1
|
Zhang H, Zhao J, Fan L, Gao C, Li F, Liu J, Bai C, Li X, Li B, Zhang T. Somatosensory-Thalamic Functional Dysconnectivity Associated With Poststroke Motor Function Rehabilitation: A Resting-State fMRI Study. Brain Behav 2025; 15:e70321. [PMID: 39935146 PMCID: PMC11813981 DOI: 10.1002/brb3.70321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 11/28/2024] [Accepted: 01/18/2025] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND The thalamus plays a pivotal role in functional brain networks, yet its contribution to motor function recovery following stroke remains elusive. We aim to explore changes in thalamocortical functional connectivity poststroke and its correlation with motor function. METHODS Thirty-nine subacute ischemic stroke patients and 32 healthy individuals underwent resting-state functional magnetic resonance imaging (MRI). The Fugl-Meyer Assessment (FMA) was employed to evaluate upper and lower extremity motor function before and 1 year after stroke rehabilitation. The ipsilesional thalamus and contralesional thalamus were parceled into functional regions of interest (ROIs) based on connectivity with six cortical ROIs: prefrontal, motor, temporal, posterior parietal, somatosensory, and occipital cortex. Functional connectivity between each cortical ROI and its corresponding thalamic ROI was calculated and compared between groups. Differences identified in the ROI-to-ROI analysis were further investigated through seed-to-voxel whole-brain connectivity analyses to pinpoint thalamic dysconnectivity. Correlations with upper and lower extremity motor function were also analyzed. RESULTS Significant changes in thalamocortical functional connectivity were observed after stroke in ROI-to-ROI analysis, with bilateral somatosensory-thalamic connectivity decreased and ipsilesional temporal-thalamic and bilateral occipital-thalamic connectivity increased. Seed-to-voxel analysis localized ipsilesional thalamic hypoconnectivity to the ipsilesional rolandic operculum and ipsilesional precentral gyrus. Ipsilesional somatosensory-thalamic connectivity was positively correlated with baseline upper extremity FMA scores and negatively correlated with upper extremity motor function change rate at 1-year postdischarge. CONCLUSIONS This study provides new insights into the role of the thalamus in motor function recovery after stroke, offering preliminary evidence for its potential as a therapeutic target in poststroke rehabilitation.
Collapse
Affiliation(s)
- Haojie Zhang
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Center of Neurological RehabilitationChina Rehabilitation Research CenterBeijingChina
- China Rehabilitation Science InstituteBeijingChina
| | - Jun Zhao
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Department of NeurologyChina Rehabilitation Research CenterBeijingChina
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- Sino‐Danish CollegeUniversity of Chinese Academy of SciencesBeijingChina
| | - Chaohong Gao
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of AutomationChinese Academy of SciencesBeijingChina
- Sino‐Danish CenterBeijingChina
| | - Fang Li
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Department of NeurologyChina Rehabilitation Research CenterBeijingChina
| | - Jingya Liu
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Department of Occupational TherapyChina Rehabilitation Research CenterBeijingChina
| | - Chen Bai
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Center of Neurological RehabilitationChina Rehabilitation Research CenterBeijingChina
- China Rehabilitation Science InstituteBeijingChina
| | - Xingzhu Li
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Center of Neurological RehabilitationChina Rehabilitation Research CenterBeijingChina
- China Rehabilitation Science InstituteBeijingChina
| | - Bingjie Li
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Department of NeurologyChina Rehabilitation Research CenterBeijingChina
| | - Tong Zhang
- School of Rehabilitation MedicineCapital Medical UniversityBeijingChina
- Center of Neurological RehabilitationChina Rehabilitation Research CenterBeijingChina
- China Rehabilitation Science InstituteBeijingChina
| |
Collapse
|
2
|
Segobin S, Haast RAM, Kumar VJ, Lella A, Alkemade A, Bach Cuadra M, Barbeau EJ, Felician O, Pergola G, Pitel AL, Saranathan M, Tourdias T, Hornberger M. A roadmap towards standardized neuroimaging approaches for human thalamic nuclei. Nat Rev Neurosci 2024; 25:792-808. [PMID: 39420114 DOI: 10.1038/s41583-024-00867-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 10/19/2024]
Abstract
The thalamus has a key role in mediating cortical-subcortical interactions but is often neglected in neuroimaging studies, which mostly focus on changes in cortical structure and activity. One of the main reasons for the thalamus being overlooked is that the delineation of individual thalamic nuclei via neuroimaging remains controversial. Indeed, neuroimaging atlases vary substantially regarding which thalamic nuclei are included and how their delineations were established. Here, we review current and emerging methods for thalamic nuclei segmentation in neuroimaging data and consider the limitations of existing techniques in terms of their research and clinical applicability. We address these challenges by proposing a roadmap to improve thalamic nuclei segmentation in human neuroimaging and, in turn, harmonize research approaches and advance clinical applications. We believe that a collective effort is required to achieve this. We hope that this will ultimately lead to the thalamic nuclei being regarded as key brain regions in their own right and not (as often currently assumed) as simply a gateway between cortical and subcortical regions.
Collapse
Affiliation(s)
- Shailendra Segobin
- Normandie University, UNICAEN, PSL Université Paris, EPHE, INSERM, U1077, CHU de Caen, Cyceron, Neuropsychologie et Imagerie de la Mémoire Humaine, Caen, France.
| | - Roy A M Haast
- Aix-Marseille University, CRMBM CNRS UMR 7339, Marseille, France
- APHM, La Timone Hospital, CEMEREM, Marseille, France
| | | | - Annalisa Lella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
| | - Anneke Alkemade
- Integrative Model-based Cognitive Neuroscience Unit, Department of Psychology, University of Amsterdam, Amsterdam, The Netherlands
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Lausanne, Switzerland
- Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition (Cerco), UMR5549, CNRS - Université de Toulouse, Toulouse, France
| | - Olivier Felician
- Aix Marseille Université, INSERM INS UMR 1106, APHM, Marseille, France
| | - Giulio Pergola
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari Aldo Moro, Bari, Italy
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", NeuroPresage Team, Cyceron, Caen, France
| | | | - Thomas Tourdias
- Neuroimagerie diagnostique et thérapeutique, CHU de Bordeaux, Bordeaux, France
- Neurocentre Magendie, University of Bordeaux, INSERM U1215, Bordeaux, France
| | | |
Collapse
|
3
|
Bulut T, Hagoort P. Contributions of the left and right thalami to language: A meta-analytic approach. Brain Struct Funct 2024; 229:2149-2166. [PMID: 38625556 PMCID: PMC11611992 DOI: 10.1007/s00429-024-02795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/25/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Despite a pervasive cortico-centric view in cognitive neuroscience, subcortical structures including the thalamus have been shown to be increasingly involved in higher cognitive functions. Previous structural and functional imaging studies demonstrated cortico-thalamo-cortical loops which may support various cognitive functions including language. However, large-scale functional connectivity of the thalamus during language tasks has not been examined before. METHODS The present study employed meta-analytic connectivity modeling to identify language-related coactivation patterns of the left and right thalami. The left and right thalami were used as regions of interest to search the BrainMap functional database for neuroimaging experiments with healthy participants reporting language-related activations in each region of interest. Activation likelihood estimation analyses were then carried out on the foci extracted from the identified studies to estimate functional convergence for each thalamus. A functional decoding analysis based on the same database was conducted to characterize thalamic contributions to different language functions. RESULTS The results revealed bilateral frontotemporal and bilateral subcortical (basal ganglia) coactivation patterns for both the left and right thalami, and also right cerebellar coactivations for the left thalamus, during language processing. In light of previous empirical studies and theoretical frameworks, the present connectivity and functional decoding findings suggest that cortico-subcortical-cerebellar-cortical loops modulate and fine-tune information transfer within the bilateral frontotemporal cortices during language processing, especially during production and semantic operations, but also other language (e.g., syntax, phonology) and cognitive operations (e.g., attention, cognitive control). CONCLUSION The current findings show that the language-relevant network extends beyond the classical left perisylvian cortices and spans bilateral cortical, bilateral subcortical (bilateral thalamus, bilateral basal ganglia) and right cerebellar regions.
Collapse
Affiliation(s)
- Talat Bulut
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
- Department of Speech and Language Therapy, School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.
| | - Peter Hagoort
- Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Vidal JP, Danet L, Péran P, Pariente J, Bach Cuadra M, Zahr NM, Barbeau EJ, Saranathan M. Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation. Brain Struct Funct 2024; 229:1087-1101. [PMID: 38546872 PMCID: PMC11147736 DOI: 10.1007/s00429-024-02777-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/19/2024] [Indexed: 04/09/2024]
Abstract
Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for the use of T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3 T and 7 T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.
