1
|
Li B, Zeng Q, Warfield SK, Karimi D. FetDTIAlign: A deep learning framework for affine and deformable registration of fetal brain dMRI. Neuroimage 2025; 311:121190. [PMID: 40221066 DOI: 10.1016/j.neuroimage.2025.121190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025] Open
Abstract
Diffusion MRI (dMRI) offers unique insights into the microstructure of fetal brain tissue in utero. Longitudinal and cross-sectional studies of fetal dMRI have the potential to reveal subtle but crucial changes associated with normal and abnormal neurodevelopment. However, these studies depend on precise spatial alignment of data across scans and subjects, which is particularly challenging in fetal imaging due to the low data quality, rapid brain development, and limited anatomical landmarks for accurate registration. Existing registration methods, primarily developed for superior-quality adult data, are not well-suited for addressing these complexities. To bridge this gap, we introduce FetDTIAlign, a deep learning approach tailored to fetal brain dMRI, enabling accurate affine and deformable registration. FetDTIAlign integrates a novel dual-encoder architecture and iterative feature-based inference, effectively minimizing the impact of noise and low resolution to achieve accurate alignment. Additionally, it strategically employs different network configurations and domain-specific image features at each registration stage, addressing the unique challenges of affine and deformable registration, enhancing both robustness and accuracy. We validated FetDTIAlign on a dataset covering gestational ages centered between 23 and 36 weeks, encompassing 60 white matter tracts. For all age groups, FetDTIAlign consistently showed superior anatomical correspondence and the best visual alignment in both affine and deformable registration, outperforming two classical optimization-based methods and a deep learning-based pipeline. Further validation on external data from the Developing Human Connectome Project demonstrated the generalizability of our method to data collected with different acquisition protocols. Our results show the feasibility of using deep learning for fetal brain dMRI registration, providing a more accurate and reliable alternative to classical techniques. By enabling precise cross-subject and tract-specific analyses, FetDTIAlign paves the way for new discoveries in early brain development. The code is available at https://gitlab.com/blibli/fetdtialign.
Collapse
Affiliation(s)
- Bo Li
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Qi Zeng
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Simon K Warfield
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Davood Karimi
- Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Kim GS, Chandio BQ, Benavidez SM, Feng Y, Thompson PM, Lawrence KE. Mapping Along-Tract White Matter Microstructural Differences in Autism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644498. [PMID: 40196471 PMCID: PMC11974747 DOI: 10.1101/2025.03.21.644498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Previous diffusion magnetic resonance imaging (dMRI) research has indicated altered white matter microstructure in autism, but the implicated regions are highly inconsistent across studies. Such prior work has largely used conventional dMRI analysis methods, including the traditional microstructure model, based on diffusion tensor imaging (DTI). However, these methods are limited in their ability to precisely map microstructural differences and accurately resolve complex fiber configurations. In our study, we investigated white matter microstructure alterations in autism using the refined along-tract analytic approach, BUndle ANalytics (BUAN), and an advanced microstructure model, the tensor distribution function (TDF). We analyzed dMRI data from 365 autistic and neurotypical participants (5-24 years; 34% female) from 10 cohorts to examine commissural and association tracts. Autism was associated with lower fractional anisotropy and higher diffusivity in localized portions of nearly every commissural and association tract examined; these tracts inter-connected a wide range of brain regions, including frontal, temporal, parietal, and occipital. Taken together, BUAN and TDF allow robust and spatially precise mapping of microstructural properties in autism. Our findings rigorously demonstrate that white matter microstructure alterations in autism may be greater within specific regions of individual tracts, and that the implicated tracts are distributed across the brain.
Collapse
Affiliation(s)
- Gaon S Kim
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Sebastian M Benavidez
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Yixue Feng
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| | - Katherine E Lawrence
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, Keck School of Medicine, University of Southern California, 1670 Mindanao Way, Marina del Rey, CA, 90292 USA
| |
Collapse
|
3
|
Stout J, Anderson RJ, Mahzarnia A, Han ZY, Beck K, Browndyke J, Johnson K, O'Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. Brain Struct Funct 2025; 230:45. [PMID: 40108015 DOI: 10.1007/s00429-025-02905-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 03/03/2025] [Indexed: 03/22/2025]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics associated with cardiovascular disease risk were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Zay Yar Han
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Richard J O'Brien
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Alexandra Badea
- Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Radiology, Duke University School of Medicine, Durham, NC, 27710, USA.
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
4
|
Newlin NR, Kim ME, Kanakaraj P, Yao T, Hohman T, Pechman KR, Beason-Held LL, Resnick SM, Archer D, Jefferson A, Landman BA, Moyer D. MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal. Magn Reson Imaging 2024; 111:113-119. [PMID: 38537892 PMCID: PMC11283839 DOI: 10.1016/j.mri.2024.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/09/2024] [Accepted: 03/20/2024] [Indexed: 04/09/2024]
Abstract
Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. We find that MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.
Collapse
Affiliation(s)
- Nancy R Newlin
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA.
| | - Michael E Kim
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | | | - Tianyuan Yao
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Kimberly R Pechman
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Derek Archer
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer's Center, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
5
|
Stout J, Anderson RJ, Mahzarnia A, Han Z, Beck K, Browndyke J, Johnson K, O’Brien RJ, Badea A. Mapping the impact of age and APOE risk factors for late onset Alzheimer's disease on long range brain connections through multiscale bundle analysis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.599407. [PMID: 38979335 PMCID: PMC11230216 DOI: 10.1101/2024.06.24.599407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Alzheimer's disease currently has no cure and is usually detected too late for interventions to be effective. In this study we have focused on cognitively normal subjects to study the impact of risk factors on their long-range brain connections. To detect vulnerable connections, we devised a multiscale, hierarchical method for spatial clustering of the whole brain tractogram and examined the impact of age and APOE allelic variation on cognitive abilities and bundle properties including texture e.g., mean fractional anisotropy, variability, and geometric properties including streamline length, volume, and shape, as well as asymmetry. We found that the third level subdivision in the bundle hierarchy provided the most sensitive ability to detect age and genotype differences associated with risk factors. Our results indicate that frontal bundles were a major age predictor, while the occipital cortex and cerebellar connections were important risk predictors that were heavily genotype dependent, and showed accelerated decline in fractional anisotropy, shape similarity, and increased asymmetry. Cognitive metrics related to olfactory memory were mapped to bundles, providing possible early markers of neurodegeneration. In addition, physiological metrics such as diastolic blood pressure were associated with changes in white matter tracts. Our novel method for a data driven analysis of sensitive changes in tractography may differentiate populations at risk for AD and isolate specific vulnerable networks.
Collapse
Affiliation(s)
- Jacques Stout
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Robert J Anderson
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Ali Mahzarnia
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Zay Han
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kate Beck
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Jeffrey Browndyke
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Kim Johnson
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Richard J O’Brien
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| | - Alexandra Badea
- Duke Brain Imaging and Analysis Center, Duke University School of Medicine, Durham, NC, 27710, USA
- Department of Radiology, Duke University School of Medicine. Durham, NC, 27710, USA
- Department of Neurology, Duke University School of Medicine. Durham, NC, 27710, USA
| |
Collapse
|
6
|
Mendoza C, Román C, Mangin JF, Hernández C, Guevara P. Short fiber bundle filtering and test-retest reproducibility of the Superficial White Matter. Front Neurosci 2024; 18:1394681. [PMID: 38737100 PMCID: PMC11088237 DOI: 10.3389/fnins.2024.1394681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/08/2024] [Indexed: 05/14/2024] Open
Abstract
In recent years, there has been a growing interest in studying the Superficial White Matter (SWM). The SWM consists of short association fibers connecting near giry of the cortex, with a complex organization due to their close relationship with the cortical folding patterns. Therefore, their segmentation from dMRI tractography datasets requires dedicated methodologies to identify the main fiber bundle shape and deal with spurious fibers. This paper presents an enhanced short fiber bundle segmentation based on a SWM bundle atlas and the filtering of noisy fibers. The method was tuned and evaluated over HCP test-retest probabilistic tractography datasets (44 subjects). We propose four fiber bundle filters to remove spurious fibers. Furthermore, we include the identification of the main fiber fascicle to obtain well-defined fiber bundles. First, we identified four main bundle shapes in the SWM atlas, and performed a filter tuning in a subset of 28 subjects. The filter based on the Convex Hull provided the highest similarity between corresponding test-retest fiber bundles. Subsequently, we applied the best filter in the 16 remaining subjects for all atlas bundles, showing that filtered fiber bundles significantly improve test-retest reproducibility indices when removing between ten and twenty percent of the fibers. Additionally, we applied the bundle segmentation with and without filtering to the ABIDE-II database. The fiber bundle filtering allowed us to obtain a higher number of bundles with significant differences in fractional anisotropy, mean diffusivity, and radial diffusivity of Autism Spectrum Disorder patients relative to controls.
