor imaging (DTI) counterparts. However, the interpretation of DKI remains ambiguous as its contrast may arise from competing kurtosis sources related to the anisotropy of tissue components, diffusivity variance across components, and microscopic kurtosis (e.g., arising from cross-sectional variance, structural disorder, and restriction). Resolving these sources may be fundamental for developing more specific imaging techniques for stroke management, prognosis, and understanding its pathophysiology. In this study, we apply Correlation Tensor MRI (CTI) - a double diffusion encoding (DDE) methodology recently introduced for deciphering kurtosis sources based on the unique information captured in DDE's diffusion correlation tensors - to investigate the underpinnings of kurtosis measurements in acute ischemic lesions. Simulations for the different kurtosis sources revealed specific signatures for cross-sectional variance (representing neurite beading), edema, and cell swelling. Ex vivo CTI experiments at 16.4 T were then performed in an experimental photothrombotic stroke model 3 h post-stroke (N = 10), and successfully separated anisotropic, isotropic, and microscopic non-Gaussian diffusion sources in the ischemic lesions. Each of these kurtosis sources provided unique contrasts in the stroked area. Particularly, microscopic kurtosis was shown to be a primary "driver" of total kurtosis upon ischemia; its large increases, coupled with decreases in anisotropic kurtosis, are consistent with the expected elevation in cross-sectional variance, likely linked to beading effects in small objects such as neurites. In vivo experiments at 9.4 T at the same time point (3 h post ischemia, N = 5) demonstrated the stability and relevance of the findings and showed that fixation is not a dominant confounder in our findings. In future studies, the different CTI contrasts may be useful to address current limitations of stroke imaging, e.g., penumbra characterization, distinguishing lesion progression form tissue recovery, and elucidating pathophysiological correlates.
Collapse
|