Collapse
Affiliation(s)
- Julie P Vidal
- CNRS, CerCo (Brain and Cognition Research Center), Paul Sabatier University, Toulouse, France
- INSERM, ToNiC (Toulouse NeuroImaging Center), Paul Sabatier University, Toulouse, France
| | - Lola Danet
- INSERM, ToNiC (Toulouse NeuroImaging Center), Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Patrice Péran
- INSERM, ToNiC (Toulouse NeuroImaging Center), Paul Sabatier University, Toulouse, France
| | - Jérémie Pariente
- INSERM, ToNiC (Toulouse NeuroImaging Center), Paul Sabatier University, Toulouse, France
- Neurology Department, Purpan Hospital, Toulouse University Hospital Center, Toulouse, France
| | - Meritxell Bach Cuadra
- CIBM Center for Biomedical Imaging, Radiology Department, Lausanne University and University Hospital, Lausanne, Switzerland
| | - Natalie M Zahr
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, USA
| | - Emmanuel J Barbeau
- CNRS, CerCo (Brain and Cognition Research Center), Paul Sabatier University, Toulouse, France
| | - Manojkumar Saranathan
- Department of Radiology, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
5
|
Vidal JP, Danet L, Péran P, Pariente J, Cuadra MB, Zahr NM, Barbeau EJ, Saranathan M. Robust thalamic nuclei segmentation from T1-weighted MRI using polynomial intensity transformation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.01.30.24301606. [PMID: 38352493 PMCID: PMC10862991 DOI: 10.1101/2024.01.30.24301606] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Accurate segmentation of thalamic nuclei, crucial for understanding their role in healthy cognition and in pathologies, is challenging to achieve on standard T1-weighted (T1w) magnetic resonance imaging (MRI) due to poor image contrast. White-matter-nulled (WMn) MRI sequences improve intrathalamic contrast but are not part of clinical protocols or extant databases. In this study, we introduce histogram-based polynomial synthesis (HIPS), a fast preprocessing transform step that synthesizes WMn-like image contrast from standard T1w MRI using a polynomial approximation for intensity transformation. HIPS was incorporated into THalamus Optimized Multi-Atlas Segmentation (THOMAS) pipeline, a method developed and optimized for WMn MRI. HIPS-THOMAS was compared to a convolutional neural network (CNN)-based segmentation method and THOMAS modified for T1w images (T1w-THOMAS). The robustness and accuracy of the three methods were tested across different image contrasts (MPRAGE, SPGR, and MP2RAGE), scanner manufacturers (PHILIPS, GE, and Siemens), and field strengths (3T and 7T). HIPS-transformed images improved intra-thalamic contrast and thalamic boundaries, and HIPS-THOMAS yielded significantly higher mean Dice coefficients and reduced volume errors compared to both the CNN method and T1w-THOMAS. Finally, all three methods were compared using the frequently travelling human phantom MRI dataset for inter- and intra-scanner variability, with HIPS displaying the least inter-scanner variability and performing comparably with T1w-THOMAS for intra-scanner variability. In conclusion, our findings highlight the efficacy and robustness of HIPS in enhancing thalamic nuclei segmentation from standard T1w MRI.
Collapse
|
6
|
Jiang T, Yin X, Zhu L, Jia W, Tan Z, Li B, Guo J. Abnormal alterations of regional spontaneous neuronal activity and functional connectivity in insomnia patients with difficulty falling asleep: a resting-state fMRI study. BMC Neurol 2023; 23:430. [PMID: 38049760 PMCID: PMC10694975 DOI: 10.1186/s12883-023-03481-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
BACKGROUND Insomnia disorder (ID) seriously affects people's daily life. Difficulty falling asleep is the most commonly reported complaint in patients with ID. However, the mechanism of prolonged sleep latency (SL) is still obscure. The aim of our present study was to investigate the relationship between prolonged SL and alterations in spontaneous neural activity and brain functional connectivity (FC) in ID patients using functional magnetic resonance imaging (fMRI). METHODS A total of 52 insomniacs with difficulty falling asleep and 30 matched healthy controls (HCs) underwent resting-state fMRI. The amplitude of low-frequency fluctuation (ALFF) was measured and group differences were compared. The peak areas with significantly different ALFF values were identified as the seed regions to calculate FC to the whole brain. SL was assessed by a wrist actigraphy device in ID patients. The Pittsburgh Sleep Quality Index (PSQI), Hamilton Anxiety Rating Scale (HAMA), and Hyperarousal Scale (HAS) were evaluated in both ID patients and HCs. Finally, correlation analyses were performed between the clinical features and FC/ALFF values. RESULTS ID patients showed higher PSQI, HAMA, HAS scores than HCs. The functional MRI results indicated increased ALFF value in the left insula and right amygdala and decreased ALFF value in the right superior parietal lobe (SPL) in ID patients. The seed-based FC analysis demonstrated increased FC between the left insula and the bilateral precentral gyrus and FC between the right amygdala and the left posterior cingulate cortex (PCC) in patients with ID. Correlation analysis indicated that the increased FC value of the right amygdala-left PCC was positively correlated with SL measured by actigraphy. CONCLUSION This study revealed abnormal regional spontaneous fluctuations in the right amygdala, left insula, and right SPL, as well as increased FC in the left insula-precentral and right amygdala-left PCC. Moreover, the prolonged SL was positively correlated with the abnormal FC in the right amygdala-left PCC in ID patients. The current study showed the correlation between prolonged SL and the abnormal function of emotion-related brain regions in ID patients, which may contribute to a better understanding of the neural mechanisms underlying difficulty falling asleep in patients with ID. CLINICAL TRIAL REGISTRATION http://www.chictr.org.cn ., ChiCTR1800015282. Registered on 20th March 2018.
Collapse
Affiliation(s)
- Tongfei Jiang
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China
| | - Xuejiao Yin
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China
| | - Liying Zhu
- Graduate School, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Weilin Jia
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China
| | - Zhongjian Tan
- Department of Radiology, Dong Zhimen Hospital Beijing University of Chinese Medicine, Beijing, 100010, China
| | - Bin Li
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China
| | - Jing Guo
- Department of Acupuncture and Moxibustion, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Key Laboratory of Acupuncture Neuromodulation, Beijing, 100010, China.
| |
Collapse
|
7
|
Rousseau PN, Chakravarty MM, Steele CJ. Mapping pontocerebellar connectivity with diffusion MRI. Neuroimage 2022; 264:119684. [PMID: 36252913 DOI: 10.1016/j.neuroimage.2022.119684] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
Abstract
The cerebellum's involvement in cognitive, affective and motor functions is mediated by connections to different regions of the cerebral cortex. A distinctive feature of cortico-cerebellar loops that has been demonstrated in the animal work is a topographic organization that is preserved across its corticopontine, pontocerebellar, and cerebello-thalmo-cortical segments. Here we used tractography derived from diffusion imaging data to characterize the connections between the pons and the individual lobules of the cerebellum and generate a parcellation of the pons and middle cerebellar peduncle based on the pattern of connectivity. We identified a rostral to caudal gradient in the pons, similar to that observed in the animal work, such that rostral regions were preferentially connected to cerebellar lobules involved in non-motor, and caudal regions with motor regions. These findings advance our fundamental understanding of the cerebellum, and the parcellations we generated provide context for future research into the pontocerebellar tract's involvement in health and disease.
Collapse
Affiliation(s)
| | - M Mallar Chakravarty
- Cerebral Imaging Center, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada; Department of Psychiatry, McGill University, Montreal, QC, Canada; Biological and Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Christopher J Steele
- Department of Psychology, Concordia University, Montreal, QC, Canada; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; PERFORM Centre, Concordia University, Montreal, QC, Canada
| |
Collapse
|
8
|
Niu J, Zheng Z, Wang Z, Xu L, Meng Q, Zhang X, Kuang L, Wang S, Dong L, Qiu J, Jiao Q, Cao W. Thalamo-cortical inter-subject functional correlation during movie watching across the adult lifespan. Front Neurosci 2022; 16:984571. [PMID: 36213738 PMCID: PMC9534554 DOI: 10.3389/fnins.2022.984571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have shown that the functional interactions between the thalamus and cerebral cortices play an important role in cognitive function and are influenced by age. Previous studies have revealed age-related changes in the thalamo-cortical system within individuals, while neglecting differences between individuals. Here, we characterized inter-subject functional correlation (ISFC) between the thalamus and several cortical brain networks in 500 healthy participants aged 18–87 years old from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) cohort using movie-watching state fMRI data. General linear models (GLM) were performed to assess age-related changes in ISFC of thalamo-cortical networks and the relationship between ISFC and fluid intelligence. We found significant age-related decreases in ISFC between the posterior thalamus (e.g., ventral posterior nucleus and pulvinar) and the attentional network, sensorimotor network, and visual network (FDR correction with p < 0.05). Meanwhile, the ISFC between the thalamus (mainly the mediodorsal nucleus and ventral thalamic nuclei) and higher-order cortical networks, including the default mode network, salience network and control network, showed complex changes with age. Furthermore, the altered ISFC of thalamo-cortical networks was positively correlated with decreased fluid intelligence (FDR correction with p < 0.05). Overall, our results provide further evidence that alterations in the functional integrity of the thalamo-cortical system might play an important role in cognitive decline during aging.