Collapse
Affiliation(s)
- Cristóbal Mendoza
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | - Claudio Román
- Centro de Investigación y Desarrollo en Ingeniería en Salud, Universidad de Valparaíso, Valparaíso, Chile
| | | | - Cecilia Hernández
- Department of Computer Science, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
- Center for Biotechnology and Bioengineering (CeBiB), Santiago, Chile
| | - Pamela Guevara
- Department of Electrical Engineering, Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
7
|
He J, Zhang F, Pan Y, Feng Y, Rushmore J, Torio E, Rathi Y, Makris N, Kikinis R, Golby AJ, O'Donnell LJ. Reconstructing the somatotopic organization of the corticospinal tract remains a challenge for modern tractography methods. Hum Brain Mapp 2023; 44:6055-6073. [PMID: 37792280 PMCID: PMC10619402 DOI: 10.1002/hbm.26497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/09/2023] [Accepted: 09/13/2023] [Indexed: 10/05/2023] Open
Abstract
The corticospinal tract (CST) is a critically important white matter fiber tract in the human brain that enables control of voluntary movements of the body. The CST exhibits a somatotopic organization, which means that the motor neurons that control specific body parts are arranged in order within the CST. Diffusion magnetic resonance imaging (MRI) tractography is increasingly used to study the anatomy of the CST. However, despite many advances in tractography algorithms over the past decade, modern, state-of-the-art methods still face challenges. In this study, we compare the performance of six widely used tractography methods for reconstructing the CST and its somatotopic organization. These methods include constrained spherical deconvolution (CSD) based probabilistic (iFOD1) and deterministic (SD-Stream) methods, unscented Kalman filter (UKF) tractography methods including multi-fiber (UKF2T) and single-fiber (UKF1T) models, the generalized q-sampling imaging (GQI) based deterministic tractography method, and the TractSeg method. We investigate CST somatotopy by dividing the CST into four subdivisions per hemisphere that originate in the leg, trunk, hand, and face areas of the primary motor cortex. A quantitative and visual comparison is performed using diffusion MRI data (N = 100 subjects) from the Human Connectome Project. Quantitative evaluations include the reconstruction rate of the eight anatomical subdivisions, the percentage of streamlines in each subdivision, and the coverage of the white matter-gray matter (WM-GM) interface. CST somatotopy is further evaluated by comparing the percentage of streamlines in each subdivision to the cortical volumes for the leg, trunk, hand, and face areas. Overall, UKF2T has the highest reconstruction rate and cortical coverage. It is the only method with a significant positive correlation between the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex. However, our experimental results show that all compared tractography methods are biased toward generating many trunk streamlines (ranging from 35.10% to 71.66% of total streamlines across methods). Furthermore, the coverage of the WM-GM interface in the largest motor area (face) is generally low (under 40%) for all compared tractography methods. Different tractography methods give conflicting results regarding the percentage of streamlines in each subdivision and the volume of the corresponding motor cortex, indicating that there is generally no clear relationship, and that reconstruction of CST somatotopy is still a large challenge. Overall, we conclude that while current tractography methods have made progress toward the well-known challenge of improving the reconstruction of the lateral projections of the CST, the overall problem of performing a comprehensive CST reconstruction, including clinically important projections in the lateral (hand and face areas) and medial portions (leg area), remains an important challenge for diffusion MRI tractography.
Collapse
Affiliation(s)
- Jianzhong He
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Fan Zhang
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- University of Electronic Science and Technology of ChinaChengduSichuanChina
| | - Yiang Pan
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Yuanjing Feng
- Institution of Information Processing and AutomationZhejiang University of TechnologyHangzhouChina
| | - Jarrett Rushmore
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of Anatomy and NeurobiologyBoston University School of MedicineBostonMassachusettsUSA
| | - Erickson Torio
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Yogesh Rathi
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Nikos Makris
- Departments of Psychiatry, Neurology and RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonMassachusettsUSA
- Department of PsychiatryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Ron Kikinis
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| | - Alexandra J. Golby
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
- Department of NeurosurgeryBrigham and Women's Hospital, Harvard Medical SchoolBostonMassachusettsUSA
| | - Lauren J. O'Donnell
- Department of Radiology, Brigham and Women's HospitalHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
8
|
Nabulsi L, Chandio BQ, McPhilemy G, Martyn FM, Roberts G, Hallahan B, Dannlowski U, Kircher T, Haarman B, Mitchell P, McDonald C, Cannon DM, Andreassen OA, Ching CRK, Thompson PM. Multi-Site Statistical Mapping of Along-Tract Microstructural Abnormalities in Bipolar Disorder with Diffusion MRI Tractometry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553762. [PMID: 37662230 PMCID: PMC10473593 DOI: 10.1101/2023.08.17.553762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Investigating alterations in brain circuitry associated with bipolar disorder (BD) may offer a valuable approach to discover brain biomarkers for genetic and interventional studies of the disorder and related mental illnesses. Some diffusion MRI studies report evidence of microstructural abnormalities in white matter regions of interest, but we lack a fine-scale spatial mapping of brain microstructural differences along tracts in BD. We also lack large-scale studies that integrate tractometry data from multiple sites, as larger datasets can greatly enhance power to detect subtle effects and assess whether effects replicate across larger international datasets. In this multisite diffusion MRI study, we used BUndle ANalytics (BUAN, Chandio 2020), a recently developed analytic approach for tractography, to extract, map, and visualize profiles of microstructural abnormalities on 3D models of fiber tracts in 148 participants with BD and 259 healthy controls from 6 independent scan sites. Modeling site differences as random effects, we investigated along-tract white matter (WM) microstructural differences between diagnostic groups. QQ plots showed that group differences were gradually enhanced as more sites were added. Using the BUAN pipeline, BD was associated with lower mean fractional anisotropy (FA) in fronto-limbic, interhemispheric, and posterior pathways; higher FA was also noted in posterior bundles, relative to controls. By integrating tractography and anatomical information, BUAN effectively captures unique effects along white matter (WM) tracts, providing valuable insights into anatomical variations that may assist in the classification of diseases.
Collapse
Affiliation(s)
- Leila Nabulsi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Bramsh Q Chandio
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Genevieve McPhilemy
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Fiona M Martyn
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Brian Hallahan
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tilo Kircher
- Department of Psychiatry and Psychotherapy, Philipps-University Marburg, Marburg, Germany
| | - Benno Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Philip Mitchell
- Discipline of Psychiatry and Mental Health, University of New South Wales, Sydney, New South Wales, Australia
| | - Colm McDonald
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Dara M Cannon
- Centre for Neuroimaging & Cognitive Genomics (NICOG), Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine Nursing and Health Sciences, University of Galway, H91 TK33 Galway, Ireland
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging & Informatics Institute, University of Southern California, Marina del Rey, CA 90292, USA
| |
Collapse
|
9
|
Dumais F, Legarreta JH, Lemaire C, Poulin P, Rheault F, Petit L, Barakovic M, Magon S, Descoteaux M, Jodoin PM. FIESTA: Autoencoders for accurate fiber segmentation in tractography. Neuroimage 2023; 279:120288. [PMID: 37495198 DOI: 10.1016/j.neuroimage.2023.120288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023] Open
Abstract
White matter bundle segmentation is a cornerstone of modern tractography to study the brain's structural connectivity in domains such as neurological disorders, neurosurgery, and aging. In this study, we present FIESTA (FIbEr Segmentation in Tractography using Autoencoders), a reliable and robust, fully automated, and easily semi-automatically calibrated pipeline based on deep autoencoders that can dissect and fully populate white matter bundles. This pipeline is built upon previous works that demonstrated how autoencoders can be used successfully for streamline filtering, bundle segmentation, and streamline generation in tractography. Our proposed method improves bundle segmentation coverage by recovering hard-to-track bundles with generative sampling through the latent space seeding of the subject bundle and the atlas bundle. A latent space of streamlines is learned using autoencoder-based modeling combined with contrastive learning. Using an atlas of bundles in standard space (MNI), our proposed method segments new tractograms using the autoencoder latent distance between each tractogram streamline and its closest neighbor bundle in the atlas of bundles. Intra-subject bundle reliability is improved by recovering hard-to-track streamlines, using the autoencoder to generate new streamlines that increase the spatial coverage of each bundle while remaining anatomically correct. Results show that our method is more reliable than state-of-the-art automated virtual dissection methods such as RecoBundles, RecoBundlesX, TractSeg, White Matter Analysis and XTRACT. Our framework allows for the transition from one anatomical bundle definition to another with marginal calibration efforts. Overall, these results show that our framework improves the practicality and usability of current state-of-the-art bundle segmentation framework.
