1
|
Cortes-Ospina M, Baumgartner NW, Nagy C, Noh K, Wang CH, Kao SC. The relationship between cardiorespiratory fitness and resting-state cortical activation: An EEG study on power spectrum density. Int J Psychophysiol 2025; 213:112600. [PMID: 40403976 DOI: 10.1016/j.ijpsycho.2025.112600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 05/16/2025] [Accepted: 05/18/2025] [Indexed: 05/24/2025]
Abstract
Research increasingly supports the role of aerobic exercise and cardiorespiratory fitness (CRF) in enhancing cognitive function and brain health, with studies typically focusing on task-related cognitive performance and neurophysiological measures. However, the extent to which these cognitive benefits of CRF translate to non-task-related brain function, as reflected in resting-state electroencephalogram (EEG), remains largely unexamined. This study investigated the association between CRF, as measured by maximal oxygen consumption (VȮ2max), and resting EEG power in the delta, theta, alpha-1, alpha-2, and beta frequency bands. One hundred and nineteen healthy young adults (58 females, mean age = 22 ± 3 years) completed a graded exercise test to measure VȮ2max and resting-state EEG recording in counterbalanced eyes-open and eyes-closed conditions. After controlling for age, sex, and body mass index (BMI), there was a significant vision effect for all the frequency bands, where power was lower in the eyes-open condition compared to eyes-closed. VȮ2max emerged as a significant predictor of EEG power in the alpha-2 (B = 0.009, SE(B) = 0.003, β = 0.174, p = 0.008) and beta (B = 0.005, SE(B) = 0.002, β = 0.18, p = 0.013) frequency bands. VȮ2max was not related to delta, theta, or alpha-1 power. The CRF-EEG associations selectively observed in faster frequency bands (alpha-2 and beta) suggest that when visual input and related sensory processing are minimized higher CRF may reflect cortical readiness or an optimized neural state theorized to support cognitive engagement. Findings from the current study provide evidence to support the beneficial role of CRF to cognitive health by extending its benefits to resting-state brain function.
Collapse
Affiliation(s)
- Manuela Cortes-Ospina
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Nicholas W Baumgartner
- RUSH Alzheimer's Disease Center, RUSH University Medical Center, Chicago, IL, United States of America
| | - Christian Nagy
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Kyoungmin Noh
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Chun-Hao Wang
- Institute of Physical Education, Health & Leisure Studies, National Cheng Kung University, Tainan City, Taiwan
| | - Shih-Chun Kao
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America.
| |
Collapse
|
2
|
Sun L, Bao L. Neuronal theta oscillation of hippocampal ensemble and memory function. Behav Brain Res 2025; 481:115429. [PMID: 39800078 DOI: 10.1016/j.bbr.2025.115429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 12/26/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025]
Abstract
Memory is the ability to acquire and store information following an experience, which can be retrieved by related context exposure. Pioneering studies have demonstrated that sparsely distributed neuronal ensembles or engram cells can serve as neural substrates for storing and recalling memory traces. Many studies of neuronal ensembles have focused on the hippocampus, and increasing evidence has indicated that the neuronal oscillation is closely associated with hippocampal memory functions, including both encoding and retrieval processes. In particular, the theta synchronization of hippocampal ensembles with other brain regions mediates the retrieval of multiple types of memory. The recent progress of theta oscillations in the formation of memory engrams is reviewed, as well as the increased theta power and neurotransmitter regulation on memory function. Detailed information based on an analysis of hippocampal local theta rhythms is presented. Moreover, the hippocampus theta synchronization with the sensory cortex, prefrontal cortex and amygdala, which mediate different types of memory retrieval, are also reviewed. Together, these findings contribute to understanding the important role of hippocampal theta oscillation in the storage and recall of memory traces.
Collapse
Affiliation(s)
- Lin Sun
- School of Clinical Medicine, Changzhi Medical College, Changzhi, Shanxi Province 046013, China
| | - Lihua Bao
- Department of Neurology, Changzhi People's Hospital, Changzhi, Shanxi Province 046000, China.
| |
Collapse
|
3
|
Ghosh Hajra S, Meltzer JA, Keerthi P, Pappas C, Sekuler AB, Cam-CAN Group, Liu CC. Spontaneous blinking and brain health in aging: Large-scale evaluation of blink-related oscillations across the lifespan. Front Aging Neurosci 2025; 16:1473178. [PMID: 39839308 PMCID: PMC11747640 DOI: 10.3389/fnagi.2024.1473178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample (N = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task. The results showed that BRO responses were present in all age groups, and the associated effects exhibited significant age-related modulations comprising an increase in sensor-level global field power (GFP) and source-level theta and alpha spectral power within the bilateral precuneus. Additionally, the extent of cortical activations also showed an inverted-U relationship with age, consistent with neurocompensation with aging. Crucially, these age-related differences were not observed in the behavioral measures of task performance such as reaction time and accuracy, suggesting that blink-related neural responses during the target detection task are more sensitive in capturing aging-related brain function changes compared to behavioral measures alone. Together, these results suggest that BRO responses are not only present throughout the adult lifespan, but the effects can also capture brain function changes in healthy aging-thus providing a simple yet powerful avenue for evaluating brain health in aging.
Collapse
Affiliation(s)
- Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Prerana Keerthi
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Pappas
- School of Computer Science, McGill University, Hamilton, ON, Canada
| | - Allison B. Sekuler
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | | | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
4
|
Palma GR, Thornberry C, Commins S, Moral RA. Understanding Learning from EEG Data: Combining Machine Learning and Feature Engineering Based on Hidden Markov Models and Mixed Models. Neuroinformatics 2024; 22:487-497. [PMID: 39254794 PMCID: PMC11579152 DOI: 10.1007/s12021-024-09690-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2024] [Indexed: 09/11/2024]
Abstract
Theta oscillations, ranging from 4-8 Hz, play a significant role in spatial learning and memory functions during navigation tasks. Frontal theta oscillations are thought to play an important role in spatial navigation and memory. Electroencephalography (EEG) datasets are very complex, making any changes in the neural signal related to behaviour difficult to interpret. However, multiple analytical methods are available to examine complex data structures, especially machine learning-based techniques. These methods have shown high classification performance, and their combination with feature engineering enhances their capability. This paper proposes using hidden Markov and linear mixed effects models to extract features from EEG data. Based on the engineered features obtained from frontal theta EEG data during a spatial navigation task in two key trials (first, last) and between two conditions (learner and non-learner), we analysed the performance of six machine learning methods on classifying learner and non-learner participants. We also analysed how different standardisation methods used to pre-process the EEG data contribute to classification performance. We compared the classification performance of each trial with data gathered from the same subjects, including solely coordinate-based features, such as idle time and average speed. We found that more machine learning methods perform better classification using coordinate-based data. However, only deep neural networks achieved an area under the ROC curve higher than 80% using the theta EEG data alone. Our findings suggest that standardising the theta EEG data and using deep neural networks enhances the classification of learner and non-learner subjects in a spatial learning task.
Collapse
Affiliation(s)
- Gabriel R Palma
- Hamilton Institute, Maynooth University, Maynooth, Ireland.
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland.
| | - Conor Thornberry
- Department of Psychology, National College of Ireland, Dublin, Ireland
| | - Seán Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Rafael A Moral
- Hamilton Institute, Maynooth University, Maynooth, Ireland
- Department of Mathematics and Statistics, Maynooth University, Maynooth, Ireland
| |
Collapse
|
5
|
Gong X, Yang Y, Xu T, Yao D, Lin S, Chang W. Assessing the Anxiolytic and Relaxation Effects of Cinnamomum camphora Essential Oil in University Students: A Comparative Study of EEG, Physiological Measures, and Psychological Responses. Front Psychol 2024; 15:1423870. [PMID: 39131857 PMCID: PMC11312375 DOI: 10.3389/fpsyg.2024.1423870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024] Open
Abstract
Background Cinnamomum camphora is a commercially important tree species in China, and it's also a common native tree in the forests of southern China. However, literature on the impact of Cinnamomum camphora essential oil (CCEO) on human psychophysiological activity is scarce. Hence, the primary objective of this study was to examine the effect of exposure to CCEO on the functioning of the human autonomic nervous system, electroencephalographic (EEG) activity, and emotional state. Methods Forty-three healthy university students participated. The data collected included heart rate (HR), blood pressure (BP), pulse rate, blood oxygen saturation (SpO2), electroencephalographic (EEG) activity, and the results of the Profile of Mood States (POMS) test. Results A drop in diastolic pressure (DBP) and pulse rate was also noticed after participants inhaled CCEO. Furthermore, EEG studies have demonstrated notable reductions in absolute beta (AB), absolute gamma (AG), absolute high beta (AHB), and relative gamma (RG) power spectra during exposure to CCEO. Conversely, the relative theta (RT) and power spectra values showed a significant increase. Additionally, the finding from POMS indicated that the fragrance evoked positive emotions and suppressed negative feelings. Conclusion The results suggest that exposure to CCEO may promote mental and physical relaxation, facilitate cognitive processes such as memory and attention, and enhance mood states.
Collapse
Affiliation(s)
- Xiangfei Gong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujun Yang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tong Xu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongsheng Yao
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengyu Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weiyin Chang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Laboratory of Virtual Teaching and Research on Forest Therapy Specialty of Taiwan Strait, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
6
|
van Limpt-Broers HAT, Postma M, van Weelden E, Pratesi S, Louwerse MM. Neurophysiological evidence for the overview effect: a virtual reality journey into space. VIRTUAL REALITY 2024; 28:140. [DOI: 10.1007/s10055-024-01035-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 07/05/2024] [Indexed: 01/06/2025]
Abstract
AbstractThe Overview Effect is a complex experience reported by astronauts after viewing Earth from space. Numerous accounts suggest that it leads to increased interconnectedness to other human beings and environmental awareness, comparable to self-transcendence. It can cause fundamental changes in mental models of the world, improved well-being, and stronger appreciation of, and responsibility for Earth. From a cognitive perspective, it is closely linked to the emotion of awe, possibly triggered by the overwhelming perceived vastness of the universe. Given that most research in the domain focuses on self-reports, little is known about potential neurophysiological markers of the Overview Effect. In the experiment reported here, participants viewed an immersive Virtual Reality simulation of a space journey while their brain activity was recorded using electroencephalography (EEG). Post-experimental self-reports confirmed they were able to experience the Overview Effect in the simulated environment. EEG recordings revealed lower spectral power in beta and gamma frequency bands during the defining moments of the Overview Effect. The decrease in spectral power can be associated with reduced mental processing, and a disruption of known mental structures in this context, thereby providing more evidence for the cognitive effects of the experience.