Collapse
Affiliation(s)
- Jinpeng Niu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Zihao Zheng
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqi Wang
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Longchun Xu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Qingmin Meng
- Department of Interventional Radiology, Taian Central Hospital, Tai’an, China
| | - Xiaotong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Liangfeng Kuang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Shigang Wang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Li Dong
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
- *Correspondence: Weifang Cao,
| |
Collapse
|
9
|
Kawabata K, Bagarinao E, Watanabe H, Maesawa S, Mori D, Hara K, Ohdake R, Masuda M, Ogura A, Kato T, Koyama S, Katsuno M, Wakabayashi T, Kuzuya M, Hoshiyama M, Isoda H, Naganawa S, Ozaki N, Sobue G. Bridging large-scale cortical networks: Integrative and function-specific hubs in the thalamus. iScience 2021; 24:103106. [PMID: 34622159 PMCID: PMC8479782 DOI: 10.1016/j.isci.2021.103106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 08/02/2021] [Accepted: 09/02/2021] [Indexed: 12/03/2022] Open
Abstract
The thalamus is critical for the brain's integrative hub functions; however, the localization and characterization of the different thalamic hubs remain unclear. Using a voxel-level network measure called functional connectivity overlap ratio (FCOR), we examined the thalamus' association with large-scale resting-state networks (RSNs) to elucidate its connector hub roles. Connections to the core-neurocognitive networks were localized in the anterior and medial parts, such as the anteroventral and mediodorsal nuclei areas. Regions functionally connected to the sensorimotor network were distinctively located around the lateral pulvinar nucleus but to a limited extent. Prominent connector hubs include the anteroventral, ventral lateral, and mediodorsal nuclei with functional connections to multiple RSNs. These findings suggest that the thalamus, with extensive connections to most of the RSNs, is well placed as a critical integrative functional hub and could play an important role for functional integration facilitating brain functions associated with primary processing and higher cognition. Multiple large-scale cortical networks converged in the thalamus Neurocognitive associated hub existed in the anterior and medial region Control-processing hub localized in the intermediate thalamus Sensorimotor network was located around the lateral pulvinar nucleus
Collapse
Affiliation(s)
- Kazuya Kawabata
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan.,Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Epifanio Bagarinao
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Hirohisa Watanabe
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Satoshi Maesawa
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Daisuke Mori
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan
| | - Kazuhiro Hara
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Reiko Ohdake
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Neurology, Fujita Health University School of Medicine, Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, Japan
| | - Michihito Masuda
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Aya Ogura
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshiyasu Kato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shuji Koyama
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Toshihiko Wakabayashi
- Department of Neurosurgery, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Masafumi Kuzuya
- Department of Community Healthcare and Geriatrics, Nagoya University Graduate School of Medicine and Institutes of Innovation for Future Society, Nagoya University, Nagoya, Aichi, Japan
| | - Minoru Hoshiyama
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Haruo Isoda
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Integrated Health Sciences, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Shinji Naganawa
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Norio Ozaki
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Gen Sobue
- Brain and Mind Research Center, Nagoya University, Tsurumai-cho, Showa-ku, Nagoya, Aichi, Japan.,Aichi Medical University, Nagakute, Aichi, Japan
| |
Collapse
|
10
|
Mapping thalamocortical functional connectivity with large-scale brain networks in patients with first-episode psychosis. Sci Rep 2021; 11:19815. [PMID: 34615924 PMCID: PMC8494789 DOI: 10.1038/s41598-021-99170-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 09/16/2021] [Indexed: 11/09/2022] Open
Abstract
Abnormal thalamocortical networks involving specific thalamic nuclei have been implicated in schizophrenia pathophysiology. While comparable topography of anatomical and functional connectivity abnormalities has been reported in patients across illness stages, previous functional studies have been confined to anatomical pathways of thalamocortical networks. To address this issue, we incorporated large-scale brain network dynamics into examining thalamocortical functional connectivity. Forty patients with first-episode psychosis and forty healthy controls underwent T1-weighted and resting-state functional magnetic resonance imaging. Independent component analysis of voxelwise thalamic functional connectivity maps parcellated the cortex into thalamus-related networks, and thalamic subdivisions associated with these networks were delineated. Functional connectivity of (1) networks with the thalamus and (2) thalamic subdivision seeds were examined. In patients, functional connectivity of the salience network with the thalamus was decreased and localized to the ventrolateral (VL) and ventroposterior (VP) thalamus, while that of a network comprising the cerebellum, temporal and parietal regions was increased and localized to the mediodorsal (MD) thalamus. In patients, thalamic subdivision encompassing the VL and VP thalamus demonstrated hypoconnectivity and that encompassing the MD and pulvinar regions demonstrated hyperconnectivity. Our results extend the implications of disrupted thalamocortical networks involving specific thalamic nuclei to dysfunctional large-scale brain network dynamics in schizophrenia pathophysiology.
Collapse
|
11
|
Boelens Keun JT, van Heese EM, Laansma MA, Weeland CJ, de Joode NT, van den Heuvel OA, Gool JK, Kasprzak S, Bright JK, Vriend C, van der Werf YD. Structural assessment of thalamus morphology in brain disorders: A review and recommendation of thalamic nucleus segmentation and shape analysis. Neurosci Biobehav Rev 2021; 131:466-478. [PMID: 34587501 DOI: 10.1016/j.neubiorev.2021.09.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 08/25/2021] [Accepted: 09/24/2021] [Indexed: 12/30/2022]
Abstract
The thalamus is a central brain structure crucially involved in cognitive, emotional, sensory, and motor functions and is often reported to be involved in the pathophysiology of neurological and psychiatric disorders. The functional subdivision of the thalamus warrants morphological investigation on the level of individual subnuclei. In addition to volumetric measures, the investigation of other morphological features may give additional insights into thalamic morphology. For instance, shape features offer a higher spatial resolution by revealing small, regional differences that are left undetected in volumetric analyses. In this review, we discuss the benefits and limitations of recent advances in neuroimaging techniques to investigate thalamic morphology in vivo, leading to our proposed methodology. This methodology consists of available pipelines for volume and shape analysis, focussing on the morphological features of volume, thickness, and surface area. We demonstrate this combined approach in a Parkinson's disease cohort to illustrate their complementarity. Considering our findings, we recommend a combined methodology as it allows for more sensitive investigation of thalamic morphology in clinical populations.
Collapse
Affiliation(s)
- Jikke T Boelens Keun
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Eva M van Heese
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Max A Laansma
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Cees J Weeland
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Niels T de Joode
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Odile A van den Heuvel
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Jari K Gool
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; SEIN, Heemstede, the Netherlands; Department of Neurology, LUMC, Leiden, the Netherlands
| | - Selina Kasprzak
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Joanna K Bright
- Social Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Chris Vriend
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands; Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Psychiatry, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands
| | - Ysbrand D van der Werf
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy and Neurosciences, Amsterdam Neuroscience, De Boelelaan 1117, Amsterdam, the Netherlands.
| |
Collapse
|
12
|
The specificity of thalamic alterations in Korsakoff's syndrome: Implications for the study of amnesia. Neurosci Biobehav Rev 2021; 130:292-300. [PMID: 34454914 DOI: 10.1016/j.neubiorev.2021.07.037] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 04/01/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiological mechanisms behind amnesia are still unknown. Recent literature, through the study of patients with Alcohol Use Disorder with and without Korsakoff's syndrome, increasingly shows that physiological alterations to the thalamus have an important role in the development of amnesia. This review gives an overview of neuropsychological, neuropathological and neuroimaging contributions to the understanding of Korsakoff's syndrome, highlighting the central role of the thalamus in this amnesia. The thalamus being a multi-nucleus structure, the limitations regarding the loci, nature and alterations to specific nuclei are discussed, along with potential solutions. Finally, future directions for clinical research are laid out to unravel the intricacies inherent to amnesia. They consider the need to evaluate the physiological role of the thalamus, not only as an entity but also as part of a brain circuit through a more integrative approach.