Collapse
Affiliation(s)
- Félix Dumais
- Sherbrooke Connectivity Imaging Lab (SCIL), Department of Computer Science, Université de Sherbrooke, Canada; Videos & Images Theory and Analytics Lab (VITAL), Department of Computer Science, Université de Sherbrooke, Canada.
| | - Jon Haitz Legarreta
- Department of Radiology, Brigham and Women's Hospital, Mass General Brigham/Harvard Medical School, USA
| | - Carl Lemaire
- Centre de Calcul Scientifique, Université de Sherbrooke, Canada
| | - Philippe Poulin
- Sherbrooke Connectivity Imaging Lab (SCIL), Department of Computer Science, Université de Sherbrooke, Canada; Videos & Images Theory and Analytics Lab (VITAL), Department of Computer Science, Université de Sherbrooke, Canada
| | - François Rheault
- Medical Imaging and Neuroinformatic (MINi) Lab, Department of Computer Science, Université de Sherbrooke, Canada
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle (GIN), CNRS, CEA, IMN, GIN, UMR 5293, F-33000 Bordeaux, Université de Bordeaux, France
| | - Muhamed Barakovic
- Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Stefano Magon
- Pharma Research and Early Development, Neuroscience and Rare Diseases, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd., Basel, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Department of Computer Science, Université de Sherbrooke, Canada; Imeka Solutions inc, Sherbrooke, Canada
| | - Pierre-Marc Jodoin
- Videos & Images Theory and Analytics Lab (VITAL), Department of Computer Science, Université de Sherbrooke, Canada; Imeka Solutions inc, Sherbrooke, Canada
| |
Collapse
|
10
|
Newlin NR, Kim ME, Kanakaraj P, Yao T, Hohman T, Pechman KR, Beason-Held LL, Resnick SM, Archer D, Jefferson A, Landman BA, Moyer D. MidRISH: Unbiased harmonization of rotationally invariant harmonics of the diffusion signal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.12.553099. [PMID: 37645973 PMCID: PMC10462069 DOI: 10.1101/2023.08.12.553099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Objective Data harmonization is necessary for removing confounding effects in multi-site diffusion image analysis. One such harmonization method, LinearRISH, scales rotationally invariant spherical harmonic (RISH) features from one site ("target") to the second ("reference") to reduce confounding scanner effects. However, reference and target site designations are not arbitrary and resultant diffusion metrics (fractional anisotropy, mean diffusivity) are biased by this choice. In this work we propose MidRISH: rather than scaling reference RISH features to target RISH features, we project both sites to a mid-space. Methods We validate MidRISH with the following experiments: harmonizing scanner differences from 37 matched patients free of cognitive impairment, and harmonizing acquisition and study differences on 117 matched patients free of cognitive impairment. Conclusion MidRISH reduces bias of reference selection while preserving harmonization efficacy of LinearRISH. Significance Users should be cautious when performing LinearRISH harmonization. To select a reference site is to choose diffusion metric effect-size. Our proposed method eliminates the bias-inducing site selection step.
Collapse
Affiliation(s)
- Nancy R Newlin
- Department of Computer Science at Vanderbilt University, Nashville, TN, USA
| | - Michael E Kim
- Department of Computer Science at Vanderbilt University, Nashville, TN, USA
| | | | - Tianyuan Yao
- Department of Computer Science at Vanderbilt University, Nashville, TN, USA
| | - Timothy Hohman
- VMAC, VUMC, Nashville, TN, USA and Vanderbilt University, Nashville, TN, USA
| | | | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Derek Archer
- VMAC, VUMC, Nashville, TN, USA and Vanderbilt University, Nashville, TN, USA
| | - Angela Jefferson
- VMAC, VUMC, Nashville, TN, USA and Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Department of Computer Science at Vanderbilt University, Nashville, TN, USA
| | - Daniel Moyer
- Department of Computer Science at Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Nabulsi L, Chandio BQ, Dhinagar N, Laltoo E, McPhilemy G, Martyn FM, Hallahan B, McDonald C, Thompson PM, Cannon DM. Along-Tract Statistical Mapping of Microstructural Abnormalities in Bipolar Disorder: A Pilot Study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-7. [PMID: 38083303 DOI: 10.1109/embc40787.2023.10339964] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Investigating brain circuitry involved in bipolar disorder (BD) is key to discovering brain biomarkers for genetic and interventional studies of the disorder. Even so, prior research has not provided a fine-scale spatial mapping of brain microstructural differences in BD. In this pilot diffusion MRI dataset, we used BUndle ANalytics (BUAN)-a recently developed analytic approach for tractography-to extract, map, and visualize the profile of microstructural abnormalities on a 3D model of fiber tracts in people with BD (N=38) and healthy controls (N=49), and investigate along-tract white matter (WM) microstructural differences between these groups. Using the BUAN pipeline, BD was associated with lower mean fractional anisotropy (FA) in fronto-limbic and interhemispheric pathways and higher mean FA in posterior bundles relative to controls.Clinical Relevance- BUAN combines tractography and anatomical information to capture distinct along-tract effects on WM microstructure that may aid in classifying diseases based on anatomical differences.
Collapse
|
12
|
Nabulsi L, Chandio BQ, Dhinagar N, Laltoo E, McPhilemy G, Martyn FM, Hallahan B, McDonald C, Thompson PM, Cannon DM. Along-Tract Statistical Mapping of Microstructural Abnormalities in Bipolar Disorder: A Pilot Study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531585. [PMID: 36945403 PMCID: PMC10028925 DOI: 10.1101/2023.03.07.531585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2023]
Abstract
Investigating brain circuitry involved in bipolar disorder (BD) is key to discovering brain biomarkers for genetic and interventional studies of the disorder. Even so, prior research has not provided a fine-scale spatial mapping of brain microstructural differences in BD. In this pilot diffusion MRI dataset, we used BUndle ANalytics (BUAN), a recently developed analytic approach for tractography, to extract, map, and visualize the profile of microstructural abnormalities on a 3D model of fiber tracts in people with BD (N=38) and healthy controls (N=49), and investigate along-tract white matter (WM) microstructural differences between these groups. Using the BUAN pipeline, BD was associated with lower mean Fractional Anisotropy (FA) in fronto-limbic and interhemispheric pathways and higher mean FA in posterior bundles relative to controls. BUAN combines tractography and anatomical information to capture distinct along-tract effects on WM microstructure that may aid in classifying diseases based on anatomical differences.
Collapse
Affiliation(s)
- Leila Nabulsi
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Bramsh Q Chandio
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Nikhil Dhinagar
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Emily Laltoo
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Genevieve McPhilemy
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Fiona M Martyn
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Brian Hallahan
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Colm McDonald
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Institute for Neuroimaging & Informatics, University of Southern California, Marina del Rey, CA, 90292 USA
| | - Dara M Cannon
- Clinical Neuroimaging Lab, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| |
Collapse
|
13
|
Chandio BQ, Olivetti E, Romero-Bascones D, Harezlak J, Garyfallidis E. BundleWarp, streamline-based nonlinear registration of white matter tracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.04.522802. [PMID: 36711974 PMCID: PMC9881938 DOI: 10.1101/2023.01.04.522802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Nonlinear registration plays a central role in most neuroimage analysis methods and pipelines, such as in tractography-based individual and group-level analysis methods. However, nonlinear registration is a non-trivial task, especially when dealing with tractography data that digitally represent the underlying anatomy of the brain's white matter. Furthermore, such process often changes the structure of the data, causing artifacts that can suppress the underlying anatomical and structural details. In this paper, we introduce BundleWarp, a novel and robust streamline-based nonlinear registration method for the registration of white matter tracts. BundleWarp intelligently warps two bundles while preserving the bundles' crucial topological features. BundleWarp has two main steps. The first step involves the solution of an assignment problem that matches corresponding streamlines from the two bundles (iterLAP step). The second step introduces streamline-specific point-based deformations while keeping the topology of the bundle intact (mlCPD step). We provide comparisons against streamline-based linear registration and image-based nonlinear registration methods. BundleWarp quantitatively and qualitatively outperforms both, and we show that BundleWarp can deform and, at the same time, preserve important characteristics of the original anatomical shape of the bundles. Results are shown on 1,728 pairs of bundle registrations across 27 different bundle types. In addition, we present an application of BundleWarp for quantifying bundle shape differences using the generated deformation fields.