Collapse
|
7
|
Ehrhardt NM, Flöel A, Li SC, Lucchese G, Antonenko D. Brain oscillatory processes related to sequence memory in healthy older adults. Neurobiol Aging 2024; 139:64-72. [PMID: 38626525 DOI: 10.1016/j.neurobiolaging.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/05/2024] [Accepted: 04/02/2024] [Indexed: 04/18/2024]
Abstract
Sequence memory is subject to age-related decline, but the underlying processes are not yet fully understood. We analyzed electroencephalography (EEG) in 21 healthy older (60-80 years) and 26 young participants (20-30 years) and compared time-frequency spectra and theta-gamma phase-amplitude-coupling (PAC) during encoding of the order of visually presented items. In older adults, desynchronization in theta (4-8 Hz) and synchronization in gamma (30-45 Hz) power did not distinguish between subsequently correctly and incorrectly remembered trials, while there was a subsequent memory effect for young adults. Theta-gamma PAC was modulated by item position within a sequence for older but not young adults. Specifically, position within a sequence was coded by higher gamma amplitude for successive theta phases for later correctly remembered trials. Thus, deficient differentiation in theta desynchronization and gamma oscillations during sequence encoding in older adults may reflect neurophysiological correlates of age-related memory decline. Furthermore, our results indicate that sequences are coded by theta-gamma PAC in older adults, but that this mechanism might lose precision in aging.
Collapse
Affiliation(s)
- Nina M Ehrhardt
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany.
| | - Agnes Flöel
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, TU Dresden, Zellescher Weg 17, Dresden 01062, Germany; Centre for Tactile Internet with Human-in-the-Loop, TU Dresden, Dresden 01062, Germany
| | - Guglielmo Lucchese
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany; Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatry University Hospital Zurich, University of Zurich, Lengstrasse 31, Zurich, Switzerland.
| | - Daria Antonenko
- Department of Neurology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße, Greifswald 17475, Germany
| |
Collapse
|
8
|
Xie M, Han M, Liu Z, Li X, Guo C. Effects of congruent emotional contexts during encoding on recognition: An ERPs study. Psychophysiology 2024; 61:e14516. [PMID: 38214362 DOI: 10.1111/psyp.14516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/16/2023] [Accepted: 10/04/2023] [Indexed: 01/13/2024]
Abstract
Past research showed that emotional contexts can impair recognition memory for the target item. Given that item-context congruity may enhance recognition memory, the present study aims to examine the effect of the congruent emotional encoding contexts on recognition memory. Participants studied congruent word-picture pairs (e.g., the word "cow" - a picture describing a cow) and incongruent word-picture pairs (e.g., the word "cow" - a picture describing a goat) and, subsequently, were asked to report the nature of the picture (emotional or neutral). Behavioral results revealed that emotional contexts impaired source but not item recognition, with congruent word-context mitigating this impairment and enhancing item recognition. Neural results from ERPs and theta oscillations found the recollection process, as shown by the LPC old/new effect and theta oscillations, for both item and source recognition across emotional contexts, irrespective of congruity. Meanwhile, the familiarity process as indexed by the FN400 old/new effect was found only for item recognition in congruent emotional contexts. These findings suggest that the congruent relationship of item-context could mitigate the emotion-induced source memory impairment and enhance item memory, with neural results elucidating the memory processes involved in retrieval of emotional information. Specifically, while emotion-related information generally elicits the recollection-based memory process, only congruent emotional information elicits the familiarity-based process.
Collapse
Affiliation(s)
- Miaomiao Xie
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
| | - Meng Han
- School of Psychological and Cognitive Sciences, Peking University, Beijing, China
| | - Zejun Liu
- Department of Psychology, Educational College, Shanghai Normal University, Shanghai, China
| | - Xian Li
- Psychological and Brain Science Department, Johns Hopkins University, Baltimore, Maryland, USA
| | - Chunyan Guo
- Beijing Key Laboratory of Learning and Cognition, Department of Psychology, Capital Normal University, Beijing, China
| |
Collapse
|
9
|
Wang YL, Avigdor T, Hannan S, Abdallah C, Dubeau F, Peter-Derex L, Frauscher B. Intracerebral Dynamics of Sleep Arousals: A Combined Scalp-Intracranial EEG Study. J Neurosci 2024; 44:e0617232024. [PMID: 38471781 PMCID: PMC11026366 DOI: 10.1523/jneurosci.0617-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/05/2024] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
As an intrinsic component of sleep architecture, sleep arousals represent an intermediate state between sleep and wakefulness and are important for sleep-wake regulation. They are defined in an all-or-none manner, whereas they actually present a wide range of scalp-electroencephalography (EEG) activity patterns. It is poorly understood how these arousals differ in their mechanisms. Stereo-EEG (SEEG) provides the unique opportunity to record intracranial activities in superficial and deep structures in humans. Using combined polysomnography and SEEG, we quantitatively categorized arousals during nonrapid eye movement sleep into slow wave (SW) and non-SW arousals based on whether they co-occurred with a scalp-EEG SW event. We then investigated their intracranial correlates in up to 26 brain regions from 26 patients (12 females). Across both arousal types, intracranial theta, alpha, sigma, and beta activities increased in up to 25 regions (p < 0.05; d = 0.06-0.63), while gamma and high-frequency (HF) activities decreased in up to 18 regions across the five brain lobes (p < 0.05; d = 0.06-0.44). Intracranial delta power widely increased across five lobes during SW arousals (p < 0.05 in 22 regions; d = 0.10-0.39), while it widely decreased during non-SW arousals (p < 0.05 in 19 regions; d = 0.10-0.30). Despite these main patterns, unique activities were observed locally in some regions such as the hippocampus and middle cingulate cortex, indicating spatial heterogeneity of arousal responses. Our results suggest that non-SW arousals correspond to a higher level of brain activation than SW arousals. The decrease in HF activities could potentially explain the absence of awareness and recollection during arousals.
Collapse
Affiliation(s)
- Yingqi Laetitia Wang
- Analytical Neurophysiology Lab, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Tamir Avigdor
- Analytical Neurophysiology Lab, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Sana Hannan
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster LA1 4YW, United Kingdom
| | - Chifaou Abdallah
- Analytical Neurophysiology Lab, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - François Dubeau
- Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
| | - Laure Peter-Derex
- Centre de Médecine du Sommeil et des Maladies respiratoires, University Hospital of Lyon, Lyon 1 University, Lyon 69004, France
| | - Birgit Frauscher
- Analytical Neurophysiology Lab, Montreal Neurological Institute, McGill University, Montreal, Quebec H3A 2B4, Canada
- Analytical Neurophysiology Lab, Departments of Neurology & Biomedical Engineering, Duke University, Durham, North Carolina 27705
| |
Collapse
|
10
|
Ostrowski J, Rose M. Increases in pre-stimulus theta and alpha oscillations precede successful encoding of crossmodal associations. Sci Rep 2024; 14:7895. [PMID: 38570599 PMCID: PMC10991485 DOI: 10.1038/s41598-024-58227-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/26/2024] [Indexed: 04/05/2024] Open
Abstract
A central aspect of episodic memory is the formation of associations between stimuli from different modalities. Current theoretical approaches assume a functional role of ongoing oscillatory power and phase in the theta band (3-7 Hz) for the encoding of crossmodal associations. Furthermore, ongoing activity in the theta range as well as alpha (8-12 Hz) and low beta activity (13-20 Hz) before the presentation of a stimulus is thought to modulate subsequent cognitive processing, including processes that are related to memory. In this study, we tested the hypothesis that pre-stimulus characteristics of low frequency activity are relevant for the successful formation of crossmodal memory. The experimental design that was used specifically allowed for the investigation of associative memory independent from individual item memory. Participants (n = 51) were required to memorize associations between audiovisual stimulus pairs and distinguish them from newly arranged ones consisting of the same single stimuli in the subsequent recognition task. Our results show significant differences in the state of pre-stimulus theta and alpha power between remembered and not remembered crossmodal associations, clearly relating increased power to successful recognition. These differences were positively correlated with memory performance, suggesting functional relevance for behavioral measures of associative memory. Further analysis revealed similar effects in the low beta frequency ranges, indicating the involvement of different pre-stimulus-related cognitive processes. Phase-based connectivity measures in the theta band did not differ between remembered and not remembered stimulus pairs. The findings support the assumed functional relevance of theta band oscillations for the formation of associative memory and demonstrate that an increase of theta as well as alpha band oscillations in the pre-stimulus period is beneficial for the establishment of crossmodal memory.
Collapse
Affiliation(s)
- Jan Ostrowski
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| | - Michael Rose
- Department of Systems Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
11
|
He X, Qin S, Yu G, Zhang S, Yi F. Study on the Effect of Dalbergia pinnata (Lour.) Prain Essential Oil on Electroencephalography upon Stimulation with Different Auditory Effects. Molecules 2024; 29:1584. [PMID: 38611863 PMCID: PMC11013205 DOI: 10.3390/molecules29071584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Dalbergia pinnata (Lour.) Prain (D. pinnata) is a valuable medicinal plant, and its volatile parts have a pleasant aroma. In recent years, there have been a large number of studies investigating the effect of aroma on human performance. However, the effect of the aroma of D. pinnata on human psychophysiological activity has not been reported. Few reports have been made about the effects of aroma and sound on human electroencephalographic (EEG) activity. This study aimed to investigate the effects of D. pinnata essential oil in EEG activity response to various auditory stimuli. In the EEG study, 30 healthy volunteers (15 men and 15 women) participated. The electroencephalogram changes of participants during the essential oil (EO) of D. pinnata inhalation under white noise, pink noise and traffic noise stimulations were recorded. EEG data from 30 electrodes placed on the scalp were analyzed according to the international 10-20 system. The EO of D. pinnata had various effects on the brain when subjected to different auditory stimuli. In EEG studies, delta waves increased by 20% in noiseless and white noise environments, a change that may aid sleep and relaxation. In the presence of pink noise and traffic noise, alpha and delta wave activity (frontal pole and frontal lobe) increased markedly when inhaling the EO of D. pinnata, a change that may help reduce anxiety. When inhaling the EO of D. pinnata with different auditory stimuli, women are more likely to relax and get sleepy compared to men.
Collapse
Affiliation(s)
| | | | | | | | - Fengping Yi
- Department of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China; (X.H.); (S.Q.); (G.Y.); (S.Z.)
| |
Collapse
|
12
|
Koizumi K, Kunii N, Ueda K, Takabatake K, Nagata K, Fujitani S, Shimada S, Nakao M. Intracranial Neurofeedback Modulating Neural Activity in the Mesial Temporal Lobe During Memory Encoding: A Pilot Study. Appl Psychophysiol Biofeedback 2023; 48:439-451. [PMID: 37405548 PMCID: PMC10581957 DOI: 10.1007/s10484-023-09595-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2023] [Indexed: 07/06/2023]
Abstract
Removal of the mesial temporal lobe (MTL) is an established surgical procedure that leads to seizure freedom in patients with intractable MTL epilepsy; however, it carries the potential risk of memory damage. Neurofeedback (NF), which regulates brain function by converting brain activity into perceptible information and providing feedback, has attracted considerable attention in recent years for its potential as a novel complementary treatment for many neurological disorders. However, no research has attempted to artificially reorganize memory functions by applying NF before resective surgery to preserve memory functions. Thus, this study aimed (1) to construct a memory NF system that used intracranial electrodes to feedback neural activity on the language-dominant side of the MTL during memory encoding and (2) to verify whether neural activity and memory function in the MTL change with NF training. Two intractable epilepsy patients with implanted intracranial electrodes underwent at least five sessions of memory NF training to increase the theta power in the MTL. There was an increase in theta power and a decrease in fast beta and gamma powers in one of the patients in the late stage of memory NF sessions. NF signals were not correlated with memory function. Despite its limitations as a pilot study, to our best knowledge, this study is the first to report that intracranial NF may modulate neural activity in the MTL, which is involved in memory encoding. The findings provide important insights into the future development of NF systems for the artificial reorganization of memory functions.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Kazutaka Ueda
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo, Japan
| | - Masayuki Nakao
- Department of Mechanical Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
13
|
Cheng S, Ding Z, Chen C, Sun W, Jiang T, Liu X, Zhang M. The effect of choice on memory: The role of theta oscillations. Psychophysiology 2023; 60:e14390. [PMID: 37455343 DOI: 10.1111/psyp.14390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
People value the opportunity to exercise control over the environment or make their own choices. Recent studies have revealed that simply having the opportunity to make choices can facilitate memory performance, suggesting an interaction between reward (due to choice making) and memory systems. However, little is known about the electrophysiological basis of choice-related memory. In the current study, we used scalp electroencephalography combined with a choice encoding task to examine the role of theta oscillations (which have been widely connected to reward and memory processing) in choice-related memory formation. The encoding task had two conditions. In the choice condition, participants were asked to choose between two occluded memoranda by themselves, whereas in the fixed condition, the decision was made by the computer. Behavioral results showed the choice effect, with better performance in the choice condition than the fixed condition on the recognition test given after a 24-h delay. Increases in theta power during an early latency of encoding period predicted successful memory formation in the choice condition, but not in the fixed condition. Furthermore, decreases in theta power during a late latency predicted successful memory formation in both the fixed and the choice conditions. Finally, we observed increased theta power in the choice condition compared to the fixed condition during an early latency of encoding period and decreased theta power in the choice condition compared to the fixed condition during a late latency. Our results suggest that theta oscillations play a significant role in choice-related memory formation.