Collapse
|
13
|
Honnorat N, Saranathan M, Sullivan EV, Pfefferbaum A, Pohl KM, Zahr NM. Performance ramifications of abnormal functional connectivity of ventral posterior lateral thalamus with cerebellum in abstinent individuals with Alcohol Use Disorder. Drug Alcohol Depend 2021; 220:108509. [PMID: 33453503 PMCID: PMC7889734 DOI: 10.1016/j.drugalcdep.2021.108509] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 01/06/2023]
Abstract
The extant literature supports the involvement of the thalamus in the cognitive and motor impairment associated with chronic alcohol consumption, but clear structure/function relationships remain elusive. Alcohol effects on specific nuclei rather than the entire thalamus may provide the basis for differential cognitive and motor decline in Alcohol Use Disorder (AUD). This functional MRI (fMRI) study was conducted in 23 abstinent individuals with AUD and 27 healthy controls to test the hypothesis that functional connectivity between anterior thalamus and hippocampus would be compromised in those with an AUD diagnosis and related to mnemonic deficits. Functional connectivity between 7 thalamic structures [5 thalamic nuclei: anterior ventral (AV), mediodorsal (MD), pulvinar (Pul), ventral lateral posterior (VLP), and ventral posterior lateral (VPL); ventral thalamus; the entire thalamus] and 14 "functional regions" was evaluated. Relative to controls, the AUD group exhibited different VPL-based functional connectivity: an anticorrelation between VPL and a bilateral middle temporal lobe region observed in controls became a positive correlation in the AUD group; an anticorrelation between the VPL and the cerebellum was stronger in the AUD than control group. AUD-associated altered connectivity between anterior thalamus and hippocampus as a substrate of memory compromise was not supported; instead, connectivity differences from controls selective to VPL and cerebellum demonstrated a relationship with impaired balance. These preliminary findings support substructure-level evaluation in future studies focused on discerning the role of the thalamus in AUD-associated cognitive and motor deficits.
Collapse
Affiliation(s)
- Nicolas Honnorat
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA.
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, 1501 N. Campbell Ave., Tucson, AZ, 85724, USA.
| | - Edith V Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Adolf Pfefferbaum
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Kilian M Pohl
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| | - Natalie M Zahr
- Neuroscience Program, SRI International, 333 Ravenswood Ave., Menlo Park, CA, 94025, USA; Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, 401 Quarry Rd., Stanford, CA, 94305, USA.
| |
Collapse
|
14
|
Zou G, Li Y, Liu J, Zhou S, Xu J, Qin L, Shao Y, Yao P, Sun H, Zou Q, Gao JH. Altered thalamic connectivity in insomnia disorder during wakefulness and sleep. Hum Brain Mapp 2020; 42:259-270. [PMID: 33048406 PMCID: PMC7721231 DOI: 10.1002/hbm.25221] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/16/2020] [Accepted: 09/20/2020] [Indexed: 01/16/2023] Open
Abstract
Insomnia disorder is the most common sleep disorder and has drawn increasing attention. Many studies have shown that hyperarousal plays a key role in the pathophysiology of insomnia disorder. However, the specific brain mechanisms underlying insomnia disorder remain unclear. To elucidate the neuropathophysiology of insomnia disorder, we investigated the brain functional networks of patients with insomnia disorder and healthy controls across the sleep–wake cycle. EEG‐fMRI data from 33 patients with insomnia disorder and 31 well‐matched healthy controls during wakefulness and nonrapid eye movement sleep, including N1, N2 and N3 stages, were analyzed. A medial and anterior thalamic region was selected as the seed considering its role in sleep–wake regulation. The functional connectivity between the thalamic seed and voxels across the brain was calculated. ANOVA with factors “group” and “stage” was performed on thalamus‐based functional connectivity. Correlations between the misperception index and altered functional connectivity were explored. A group‐by‐stage interaction was observed at widespread cortical regions. Regarding the main effect of group, patients with insomnia disorder demonstrated decreased thalamic connectivity with the left amygdala, parahippocampal gyrus, putamen, pallidum and hippocampus across wakefulness and all three nonrapid eye movement sleep stages. The thalamic connectivity in the subcortical cluster and the right temporal cluster in N1 was significantly correlated with the misperception index. This study demonstrated the brain functional basis in insomnia disorder and illustrated its relationship with sleep misperception, shedding new light on the brain mechanisms of insomnia disorder and indicating potential therapeutic targets for its treatment.
Collapse
Affiliation(s)
- Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yuezhen Li
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.,Department of Neuropsychiatry, Behavioral Neurology and Sleep Center, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Shuqin Zhou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Xu
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Laboratory of Applied Brain and Cognitive Sciences, College of International Business, Shanghai International Studies University, Shanghai, China
| | - Lang Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yan Shao
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Ping Yao
- Department of Physiology, College of Basic Medicine, Inner Mongolia Medical University, Hohhot, China
| | - Hongqiang Sun
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institute of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|
15
|
Rutland JW, Schefflein J, Arrighi-Allisan AE, Ranti D, Ladner TR, Pai A, Loewenstern J, Lin HM, Chelnis J, Delman BN, Shrivastava RK, Balchandani P. Measuring degeneration of the lateral geniculate nuclei from pituitary adenoma compression detected by 7T ultra-high field MRI: a method for predicting vision recovery following surgical decompression of the optic chiasm. J Neurosurg 2020; 132:1747-1756. [PMID: 31100726 PMCID: PMC7351175 DOI: 10.3171/2019.2.jns19271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 02/22/2019] [Indexed: 01/15/2023]
Abstract
OBJECTIVE Predicting vision recovery following surgical decompression of the optic chiasm in pituitary adenoma patients remains a clinical challenge, as there is significant variability in postoperative visual function that remains unreliably explained by current prognostic factors. Available literature inadequately characterizes alterations in adenoma patients involving the lateral geniculate nucleus (LGN). This study examined the association of LGN degeneration with chiasmatic compression as well as with the retinal nerve fiber layer (RNFL), pattern standard deviation (PSD), mean deviation (MD), and postoperative vision recovery. PSD is the degree of difference between the measured visual field pattern and the normal pattern ("hill") of vision, and MD is the average of the difference from the age-adjusted normal value. METHODS A prospective study of 27 pituitary adenoma patients and 27 matched healthy controls was conducted. Participants were scanned on a 7T ultra-high field MRI scanner, and 3 independent readers measured the LGN at its maximum cross-sectional area on coronal T1-weighted MPRAGE imaging. Readers were blinded to diagnosis and to each other's measurements. Neuro-ophthalmological data, including RNFL thickness, MD, and PSD, were acquired for 12 patients, and postoperative visual function data were collected on patients who underwent surgical chiasmal decompression. LGN areas were compared using two-tailed t-tests. RESULTS The average LGN cross-sectional area of adenoma patients was significantly smaller than that of controls (13.8 vs 19.2 mm2, p < 0.0001). The average LGN cross-sectional area correlated with MD (r = 0.67, p = 0.04), PSD (r = -0.62, p = 0.02), and RNFL thickness (r = 0.75, p = 0.02). The LGN cross-sectional area in adenoma patients with chiasm compression was 26.6% smaller than in patients without compression (p = 0.009). The average tumor volume was 7902.7 mm3. Patients with preoperative vision impairment showed 29.4% smaller LGN cross-sectional areas than patients without deficits (p = 0.003). Patients who experienced improved postoperative vision had LGN cross-sectional areas that were 40.8% larger than those of patients without postoperative improvement (p = 0.007). CONCLUSIONS The authors demonstrate novel in vivo evidence of LGN volume loss in pituitary adenoma patients and correlate imaging results with neuro-ophthalmology findings and postoperative vision recovery. Morphometric changes to the LGN may reflect anterograde transsynaptic degeneration. These findings indicate that LGN degeneration may be a marker of optic apparatus injury from chiasm compression, and measurement of LGN volume loss may be useful in predicting vision recovery following adenoma resection.
Collapse
Affiliation(s)
- John W Rutland
- 1Translational and Molecular Imaging Institute and Departments of
- 2Neurosurgery and
| | | | | | | | | | | | | | - Hung-Mo Lin
- 4Department of Population Health Science and Policy, Mount Sinai Hospital, New York; and
| | - James Chelnis
- 5Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
16
|
Gravbrot N, Saranathan M, Pouratian N, Kasoff WS. Advanced Imaging and Direct Targeting of the Motor Thalamus and Dentato-Rubro-Thalamic Tract for Tremor: A Systematic Review. Stereotact Funct Neurosurg 2020; 98:220-240. [PMID: 32403112 DOI: 10.1159/000507030] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 02/27/2020] [Indexed: 12/06/2024]
Abstract
Direct targeting methods for stereotactic neurosurgery in the treatment of essential tremor have been the subject of active research over the past decade but have not yet been systematically reviewed. We present a clinically oriented topic review based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses Group guidelines. Our focus is studies using advanced magnetic resonance imaging (MRI) techniques (ultrahigh-field structural MRI, diffusion-weighted imaging, diffusion-tensor tractography, and functional MRI) for patient specific, in vivo identification of the ventral intermediate nucleus and the dentato-rubro-thalamic tract.