Collapse
Affiliation(s)
- Bramsh Qamar Chandio
- Department of Intelligent Systems Engineering, Indiana University Bloomington, USA
| | | | - David Romero-Bascones
- Biomedical Engineering Department, Faculty of Engineering (MU-ENG), Mondragon Unibertsitatea, Spain
- Moorfields Eye Hospital NHS Foundation Trust, UK
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, USA
| | | |
Collapse
|
14
|
Theaud G, Edde M, Dumont M, Zotti C, Zucchelli M, Deslauriers-Gauthier S, Deriche R, Jodoin PM, Descoteaux M. DORIS: A diffusion MRI-based 10 tissue class deep learning segmentation algorithm tailored to improve anatomically-constrained tractography. FRONTIERS IN NEUROIMAGING 2022; 1:917806. [PMID: 37555143 PMCID: PMC10406193 DOI: 10.3389/fnimg.2022.917806] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/09/2022] [Indexed: 08/10/2023]
Abstract
Modern tractography algorithms such as anatomically-constrained tractography (ACT) are based on segmentation maps of white matter (WM), gray matter (GM), and cerebrospinal fluid (CSF). These maps are generally estimated from a T1-weighted (T1w) image and then registered in diffusion weighted images (DWI) space. Registration of T1w to diffusion space and partial volume estimation are challenging and rarely voxel-perfect. Diffusion-based segmentation would, thus, potentially allow not to have higher quality anatomical priors injected in the tractography process. On the other hand, even if FA-based tractography is possible without T1 registration, the literature shows that this technique suffers from multiple issues such as holes in the tracking mask and a high proportion of generated broken and anatomically implausible streamlines. Therefore, there is an important need for a tissue segmentation algorithm that works directly in the native diffusion space. We propose DORIS, a DWI-based deep learning segmentation algorithm. DORIS outputs 10 different tissue classes including WM, GM, CSF, ventricles, and 6 other subcortical structures (putamen, pallidum, hippocampus, caudate, amygdala, and thalamus). DORIS was trained and validated on a wide range of subjects, including 1,000 individuals from 22 to 90 years old from clinical and research DWI acquisitions, from 5 public databases. In the absence of a "true" ground truth in diffusion space, DORIS used a silver standard strategy from Freesurfer output registered onto the DWI. This strategy is extensively evaluated and discussed in the current study. Segmentation maps provided by DORIS are quantitatively compared to Freesurfer and FSL-fast and the impacts on tractography are evaluated. Overall, we show that DORIS is fast, accurate, and reproducible and that DORIS-based tractograms produce bundles with a longer mean length and fewer anatomically implausible streamlines.
Collapse
Affiliation(s)
- Guillaume Theaud
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions Inc., Sherbrooke, QC, Canada
| | - Manon Edde
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | - Mauro Zucchelli
- Athena Project-Team, Inria Sophia Antipolis-Méditerranée, Université Côte D'Azur, Nice, France
| | | | - Rachid Deriche
- Athena Project-Team, Inria Sophia Antipolis-Méditerranée, Université Côte D'Azur, Nice, France
| | - Pierre-Marc Jodoin
- Imeka Solutions Inc., Sherbrooke, QC, Canada
- Videos & Images Theory and Analytics Laboratory (VITAL), Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Laboratory (SCIL), Université de Sherbrooke, Sherbrooke, QC, Canada
- Imeka Solutions Inc., Sherbrooke, QC, Canada
| |
Collapse
|
15
|
Chandio BQ, Chattopadhyay T, Owens-Walton C, Reina JEV, Nabulsi L, Thomopoulos SI, Garyfallidis E, Thompson PM. FiberNeat: Unsupervised White Matter Tract Filtering. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2022; 2022:5055-5061. [PMID: 36085780 DOI: 10.1109/embc48229.2022.9870877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Whole-brain tractograms generated from diffusion MRI digitally represent the white matter structure of the brain and are composed of millions of streamlines. Such tractograms can have false positive and anatomically implausible streamlines. To obtain anatomically relevant streamlines and tracts, supervised and unsupervised methods can be used for tractogram clustering and tract extraction. Here we propose FiberNeat, an unsupervised white matter tract filtering method. FiberNeat takes an input set of streamlines that could either be unlabeled clusters or labeled tracts. Individual clusters/tracts are projected into a latent space using nonlinear dimensionality reduction techniques, t-SNE and UMAP, to find spurious and outlier streamlines. In addition, outlier streamline clusters are detected using DBSCAN and then removed from the data in streamline space. We performed quantitative comparisons with expertly delineated tracts. We ran FiberNeat on 131 participants' data from the ADNI3 dataset. We show that applying FiberNeat as a filtering step after bundle segmentation improves the quality of extracted tracts and helps improve tractometry.
Collapse
|
16
|
Zhang F, Wells WM, O'Donnell LJ. Deep Diffusion MRI Registration (DDMReg): A Deep Learning Method for Diffusion MRI Registration. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:1454-1467. [PMID: 34968177 PMCID: PMC9273049 DOI: 10.1109/tmi.2021.3139507] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this paper, we present a deep learning method, DDMReg, for accurate registration between diffusion MRI (dMRI) datasets. In dMRI registration, the goal is to spatially align brain anatomical structures while ensuring that local fiber orientations remain consistent with the underlying white matter fiber tract anatomy. DDMReg is a novel method that uses joint whole-brain and tract-specific information for dMRI registration. Based on the successful VoxelMorph framework for image registration, we propose a novel registration architecture that leverages not only whole brain information but also tract-specific fiber orientation information. DDMReg is an unsupervised method for deformable registration between pairs of dMRI datasets: it does not require nonlinearly pre-registered training data or the corresponding deformation fields as ground truth. We perform comparisons with four state-of-the-art registration methods on multiple independently acquired datasets from different populations (including teenagers, young and elderly adults) and different imaging protocols and scanners. We evaluate the registration performance by assessing the ability to align anatomically corresponding brain structures and ensure fiber spatial agreement between different subjects after registration. Experimental results show that DDMReg obtains significantly improved registration performance compared to the state-of-the-art methods. Importantly, we demonstrate successful generalization of DDMReg to dMRI data from different populations with varying ages and acquired using different acquisition protocols and different scanners.
Collapse
|
17
|
Lucena O, Borges P, Cardoso J, Ashkan K, Sparks R, Ourselin S. Informative and Reliable Tract Segmentation for Preoperative Planning. FRONTIERS IN RADIOLOGY 2022; 2:866974. [PMID: 37492653 PMCID: PMC10365092 DOI: 10.3389/fradi.2022.866974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/31/2022] [Indexed: 07/27/2023]
Abstract
Identifying white matter (WM) tracts to locate eloquent areas for preoperative surgical planning is a challenging task. Manual WM tract annotations are often used but they are time-consuming, suffer from inter- and intra-rater variability, and noise intrinsic to diffusion MRI may make manual interpretation difficult. As a result, in clinical practice direct electrical stimulation is necessary to precisely locate WM tracts during surgery. A measure of WM tract segmentation unreliability could be important to guide surgical planning and operations. In this study, we use deep learning to perform reliable tract segmentation in combination with uncertainty quantification to measure segmentation unreliability. We use a 3D U-Net to segment white matter tracts. We then estimate model and data uncertainty using test time dropout and test time augmentation, respectively. We use a volume-based calibration approach to compute representative predicted probabilities from the estimated uncertainties. In our findings, we obtain a Dice of ≈0.82 which is comparable to the state-of-the-art for multi-label segmentation and Hausdorff distance <10mm. We demonstrate a high positive correlation between volume variance and segmentation errors, which indicates a good measure of reliability for tract segmentation ad uncertainty estimation. Finally, we show that calibrated predicted volumes are more likely to encompass the ground truth segmentation volume than uncalibrated predicted volumes. This study is a step toward more informed and reliable WM tract segmentation for clinical decision-making.
Collapse
Affiliation(s)
- Oeslle Lucena
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Pedro Borges
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Jorge Cardoso
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Keyoumars Ashkan
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
- King's College Hospital Foundation Trust, London, United Kingdom
| | - Rachel Sparks
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| | - Sebastien Ourselin
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, United Kingdom
| |
Collapse
|
18
|
Zhang F, Daducci A, He Y, Schiavi S, Seguin C, Smith RE, Yeh CH, Zhao T, O'Donnell LJ. Quantitative mapping of the brain's structural connectivity using diffusion MRI tractography: A review. Neuroimage 2022; 249:118870. [PMID: 34979249 PMCID: PMC9257891 DOI: 10.1016/j.neuroimage.2021.118870] [Citation(s) in RCA: 124] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 12/03/2021] [Accepted: 12/31/2021] [Indexed: 12/13/2022] Open
Abstract
Diffusion magnetic resonance imaging (dMRI) tractography is an advanced imaging technique that enables in vivo reconstruction of the brain's white matter connections at macro scale. It provides an important tool for quantitative mapping of the brain's structural connectivity using measures of connectivity or tissue microstructure. Over the last two decades, the study of brain connectivity using dMRI tractography has played a prominent role in the neuroimaging research landscape. In this paper, we provide a high-level overview of how tractography is used to enable quantitative analysis of the brain's structural connectivity in health and disease. We focus on two types of quantitative analyses of tractography, including: 1) tract-specific analysis that refers to research that is typically hypothesis-driven and studies particular anatomical fiber tracts, and 2) connectome-based analysis that refers to research that is more data-driven and generally studies the structural connectivity of the entire brain. We first provide a review of methodology involved in three main processing steps that are common across most approaches for quantitative analysis of tractography, including methods for tractography correction, segmentation and quantification. For each step, we aim to describe methodological choices, their popularity, and potential pros and cons. We then review studies that have used quantitative tractography approaches to study the brain's white matter, focusing on applications in neurodevelopment, aging, neurological disorders, mental disorders, and neurosurgery. We conclude that, while there have been considerable advancements in methodological technologies and breadth of applications, there nevertheless remains no consensus about the "best" methodology in quantitative analysis of tractography, and researchers should remain cautious when interpreting results in research and clinical applications.