Collapse
Affiliation(s)
- Si Cheng
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- General and Experimental Psychology, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Zhuolei Ding
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Chuansheng Chen
- Department of Psychological Science, University of California, Irvine, California, USA
| | - Wenxiang Sun
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Ting Jiang
- Faculty of Psychology, Beijing Normal University, Beijing, P.R. China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Mingxia Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, P.R. China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, P.R. China
| |
Collapse
|
14
|
Yin Q, Johnson EL, Ofen N. Neurophysiological mechanisms of cognition in the developing brain: Insights from intracranial EEG studies. Dev Cogn Neurosci 2023; 64:101312. [PMID: 37837918 PMCID: PMC10589793 DOI: 10.1016/j.dcn.2023.101312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/26/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
The quest to understand how the development of the brain supports the development of complex cognitive functions is fueled by advances in cognitive neuroscience methods. Intracranial EEG (iEEG) recorded directly from the developing human brain provides unprecedented spatial and temporal resolution for mapping the neurophysiological mechanisms supporting cognitive development. In this paper, we focus on episodic memory, the ability to remember detailed information about past experiences, which improves from childhood into adulthood. We review memory effects based on broadband spectral power and emphasize the importance of isolating narrowband oscillations from broadband activity to determine mechanisms of neural coordination within and between brain regions. We then review evidence of developmental variability in neural oscillations and present emerging evidence linking the development of neural oscillations to the development of memory. We conclude by proposing that the development of oscillations increases the precision of neural coordination and may be an essential factor underlying memory development. More broadly, we demonstrate how recording neural activity directly from the developing brain holds immense potential to advance our understanding of cognitive development.
Collapse
Affiliation(s)
- Qin Yin
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA
| | - Elizabeth L Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA; Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Department of Psychology, Wayne State University, Detroit, MI, USA; Life-span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
15
|
Thornberry C, Caffrey M, Commins S. Theta oscillatory power decreases in humans are associated with spatial learning in a virtual water maze task. Eur J Neurosci 2023; 58:4341-4356. [PMID: 37957526 DOI: 10.1111/ejn.16185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
Theta oscillations (4-8 Hz) in humans play a role in navigation processes, including spatial encoding, retrieval and sensorimotor integration. Increased theta power at frontal and parietal midline regions is known to contribute to successful navigation. However, the dynamics of cortical theta and its role in spatial learning are not fully understood. This study aimed to investigate theta oscillations via electroencephalogram (EEG) during spatial learning in a virtual water maze. Participants were separated into a learning group (n = 25) who learned the location of a hidden goal across 12 trials, or a time-matched non-learning group (n = 25) who were required to simply navigate the same arena, but without a goal. We compared all trials, at two phases of learning, the trial start and the goal approach. We also compared the first six trials with the last six trials within-groups. The learning group showed reduced low-frequency theta power at the frontal and parietal midline during the start phase and largely reduced theta combined with a short increase at both midlines during the goal-approach phase. These patterns were not found in the non-learning group, who instead displayed extensive increases in low-frequency oscillations at both regions during the trial start and at the parietal midline during goal approach. Our results support the theory that theta plays a crucial role in spatial encoding during exploration, as opposed to sensorimotor integration. We suggest our findings provide evidence for a link between learning and a reduction of theta oscillations in humans.
Collapse
Affiliation(s)
- Conor Thornberry
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Michelle Caffrey
- Department of Psychology, Maynooth University, Maynooth, Ireland
| | - Sean Commins
- Department of Psychology, Maynooth University, Maynooth, Ireland
| |
Collapse
|
16
|
Leimeister F, Pesquita A, Jensen O, Pauli P, Wiemer J. To remember or not to remember: Neural oscillations and ERPs as predictors of intentional associative fear learning. Int J Psychophysiol 2023; 193:112235. [PMID: 37604281 DOI: 10.1016/j.ijpsycho.2023.08.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/02/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023]
Abstract
It is widely accepted that impaired safety learning to a safe stimulus is a pathological feature of anxiety disorders. Safety learning refers to learning that a stimulus is associated with the absence of threat. Cognitive mechanisms that underlie successful threat and safety learning are, however, poorly understood. This study aimed to identify various physiological markers, including neural oscillations and event-related potentials (ERPs) that predict successful threat and safety learning. Therefore, to detect potential differences in these markers, we measured EEG in a fear learning framework combined with a subsequent memory paradigm. Thirty-seven participants were asked to memorize a series of associations between faces and an aversive unconditioned stimulus (US) or its omission. We found a decrease of power in the alpha band in occipital brain regions during learning for both threatening (conditioned stimuli, CS+) and safe faces (control stimuli, CS-) that were subsequently remembered to be associated with a US or not. No effects in theta band were found. In regard to ERPs, a late positive potential (LPP) and a P300 component were larger for remembered than for forgotten CS-US associations. The P300 was also enhanced to remembered US and US omissions, thus replicating previous findings. These results point to the importance of cognitive resource allocation as an underlying mechanism of fear learning and electrophysiological measurements as potential biomarkers for successful threat and safety learning.
Collapse
Affiliation(s)
- Franziska Leimeister
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany.
| | - Ana Pesquita
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Paul Pauli
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany
| | - Julian Wiemer
- Institute of Psychology (Biological Psychology, Clinical Psychology, and Psychotherapy), University of Würzburg, Marcusstr. 9-11, 97070 Würzburg, Germany
| |
Collapse
|
17
|
Violante IR, Alania K, Cassarà AM, Neufeld E, Acerbo E, Carron R, Williamson A, Kurtin DL, Rhodes E, Hampshire A, Kuster N, Boyden ES, Pascual-Leone A, Grossman N. Non-invasive temporal interference electrical stimulation of the human hippocampus. Nat Neurosci 2023; 26:1994-2004. [PMID: 37857775 PMCID: PMC10620081 DOI: 10.1038/s41593-023-01456-8] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Deep brain stimulation (DBS) via implanted electrodes is used worldwide to treat patients with severe neurological and psychiatric disorders. However, its invasiveness precludes widespread clinical use and deployment in research. Temporal interference (TI) is a strategy for non-invasive steerable DBS using multiple kHz-range electric fields with a difference frequency within the range of neural activity. Here we report the validation of the non-invasive DBS concept in humans. We used electric field modeling and measurements in a human cadaver to verify that the locus of the transcranial TI stimulation can be steerably focused in the hippocampus with minimal exposure to the overlying cortex. We then used functional magnetic resonance imaging and behavioral experiments to show that TI stimulation can focally modulate hippocampal activity and enhance the accuracy of episodic memories in healthy humans. Our results demonstrate targeted, non-invasive electrical stimulation of deep structures in the human brain.
Collapse
Affiliation(s)
- Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.
| | - Ketevan Alania
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Antonino M Cassarà
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Esra Neufeld
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
| | - Emma Acerbo
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Neurology and Neurosurgery, Emory University Hospital, Atlanta, GA, USA
| | - Romain Carron
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- Department of Functional and Stereotactic Neurosurgery, Timone University Hospital, Marseille, France
| | - Adam Williamson
- Institut de Neurosciences des Systèmes, Aix-Marseille University, INSERM, Marseille, France
- International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Danielle L Kurtin
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Edward Rhodes
- Department of Brain Sciences, Imperial College London, London, UK
- UK Dementia Research Institute, Imperial College London, London, UK
| | - Adam Hampshire
- Department of Brain Sciences, Imperial College London, London, UK
| | - Niels Kuster
- Foundation for Research on Information Technologies in Society (IT'IS), Zurich, Switzerland
- Department of Information Technology and Electrical Engineering, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Edward S Boyden
- Departments of Brain and Cognitive Sciences, Media Arts and Sciences, and Biological Engineering, McGovern and Koch Institutes, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
| | - Alvaro Pascual-Leone
- Hinda and Arthur Marcus Institute for Aging Research and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Nir Grossman
- Department of Brain Sciences, Imperial College London, London, UK.
- UK Dementia Research Institute, Imperial College London, London, UK.
| |
Collapse
|
18
|
Llorens A, Bellier L, Blenkmann AO, Ivanovic J, Larsson PG, Lin JJ, Endestad T, Solbakk AK, Knight RT. Decision and response monitoring during working memory are sequentially represented in the human insula. iScience 2023; 26:107653. [PMID: 37674986 PMCID: PMC10477069 DOI: 10.1016/j.isci.2023.107653] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 06/05/2023] [Accepted: 07/11/2023] [Indexed: 09/08/2023] Open
Abstract
Emerging research supports a role of the insula in human cognition. Here, we used intracranial EEG to investigate the spatiotemporal dynamics in the insula during a verbal working memory (vWM) task. We found robust effects for theta, beta, and high frequency activity (HFA) during probe presentation requiring a decision. Theta band activity showed differential involvement across left and right insulae while sequential HFA modulations were observed along the anteroposterior axis. HFA in anterior insula tracked decision making and subsequent HFA was observed in posterior insula after the behavioral response. Our results provide electrophysiological evidence of engagement of different insula subregions in both decision-making and response monitoring during vWM and expand our knowledge of the role of the insula in complex human behavior.