Collapse
Affiliation(s)
- Nicholas Gravbrot
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Manojkumar Saranathan
- Department of Medical Imaging, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Nader Pouratian
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Willard S Kasoff
- Department of Neurosurgery, University of Arizona College of Medicine, Tucson, Arizona, USA,
| |
Collapse
|
17
|
Yu B, Xiao S, You Y, Ma H, Peng M, Hou Y, Guo Q. Abnormal Thalamic Functional Connectivity During Light Non-Rapid Eye Movement Sleep in Children With Primary Nocturnal Enuresis. J Am Acad Child Adolesc Psychiatry 2020; 59:660-670.e2. [PMID: 31220550 DOI: 10.1016/j.jaac.2019.05.028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 05/15/2019] [Accepted: 06/11/2019] [Indexed: 12/17/2022]
Abstract
OBJECTIVE To investigate abnormalities of thalamocortical and intrathalamic functional connectivity (FC) in children with primary nocturnal enuresis (PNE) during light non-rapid eye movement (NREM) sleep using a simultaneous electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) method. METHOD Polysomnographic and EEG-fMRI data were obtained during sleep from 61 children with PNE (age 10.2 ± 1.7 years, 59% boys) and 61 age-matched controls (age 10.1 ± 1.4 years, 54% boys). All subjects first participated in one overnight video-polysomnographic study. Total sleep time, percentage of total sleep time in each sleep stage, arousal index, and awakening index were calculated. Simultaneous EEG-fMRI studies were then performed using a 3T MRI system with a 32-channel MRI-compatible EEG system. Visual scoring of EEG data permitted sleep staging. Thalamocortical and intrathalamic FCs in the waking state and at different stages of light sleep were calculated and compared. RESULTS Children with PNE had a higher percentage of total sleep time in light sleep and a higher arousal index compared with controls. Abnormal thalamocortical FCs were detected in the lateral prefrontal cortex, medial prefrontal cortex, and inferior parietal lobule during light NREM sleep. Abnormal intrathalamic FCs were also detected during light NREM sleep among the motor, occipital, prefrontal, and temporal subdivisions of the thalamus. CONCLUSION Abnormal prefrontal and parietal thalamocortical FCs, accompanied by abnormal intrathalamic FCs among the motor, occipital, prefrontal, and temporal subdivision of thalamus during light NREM sleep, may be related to abnormal sleep and enuresis in children with PNE.
Collapse
Affiliation(s)
- Bing Yu
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Shanshan Xiao
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yi You
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Hongwei Ma
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Miao Peng
- Shengjing Hospital of China Medical University, Shenyang, China
| | - Yang Hou
- Shengjing Hospital of China Medical University, Shenyang, China.
| | - Qiyong Guo
- Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
18
|
Bocchetta M, Iglesias JE, Neason M, Cash DM, Warren JD, Rohrer JD. Thalamic nuclei in frontotemporal dementia: Mediodorsal nucleus involvement is universal but pulvinar atrophy is unique to C9orf72. Hum Brain Mapp 2019; 41:1006-1016. [PMID: 31696638 PMCID: PMC7267940 DOI: 10.1002/hbm.24856] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 10/09/2019] [Accepted: 10/18/2019] [Indexed: 12/12/2022] Open
Abstract
Thalamic atrophy is a common feature across all forms of FTD but little is known about specific nuclei involvement. We aimed to investigate in vivo atrophy of the thalamic nuclei across the FTD spectrum. A cohort of 402 FTD patients (age: mean(SD) 64.3(8.2) years; disease duration: 4.8(2.8) years) was compared with 104 age-matched controls (age: 62.5(10.4) years), using an automated segmentation of T1-weighted MRIs to extract volumes of 14 thalamic nuclei. Stratification was performed by clinical diagnosis (180 behavioural variant FTD (bvFTD), 85 semantic variant primary progressive aphasia (svPPA), 114 nonfluent variant PPA (nfvPPA), 15 PPA not otherwise specified (PPA-NOS), and 8 with associated motor neurone disease (FTD-MND), genetic diagnosis (27 MAPT, 28 C9orf72, 18 GRN), and pathological confirmation (37 tauopathy, 38 TDP-43opathy, 4 FUSopathy). The mediodorsal nucleus (MD) was the only nucleus affected in all FTD subgroups (16-33% smaller than controls). The laterodorsal nucleus was also particularly affected in genetic cases (28-38%), TDP-43 type A (47%), tau-CBD (44%), and FTD-MND (53%). The pulvinar was affected only in the C9orf72 group (16%). Both the lateral and medial geniculate nuclei were also affected in the genetic cases (10-20%), particularly the LGN in C9orf72 expansion carriers. Use of individual thalamic nuclei volumes provided higher accuracy in discriminating between FTD groups than the whole thalamic volume. The MD is the only structure affected across all FTD groups. Differential involvement of the thalamic nuclei among FTD forms is seen, with a unique pattern of atrophy in the pulvinar in C9orf72 expansion carriers.
Collapse
Affiliation(s)
- Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Juan E Iglesias
- Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK.,Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.,Computer Science and Artificial Intelligence Laboratory (CSAIL), Massachusetts Institute of Technology, Boston, Massachusetts, USA
| | - Mollie Neason
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - David M Cash
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK.,Centre for Medical Image Computing, Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Jason D Warren
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Jonathan D Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
19
|
Artificial bee colony clustering with self-adaptive crossover and stepwise search for brain functional parcellation in fMRI data. Soft comput 2019. [DOI: 10.1007/s00500-018-3467-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Ge R, Kot P, Liu X, Lang DJ, Wang JZ, Honer WG, Vila-Rodriguez F. Parcellation of the human hippocampus based on gray matter volume covariance: Replicable results on healthy young adults. Hum Brain Mapp 2019; 40:3738-3752. [PMID: 31115118 DOI: 10.1002/hbm.24628] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/25/2019] [Accepted: 04/29/2019] [Indexed: 12/31/2022] Open
Abstract
The hippocampus is a key brain region that participates in a range of cognitive and affective functions, and is involved in the etiopathogenesis of numerous neuropsychiatric disorders. The structural complexity and functional diversity of the hippocampus suggest the existence of structural and functional subdivisions within this structure. For the first time, we parcellated the human hippocampus with two independent data sets, each of which consisted of 198 T1-weighted structural magnetic resonance imaging (sMRI) images of healthy young subjects. The method was based on gray matter volume (GMV) covariance, which was quantified by a bivariate voxel-to-voxel linear correlation approach, as well as a multivariate masked independent component analysis approach. We subsequently interrogated the relationship between the GMV covariance patterns and the functional connectivity patterns of the hippocampal subregions using sMRI and resting-state functional MRI (fMRI) data from the same participants. Seven distinct GMV covariance-based subregions were identified for bilateral hippocampi, with robust reproducibility across the two data sets. We further demonstrated that the structural covariance patterns of the hippocampal subregions had a correspondence with the intrinsic functional connectivity patterns of these subregions. Together, our results provide a topographical configuration of the hippocampus with converging structural and functional support. The resulting subregions may improve our understanding of the hippocampal connectivity and functions at a subregional level, which provides useful parcellations and masks for future neuroscience and clinical research on the structural and/or functional connectivity of the hippocampus.
Collapse
Affiliation(s)
- Ruiyang Ge
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Paul Kot
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Xiang Liu
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Donna J Lang
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jane Z Wang
- Department of Electrical and Computer Engineering, University of British Columbia, Vancouver, British Columbia, Canada
| | - William G Honer
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Fidel Vila-Rodriguez
- Non-Invasive Neurostimulation Therapies (NINET) Laboratory, Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
21
|
Xue SW, Wang D, Tan Z, Wang Y, Lian Z, Sun Y, Hu X, Wang X, Zhou X. Disrupted Brain Entropy And Functional Connectivity Patterns Of Thalamic Subregions In Major Depressive Disorder. Neuropsychiatr Dis Treat 2019; 15:2629-2638. [PMID: 31571880 PMCID: PMC6750201 DOI: 10.2147/ndt.s220743] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/04/2019] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Entropy analysis of resting-state functional magnetic resonance imaging (R-fMRI) has recently been adopted to characterize brain temporal dynamics in some neuropsychological or psychiatric diseases. Thalamus-related dysfunction might be a potential trait marker of major depressive disorder (MDD), but the abnormal changes in the thalamus based on R-fMRI are still unclear from the perspective of brain temporal dynamics. The aim of this study was to identify local entropy changes and subregional connectivity patterns of the thalamus in MDD patients. PATIENTS AND METHODS We measured the sample entropy of the R-fMRI data from 46 MDD patients and 32 matched healthy controls. We employed the Louvain method for the module detection algorithm to automatically identify a functional parcellation of the thalamus and then examined the whole-brain subregional connectivity patterns. RESULTS The results indicated that the MDD patients had decreased entropy in the bilateral thalami compared with healthy controls. Increased functional connectivity between the thalamic subregions and the medial part of the superior frontal gyrus (mSFG) was found in MDD patients. CONCLUSION This study showed new evidence about sample entropy changes in MDD patients. The functional connectivity alterations that were widely distributed across almost all the thalamic subregions with the mSFG in MDD suggest a general involvement independent of the location and function of the subregions.