Collapse
Affiliation(s)
- Fan Zhang
- Brigham and Women's Hospital, Harvard Medical School, Boston, USA.
| | | | - Yong He
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Caio Seguin
- Melbourne Neuropsychiatry Centre, University of Melbourne and Melbourne Health, Melbourne, Australia; The University of Sydney, School of Biomedical Engineering, Sydney, Australia
| | - Robert E Smith
- The Florey Institute of Neuroscience and Mental Health, Melbourne, Australia; Florey Department of Neuroscience and Mental Health, The University of Melbourne, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University, Taoyuan, Taiwan; Department of Psychiatry, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Tengda Zhao
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | | |
Collapse
|
19
|
Rheault F, Bayrak RG, Wang X, Schilling KG, Greer JM, Hansen CB, Kerley C, Ramadass K, Remedios LW, Blaber JA, Williams O, Beason-Held LL, Resnick SM, Rogers BP, Landman BA. TractEM: Evaluation of protocols for deterministic tractography white matter atlas. Magn Reson Imaging 2022; 85:44-56. [PMID: 34666161 PMCID: PMC8629950 DOI: 10.1016/j.mri.2021.10.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/25/2021] [Accepted: 10/12/2021] [Indexed: 01/03/2023]
Abstract
Reproducible identification of white matter pathways across subjects is essential for the study of structural connectivity of the human brain. One of the key challenges is anatomical differences between subjects and human rater subjectivity in labeling. Labeling white matter regions of interest presents many challenges due to the need to integrate both local and global information. Clearly communicating the manual processes to capture this information is cumbersome, yet essential to lay a solid foundation for comprehensive atlases. Segmentation protocols must be designed so the interpretation of the requested tasks as well as locating structural landmarks is anatomically accurate, intuitive and reproducible. In this work, we quantified the reproducibility of a first iteration of an open/public multi-bundle segmentation protocol. This allowed us to establish a baseline for its reproducibility as well as to identify the limitations for future iterations. The protocol was tested/evaluated on both typical 3 T research acquisition Baltimore Longitudinal Study of Aging (BLSA) and high-acquisition quality Human Connectome Project (HCP) datasets. The results show that a rudimentary protocol can produce acceptable intra-rater and inter-rater reproducibility. However, this work highlights the difficulty in generalizing reproducible results and the importance of reaching consensus on anatomical description of white matter pathways. The protocol has been made available in open source to improve generalizability and reliability in collaboration. The goal is to improve upon the first iteration and initiate a discussion on the anatomical validity (or lack thereof) of some bundle definitions and the importance of reproducibility of tractography segmentation.
Collapse
Affiliation(s)
- Francois Rheault
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA.
| | - Roza G Bayrak
- Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Xuan Wang
- Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Kurt G Schilling
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Jasmine M Greer
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Colin B Hansen
- Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Cailey Kerley
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | | | | | - Owen Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Baxter P Rogers
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| | - Bennett A Landman
- Electrical Engineering, Vanderbilt University, Nashville, TN, USA; Vanderbilt University Institute of Imaging Science, Nashville, TN, USA; Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Jordan KM, Lauricella M, Licata AE, Sacco S, Asteggiano C, Wang C, Sudarsan SP, Watson C, Scheffler AW, Battistella G, Miller ZA, Gorno-Tempini ML, Caverzasi E, Mandelli ML. Cortically constrained shape recognition: Automated white matter tract segmentation validated in the pediatric brain. J Neuroimaging 2021; 31:758-772. [PMID: 33878229 DOI: 10.1111/jon.12854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Manual segmentation of white matter (WM) bundles requires extensive training and is prohibitively labor-intensive for large-scale studies. Automated segmentation methods are necessary in order to eliminate operator dependency and to enable reproducible studies. Significant changes in the WM landscape throughout childhood require flexible methods to capture the variance across the span of brain development. METHODS Here, we describe a novel automated segmentation tool called Cortically Constrained Shape Recognition (CCSR), which combines two complementary approaches: (1) anatomical connectivity priors based on FreeSurfer-derived regions of interest and (2) shape priors based on 3-dimensional streamline bundle atlases applied using RecoBundles. We tested the performance and repeatability of this approach by comparing volume and diffusion metrics of the main language WM tracts that were both manually and automatically segmented in a pediatric cohort acquired at the UCSF Dyslexia Center (n = 59; 25 females; average age: 11 ± 2; range: 7-14). RESULTS The CCSR approach showed high agreement with the expert manual segmentations: across all tracts, the spatial overlap between tract volumes showed an average Dice Similarity Coefficient (DSC) of 0.76, and the fractional anisotropy (FA) on average had a Lin's Concordance Correlation Coefficient (CCC) of 0.81. The CCSR's repeatability in a subset of this cohort achieved a DSC of 0.92 on average across all tracts. CONCLUSION This novel automated segmentation approach is a promising tool for reproducible large-scale tractography analyses in pediatric populations and particularly for the quantitative assessment of structural connections underlying various clinical presentations in neurodevelopmental disorders.
Collapse
Affiliation(s)
- Kesshi M Jordan
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Michael Lauricella
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Abigail E Licata
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Simone Sacco
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Asteggiano
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Cheng Wang
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Swati P Sudarsan
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Christa Watson
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Aaron W Scheffler
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California, USA
| | - Giovanni Battistella
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Zachary A Miller
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
- Department of Psychiatry, University of California, San Francisco, California, USA
| | - Eduardo Caverzasi
- Dyslexia Center, University of California, San Francisco, California, USA
- Weill Institute for Neurosciences, University of California, San Francisco, California, USA
| | - Maria Luisa Mandelli
- Department of Neurology, University of California, UCSF Memory and Aging Center, Sandler Neurosciences Center, San Francisco, California, USA
- Dyslexia Center, University of California, San Francisco, California, USA
| |
Collapse
|
21
|
Sedghi A, O'Donnell LJ, Kapur T, Learned-Miller E, Mousavi P, Wells WM. Image registration: Maximum likelihood, minimum entropy and deep learning. Med Image Anal 2021; 69:101939. [PMID: 33388458 PMCID: PMC8046343 DOI: 10.1016/j.media.2020.101939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 11/28/2020] [Accepted: 12/07/2020] [Indexed: 01/12/2023]
Abstract
In this work, we propose a theoretical framework based on maximum profile likelihood for pairwise and groupwise registration. By an asymptotic analysis, we demonstrate that maximum profile likelihood registration minimizes an upper bound on the joint entropy of the distribution that generates the joint image data. Further, we derive the congealing method for groupwise registration by optimizing the profile likelihood in closed form, and using coordinate ascent, or iterative model refinement. We also describe a method for feature based registration in the same framework and demonstrate it on groupwise tractographic registration. In the second part of the article, we propose an approach to deep metric registration that implements maximum likelihood registration using deep discriminative classifiers. We show further that this approach can be used for maximum profile likelihood registration to discharge the need for well-registered training data, using iterative model refinement. We demonstrate that the method succeeds on a challenging registration problem where the standard mutual information approach does not perform well.
Collapse
Affiliation(s)
- Alireza Sedghi
- Medical Informatics Laboratory, Queen's University, Kingston, Canada.
| | - Lauren J O'Donnell
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Tina Kapur
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA
| | - Erik Learned-Miller
- College of Information and Computer Sciences, University of Massachusetts, Amherst, USA
| | - Parvin Mousavi
- Medical Informatics Laboratory, Queen's University, Kingston, Canada
| | - William M Wells
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, USA; Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, Boston, USA
| |
Collapse
|
22
|
Ocampo-Pineda M, Schiavi S, Rheault F, Girard G, Petit L, Descoteaux M, Daducci A. Hierarchical Microstructure Informed Tractography. Brain Connect 2021; 11:75-88. [PMID: 33512262 DOI: 10.1089/brain.2020.0907] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background: Tractography uses diffusion magnetic resonance imaging to noninvasively infer the macroscopic pathways of white matter fibers and it is the only available technique to probe in vivo the structural connectivity of the brain. However, despite this unique and compelling ability and its wide range of possible neurological applications, tractography is still limited, lacks anatomical precision, and suffers from a serious sensitivity/specificity trade-off. For this reason, in the past few years, tractography postprocessing techniques have emerged and proved effective for improving the quality of the reconstructions. Among them, the Convex Optimization Modeling for Microstructure Informed Tractography formulation allows incorporating the anatomical prior that fibers are naturally organized in fascicles, and has obtained exceptional results in increasing the accuracy of the estimated tractograms. Methods: We propose an extension to this idea and introduce a multilevel grouping of the streamlines to capture the white matter arrangement in fascicles and subfascicles. We tested our proposed formulation in synthetic and in vivo data. Results: Our experiments show that using multiple levels allows considering information about the white matter organization more adequately and helps to improve further the accuracy of the resulting tractograms. Conclusion: This new formulation represents a further important step toward a more accurate structural connectivity estimation.