Collapse
Affiliation(s)
- Anaïs Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Université de Franche-Comté, SUPMICROTECH, CNRS, Institut FEMTO-ST, 25000 Besançon, France
- Université Paris Cité, Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, Team TURC, 75014 Paris, France
| | - Ludovic Bellier
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Alejandro O. Blenkmann
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
| | | | - Pål G. Larsson
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
| | - Jack J. Lin
- Department of Neurology and Center for Mind and Brain, University of California, Davis, Davis, CA, USA
| | - Tor Endestad
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Anne-Kristin Solbakk
- Department of Neurosurgery, Oslo University Hospital, Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
- RITMO Center for Interdisciplinary Studies in Rhythm, Time and Motion, University of Oslo, Oslo, Norway
- Department of Neuropsychology, Helgeland Hospital, Mosjøen, Norway
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
19
|
Herz N, Bukala BR, Kragel JE, Kahana MJ. Hippocampal activity predicts contextual misattribution of false memories. Proc Natl Acad Sci U S A 2023; 120:e2305292120. [PMID: 37751551 PMCID: PMC10556612 DOI: 10.1073/pnas.2305292120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 08/02/2023] [Indexed: 09/28/2023] Open
Abstract
Failure of contextual retrieval can lead to false recall, wherein people retrieve an item or experience that occurred in a different context or did not occur at all. Whereas the hippocampus is thought to play a crucial role in memory retrieval, we lack understanding of how the hippocampus supports retrieval of items related to a target context while disregarding related but irrelevant information. Using direct electrical recordings from the human hippocampus, we investigate the neural process underlying contextual misattribution of false memories. In two large datasets, we characterize key physiological differences between correct and false recalls that emerge immediately prior to vocalization. By differentiating between false recalls that share high or low contextual similarity with the target context, we show that low-frequency activity (6 to 18 Hz) in the hippocampus tracks similarity between the current and retrieved context. Applying multivariate decoding methods, we were able to reliably predict the contextual source of the to-be-recalled item. Our findings elucidate one of the hallmark features of episodic memory: our ability to distinguish between memories that were formed on different occasions.
Collapse
Affiliation(s)
- Noa Herz
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - Bernard R. Bukala
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| | - James E. Kragel
- Department of Neurology, University of Chicago, Chicago, IL60637
| | - Michael J. Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
20
|
Griffiths BJ, Jensen O. Gamma oscillations and episodic memory. Trends Neurosci 2023; 46:832-846. [PMID: 37550159 DOI: 10.1016/j.tins.2023.07.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/20/2023] [Accepted: 07/16/2023] [Indexed: 08/09/2023]
Abstract
Enhanced gamma oscillatory activity (30-80 Hz) accompanies the successful formation and retrieval of episodic memories. While this co-occurrence is well documented, the mechanistic contributions of gamma oscillatory activity to episodic memory remain unclear. Here, we review how gamma oscillatory activity may facilitate spike timing-dependent plasticity, neural communication, and sequence encoding/retrieval, thereby ensuring the successful formation and/or retrieval of an episodic memory. Based on the evidence reviewed, we propose that multiple, distinct forms of gamma oscillation can be found within the canonical gamma band, each of which has a complementary role in the neural processes listed above. Further exploration of these theories using causal manipulations may be key to elucidating the relevance of gamma oscillatory activity to episodic memory.
Collapse
Affiliation(s)
| | - Ole Jensen
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| |
Collapse
|
21
|
Xiao J, Provenza NR, Asfouri J, Myers J, Mathura RK, Metzger B, Adkinson JA, Allawala AB, Pirtle V, Oswalt D, Shofty B, Robinson ME, Mathew SJ, Goodman WK, Pouratian N, Schrater PR, Patel AB, Tolias AS, Bijanki KR, Pitkow X, Sheth SA. Decoding Depression Severity From Intracranial Neural Activity. Biol Psychiatry 2023; 94:445-453. [PMID: 36736418 PMCID: PMC10394110 DOI: 10.1016/j.biopsych.2023.01.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND Disorders of mood and cognition are prevalent, disabling, and notoriously difficult to treat. Fueling this challenge in treatment is a significant gap in our understanding of their neurophysiological basis. METHODS We recorded high-density neural activity from intracranial electrodes implanted in depression-relevant prefrontal cortical regions in 3 human subjects with severe depression. Neural recordings were labeled with depression severity scores across a wide dynamic range using an adaptive assessment that allowed sampling with a temporal frequency greater than that possible with typical rating scales. We modeled these data using regularized regression techniques with region selection to decode depression severity from the prefrontal recordings. RESULTS Across prefrontal regions, we found that reduced depression severity is associated with decreased low-frequency neural activity and increased high-frequency activity. When constraining our model to decode using a single region, spectral changes in the anterior cingulate cortex best predicted depression severity in all 3 subjects. Relaxing this constraint revealed unique, individual-specific sets of spatiospectral features predictive of symptom severity, reflecting the heterogeneous nature of depression. CONCLUSIONS The ability to decode depression severity from neural activity increases our fundamental understanding of how depression manifests in the human brain and provides a target neural signature for personalized neuromodulation therapies.
Collapse
Affiliation(s)
- Jiayang Xiao
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas; Department of Neuroscience, Baylor College of Medicine, Houston, Texas
| | - Nicole R Provenza
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Joseph Asfouri
- Department of Electrical and Computer Engineering, Rice University, Houston, Texas
| | - John Myers
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Raissa K Mathura
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Brian Metzger
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Joshua A Adkinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | | | - Victoria Pirtle
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Denise Oswalt
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Ben Shofty
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Meghan E Robinson
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Sanjay J Mathew
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Wayne K Goodman
- Department of Psychiatry, Baylor College of Medicine, Houston, Texas
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical Center, Dallas, Texas
| | - Paul R Schrater
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, Minnesota; Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Ankit B Patel
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
| | - Andreas S Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
| | - Kelly R Bijanki
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas
| | - Xaq Pitkow
- Department of Neuroscience, Baylor College of Medicine, Houston, Texas; Department of Electrical and Computer Engineering, Rice University, Houston, Texas; Center for Neuroscience and Artificial Intelligence, Baylor College of Medicine, Houston, Texas
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
22
|
Koizumi K, Kunii N, Ueda K, Nagata K, Fujitani S, Shimada S, Nakao M. Paving the Way for Memory Enhancement: Development and Examination of a Neurofeedback System Targeting the Medial Temporal Lobe. Biomedicines 2023; 11:2262. [PMID: 37626758 PMCID: PMC10452721 DOI: 10.3390/biomedicines11082262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/01/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Neurofeedback (NF) shows promise in enhancing memory, but its application to the medial temporal lobe (MTL) still needs to be studied. Therefore, we aimed to develop an NF system for the memory function of the MTL and examine neural activity changes and memory task score changes through NF training. We created a memory NF system using intracranial electrodes to acquire and visualise the neural activity of the MTL during memory encoding. Twenty trials of a tug-of-war game per session were employed for NF and designed to control neural activity bidirectionally (Up/Down condition). NF training was conducted with three patients with drug-resistant epilepsy, and we observed an increasing difference in NF signal between conditions (Up-Down) as NF training progressed. Similarities and negative correlation tendencies between the transition of neural activity and the transition of memory function were also observed. Our findings demonstrate NF's potential to modulate MTL activity and memory encoding. Future research needs further improvements to the NF system to validate its effects on memory functions. Nonetheless, this study represents a crucial step in understanding NF's application to memory and provides valuable insights into developing more efficient memory enhancement strategies.
Collapse
Affiliation(s)
- Koji Koizumi
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Kazutaka Ueda
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| | - Keisuke Nagata
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Shigeta Fujitani
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Seijiro Shimada
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-8655, Japan; (N.K.); (K.N.); (S.F.); (S.S.)
| | - Masayuki Nakao
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-8656, Japan; (K.U.); (M.N.)
| |
Collapse
|
23
|
Kahana MJ, Ezzyat Y, Wanda PA, Solomon EA, Adamovich-Zeitlin R, Lega BC, Jobst BC, Gross RE, Ding K, Diaz-Arrastia RR. Biomarker-guided neuromodulation aids memory in traumatic brain injury. Brain Stimul 2023; 16:1086-1093. [PMID: 37414370 DOI: 10.1016/j.brs.2023.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 06/15/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023] Open
Abstract
Traumatic brain injury (TBI) is a leading cause of cognitive disability in adults, often characterized by marked deficits in episodic memory and executive function. Prior studies have found that direct electrical stimulation of the temporal cortex yielded improved memory in epilepsy patients, but it is not clear if these results generalize to patients with a specific history of TBI. Here we asked whether applying closed-loop, direct electrical stimulation to lateral temporal cortex could reliably improve memory in a TBI cohort. Among a larger group of patients undergoing neurosurgical evaluation for refractory epilepsy, we recruited a subset of patients with a history of moderate-to-severe TBI. By analyzing neural data from indwelling electrodes as patients studied and recalled lists of words, we trained personalized machine-learning classifiers to predict momentary fluctuations in mnemonic function in each patient. We subsequently used these classifiers to trigger high-frequency stimulation of the lateral temporal cortex (LTC) at moments when memory was predicted to fail. This strategy yielded a 19% boost in recall performance on stimulated as compared with non-stimulated lists (P = 0.012). These results provide a proof-of-concept for using closed-loop stimulation of the brain in treatment of TBI-related memory impairment.
Collapse
Affiliation(s)
- Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Youssef Ezzyat
- Department of Psychology, Wesleyan University, Middletown, CT, 06459, USA
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Ethan A Solomon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | | | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Lebanon, NH, 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA, 30322, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX, 75390, USA
| | | |
Collapse
|
24
|
Joensen BH, Bush D, Vivekananda U, Horner AJ, Bisby JA, Diehl B, Miserocchi A, McEvoy AW, Walker MC, Burgess N. Hippocampal theta activity during encoding promotes subsequent associative memory in humans. Cereb Cortex 2023; 33:8792-8802. [PMID: 37160345 PMCID: PMC10321091 DOI: 10.1093/cercor/bhad162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/11/2023] Open
Abstract
Hippocampal theta oscillations have been implicated in associative memory in humans. However, findings from electrophysiological studies using scalp electroencephalography or magnetoencephalography, and those using intracranial electroencephalography are mixed. Here we asked 10 pre-surgical epilepsy patients undergoing intracranial electroencephalography recording, along with 21 participants undergoing magnetoencephalography recordings, to perform an associative memory task, and examined whether hippocampal theta activity during encoding was predictive of subsequent associative memory performance. Across the intracranial electroencephalography and magnetoencephalography studies, we observed that theta power in the hippocampus increased during encoding, and that this increase differed as a function of subsequent memory, with greater theta activity for pairs that were successfully retrieved in their entirety compared with those that were not remembered. This helps to clarify the role of theta oscillations in associative memory formation in humans, and further, demonstrates that findings in epilepsy patients undergoing intracranial electroencephalography recordings can be extended to healthy participants undergoing magnetoencephalography recordings.