Collapse
Affiliation(s)
- Shao-Wei Xue
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Donglin Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Zhonglin Tan
- Department of Psychiatry, Hangzhou Seventh People's Hospital, Hangzhou 310013, People's Republic of China
| | - Yan Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Zhenzhen Lian
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Yunkai Sun
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xiaojiao Hu
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xiaole Wang
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| | - Xin Zhou
- Center for Cognition and Brain Disorders, Institutes of Psychological Sciences and the Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, People's Republic of China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou 311121, People's Republic of China
| |
Collapse
|
22
|
Iglesias JE, Insausti R, Lerma-Usabiaga G, Bocchetta M, Van Leemput K, Greve DN, van der Kouwe A, Fischl B, Caballero-Gaudes C, Paz-Alonso PM. A probabilistic atlas of the human thalamic nuclei combining ex vivo MRI and histology. Neuroimage 2018; 183:314-326. [PMID: 30121337 PMCID: PMC6215335 DOI: 10.1016/j.neuroimage.2018.08.012] [Citation(s) in RCA: 350] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 07/27/2018] [Accepted: 08/09/2018] [Indexed: 01/18/2023] Open
Abstract
The human thalamus is a brain structure that comprises numerous, highly specific nuclei. Since these nuclei are known to have different functions and to be connected to different areas of the cerebral cortex, it is of great interest for the neuroimaging community to study their volume, shape and connectivity in vivo with MRI. In this study, we present a probabilistic atlas of the thalamic nuclei built using ex vivo brain MRI scans and histological data, as well as the application of the atlas to in vivo MRI segmentation. The atlas was built using manual delineation of 26 thalamic nuclei on the serial histology of 12 whole thalami from six autopsy samples, combined with manual segmentations of the whole thalamus and surrounding structures (caudate, putamen, hippocampus, etc.) made on in vivo brain MR data from 39 subjects. The 3D structure of the histological data and corresponding manual segmentations was recovered using the ex vivo MRI as reference frame, and stacks of blockface photographs acquired during the sectioning as intermediate target. The atlas, which was encoded as an adaptive tetrahedral mesh, shows a good agreement with previous histological studies of the thalamus in terms of volumes of representative nuclei. When applied to segmentation of in vivo scans using Bayesian inference, the atlas shows excellent test-retest reliability, robustness to changes in input MRI contrast, and ability to detect differential thalamic effects in subjects with Alzheimer's disease. The probabilistic atlas and companion segmentation tool are publicly available as part of the neuroimaging package FreeSurfer.
Collapse
Affiliation(s)
- Juan Eugenio Iglesias
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, United Kingdom; BCBL. Basque Center on Cognition, Brain and Language, Spain.
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, University of Castilla-La Mancha, Spain
| | | | - Martina Bocchetta
- Dementia Research Centre, Department of Neurodegenerative Disease, Institute of Neurology, University College London, United Kingdom
| | - Koen Van Leemput
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Douglas N Greve
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Andre van der Kouwe
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA
| | - Bruce Fischl
- Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, USA; MIT Computer Science and Artificial Intelligence Laboratory, USA
| | | | | |
Collapse
|
23
|
Pergola G, Danet L, Pitel AL, Carlesimo GA, Segobin S, Pariente J, Suchan B, Mitchell AS, Barbeau EJ. The Regulatory Role of the Human Mediodorsal Thalamus. Trends Cogn Sci 2018; 22:1011-1025. [PMID: 30236489 PMCID: PMC6198112 DOI: 10.1016/j.tics.2018.08.006] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/31/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
The function of the human mediodorsal thalamic nucleus (MD) has so far eluded a clear definition in terms of specific cognitive processes and tasks. Although it was at first proposed to play a role in long-term memory, a set of recent studies in animals and humans has revealed a more complex, and broader, role in several cognitive functions. The MD seems to play a multifaceted role in higher cognitive functions together with the prefrontal cortex and other cortical and subcortical brain areas. Specifically, we propose that the MD is involved in the regulation of cortical networks especially when the maintenance and temporal extension of persistent activity patterns in the frontal lobe areas are required.
Collapse
Affiliation(s)
- Giulio Pergola
- Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari 70124, Italy.
| | - Lola Danet
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Anne-Lise Pitel
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Giovanni A Carlesimo
- Department of Systems Medicine, Tor Vergata University and S. Lucia Foundation, Rome, Italy
| | - Shailendra Segobin
- Normandie University, UNICAEN, PSL Research University, EPHE, INSERM, U1077, CHU de Caen, Neuropsychologie et Imagerie de la Mémoire Humaine, 14000 Caen, France
| | - Jérémie Pariente
- Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS 31024, France; CHU Toulouse Purpan, Neurology Department, Toulouse 31059, France
| | - Boris Suchan
- Clinical Neuropsychology, Ruhr University Bochum, Universitätsstrasse 150, 44801 Bochum, Germany
| | - Anna S Mitchell
- Department of Experimental Psychology, University of Oxford, The Tinsley Building, Mansfield Road, Oxford OX1 3SR, UK; Equivalent contribution as last authors.
| | - Emmanuel J Barbeau
- Centre de recherche Cerveau et Cognition, UMR5549, Université de Toulouse - CNRS, Toulouse 31000, France; Equivalent contribution as last authors
| |
Collapse
|
24
|
Rosazza C, Zacà D, Bruzzone MG. Pre-surgical Brain Mapping: To Rest or Not to Rest? Front Neurol 2018; 9:520. [PMID: 30018589 PMCID: PMC6038713 DOI: 10.3389/fneur.2018.00520] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/12/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- Cristina Rosazza
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta,”, Milan, Italy
| | - Domenico Zacà
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Maria G. Bruzzone
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico “Carlo Besta,”, Milan, Italy
| |
Collapse
|
25
|
Goldstone A, Mayhew SD, Hale JR, Wilson RS, Bagshaw AP. Thalamic functional connectivity and its association with behavioral performance in older age. Brain Behav 2018; 8:e00943. [PMID: 29670825 PMCID: PMC5893345 DOI: 10.1002/brb3.943] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/19/2017] [Accepted: 01/12/2018] [Indexed: 12/23/2022] Open
Abstract
Introduction Despite the thalamus' dense connectivity with both cortical and subcortical structures, few studies have specifically investigated how thalamic connectivity changes with age and how such changes are associated with behavior. This study investigated the effect of age on thalamo-cortical and thalamo-hippocampal functional connectivity (FC) and the association between thalamic FC and visual-spatial memory and reaction time (RT) performance in older adults. Methods Resting-state functional magnetic resonance images were obtained from younger (n = 20) and older (n = 20) adults. A seed-based approach was used to assess the FC between the thalamus and (1) sensory resting-state networks; (2) the hippocampus. Participants also completed visual-spatial memory and RT tasks, from the Cambridge Neuropsychological Test Automated Battery (CANTAB). Results Older adults exhibited a loss of specificity in the FC between sensory thalamic subregions and corresponding sensory cortex. Greater thalamo-motor FC in older adults was associated with faster RTs. Furthermore, older adults exhibited greater thalamo-hippocampal FC compared to younger adults, which was greatest for those with the poorest visual-spatial memory performance. Conclusion Although older adults exhibited poorer visual-spatial memory and slower reaction times compared to younger adults, "good" and "poorer" older performers exhibited different patterns of thalamo-cortical and thalamo-hippocampal FC. These results highlight the potential role of thalamic connectivity in supporting reaction times and memory in aging. Furthermore, these results highlight the importance of including the thalamus in studies of aging to fully understand how brain changes with age may be associated with behavior.