Collapse
Affiliation(s)
| | - Simona Schiavi
- Department of Computer Science, University of Verona, Verona, Italy
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | - Gabriel Girard
- Center for BioMedical Imaging (CIBM), Lausanne, Switzerland.,University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, Switzerland.,Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laurent Petit
- Groupe d'Imagerie Neurofonctionnelle, Université de Bordeaux, CNRS, CEA, IMN, UMR 5293, Bordeaux, France
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, Canada
| | | |
Collapse
|
23
|
Kruper J, Yeatman JD, Richie-Halford A, Bloom D, Grotheer M, Caffarra S, Kiar G, Karipidis II, Roy E, Chandio BQ, Garyfallidis E, Rokem A. Evaluating the Reliability of Human Brain White Matter Tractometry. APERTURE NEURO 2021; 1:10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669. [PMID: 35079748 PMCID: PMC8785971 DOI: 10.52294/e6198273-b8e3-4b63-babb-6e6b0da10669] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
The validity of research results depends on the reliability of analysis methods. In recent years, there have been concerns about the validity of research that uses diffusion-weighted MRI (dMRI) to understand human brain white matter connections in vivo, in part based on the reliability of analysis methods used in this field. We defined and assessed three dimensions of reliability in dMRI-based tractometry, an analysis technique that assesses the physical properties of white matter pathways: (1) reproducibility, (2) test-retest reliability, and (3) robustness. To facilitate reproducibility, we provide software that automates tractometry (https://yeatmanlab.github.io/pyAFQ). In measurements from the Human Connectome Project, as well as clinical-grade measurements, we find that tractometry has high test-retest reliability that is comparable to most standardized clinical assessment tools. We find that tractometry is also robust: showing high reliability with different choices of analysis algorithms. Taken together, our results suggest that tractometry is a reliable approach to analysis of white matter connections. The overall approach taken here both demonstrates the specific trustworthiness of tractometry analysis and outlines what researchers can do to establish the reliability of computational analysis pipelines in neuroimaging.
Collapse
Affiliation(s)
- John Kruper
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Jason D Yeatman
- Graduate School of Education, Stanford University, Stanford, CA, 94305, USA
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | | | - David Bloom
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mareike Grotheer
- Center for Mind, Brain and Behavior - CMBB, Hans-Meerwein-Straße 6, Marburg 35032, Germany
- Department of Psychology, University of Marburg, Marburg 35039, Germany
| | - Sendy Caffarra
- Graduate School of Education, Stanford University, Stanford, CA, 94305, USA
- Division of Developmental-Behavioral Pediatrics, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Basque Center on Cognition, Brain and Language, BCBL, 20009, Spain
| | - Gregory Kiar
- Department of Biomedical Engineering, McGill University, Montreal, H3A 0E9, Canada
| | - Iliana I Karipidis
- Center for Interdisciplinary Brain Sciences Research, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine,Stanford, CA, 94305, USA
| | - Ethan Roy
- Graduate School of Education, Stanford University, Stanford, CA, 94305, USA
| | - Bramsh Q Chandio
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, 47408, USA
| | - Ariel Rokem
- Department of Psychology, University of Washington, Seattle, WA, 98195, USA
- eScience Institute, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
24
|
Chandio BQ, Risacher SL, Pestilli F, Bullock D, Yeh FC, Koudoro S, Rokem A, Harezlak J, Garyfallidis E. Bundle analytics, a computational framework for investigating the shapes and profiles of brain pathways across populations. Sci Rep 2020; 10:17149. [PMID: 33051471 PMCID: PMC7555507 DOI: 10.1038/s41598-020-74054-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 09/22/2020] [Indexed: 11/08/2022] Open
Abstract
Tractography has created new horizons for researchers to study brain connectivity in vivo. However, tractography is an advanced and challenging method that has not been used so far for medical data analysis at a large scale in comparison to other traditional brain imaging methods. This work allows tractography to be used for large scale and high-quality medical analytics. BUndle ANalytics (BUAN) is a fast, robust, and flexible computational framework for real-world tractometric studies. BUAN combines tractography and anatomical information to analyze the challenging datasets and identifies significant group differences in specific locations of the white matter bundles. Additionally, BUAN takes the shape of the bundles into consideration for the analysis. BUAN compares the shapes of the bundles using a metric called bundle adjacency which calculates shape similarity between two given bundles. BUAN builds networks of bundle shape similarities that can be paramount for automating quality control. BUAN is freely available in DIPY. Results are presented using publicly available Parkinson's Progression Markers Initiative data.
Collapse
Affiliation(s)
- Bramsh Qamar Chandio
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, USA.
| | | | - Franco Pestilli
- Department of Psychology, The University of Texas, Austin, TX, USA
| | - Daniel Bullock
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, IN, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Serge Koudoro
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, USA
| | - Ariel Rokem
- Department of Psychology and eScience Institute, University of Washington, Washington, DC, USA
| | - Jaroslaw Harezlak
- School of Public Health, Indiana University Bloomington, Bloomington, IN, USA
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Luddy School of Informatics, Computing and Engineering, Indiana University Bloomington, Bloomington, IN, USA
| |
Collapse
|
25
|
Bertò G, Bullock D, Astolfi P, Hayashi S, Zigiotto L, Annicchiarico L, Corsini F, De Benedictis A, Sarubbo S, Pestilli F, Avesani P, Olivetti E. Classifyber, a robust streamline-based linear classifier for white matter bundle segmentation. Neuroimage 2020; 224:117402. [PMID: 32979520 DOI: 10.1016/j.neuroimage.2020.117402] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 09/12/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Virtual delineation of white matter bundles in the human brain is of paramount importance for multiple applications, such as pre-surgical planning and connectomics. A substantial body of literature is related to methods that automatically segment bundles from diffusion Magnetic Resonance Imaging (dMRI) data indirectly, by exploiting either the idea of connectivity between regions or the geometry of fiber paths obtained with tractography techniques, or, directly, through the information in volumetric data. Despite the remarkable improvement in automatic segmentation methods over the years, their segmentation quality is not yet satisfactory, especially when dealing with datasets with very diverse characteristics, such as different tracking methods, bundle sizes or data quality. In this work, we propose a novel, supervised streamline-based segmentation method, called Classifyber, which combines information from atlases, connectivity patterns, and the geometry of fiber paths into a simple linear model. With a wide range of experiments on multiple datasets that span from research to clinical domains, we show that Classifyber substantially improves the quality of segmentation as compared to other state-of-the-art methods and, more importantly, that it is robust across very diverse settings. We provide an implementation of the proposed method as open source code, as well as web service.
Collapse
Affiliation(s)
- Giulia Bertò
- NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy; Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy
| | - Daniel Bullock
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| | - Pietro Astolfi
- NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy; Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy; PAVIS, Italian Institute of Technology (IIT), Genova, Italy
| | - Soichi Hayashi
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| | - Luca Zigiotto
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| | - Luciano Annicchiarico
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| | - Francesco Corsini
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| | - Alessandro De Benedictis
- Neurosurgery Unit, Department of Neuroscience, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Silvio Sarubbo
- Division of Neurosurgery, Structural and Functional Connectivity Lab, S. Chiara Hospital, Trento, Italy
| | - Franco Pestilli
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
| | - Paolo Avesani
- NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy; Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy
| | - Emanuele Olivetti
- NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation (FBK), Trento, Italy; Center for Mind and Brain Sciences (CIMeC), University of Trento, Italy.
| |
Collapse
|
26
|
Groupwise track filtering via iterative message passing and pruning. Neuroimage 2020; 221:117147. [PMID: 32673747 PMCID: PMC7780547 DOI: 10.1016/j.neuroimage.2020.117147] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 06/13/2020] [Accepted: 07/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tractography is an important tool for the in vivo analysis of brain connectivity based on diffusion MRI data, but it also has well-known limitations in false positives and negatives for the faithful reconstruction of neuroanatomy. These problems persist even in the presence of strong anatomical priors in the form of multiple region of interests (ROIs) to constrain the trajectories of fiber tractography. In this work, we propose a novel track filtering method by leveraging the groupwise consistency of fiber bundles that naturally exists across subjects. We first formalize our groupwise concept with a flexible definition that characterizes the consistency of a track with respect to other group members based on three important aspects: degree, affinity, and proximity. An iterative algorithm is then developed to dynamically update the localized consistency measure of all streamlines via message passing from a reference set, which then informs the pruning of outlier points from each streamline. In our experiments, we successfully applied our method to diffusion imaging data of varying resolutions from the Alzheimer's Disease Neuroimaging Initiative (ADNI) and Human Connectome Project (HCP) for the consistent reconstruction of three important fiber bundles in human brain: the fornix, locus coeruleus pathways, and corticospinal tract. Both qualitative evaluations and quantitative comparisons showed that our method achieved significant improvement in enhancing the anatomical fidelity of fiber bundles.