Collapse
Affiliation(s)
- Bárður H Joensen
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm 17165, Sweden
- Department of Psychology, Uppsala University, Uppsala 751 42, Sweden
| | - Daniel Bush
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, WC1E 6BT, United Kingdom
| | - Umesh Vivekananda
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Aidan J Horner
- Department of Psychology, University of York, York, YO10 5DD, United Kingdom
- York Biomedical Research Institute, University of York, York, YO10 5DD, United Kingdom
| | - James A Bisby
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Division of Psychiatry, UCL, London, W1T 7BN, United Kingdom
| | - Beate Diehl
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Anna Miserocchi
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Andrew W McEvoy
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Matthew C Walker
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
| | - Neil Burgess
- UCL Queen Square Institute of Neurology, UCL, London WC1N 3BG, United Kingdom
- UCL Institute of Cognitive Neuroscience, UCL, London, WC1N 3AZ, United Kingdom
- Wellcome Centre for Human Neuroimaging, UCL, London, WC1N 3AR, United Kingdom
| |
Collapse
|
25
|
Heinbockel H, W.E.M. Quaedflieg C, Wacker J, Schwabe L. Spatio-temporal theta pattern dissimilarity in the right centro-parietal area during memory generalization. Brain Cogn 2022; 164:105926. [DOI: 10.1016/j.bandc.2022.105926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/16/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022]
|
26
|
Köster M, Gruber T. Rhythms of human attention and memory: An embedded process perspective. Front Hum Neurosci 2022; 16:905837. [PMID: 36277046 PMCID: PMC9579292 DOI: 10.3389/fnhum.2022.905837] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 08/29/2022] [Indexed: 11/28/2022] Open
Abstract
It remains a dogma in cognitive neuroscience to separate human attention and memory into distinct modules and processes. Here we propose that brain rhythms reflect the embedded nature of these processes in the human brain, as evident from their shared neural signatures: gamma oscillations (30-90 Hz) reflect sensory information processing and activated neural representations (memory items). The theta rhythm (3-8 Hz) is a pacemaker of explicit control processes (central executive), structuring neural information processing, bit by bit, as reflected in the theta-gamma code. By representing memory items in a sequential and time-compressed manner the theta-gamma code is hypothesized to solve key problems of neural computation: (1) attentional sampling (integrating and segregating information processing), (2) mnemonic updating (implementing Hebbian learning), and (3) predictive coding (advancing information processing ahead of the real time to guide behavior). In this framework, reduced alpha oscillations (8-14 Hz) reflect activated semantic networks, involved in both explicit and implicit mnemonic processes. Linking recent theoretical accounts and empirical insights on neural rhythms to the embedded-process model advances our understanding of the integrated nature of attention and memory - as the bedrock of human cognition.
Collapse
Affiliation(s)
- Moritz Köster
- Faculty of Education and Psychology, Freie Universität Berlin, Berlin, Germany
- Institute of Psychology, University of Regensburg, Regensburg, Germany
| | - Thomas Gruber
- Institute of Psychology, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
27
|
Hong M, Jang H, Bo S, Kim M, Deepa P, Park J, Sowndhararajan K, Kim S. Changes in Human Electroencephalographic Activity in Response to Agastache rugosa Essential Oil Exposure. Behav Sci (Basel) 2022; 12:238. [PMID: 35877308 PMCID: PMC9311756 DOI: 10.3390/bs12070238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 02/04/2023] Open
Abstract
Agastache rugosa (Korean mint) is an important medicinal and aromatic plant and its aerial parts have a pleasant fragrance. A. rugosa leaves are used as an ingredient in salads and soups for enhancing the aroma and taste of foods in Korea. However, there is no report on the influence of the aroma of A. rugosa on human psychophysiological activity. Therefore, the present study aimed to investigate the effect of exposure to the essential oil of Korean A. rugosa on human electroencephalographic (EEG) activity. The essential oil of A. rugosa was isolated using steam distillation extraction and its composition was determined by gas chromatography and mass spectrometry (GC-MS) analysis. In the EEG study, 38 healthy volunteers (19 men and 19 women) participated. The EEG readings were analyzed for 25 EEG indices from 29 electrodes placed on the scalp according to the international 10-20 system. The major component in the essential oil of A. rugosa was estragole (89.49%) followed by D-limonene (3.40%), menthone (1.80%), and pulegone (1.86%). In the EEG study, significant decreases in absolute theta (AT) and relative theta (RT) power spectra were observed during the exposure to A. rugosa essential oil when compared to that of no odor exposure. Whereas relative alpha (RA), relative slow alpha (RSA), spectral edge frequency 50% (SEF50), and spectral edge frequency 50% of alpha (ASEF) power spectra values significantly increased. These results reveal that the EEG power spectra changes incurred during the exposure to the essential oil of A. rugosa may be associated with the enhancement of freshness and concentration states of the human brain.
Collapse
Affiliation(s)
- Minji Hong
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| | - Hyejeong Jang
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| | - Sela Bo
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| | - Minju Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| | - Ponnuvel Deepa
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| | - Jiyea Park
- Bigsome Inc., 501 Jinju-daero, Jinju 52828, Korea;
| | | | - Songmun Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Chuncheon 24341, Korea; (M.H.); (H.J.); (S.B.); (M.K.); (P.D.)
| |
Collapse
|
28
|
Penner C, Minxha J, Chandravadia N, Mamelak AN, Rutishauser U. Properties and hemispheric differences of theta oscillations in the human hippocampus. Hippocampus 2022; 32:335-341. [PMID: 35231153 PMCID: PMC9067167 DOI: 10.1002/hipo.23412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/11/2022]
Abstract
The left and right primate hippocampi (LH and RH) are thought to support distinct functions, but little is known about differences between the hemispheres at the neuronal level. We recorded single-neuron and local field potentials from the human hippocampus in epilepsy patients implanted with depth electrodes. We detected theta-frequency bouts of oscillatory activity while patients performed a visual recognition memory task. Theta appeared in bouts of 3.16 cycles, with sawtooth-shaped oscillations that had a prolonged downswing period. Outside the seizure onset zone, the average frequency of theta bouts was higher in the RH compared to the LH (6.0 vs. 5.3 Hz). LH theta bouts had lower amplitudes and a higher prevalence compared to the RH (26% vs. 21% of total time). Additionally, the RH contained a population of thin spiking visually tuned neurons that were not present in the LH. These data show that human theta appears in short oscillatory bouts whose properties vary between hemispheres, thereby revealing neurophysiological properties of the hippocampus that differ between the hemispheres.
Collapse
Affiliation(s)
- Cooper Penner
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Juri Minxha
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Center for Theoretical Neuroscience, College of Physicians and Surgeons, Columbia University, New York, New York, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Nand Chandravadia
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Adam N Mamelak
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Ueli Rutishauser
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA
- Department of Biomedical Sciences, Center for Neural Science and Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
29
|
Johnson EL, Yin Q, O'Hara NB, Tang L, Jeong JW, Asano E, Ofen N. Dissociable oscillatory theta signatures of memory formation in the developing brain. Curr Biol 2022; 32:1457-1469.e4. [PMID: 35172128 PMCID: PMC9007830 DOI: 10.1016/j.cub.2022.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 11/16/2022]
Abstract
Understanding complex human brain functions is critically informed by studying such functions during development. Here, we addressed a major gap in models of human memory by leveraging rare direct electrophysiological recordings from children and adolescents. Specifically, memory relies on interactions between the medial temporal lobe (MTL) and prefrontal cortex (PFC), and the maturation of these interactions is posited to play a key role in supporting memory development. To understand the nature of MTL-PFC interactions, we examined subdural recordings from MTL and PFC in 21 neurosurgical patients aged 5.9-20.5 years as they performed an established scene memory task. We determined signatures of memory formation by comparing the study of subsequently recognized to forgotten scenes in single trials. Results establish that MTL and PFC interact via two distinct theta mechanisms, an ∼3-Hz oscillation that supports amplitude coupling and slows down with age and an ∼7-Hz oscillation that supports phase coupling and speeds up with age. Slow and fast theta interactions immediately preceding scene onset further explained age-related differences in recognition performance. Last, with additional diffusion imaging data, we linked both functional mechanisms to the structural maturation of the cingulum tract. Our findings establish system-level dynamics of memory formation and suggest that MTL and PFC interact via increasingly dissociable mechanisms as memory improves across development.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL 60611, USA; Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| | - Qin Yin
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Nolan B O'Hara
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA
| | - Lingfei Tang
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA
| | - Jeong-Won Jeong
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Eishi Asano
- Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA; Departments of Pediatrics and Neurology, Children's Hospital of Michigan, Wayne State University, Detroit, MI 48201, USA
| | - Noa Ofen
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology and Merrill Palmer Skillman Institute, Wayne State University, Detroit, MI 48202, USA; Department of Psychology, Wayne State University, Detroit, MI 48202, USA; Translational Neuroscience Program, Wayne State University, Detroit, MI 48201, USA.
| |
Collapse
|
30
|
Katerman BS, Li Y, Pazdera JK, Keane C, Kahana MJ. EEG biomarkers of free recall. Neuroimage 2022; 246:118748. [PMID: 34863960 PMCID: PMC9070361 DOI: 10.1016/j.neuroimage.2021.118748] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/28/2021] [Accepted: 11/20/2021] [Indexed: 11/29/2022] Open
Abstract
Brain activity in the moments leading up to spontaneous verbal recall provide a window into the cognitive processes underlying memory retrieval. But these same recordings also subsume neural signals unrelated to mnemonic retrieval, such as response-related motor activity. Here we examined spectral EEG biomarkers of memory retrieval under an extreme manipulation of mnemonic demands: subjects either recalled items after a few seconds or after several days. This manipulation helped to isolate EEG components specifically related to long-term memory retrieval. In the moments immediately preceding recall we observed increased theta (4-8 Hz) power (+T), decreased alpha (8-20 Hz) power (-A), and increased gamma (40-128 Hz) power (+G), with this spectral pattern (+T-A + G) distinguishing the long-delay and immediate recall conditions. As subjects vocalized the same set of studied words in both conditions, we interpret the spectral +T-A + G as a biomarker of episodic memory retrieval.
Collapse
Affiliation(s)
| | - Y Li
- University of Pennsylvania, United States
| | | | - C Keane
- University of Pennsylvania, United States
| | - M J Kahana
- University of Pennsylvania, United States.
| |
Collapse
|
31
|
Zubelić A, Vuletić J, Ašćerić M, Rašić-Marković A, Stanojlović O, Šutulović N, Hrnčić D. Basic characteristics of EEG epileptiform discharges triggered by lindane in a model of experimental prostatitis. MEDICINSKI PODMLADAK 2022. [DOI: 10.5937/mp73-34860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction: Chronic prostatitis/Chronic Pelvic Pain Syndrome (CP/CPPS) is the most commonly diagnosed non-infectious prostatitis in urology. Studies have shown that CP/CPPS can induce neuroinflammation, which may result in CNS hyperexcitability and a tendency to develop epileptic seizures. Spike salvos are ictal EEG graph elements typical for the experimental model of lindane-induced seizures. There are a number of mathematical models for quantitative analysis of EEG, including the Fast Fourier Transform (FFT). It transforms the signal from time into the frequency domain, providing information on Power Spectral Densities (PSD). Aim: The aim of this study was to investigate the basic characteristics of epileptiform discharges induced by subconvulsive dose of lindane in rats, with experimentally induced CP/CPPS. Material and methods: CP/CPPS was induced by intraprostatic injection of 3% l-carrageenan in male Wistar albino rats. Animals with CP/CPPS were implanted with EEG registration electrodes, and then administered lindane (4 mg/kg, i.p, experimental group, n = 6 per group) or its solvent (DMSO, control group, n = 6 per group). An 8-channel EEG device was used in combination with software developed in the laboratory (NeuroSciLaBG). Ictal EEG epochs were extracted from the original signal and FFT analysis was performed to obtain information taking into account PSD in predefined frequency bands. Results: There was no ictal activity in the EEG of control animals. In experimental animals, ictal activity occurred and the mean duration of the ictal period was 2.06 s. FFT analysis revealed that the Alpha frequency range (7-15 Hz) was markedly dominant during ictal activity. Conclusion: The results of this study showed the characteristics of epileptiform discharges in animals with experimentally induced CP/CPPS. This study and animal model are suitable for future translational studies of the comorbidities of this syndrome.