Collapse
Affiliation(s)
- Aimée Goldstone
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Stephen D. Mayhew
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Joanne R. Hale
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Rebecca S. Wilson
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| | - Andrew P. Bagshaw
- Centre for Human Brain HealthUniversity of BirminghamBirminghamUK
- School of PsychologyUniversity of BirminghamBirminghamUK
| |
Collapse
|
26
|
Müller F, Dolder PC, Schmidt A, Liechti ME, Borgwardt S. Altered network hub connectivity after acute LSD administration. Neuroimage Clin 2018; 18:694-701. [PMID: 29560311 PMCID: PMC5857492 DOI: 10.1016/j.nicl.2018.03.005] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 01/15/2018] [Accepted: 03/06/2018] [Indexed: 12/16/2022]
Abstract
LSD is an ambiguous substance, said to mimic psychosis and to improve mental health in people suffering from anxiety and depression. Little is known about the neuronal correlates of altered states of consciousness induced by this substance. Limited previous studies indicated profound changes in functional connectivity of resting state networks after the administration of LSD. The current investigation attempts to replicate and extend those findings in an independent sample. In a double-blind, randomized, cross-over study, 100 μg LSD and placebo were orally administered to 20 healthy participants. Resting state brain activity was assessed by functional magnetic resonance imaging. Within-network and between-network connectivity measures of ten established resting state networks were compared between drug conditions. Complementary analysis were conducted using resting state networks as sources in seed-to-voxel analyses. Acute LSD administration significantly decreased functional connectivity within visual, sensorimotor and auditory networks and the default mode network. While between-network connectivity was widely increased and all investigated networks were affected to some extent, seed-to-voxel analyses consistently indicated increased connectivity between networks and subcortical (thalamus, striatum) and cortical (precuneus, anterior cingulate cortex) hub structures. These latter observations are consistent with findings on the importance of hubs in psychopathological states, especially in psychosis, and could underlay therapeutic effects of hallucinogens as proposed by a recent model.
Collapse
Affiliation(s)
- Felix Müller
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland
| | - Patrick C Dolder
- University of Basel, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel 4031, Switzerland
| | - André Schmidt
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland
| | - Matthias E Liechti
- University of Basel, Division of Clinical Pharmacology and Toxicology, Department of Biomedicine and Department of Clinical Research, University Hospital Basel, Basel 4031, Switzerland
| | - Stefan Borgwardt
- University of Basel, Department of Psychiatry (UPK), Basel 4012, Switzerland.
| |
Collapse
|
27
|
Müller F, Lenz C, Dolder P, Lang U, Schmidt A, Liechti M, Borgwardt S. Increased thalamic resting-state connectivity as a core driver of LSD-induced hallucinations. Acta Psychiatr Scand 2017; 136:648-657. [PMID: 28940312 PMCID: PMC5698745 DOI: 10.1111/acps.12818] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
OBJECTIVE It has been proposed that the thalamocortical system is an important site of action of hallucinogenic drugs and an essential component of the neural correlates of consciousness. Hallucinogenic drugs such as LSD can be used to induce profoundly altered states of consciousness, and it is thus of interest to test the effects of these drugs on this system. METHOD 100 μg LSD was administrated orally to 20 healthy participants prior to fMRI assessment. Whole brain thalamic functional connectivity was measured using ROI-to-ROI and ROI-to-voxel approaches. Correlation analyses were used to explore relationships between thalamic connectivity to regions involved in auditory and visual hallucinations and subjective ratings on auditory and visual drug effects. RESULTS LSD caused significant alterations in all dimensions of the 5D-ASC scale and significantly increased thalamic functional connectivity to various cortical regions. Furthermore, LSD-induced functional connectivity measures between the thalamus and the right fusiform gyrus and insula correlated significantly with subjective auditory and visual drug effects. CONCLUSION Hallucinogenic drug effects might be provoked by facilitations of cortical excitability via thalamocortical interactions. Our findings have implications for the understanding of the mechanism of action of hallucinogenic drugs and provide further insight into the role of the 5-HT2A -receptor in altered states of consciousness.
Collapse
Affiliation(s)
- F. Müller
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - C. Lenz
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - P. Dolder
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - U. Lang
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - A. Schmidt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| | - M. Liechti
- Division of Clinical Pharmacology and ToxicologyDepartment of Biomedicine and Department of Clinical ResearchUniversity Hospital BaselUniversity of BaselBaselSwitzerland
| | - S. Borgwardt
- Department of Psychiatry (UPK)University of BaselBaselSwitzerland
| |
Collapse
|
28
|
Zhang S, Li CSR. Functional Connectivity Parcellation of the Human Thalamus by Independent Component Analysis. Brain Connect 2017; 7:602-616. [PMID: 28954523 PMCID: PMC5695755 DOI: 10.1089/brain.2017.0500] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a key structure to relay and integrate information, the thalamus supports multiple cognitive and affective functions through the connectivity between its subnuclei and cortical and subcortical regions. Although extant studies have largely described thalamic regional functions in anatomical terms, evidence accumulates to suggest a more complex picture of subareal activities and connectivities of the thalamus. In this study, we aimed to parcellate the thalamus and examine whole-brain connectivity of its functional clusters. With resting state functional magnetic resonance imaging data from 96 adults, we used independent component analysis (ICA) to parcellate the thalamus into 10 components. On the basis of the independence assumption, ICA helps to identify how subclusters overlap spatially. Whole brain functional connectivity of each subdivision was computed for independent component's time course (ICtc), which is a unique time series to represent an IC. For comparison, we computed seed-region-based functional connectivity using the averaged time course across all voxels within a thalamic subdivision. The results showed that, at p < 10-6, corrected, 49% of voxels on average overlapped among subdivisions. Compared with seed-region analysis, ICtc analysis revealed patterns of connectivity that were more distinguished between thalamic clusters. ICtc analysis demonstrated thalamic connectivity to the primary motor cortex, which has eluded the analysis as well as previous studies based on averaged time series, and clarified thalamic connectivity to the hippocampus, caudate nucleus, and precuneus. The new findings elucidate functional organization of the thalamus and suggest that ICA clustering in combination with ICtc rather than seed-region analysis better distinguishes whole-brain connectivities among functional clusters of a brain region.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut
- Interdepartmental Neuroscience Program, Yale University, New Haven, Connecticut
- Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
29
|
Effects of dexamphetamine-induced dopamine release on resting-state network connectivity in recreational amphetamine users and healthy controls. Brain Imaging Behav 2017; 10:548-58. [PMID: 26149196 PMCID: PMC4908160 DOI: 10.1007/s11682-015-9419-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Dexamphetamine (dAMPH) is not only used for the treatment of attention deficit hyperactivity disorder (ADHD), but also as a recreational drug. Acutely, dAMPH induces release of predominantly dopamine (DA) in the striatum, and in the cortex both DA and noradrenaline. Recent animal studies have shown that chronic dAMPH administration can induce changes in the DA system following long-term exposure, as evidenced by reductions in DA transporters, D2/3 receptors and endogenous DA levels. However, only a limited number of studies have investigated the effects of dAMPH in the human brain. We used a combination of resting-state functional magnetic resonance imaging (rs-fMRI) and [(123)I]IBZM single-photon emission computed tomography (SPECT) (to assess baseline D2/3 receptor binding and DA release) in 15 recreational AMPH users and 20 matched healthy controls to investigate the short-, and long-term effects of AMPH before and after an acute intravenous challenge with dAMPH. We found that acute dAMPH administration reduced functional connectivity in the cortico-striatal-thalamic network. dAMPH-induced DA release, but not DA D2/3 receptor binding, was positively associated with connectivity changes in this network. In addition, acute dAMPH reduced connectivity in default mode networks and salience-executive-networks networks in both groups. In contrast to our hypothesis, no significant group differences were found in any of the rs-fMRI networks investigated, possibly due to lack of sensitivity or compensatory mechanisms. Our findings thus support the use of ICA-based resting-state functional connectivity as a tool to investigate acute, but not chronic, alterations induced by dAMPH on dopaminergic processing in the striatum.