Collapse
|
27
|
Špiclin Ž, McClelland J, Kybic J, Goksel O. Nonlinear Alignment of Whole Tractograms with the Linear Assignment Problem. BIOMEDICAL IMAGE REGISTRATION 2020. [PMCID: PMC7279924 DOI: 10.1007/978-3-030-50120-4_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
After registration of the imaging data of two brains, homologous anatomical structures are expected to overlap better than before registration. Diffusion magnetic resonance imaging (dMRI) techniques and tractography techniques provide a representation of the anatomical connections in the white matter, as hundreds of thousands of streamlines, forming the tractogram. The literature on methods for aligning tractograms is in active development and provides methods that operate either from voxel information, e.g. fractional anisotropy, orientation distribution function, T1-weighted MRI, or directly from streamline information. In this work, we align streamlines using the linear assignment problem (LAP) and propose a method to reduce the high computational cost of aligning whole brain tractograms. As further contribution, we present a comparison among some of the freely-available linear and nonlinear tractogram alignment methods, where we show that our LAP-based method outperforms all others. In discussing the results, we show that a main limitation of all streamline-based nonlinear registration methods is the computational cost and that addressing such problem may lead to further improvement in the quality of registration.
Collapse
Affiliation(s)
- Žiga Špiclin
- Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Jamie McClelland
- Centre for Medical Image Computing, University College London, London, UK
| | - Jan Kybic
- Faculty of Electrical Engineering, Czech Technical University in Prague, Prague, Czech Republic
| | - Orcun Goksel
- Computer Vision Lab, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
28
|
Badea A, Wu W, Shuff J, Wang M, Anderson RJ, Qi Y, Johnson GA, Wilson JG, Koudoro S, Garyfallidis E, Colton CA, Dunson DB. Identifying Vulnerable Brain Networks in Mouse Models of Genetic Risk Factors for Late Onset Alzheimer's Disease. Front Neuroinform 2019; 13:72. [PMID: 31920610 PMCID: PMC6914731 DOI: 10.3389/fninf.2019.00072] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
The major genetic risk for late onset Alzheimer’s disease has been associated with the presence of APOE4 alleles. However, the impact of different APOE alleles on the brain aging trajectory, and how they interact with the brain local environment in a sex specific manner is not entirely clear. We sought to identify vulnerable brain circuits in novel mouse models with homozygous targeted replacement of the mouse ApoE gene with either human APOE3 or APOE4 gene alleles. These genes are expressed in mice that also model the human immune response to age and disease-associated challenges by expressing the human NOS2 gene in place of the mouse mNos2 gene. These mice had impaired learning and memory when assessed with the Morris water maze (MWM) and novel object recognition (NOR) tests. Ex vivo MRI-DTI analyses revealed global and local atrophy, and areas of reduced fractional anisotropy (FA). Using tensor network principal component analyses for structural connectomes, we inferred the pairwise connections which best separate APOE4 from APOE3 carriers. These involved primarily interhemispheric connections among regions of olfactory areas, the hippocampus, and the cerebellum. Our results also suggest that pairwise connections may be subdivided and clustered spatially to reveal local changes on a finer scale. These analyses revealed not just genotype, but also sex specific differences. Identifying vulnerable networks may provide targets for interventions, and a means to stratify patients.
Collapse
Affiliation(s)
- Alexandra Badea
- Department of Radiology, Duke University, Durham, NC, United States.,Department of Neurology, Duke University School of Medicine, Durham, NC, United States.,Brain Imaging and Analysis Center, Duke University, Durham, NC, United States
| | - Wenlin Wu
- Pratt School of Engineering, Duke University, Durham, NC, United States
| | - Jordan Shuff
- Department of Biomedical Engineering, University of Delaware, Newark, NJ, United States
| | - Michele Wang
- Department of Psychology and Neuroscience, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| | | | - Yi Qi
- Department of Radiology, Duke University, Durham, NC, United States
| | - G Allan Johnson
- Department of Radiology, Duke University, Durham, NC, United States
| | - Joan G Wilson
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - Serge Koudoro
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Eleftherios Garyfallidis
- School of Informatics, Computing, and Engineering, Indiana University Bloomington, Bloomington, IN, United States
| | - Carol A Colton
- Department of Neurology, Duke University School of Medicine, Durham, NC, United States
| | - David B Dunson
- Department of Statistical Science, Trinity College of Arts & Sciences, Duke University, Durham, NC, United States
| |
Collapse
|
29
|
Liu F, Feng J, Chen G, Wu Y, Hong Y, Yap PT, Shen D. DeepBundle: Fiber Bundle Parcellation with Graph Convolution Neural Networks. GRAPH LEARNING IN MEDICAL IMAGING : FIRST INTERNATIONAL WORKSHOP, GLMI 2019, HELD IN CONJUNCTION WITH MICCAI 2019, SHENZHEN, CHINA, OCTOBER 17, 2019, PROCEEDINGS 2019; 11849:88-95. [PMID: 34485996 DOI: 10.1007/978-3-030-35817-4_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Parcellation of whole-brain tractography streamlines is an important step for tract-based analysis of brain white matter microstructure. Existing fiber parcellation approaches rely on accurate registration between an atlas and the tractograms of an individual, however, due to large individual differences, accurate registration is hard to guarantee in practice. To resolve this issue, we propose a novel deep learning method, called DeepBundle, for registration-free fiber parcellation. Our method utilizes graph convolution neural networks (GCNNs) to predict the parcellation label of each fiber tract. GCNNs are capable of extracting the geometric features of each fiber tract and harnessing the resulting features for accurate fiber parcellation and ultimately avoiding the use of atlases and any registration method. We evaluate DeepBundle using data from the Human Connectome Project. Experimental results demonstrate the advantages of DeepBundle and suggest that the geometric features extracted from each fiber tract can be used to effectively parcellate the fiber tracts.
Collapse
Affiliation(s)
- Feihong Liu
- School of Information Science and Technology, Northwest University, Xi'an, China
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| | - Jun Feng
- School of Information Science and Technology, Northwest University, Xi'an, China
| | - Geng Chen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| | - Ye Wu
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| | - Yoonmi Hong
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| | - Pew-Thian Yap
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center (BRIC), University of North Carolina at Chapel Hill, Chapel Hill, U.S.A
| |
Collapse
|
30
|
Avesani P, McPherson B, Hayashi S, Caiafa CF, Henschel R, Garyfallidis E, Kitchell L, Bullock D, Patterson A, Olivetti E, Sporns O, Saykin AJ, Wang L, Dinov I, Hancock D, Caron B, Qian Y, Pestilli F. The open diffusion data derivatives, brain data upcycling via integrated publishing of derivatives and reproducible open cloud services. Sci Data 2019; 6:69. [PMID: 31123325 PMCID: PMC6533280 DOI: 10.1038/s41597-019-0073-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/11/2019] [Indexed: 12/31/2022] Open
Abstract
We describe the Open Diffusion Data Derivatives (O3D) repository: an integrated collection of preserved brain data derivatives and processing pipelines, published together using a single digital-object-identifier. The data derivatives were generated using modern diffusion-weighted magnetic resonance imaging data (dMRI) with diverse properties of resolution and signal-to-noise ratio. In addition to the data, we publish all processing pipelines (also referred to as open cloud services). The pipelines utilize modern methods for neuroimaging data processing (diffusion-signal modelling, fiber tracking, tractography evaluation, white matter segmentation, and structural connectome construction). The O3D open services can allow cognitive and clinical neuroscientists to run the connectome mapping algorithms on new, user-uploaded, data. Open source code implementing all O3D services is also provided to allow computational and computer scientists to reuse and extend the processing methods. Publishing both data-derivatives and integrated processing pipeline promotes practices for scientific reproducibility and data upcycling by providing open access to the research assets for utilization by multiple scientific communities.