Collapse
|
32
|
Han L, Zhao S, Xu F, Wang Y, Zhou R, Huang S, Ding Y, Deng D, Mao W, Chen X. Sevoflurane Increases Hippocampal Theta Oscillations and Impairs Memory Via TASK-3 Channels. Front Pharmacol 2021; 12:728300. [PMID: 34776954 PMCID: PMC8581481 DOI: 10.3389/fphar.2021.728300] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/12/2021] [Indexed: 11/21/2022] Open
Abstract
Sevoflurane can induce memory impairment during clinical anesthesia; however, the underlying mechanisms are largely unknown. TASK-3 channels are one of the potential targets of sevoflurane. Accumulating evidence supports a negative role of intracranial theta rhythms (4–12 Hz) in memory formation. Here, we investigated whether TASK-3 channels contribute to sevoflurane-induced memory impairment by regulating hippocampal theta rhythms. In this study, the memory performance of mice was tested by contextual fear conditioning and inhibitory avoidance experiments. The hippocampal local field potentials (LFPs) were recorded from chronically implanted electrodes located in CA3 region. The results showed that sevoflurane concentration-dependently impaired the memory function of mice, as evidenced by the decreased time mice spent on freezing and reduced latencies for mice to enter the shock compartment. Our electrophysiological results revealed that sevoflurane also enhanced the spectral power of hippocampal LFPs (1–30 Hz), particularly in memory-related theta rhythms (4–12 Hz). These effects were mitigated by viral-mediated knockdown of TASK-3 channels in the hippocampal CA3 region. The knockdown of hippocampal TASK-3 channels significantly reduced the enhancing effect of sevoflurane on hippocampal theta rhythms and alleviated sevoflurane-induced memory impairment. Our data indicate that sevoflurane can increase hippocampal theta oscillations and impair memory function via TASK-3 channels.
Collapse
Affiliation(s)
- Linlin Han
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuai Zhao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Feng Xu
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yafeng Wang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ruihui Zhou
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiqian Huang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Ding
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Daling Deng
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Weike Mao
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangdong Chen
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
33
|
Tong APS, Vaz AP, Wittig JH, Inati SK, Zaghloul KA. Ripples reflect a spectrum of synchronous spiking activity in human anterior temporal lobe. eLife 2021; 10:68401. [PMID: 34779398 PMCID: PMC8716101 DOI: 10.7554/elife.68401] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 11/13/2021] [Indexed: 11/13/2022] Open
Abstract
Direct brain recordings have provided important insights into how high-frequency activity captured through intracranial EEG (iEEG) supports human memory retrieval. The extent to which such activity is comprised of transient fluctuations that reflect the dynamic coordination of underlying neurons, however, remains unclear. Here, we simultaneously record iEEG, local field potential (LFP), and single unit activity in the human temporal cortex. We demonstrate that fast oscillations within the previously identified 80-120 Hz ripple band contribute to broadband high-frequency activity in the human cortex. These ripple oscillations exhibit a spectrum of amplitudes and durations related to the amount of underlying neuronal spiking. Ripples in the macro-scale iEEG are related to the number and synchrony of ripples in the micro-scale LFP, which in turn are related to the synchrony of neuronal spiking. Our data suggest that neural activity in the human temporal lobe is organized into transient bouts of ripple oscillations that reflect underlying bursts of spiking activity.
Collapse
Affiliation(s)
- Ai Phuong S Tong
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Alex P Vaz
- Medical Scientist Training Program, Duke University School of Medicine, Durham, United States
| | - John H Wittig
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Sara K Inati
- Office of the Clinical Director, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| | - Kareem A Zaghloul
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, United States
| |
Collapse
|
34
|
Liu S, Li G, Jiang S, Wu X, Hu J, Zhang D, Chen L. Investigating Data Cleaning Methods to Improve Performance of Brain-Computer Interfaces Based on Stereo-Electroencephalography. Front Neurosci 2021; 15:725384. [PMID: 34690673 PMCID: PMC8528199 DOI: 10.3389/fnins.2021.725384] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/01/2021] [Indexed: 11/13/2022] Open
Abstract
Stereo-electroencephalography (SEEG) utilizes localized and penetrating depth electrodes to directly measure electrophysiological brain activity. The implanted electrodes generally provide a sparse sampling of multiple brain regions, including both cortical and subcortical structures, making the SEEG neural recordings a potential source for the brain–computer interface (BCI) purpose in recent years. For SEEG signals, data cleaning is an essential preprocessing step in removing excessive noises for further analysis. However, little is known about what kinds of effect that different data cleaning methods may exert on BCI decoding performance and, moreover, what are the reasons causing the differentiated effects. To address these questions, we adopted five different data cleaning methods, including common average reference, gray–white matter reference, electrode shaft reference, bipolar reference, and Laplacian reference, to process the SEEG data and evaluated the effect of these methods on improving BCI decoding performance. Additionally, we also comparatively investigated the changes of SEEG signals induced by these different methods from multiple-domain (e.g., spatial, spectral, and temporal domain). The results showed that data cleaning methods could improve the accuracy of gesture decoding, where the Laplacian reference produced the best performance. Further analysis revealed that the superiority of the data cleaning method with excellent performance might be attributed to the increased distinguishability in the low-frequency band. The findings of this work highlighted the importance of applying proper data clean methods for SEEG signals and proposed the application of Laplacian reference for SEEG-based BCI.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Guangye Li
- State Key Laboratory of Mechanical Systems and Vibrations, Institute of Robotics, Shanghai Jiao Tong University, Shanghai, China
| | - Shize Jiang
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaolong Wu
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| | - Jie Hu
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| | - Dingguo Zhang
- Department of Electronic and Electrical Engineering, University of Bath, Bath, United Kingdom
| | - Liang Chen
- Department of Neurosurgery of Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Marks VS, Saboo KV, Topçu Ç, Lech M, Thayib TP, Nejedly P, Kremen V, Worrell GA, Kucewicz MT. Independent dynamics of low, intermediate, and high frequency spectral intracranial EEG activities during human memory formation. Neuroimage 2021; 245:118637. [PMID: 34644594 DOI: 10.1016/j.neuroimage.2021.118637] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 01/23/2023] Open
Abstract
A wide spectrum of brain rhythms are engaged throughout the human cortex in cognitive functions. How the rhythms of various frequency ranges are coordinated across the space of the human cortex and time of memory processing is inconclusive. They can either be coordinated together across the frequency spectrum at the same cortical site and time or induced independently in particular bands. We used a large dataset of human intracranial electroencephalography (iEEG) to parse the spatiotemporal dynamics of spectral activities induced during formation of verbal memories. Encoding of words for subsequent free recall activated low frequency theta, intermediate frequency alpha and beta, and high frequency gamma power in a mosaic pattern of discrete cortical sites. A majority of the cortical sites recorded activity in only one of these frequencies, except for the visual cortex where spectral power was induced across multiple bands. Each frequency band showed characteristic dynamics of the induced power specific to cortical area and hemisphere. The power of the low, intermediate, and high frequency activities propagated in independent sequences across the visual, temporal and prefrontal cortical areas throughout subsequent phases of memory encoding. Our results provide a holistic, simplified model of the spectral activities engaged in the formation of human memory, suggesting an anatomically and temporally distributed mosaic of coordinated brain rhythms.
Collapse
Affiliation(s)
| | - Krishnakant V Saboo
- Department of Electrical and Computer Engineering, University of Illinois, Urbana-Champaign, IL, USA
| | - Çağdaş Topçu
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Michal Lech
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Theodore P Thayib
- Department of Computer Engineering, Iowa State University, Ames, Iowa, USA
| | - Petr Nejedly
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; The Czech Academy of Sciences, Institute of Scientific Instruments, Brno, Czech Republic
| | - Vaclav Kremen
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Robotics, and Cybernetics, Czech Institute of Informatics, Czech Technical University in Prague, Prague, Czech Republic
| | - Gregory A Worrell
- Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA
| | - Michal T Kucewicz
- Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, BioTechMed Center, Gdansk University of Technology, Gdansk, Poland; Department of Neurology, Mayo Clinic, Rochester, MN, USA; Department of Physiology and Biomedical Engineering, Mayo Clinic, USA.
| |
Collapse
|
36
|
Henin S, Shankar A, Borges H, Flinker A, Doyle W, Friedman D, Devinsky O, Buzsáki G, Liu A. Spatiotemporal dynamics between interictal epileptiform discharges and ripples during associative memory processing. Brain 2021; 144:1590-1602. [PMID: 33889945 DOI: 10.1093/brain/awab044] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/13/2022] Open
Abstract
We describe the spatiotemporal course of cortical high-gamma activity, hippocampal ripple activity and interictal epileptiform discharges during an associative memory task in 15 epilepsy patients undergoing invasive EEG. Successful encoding trials manifested significantly greater high-gamma activity in hippocampus and frontal regions. Successful cued recall trials manifested sustained high-gamma activity in hippocampus compared to failed responses. Hippocampal ripple rates were greater during successful encoding and retrieval trials. Interictal epileptiform discharges during encoding were associated with 15% decreased odds of remembering in hippocampus (95% confidence interval 6-23%). Hippocampal interictal epileptiform discharges during retrieval predicted 25% decreased odds of remembering (15-33%). Odds of remembering were reduced by 25-52% if interictal epileptiform discharges occurred during the 500-2000 ms window of encoding or by 41% during retrieval. During encoding and retrieval, hippocampal interictal epileptiform discharges were followed by a transient decrease in ripple rate. We hypothesize that interictal epileptiform discharges impair associative memory in a regionally and temporally specific manner by decreasing physiological hippocampal ripples necessary for effective encoding and recall. Because dynamic memory impairment arises from pathological interictal epileptiform discharge events competing with physiological ripples, interictal epileptiform discharges represent a promising therapeutic target for memory remediation in patients with epilepsy.
Collapse
Affiliation(s)
- Simon Henin
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Anita Shankar
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Helen Borges
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Adeen Flinker
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Werner Doyle
- NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,NYU Langone Health, Department of Neurosurgery, New York, NY 10016, USA
| | - Daniel Friedman
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - Orrin Devinsky
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA
| | - György Buzsáki
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| | - Anli Liu
- NYU Langone Health, Department of Neurology, New York, NY 10017, USA.,NYU Langone Health, Comprehensive Epilepsy Center, New York, NY 10016, USA.,New York University, Neuroscience Institute, New York, NY 10016, USA
| |
Collapse
|
37
|
Cruzat J, Torralba M, Ruzzoli M, Fernández A, Deco G, Soto-Faraco S. The phase of Theta oscillations modulates successful memory formation at encoding. Neuropsychologia 2021; 154:107775. [PMID: 33592222 DOI: 10.1016/j.neuropsychologia.2021.107775] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 01/07/2021] [Accepted: 02/03/2021] [Indexed: 12/01/2022]
Abstract
Several studies have shown that attention and perception can depend upon the phase of ongoing neural oscillations at stimulus onset. Here, we extend this idea to the memory domain. We tested the hypothesis that ongoing fluctuations in neural activity impact memory encoding in two experiments using a picture paired-associates task in order to gauge episodic memory performance. Experiment 1 was behavioural only and capitalized on the principle of phase resetting. We tested if subsequent memory performance fluctuates rhythmically, time-locked to a resetting cue presented before the to-be-remembered pairs at different time intervals. We found an indication that behavioural performance was periodically and selectively modulated at Theta frequency (~4 Hz). In Experiment 2, we focused on pre-stimulus ongoing activity using scalp EEG while participants performed a paired-associates task. The pre-registered analysis, using large electrode clusters and generic Theta and Alpha spectral ranges, returned null results of the pre-stimulus phase-behaviour correlation. However, as expected from prior literature, we found that variations in stimulus-related Theta-power predicted subsequent memory performance. Therefore, we used this post-stimulus effect in Theta power to guide a post-hoc pre-stimulus phase analysis in terms of scalp and frequency of interest. This analysis returned a correlation between the pre-stimulus Theta phase and subsequent memory. Altogether, these results suggest that pre-stimulus Theta activity at encoding may impact later memory performance.