Collapse
|
30
|
Hiwa S, Miki M, Hiroyasu T. Validity of decision mode analysis on an ROI determination problem in multichannel fNIRS data. ARTIFICIAL LIFE AND ROBOTICS 2017. [DOI: 10.1007/s10015-017-0362-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
31
|
Bagshaw AP, Hale JR, Campos BM, Rollings DT, Wilson RS, Alvim MKM, Coan AC, Cendes F. Sleep onset uncovers thalamic abnormalities in patients with idiopathic generalised epilepsy. NEUROIMAGE-CLINICAL 2017; 16:52-57. [PMID: 28752060 PMCID: PMC5519226 DOI: 10.1016/j.nicl.2017.07.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 06/29/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022]
Abstract
The thalamus is crucial for sleep regulation and the pathophysiology of idiopathic generalised epilepsy (IGE), and may serve as the underlying basis for the links between the two. We investigated this using EEG-fMRI and a specific emphasis on the role and functional connectivity (FC) of the thalamus. We defined three types of thalamic FC: thalamocortical, inter-hemispheric thalamic, and intra-hemispheric thalamic. Patients and controls differed in all three measures, and during wakefulness and sleep, indicating disorder-dependent and state-dependent modification of thalamic FC. Inter-hemispheric thalamic FC differed between patients and controls in somatosensory regions during wakefulness, and occipital regions during sleep. Intra-hemispheric thalamic FC was significantly higher in patients than controls following sleep onset, and disorder-dependent alterations to FC were seen in several thalamic regions always involving somatomotor and occipital regions. As interactions between thalamic sub-regions are indirect and mediated by the inhibitory thalamic reticular nucleus (TRN), the results suggest abnormal TRN function in patients with IGE, with a regional distribution which could suggest a link with the thalamocortical networks involved in the generation of alpha rhythms. Intra-thalamic FC could be a more widely applicable marker beyond patients with IGE. Sleep onset modifies thalamic FC in generalised epilepsy differently to controls. Differences are regionally specific. Regions connected to somatomotor/occipital cortices are consistently affected. Intra-thalamic FC may be a surrogate marker of thalamic reticular nucleus function.
Collapse
Affiliation(s)
- Andrew P Bagshaw
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Joanne R Hale
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Clinical Physics and Bioengineering, University Hospital Coventry and Warwickshire, Coventry, UK
| | - Brunno M Campos
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - David T Rollings
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK.,Department of Neuroscience, Queen Elizabeth Hospital Birmingham, UK
| | - Rebecca S Wilson
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK.,School of Psychology, University of Birmingham, Birmingham, UK
| | - Marina K M Alvim
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Ana Carolina Coan
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| | - Fernando Cendes
- Neuroimaging Laboratory, Department of Neurology, University of Campinas, Campinas, Brazil
| |
Collapse
|
32
|
Skåtun KC, Kaufmann T, Brandt CL, Doan NT, Alnæs D, Tønnesen S, Biele G, Vaskinn A, Melle I, Agartz I, Andreassen OA, Westlye LT. Thalamo-cortical functional connectivity in schizophrenia and bipolar disorder. Brain Imaging Behav 2017; 12:640-652. [DOI: 10.1007/s11682-017-9714-y] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
33
|
Kumar VJ, van Oort E, Scheffler K, Beckmann CF, Grodd W. Functional anatomy of the human thalamus at rest. Neuroimage 2017; 147:678-691. [DOI: 10.1016/j.neuroimage.2016.12.071] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 12/25/2022] Open
|
34
|
Robust thalamic nuclei segmentation method based on local diffusion magnetic resonance properties. Brain Struct Funct 2016; 222:2203-2216. [PMID: 27888345 PMCID: PMC5504280 DOI: 10.1007/s00429-016-1336-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 11/09/2016] [Indexed: 12/11/2022]
Abstract
The thalamus is an essential relay station in the cortical–subcortical connections. It is characterized by a complex anatomical architecture composed of numerous small nuclei, which mediate the involvement of the thalamus in a wide range of neurological functions. We present a novel framework for segmenting the thalamic nuclei, which explores the orientation distribution functions (ODFs) from diffusion magnetic resonance images at 3 T. The differentiation of the complex intra-thalamic microstructure is improved by using the spherical harmonic (SH) representation of the ODFs, which provides full angular characterization of the diffusion process in each voxel. The clustering was performed using the k-means algorithm initialized in a data-driven manner. The method was tested on 35 healthy volunteers and our results show a robust, reproducible and accurate segmentation of the thalamus in seven nuclei groups. Six of them closely matched the anatomy and were labeled as anterior, ventral anterior, medio-dorsal, ventral latero-ventral, ventral latero-dorsal and pulvinar, while the seventh cluster included the centro-lateral and the latero-posterior nuclei. Results were evaluated both qualitatively, by comparing the segmented nuclei to the histological atlas of Morel, and quantitatively, by measuring the clusters’ extent and the clusters’ spatial distribution across subjects and hemispheres. We also showed the robustness of our approach across different sequences and scanners, as well as intra-subject reproducibility of the segmented clusters using additional two scan–rescan datasets. We also observed an overlap between the path of the main long-connection tracts passing through the thalamus and the spatial distribution of the nuclei identified with our clustering algorithm. Our approach, based on SH representations of the ODFs, outperforms the one based on angular differences between the principle diffusion directions, which is considered so far as state-of-the-art method. Our findings show an anatomically reliable segmentation of the main groups of thalamic nuclei that could be of potential use in many clinical applications.
Collapse
|
35
|
Battistella G, Fuertinger S, Fleysher L, Ozelius LJ, Simonyan K. Cortical sensorimotor alterations classify clinical phenotype and putative genotype of spasmodic dysphonia. Eur J Neurol 2016; 23:1517-27. [PMID: 27346568 DOI: 10.1111/ene.13067] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/13/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE Spasmodic dysphonia (SD), or laryngeal dystonia, is a task-specific isolated focal dystonia of unknown causes and pathophysiology. Although functional and structural abnormalities have been described in this disorder, the influence of its different clinical phenotypes and genotypes remains scant, making it difficult to explain SD pathophysiology and to identify potential biomarkers. METHODS We used a combination of independent component analysis and linear discriminant analysis of resting-state functional magnetic resonance imaging data to investigate brain organization in different SD phenotypes (abductor versus adductor type) and putative genotypes (familial versus sporadic cases) and to characterize neural markers for genotype/phenotype categorization. RESULTS We found abnormal functional connectivity within sensorimotor and frontoparietal networks in patients with SD compared with healthy individuals as well as phenotype- and genotype-distinct alterations of these networks, involving primary somatosensory, premotor and parietal cortices. The linear discriminant analysis achieved 71% accuracy classifying SD and healthy individuals using connectivity measures in the left inferior parietal and sensorimotor cortices. When categorizing between different forms of SD, the combination of measures from the left inferior parietal, premotor and right sensorimotor cortices achieved 81% discriminatory power between familial and sporadic SD cases, whereas the combination of measures from the right superior parietal, primary somatosensory and premotor cortices led to 71% accuracy in the classification of adductor and abductor SD forms. CONCLUSIONS Our findings present the first effort to identify and categorize isolated focal dystonia based on its brain functional connectivity profile, which may have a potential impact on the future development of biomarkers for this rare disorder.
Collapse
Affiliation(s)
- G Battistella
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - S Fuertinger
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L Fleysher
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - L J Ozelius
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - K Simonyan
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA. .,Department of Otolaryngology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
36
|
Hale JR, White TP, Mayhew SD, Wilson RS, Rollings DT, Khalsa S, Arvanitis TN, Bagshaw AP. Altered thalamocortical and intra-thalamic functional connectivity during light sleep compared with wake. Neuroimage 2015; 125:657-667. [PMID: 26499809 DOI: 10.1016/j.neuroimage.2015.10.041] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 10/16/2015] [Indexed: 01/14/2023] Open
Abstract
The transition from wakefulness into sleep is accompanied by modified activity in the brain's thalamocortical network. Sleep-related decreases in thalamocortical functional connectivity (FC) have previously been reported, but the extent to which these changes differ between thalamocortical pathways, and patterns of intra-thalamic FC during sleep remain untested. To non-invasively investigate thalamocortical and intra-thalamic FC as a function of sleep stage we recorded simultaneous EEG-fMRI data in 13 healthy participants during their descent into light sleep. Visual scoring of EEG data permitted sleep staging. We derived a functional thalamic parcellation during wakefulness by computing seed-based FC, measured between thalamic voxels and a set of pre-defined cortical regions. Sleep differentially affected FC between these distinct thalamic subdivisions and their associated cortical projections, with significant increases in FC during sleep restricted to sensorimotor connections. In contrast, intra-thalamic FC, both within and between functional thalamic subdivisions, showed significant increases with advancement into sleep. This work demonstrates the complexity and state-specific nature of functional thalamic relationships--both with the cortex and internally--over the sleep/wake cycle, and further highlights the importance of a thalamocortical focus in the study of sleep mechanisms.
Collapse
Affiliation(s)
- Joanne R Hale
- School of Psychology, University of Birmingham, Birmingham, UK.
| | - Thomas P White
- School of Psychology, University of Birmingham, Birmingham, UK
| | | | | | - David T Rollings
- School of Psychology, University of Birmingham, Birmingham, UK; Department of Neurophysiology, Queen Elizabeth Hospital, Birmingham, UK
| | - Sakhvinder Khalsa
- School of Psychology, University of Birmingham, Birmingham, UK; Department of Neuropsychiatry, The Barberry National Centre for Mental Health, Birmingham, UK
| | | | | |
Collapse
|