Collapse
Affiliation(s)
- Josephine Cruzat
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain.
| | - Mireia Torralba
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Manuela Ruzzoli
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Alba Fernández
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, 04103, Leipzig, Germany; School of Psychological Sciences, Monash University, Melbourne, Clayton, VIC, 3800, Australia
| | - Salvador Soto-Faraco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Roc Boronat 138, Barcelona, 08018, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona, 08010, Spain
| |
Collapse
|
38
|
Adamovich-Zeitlin R, Wanda PA, Solomon E, Phan T, Lega B, Jobst BC, Gross RE, Ding K, Diaz-Arrastia R, Kahana MJ. Biomarkers of memory variability in traumatic brain injury. Brain Commun 2021; 3:fcaa202. [PMID: 33543140 PMCID: PMC7850041 DOI: 10.1093/braincomms/fcaa202] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/08/2020] [Accepted: 10/05/2020] [Indexed: 11/18/2022] Open
Abstract
Traumatic brain injury is a leading cause of cognitive disability and is often associated with significant impairment in episodic memory. In traumatic brain injury survivors, as in healthy controls, there is marked variability between individuals in memory ability. Using recordings from indwelling electrodes, we characterized and compared the oscillatory biomarkers of mnemonic variability in two cohorts of epilepsy patients: a group with a history of moderate-to-severe traumatic brain injury (n = 37) and a group of controls without traumatic brain injury (n = 111) closely matched for demographics and electrode coverage. Analysis of these recordings demonstrated that increased high-frequency power and decreased theta power across a broad set of brain regions mark periods of successful memory formation in both groups. As features in a logistic-regression classifier, spectral power biomarkers effectively predicted recall probability, with little difference between traumatic brain injury patients and controls. The two groups also displayed similar patterns of theta-frequency connectivity during successful encoding periods. These biomarkers of successful memory, highly conserved between traumatic brain injury patients and controls, could serve as the basis for novel therapies that target disordered memory across diverse forms of neurological disease.
Collapse
Affiliation(s)
| | - Paul A Wanda
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan Solomon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tung Phan
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Barbara C Jobst
- Department of Neurology, Dartmouth-Hitchcock Medical Center, Hanover, NH 03766, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University, Atlanta, GA 30322, USA
| | - Kan Ding
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern, Dallas, TX 75390, USA
| | - Ramon Diaz-Arrastia
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
39
|
Hippocampal Theta Oscillations Support Successful Associative Memory Formation. J Neurosci 2020; 40:9507-9518. [PMID: 33158958 DOI: 10.1523/jneurosci.0767-20.2020] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Models of memory formation posit that episodic memory formation depends critically on the hippocampus, which binds features of an event to its context. For this reason, the contrast between study items that are later recollected with their associative pair versus those for which no association is made fails should reveal electrophysiological patterns in the hippocampus selectively involved in associative memory encoding. Extensive data from studies in rodents support a model in which theta oscillations fulfill this role, but results in humans have not been as clear. Here, we used an associative recognition memory procedure to identify hippocampal correlates of successful associative memory encoding and retrieval in patients (10 females and 9 males) undergoing intracranial EEG monitoring. We identified a dissociation between 2-5 Hz and 5-9 Hz theta oscillations, by which power increases in 2-5 Hz oscillations were uniquely linked with successful associative memory in both the anterior and posterior hippocampus. These oscillations exhibited a significant phase reset that also predicted successful associative encoding and distinguished recollected from nonrecollected items at retrieval, as well as contributing to relatively greater reinstatement of encoding-related patterns for recollected versus nonrecollected items. Our results provide direct electrophysiological evidence that 2-5 Hz hippocampal theta oscillations preferentially support the formation of associative memories, although we also observed memory-related effects in the 5-9 Hz frequency range using measures such as phase reset and reinstatement of oscillatory activity.SIGNIFICANCE STATEMENT Models of episodic memory encoding predict that theta oscillations support the formation of interitem associations. We used an associative recognition task designed to elicit strong hippocampal activation to test this prediction in human neurosurgical patients implanted with intracranial electrodes. The findings suggest that 2-5 Hz theta oscillatory power and phase reset in the hippocampus are selectively associated with associative memory judgments. Furthermore, reinstatement of oscillatory patterns in the hippocampus was stronger for successful recollection. Collectively, the findings support a role for hippocampal theta oscillations in human associative memory.
Collapse
|
40
|
Contribution of left supramarginal and angular gyri to episodic memory encoding: An intracranial EEG study. Neuroimage 2020; 225:117514. [PMID: 33137477 DOI: 10.1016/j.neuroimage.2020.117514] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 09/28/2020] [Accepted: 10/24/2020] [Indexed: 11/23/2022] Open
Abstract
The role of the left ventral lateral parietal cortex (VPC) in episodic memory is hypothesized to include bottom-up attentional orienting to recalled items, according to the dual-attention model (Cabeza et al., 2008). However, its role in memory encoding could be further clarified, with studies showing both positive and negative subsequent memory effects (SMEs). Furthermore, few studies have compared the relative contributions of sub-regions in this functionally heterogeneous area, specifically the anterior VPC (supramarginal gyrus/BA40) and the posterior VPC (angular gyrus/BA39), on a within-subject basis. To elucidate the role of the VPC in episodic encoding, we compared SMEs in the intracranial EEG across multiple frequency bands in the supramarginal gyrus (SmG) and angular gyrus (AnG), as twenty-four epilepsy patients with indwelling electrodes performed a free recall task. We found a significant SME of decreased theta power and increased high gamma power in the VPC overall, and specifically in the SmG. Furthermore, SmG exhibited significantly greater spectral tilt SME from 0.5 to 1.6 s post-stimulus, in which power spectra slope differences between recalled and unrecalled words were greater than in the AnG (p = 0.04). These results affirm the contribution of VPC to episodic memory encoding, and suggest an anterior-posterior dissociation within VPC with respect to its electrophysiological underpinnings.
Collapse
|
41
|
Eschmann K, Bader R, Mecklinger A. Improving episodic memory: Frontal-midline theta neurofeedback training increases source memory performance. Neuroimage 2020; 222:117219. [DOI: 10.1016/j.neuroimage.2020.117219] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 07/17/2020] [Accepted: 07/28/2020] [Indexed: 12/29/2022] Open
|
42
|
Johnson EL, Kam JWY, Tzovara A, Knight RT. Insights into human cognition from intracranial EEG: A review of audition, memory, internal cognition, and causality. J Neural Eng 2020; 17:051001. [PMID: 32916678 PMCID: PMC7731730 DOI: 10.1088/1741-2552/abb7a5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
By recording neural activity directly from the human brain, researchers gain unprecedented insight into how neurocognitive processes unfold in real time. We first briefly discuss how intracranial electroencephalography (iEEG) recordings, performed for clinical practice, are used to study human cognition with the spatiotemporal and single-trial precision traditionally limited to non-human animal research. We then delineate how studies using iEEG have informed our understanding of issues fundamental to human cognition: auditory prediction, working and episodic memory, and internal cognition. We also discuss the potential of iEEG to infer causality through the manipulation or 'engineering' of neurocognitive processes via spatiotemporally precise electrical stimulation. We close by highlighting limitations of iEEG, potential of burgeoning techniques to further increase spatiotemporal precision, and implications for future research using intracranial approaches to understand, restore, and enhance human cognition.
Collapse
Affiliation(s)
- Elizabeth L Johnson
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, United States of America
| | - Julia W Y Kam
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of Calgary, Canada
- Hotchkiss Brain Institute, University of Calgary, Canada
| | - Athina Tzovara
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Institute for Computer Science, University of Bern, Switzerland
- Sleep Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Switzerland
| | - Robert T Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
- Department of Psychology, University of California, Berkeley, United States of America
| |
Collapse
|
43
|
McCormick C, Barry DN, Jafarian A, Barnes GR, Maguire EA. vmPFC Drives Hippocampal Processing during Autobiographical Memory Recall Regardless of Remoteness. Cereb Cortex 2020; 30:5972-5987. [PMID: 32572443 PMCID: PMC7899055 DOI: 10.1093/cercor/bhaa172] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/25/2022] Open
Abstract
Our ability to recall past experiences, autobiographical memories (AMs), is crucial to cognition, endowing us with a sense of self and underwriting our capacity for autonomy. Traditional views assume that the hippocampus orchestrates event recall, whereas recent accounts propose that the ventromedial prefrontal cortex (vmPFC) instigates and coordinates hippocampal-dependent processes. Here we sought to characterize the dynamic interplay between the hippocampus and vmPFC during AM recall to adjudicate between these perspectives. Leveraging the high temporal resolution of magnetoencephalography, we found that the left hippocampus and the vmPFC showed the greatest power changes during AM retrieval. Moreover, responses in the vmPFC preceded activity in the hippocampus during initiation of AM recall, except during retrieval of the most recent AMs. The vmPFC drove hippocampal activity during recall initiation and also as AMs unfolded over subsequent seconds, and this effect was evident regardless of AM age. These results recast the positions of the hippocampus and the vmPFC in the AM retrieval hierarchy, with implications for theoretical accounts of memory processing and systems-level consolidation.
Collapse
Affiliation(s)
- Cornelia McCormick
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, 53127 Bonn, Germany
| | - Daniel N Barry
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Amirhossein Jafarian
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Gareth R Barnes
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Eleanor A Maguire
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| |
Collapse
|
44
|
Chaire A, Becke A, Düzel E. Effects of Physical Exercise on Working Memory and Attention-Related Neural Oscillations. Front Neurosci 2020; 14:239. [PMID: 32296302 PMCID: PMC7136837 DOI: 10.3389/fnins.2020.00239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/03/2020] [Indexed: 12/31/2022] Open
Abstract
Cognitive functions, such as working memory (WM) and attention, have been shown to benefit from physical exercise. Quantifying frequency-band-specific neural oscillatory patterns during the use of such cognitive functions can provide insight into exercise-induced benefits in the brain. Specifically, we investigated whether a 4-month physical exercise training influenced theta and alpha power measured in visual WM and attention tasks. The delayed match-to-sample (DMS) task required mnemonic discrimination of similar visual stimuli, akin to pattern separation, while the visual-attention search (VAS) task required detecting the presence of a specific object (i.e., target) in an image. Behavioral and electroencephalographic data were acquired during a DMS visual WM task and VAS task both before and after the intervention. Forty-three sedentary young adults (19–34 years) were pseudorandomly assigned to a training group (indoor treadmill, n = 20) or to a control group (n = 23). Compared to the preintervention baseline, the exercise group showed increased frontal alpha power (9–12 Hz) during the VAS task after the intervention. In addition, alpha power changes correlated positively with fitness changes. Behaviorally, there were no exercise-related effects on reaction times or accuracy in either task. Our findings substantiate that aerobic training of sedentary young adults may influence neural dynamics underlying visual attention rather than visual WM and mnemonic discrimination.
Collapse
Affiliation(s)
- Alondra Chaire
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Andreas Becke
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Magdeburg, Germany
| | - Emrah Düzel
- Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University Magdeburg, Magdeburg, Germany.,German Centre for Neurodegenerative Diseases, Magdeburg, Germany
| |
Collapse
|
45
|
Herweg NA, Solomon EA, Kahana MJ. Theta Oscillations in Human Memory. Trends Cogn Sci 2020; 24:208-227. [PMID: 32029359 PMCID: PMC8310425 DOI: 10.1016/j.tics.2019.12.006] [Citation(s) in RCA: 261] [Impact Index Per Article: 52.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022]
Abstract
Theta frequency (4-8 Hz) fluctuations of the local field potential have long been implicated in learning and memory. Human studies of episodic memory, however, have provided mixed evidence for theta's role in successful learning and remembering. Re-evaluating these conflicting findings leads us to conclude that: (i) successful memory is associated both with increased narrow-band theta oscillations and a broad-band tilt of the power spectrum; (ii) theta oscillations specifically support associative memory, whereas the spectral tilt reflects a general index of activation; and (iii) different cognitive contrasts (generalized versus specific to memory), recording techniques (invasive versus noninvasive), and referencing schemes (local versus global) alter the balance between the two phenomena to make one or the other more easily detectable.
Collapse
Affiliation(s)
- Nora A Herweg
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan A Solomon
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Tsitsiklis M, Miller J, Qasim SE, Inman CS, Gross RE, Willie JT, Smith EH, Sheth SA, Schevon CA, Sperling MR, Sharan A, Stein JM, Jacobs J. Single-Neuron Representations of Spatial Targets in Humans. Curr Biol 2020; 30:245-253.e4. [PMID: 31902728 PMCID: PMC6981010 DOI: 10.1016/j.cub.2019.11.048] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 10/10/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022]
Abstract
The hippocampus and surrounding medial-temporal-lobe (MTL) structures are critical for both memory and spatial navigation, but we do not fully understand the neuronal representations used to support these behaviors. Much research has examined how the MTL neurally represents spatial information, such as with "place cells" that represent an animal's current location or "head-direction cells" that code for an animal's current heading. In addition to behaviors that require an animal to attend to the current spatial location, navigating to remote destinations is a common part of daily life. To examine the neural basis of these behaviors, we recorded single-neuron activity from neurosurgical patients playing Treasure Hunt, a virtual-reality spatial-memory task. By analyzing how the activity of these neurons related to behavior in Treasure Hunt, we found that the firing rates of many MTL neurons during navigation significantly changed depending on the position of the current spatial target. In addition, we observed neurons whose firing rates during navigation were tuned to specific heading directions in the environment, and others whose activity changed depending on the timing within the trial. By showing that neurons in our task represent remote locations rather than the subject's own position, our results suggest that the human MTL can represent remote spatial information according to task demands.
Collapse
Affiliation(s)
- Melina Tsitsiklis
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, NY 10027, USA
| | - Jonathan Miller
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Salman E Qasim
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA
| | - Cory S Inman
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Robert E Gross
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Jon T Willie
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Elliot H Smith
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84112, USA
| | - Sameer A Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Catherine A Schevon
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Joel M Stein
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joshua Jacobs
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| |
Collapse
|
47
|
Kim M, Song J, Nishi K, Sowndhararajan K, Kim S. Changes in the Electroencephalographic Activity in Response to Odors Produced by Organic Compounds. J PSYCHOPHYSIOL 2020. [DOI: 10.1027/0269-8803/a000234] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Abstract. Volatile organic compounds are widely used to manufacture various products in addition to research purposes. They play an important role in the air quality of outdoor and indoor with a pleasant or unpleasant odor. It is well known that the odor of chemicals with different structures can affect brain functions differently. In general, organic compounds are mainly characterized by their functional groups. Acetic acid, acetaldehyde, acetone, and acetonitrile are widely used laboratory chemicals with the same methyl group, but different functional groups. Hence, the present study was aimed to investigate whether the exposure of these four chemicals (10%) exhibits the same electroencephalographic (EEG) activity or different. For this purpose, the EEG was recorded in 20 male healthy volunteers. The EEG was recorded from 32 electrodes located on the scalp, based on the International 10–20 system with modified combinatorial nomenclature. The results indicated that tested subjects are less sensitive to acetic acid odor than other three chemicals. The absolute theta activity significantly increased at Cp5 and F8 regions, and the relative mid-beta (RMB) significantly decreased at Fc1 region during the exposure of acetic acid. On the other hand, acetaldehyde, acetone, and acetonitrile produced EEG changes in many indices such as relative theta, relative gamma, relative high beta, relative beta, relative slow beta, the ratio of alpha to high beta, and spectral edge frequencies. However, there was no significant change in the absolute wave activity. Although acetaldehyde, acetone, and acetonitrile odors affected almost similar EEG indices, they exhibited changes in different brain regions. The variations in the EEG activity of these chemicals may be due to the activation of different olfactory receptors, odor characteristics, and structural arrangements.
Collapse
Affiliation(s)
- Minju Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Gangwon-do, Republic of Korea
| | - Jieun Song
- School of Natural Resources and Environmental Science, Kangwon National University, Gangwon-do, Republic of Korea
| | - Kosuke Nishi
- Department of Bioscience, Ehime University, Japan
| | - Kandhasamy Sowndhararajan
- School of Natural Resources and Environmental Science, Kangwon National University, Gangwon-do, Republic of Korea
- Department of Botany, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu, India
| | - Songmun Kim
- School of Natural Resources and Environmental Science, Kangwon National University, Gangwon-do, Republic of Korea
- Gangwon Perfume Alchemy Ltd. Co., Gangwon-do, Republic of Korea
| |
Collapse
|
48
|
Meisler SL, Kahana MJ, Ezzyat Y. Does data cleaning improve brain state classification? J Neurosci Methods 2019; 328:108421. [PMID: 31541912 PMCID: PMC11225530 DOI: 10.1016/j.jneumeth.2019.108421] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/14/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Neuroscientists routinely seek to identify and remove noisy or artifactual observations from their data. They do so with the belief that removing such data improves power to detect relations between neural activity and behavior, which are often subtle and can be overwhelmed by noise. Whereas standard methods can exclude certain well-defined noise sources (e.g., 50/60 Hz electrical noise), in many situations there is not a clear difference between noise and signals so it is not obvious how to separate the two. Here we ask whether methods routinely used to "clean" human electrophysiological recordings lead to greater power to detect brain-behavior relations. NEW METHOD This, to the authors' knowledge, is the first large-scale simultaneous evaluation of multiple commonly used methods for removing noise from intracranial EEG recordings. RESULTS We find that several commonly used data cleaning methods (automated methods based on statistical signal properties and manual methods based on expert review) do not increase the power to detect univariate and multivariate electrophysiological biomarkers of successful episodic memory encoding, a well-characterized broadband pattern of neural activity observed across the brain. COMPARISON WITH EXISTING METHODS Researchers may be more likely to increase statistical power to detect physiological phenomena of interest by allocating resources away from cleaning noisy data and toward collecting more within-patient observations. CONCLUSIONS These findings highlight the challenge of partitioning signal and noise in the analysis of brain-behavior relations, and suggest increasing sample size and numbers of observations, rather than data cleaning, as the best approach to improving statistical power.
Collapse
Affiliation(s)
- Steven L Meisler
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael J Kahana
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Youssef Ezzyat
- Dept. of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
49
|
Chaitanya G, Hinds W, Kragel J, He X, Sideman N, Ezzyat Y, Sperling MR, Sharan A, Tracy JI. Tonic Resting State Hubness Supports High Gamma Activity Defined Verbal Memory Encoding Network in Epilepsy. Neuroscience 2019; 425:194-216. [PMID: 31786346 DOI: 10.1016/j.neuroscience.2019.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 01/06/2023]
Abstract
High gamma activity (HGA) of verbal-memory encoding using invasive-electroencephalogram has laid the foundation for numerous studies testing the integrity of memory in diseased populations. Yet, the functional connectivity characteristics of networks subserving these memory linkages remains uncertain. By integrating this electrophysiological biomarker of memory encoding from IEEG with resting-state BOLD fluctuations, we estimated the segregation and hubness of HGA-memory regions in drug-resistant epilepsy patients and matched healthy controls. HGA-memory regions express distinctly different hubness compared to neighboring regions in health and in epilepsy, and this hubness was more relevant than segregation in predicting verbal memory encoding. The HGA-memory network comprised regions from both the cognitive control and primary processing networks, validating that effective verbal-memory encoding requires integrating brain functions, and is not dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional connectivity, which provides the necessary conditions for effective, phasic, task-dependent memory encoding.
Collapse
Affiliation(s)
- Ganne Chaitanya
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Walter Hinds
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, United States
| | - James Kragel
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Xiaosong He
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Noah Sideman
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Youssef Ezzyat
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Ashwini Sharan
- Department of Neurosurgery, Thomas Jefferson University, Philadelphia, PA 19107, United States
| | - Joseph I Tracy
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA 19107, United States.
| |
Collapse
|
50
|
Solomon EA, Lega BC, Sperling MR, Kahana MJ. Hippocampal theta codes for distances in semantic and temporal spaces. Proc Natl Acad Sci U S A 2019; 116:24343-24352. [PMID: 31723043 PMCID: PMC6883851 DOI: 10.1073/pnas.1906729116] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The medial temporal lobe (MTL) is known to support episodic memory and spatial navigation, raising the possibility that its true function is to form "cognitive maps" of any kind of information. Studies in humans and animals support the idea that the hippocampal theta rhythm (4 to 8 Hz) is key to this mapping function, as it has been repeatedly observed during spatial navigation tasks. If episodic memory and spatial navigation are 2 sides of the same coin, we hypothesized that theta oscillations might reflect relations between explicitly nonspatial items, such as words. We asked 189 neurosurgical patients to perform a verbal free-recall task, of which 96 had indwelling electrodes placed in the MTL. Subjects were instructed to remember short lists of sequentially presented nouns. We found that hippocampal theta power and connectivity during item retrieval coded for semantic distances between words, as measured using word2vec-derived subspaces. Additionally, hippocampal theta indexed temporal distances between words after filtering lists on recall performance, to ensure adequate dynamic range in time. Theta effects were noted only for semantic subspaces of 1 dimension, indicating a substantial compression of the possible semantic feature space. These results lend further support to our growing confidence that the MTL forms cognitive maps of arbitrary representational spaces, helping to reconcile longstanding differences between the spatial and episodic memory literatures.
Collapse
Affiliation(s)
- Ethan A Solomon
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104
| | - Bradley C Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX 75390
| | - Michael R Sperling
- Department of Neurology, Thomas Jefferson University Hospital, Philadelphia, PA 19107
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|