Collapse
Affiliation(s)
- Paolo Avesani
- Neuroinformatics Laboratory, Center for Information Technology, Fondazione Bruno Kessler, via Sommarive 18, 38123, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via Delle Regole 101, 38123, Trento, Italy
| | - Brent McPherson
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Cognitive Science, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Soichi Hayashi
- Department of Psychological and Brain Sciences and Pervasive Technology Institute, University Information Technology Services, Indiana University, 1101 E 10th Street, Bloomington, IN, 47405, USA
| | - Cesar F Caiafa
- Pestilli Lab. Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
- Instituto Argentino de Radioastronomía (CCT-La Plata, CONICET; CICPBA), CC5 V, Elisa, 1894, Argentina
- Facultad de Ingeniería, Universidad de Buenos Aires, Buenos Aires, C1063ACV, Argentina
| | - Robert Henschel
- Pervasive Technology Institute, Indiana University Bloomington, 2709 E 10th Street, Bloomington, IN, 47408, USA
| | - Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, Programs in Neuroscience and Cognitive Science, Indiana University Bloomington, 700N Woodlawn Ave, Bloomington, Indiana, 47408, USA
| | - Lindsey Kitchell
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Cognitive Science, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Daniel Bullock
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Andrew Patterson
- Pestilli Lab. Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Emanuele Olivetti
- Neuroinformatics Laboratory, Center for Information Technology, Fondazione Bruno Kessler, via Sommarive 18, 38123, Trento, Italy
- Center for Mind/Brain Sciences (CIMeC), University of Trento, via Delle Regole 101, 38123, Trento, Italy
| | - Olaf Sporns
- Department of Psychological and Brain Sciences, Programs in Neuroscience and Cognitive Science, and Indiana Network Science Institute, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Andrew J Saykin
- Indiana University School of Medicine, Departments of Radiology and Imaging Sciences and Medical and Molecular Genetics, and the Indiana Alzheimer Disease Center, Indiana University, 355 W 16th St., Indianapolis, Indiana, 46202, USA
| | - Lei Wang
- Departments of Psychiatry and Behavioral Sciences and Radiology, Northwestern University Feinberg School of Medicine, 710N. Lake Shore Drive, Abbott Hall 1322, Chicago, IL, 60611, USA
| | - Ivo Dinov
- Statistics Online Computational Resource (SOCR), Center for Complexity of Self-Management in Chronic Disease (CSCD), Health Behavior and Biological Sciences, Michigan Institute for Data Science (MIDAS), University of Michigan, Ann Arbor, MI, 49109, USA
| | - David Hancock
- Pervasive Technology Institute, Indiana University Bloomington, 2709 E 10th Street, Bloomington, IN, 47408, USA
| | - Bradley Caron
- Pestilli Lab. Indiana University School of Optometry and Program in Neuroscience, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, USA
| | - Yiming Qian
- Pestilli Lab. Department of Psychological and Brain Sciences, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA
| | - Franco Pestilli
- Pestilli Lab. Department of Psychological and Brain Sciences, Engineering, Computer Science, Programs in Neuroscience and Cognitive Science, School of Optometry, and Indiana Network Science Institute, Indiana University Bloomington, 1101 E 10th Street, Bloomington, Indiana, 47405, USA.
| |
Collapse
|
31
|
Benou I, Veksler R, Friedman A, Raviv TR. Combining white matter diffusion and geometry for tract-specific alignment and variability analysis. Neuroimage 2019; 200:674-689. [PMID: 31096057 DOI: 10.1016/j.neuroimage.2019.05.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 02/01/2023] Open
Abstract
We present a framework for along-tract analysis of white matter (WM) fiber bundles based on diffusion tensor imaging (DTI) and tractography. We introduce the novel concept of fiber-flux density for modeling fiber tracts' geometry, and combine it with diffusion-based measures to define vector descriptors called Fiber-Flux Diffusion Density (FFDD). The proposed model captures informative features of WM tracts at both the microscopic (diffusion-related) and macroscopic (geometry-related) scales, thus enabling improved sensitivity to subtle structural abnormalities that are not reflected by either diffusion or geometrical properties alone. A key step in this framework is the construction of an FFDD dissimilarity measure for sub-voxel alignment of fiber bundles, based on the fast marching method (FMM). The obtained aligned WM tracts enable meaningful inter-subject comparisons and group-wise statistical analysis. Moreover, we show that the FMM alignment can be generalized in a straight forward manner to a single-shot co-alignment of multiple fiber bundles. The proposed alignment technique is shown to outperform a well-established, commonly used DTI registration algorithm. We demonstrate the FFDD framework on the Human Connectome Project (HCP) diffusion MRI dataset, as well as on two different datasets of contact sports players. We test our method using longitudinal scans of a basketball player diagnosed with a traumatic brain injury, showing compatibility with structural MRI findings. We further perform a group study comparing mid- and post-season scans of 13 active football players exposed to repetitive head trauma, to 17 non-player control (NPC) subjects. Results reveal statistically significant FFDD differences (p-values<0.05) between the groups, as well as increased abnormalities over time at spatially-consistent locations within several major fiber tracts of football players.
Collapse
Affiliation(s)
- Itay Benou
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ronel Veksler
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel; Departments of Medical Neuroscience and Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, Canada
| | - Tammy Riklin Raviv
- Department of Electrical and Computer Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel; The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
32
|
Zhang Z, Descoteaux M, Dunson DB. Nonparametric Bayes Models of Fiber Curves Connecting Brain Regions. J Am Stat Assoc 2019; 114:1505-1517. [PMID: 32265576 PMCID: PMC7138131 DOI: 10.1080/01621459.2019.1574582] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 12/31/2018] [Accepted: 01/18/2019] [Indexed: 01/07/2023]
Abstract
In studying structural inter-connections in the human brain, it is common to first estimate fiber bundles connecting different regions relying on diffusion MRI. These fiber bundles act as highways for neural activity. Current statistical methods reduce the rich information into an adjacency matrix, with the elements containing a count of fibers or a mean diffusion feature along the fibers. The goal of this article is to avoid discarding the rich geometric information of fibers, developing flexible models for characterizing the population distribution of fibers between brain regions of interest within and across different individuals. We start by decomposing each fiber into a rotation matrix, shape and translation from a global reference curve. These components are viewed as data lying on a product space composed of different Euclidean spaces and manifolds. To nonparametrically model the distribution within and across individuals, we rely on a hierarchical mixture of product kernels specific to the component spaces. Taking a Bayesian approach to inference, we develop efficient methods for posterior sampling. The approach automatically produces clusters of fibers within and across individuals. Applying the method to Human Connectome Project data, we find interesting relationships between brain fiber geometry and reading ability. Supplementary materials for this article, including a standardized description of the materials available for reproducing the work, are available as an online supplement.
Collapse
Affiliation(s)
- Zhengwu Zhang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY
| | - Maxime Descoteaux
- Computer Science Department, Faculty of Science, University of Sherbrooke, Sherbrooke, QC
| | - David B. Dunson
- Department of Statistical Science, Duke University, Durham, NC
| |
Collapse
|
33
|
Vosberg DE, Beaulé V, Torres-Berrío A, Cooke D, Chalupa A, Jaworska N, Cox SML, Larcher K, Zhang Y, Allard D, Durand F, Dagher A, Benkelfat C, Srour M, Tampieri D, La Piana R, Joober R, Lepore F, Rouleau G, Pascual-Leone A, Fox MD, Flores C, Leyton M, Théoret H. Neural function in DCC mutation carriers with and without mirror movements. Ann Neurol 2019; 85:433-442. [PMID: 30666715 PMCID: PMC6444183 DOI: 10.1002/ana.25418] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 01/08/2023]
Abstract
Objective Recently identified mutations of the axon guidance molecule receptor gene, DCC, present an opportunity to investigate, in living human brain, mechanisms affecting neural connectivity and the basis of mirror movements, involuntary contralateral responses that mirror voluntary unilateral actions. We hypothesized that haploinsufficient DCC+/− mutation carriers with mirror movements would exhibit decreased DCC mRNA expression, a functional ipsilateral corticospinal tract, greater “mirroring” motor representations, and reduced interhemispheric inhibition. DCC+/− mutation carriers without mirror movements might exhibit some of these features. Methods The participants (n = 52) included 13 DCC+/− mutation carriers with mirror movements, 7 DCC+/− mutation carriers without mirror movements, 13 relatives without the mutation or mirror movements, and 19 unrelated healthy volunteers. The multimodal approach comprised quantitative real time polymerase chain reaction, transcranial magnetic stimulation (TMS), functional magnetic resonance imaging (fMRI) under resting and task conditions, and measures of white matter integrity. Results Mirror movements were associated with reduced DCC mRNA expression, increased ipsilateral TMS‐induced motor evoked potentials, increased fMRI responses in the mirroring M1 and cerebellum, and markedly reduced interhemispheric inhibition. The DCC+/− mutation, irrespective of mirror movements, was associated with reduced functional connectivity and white matter integrity. Interpretation Diverse connectivity abnormalities were identified in mutation carriers with and without mirror movements, but corticospinal effects and decreased peripheral DCC mRNA appeared driven by the mirror movement phenotype. ANN NEUROL 2019;85:433–442.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada
| | - Vincent Beaulé
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Angélica Torres-Berrío
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Danielle Cooke
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Amanda Chalupa
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Natalia Jaworska
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Institute of Mental Health Research, affiliated with the University of Ottawa, Ottawa, Ontario, Canada
| | - Sylvia M L Cox
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Kevin Larcher
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Yu Zhang
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Dominique Allard
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - France Durand
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
| | - Alain Dagher
- Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Chawki Benkelfat
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Myriam Srour
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Roberta La Piana
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Ridha Joober
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Franco Lepore
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| | - Guy Rouleau
- Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | | | - Michael D Fox
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Douglas Mental Health University Institute, Montreal, Quebec, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada.,Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada.,Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Hugo Théoret
- Department of Psychology, University of Montreal, Montreal, Quebec, Canada
| |
Collapse
|
34
|
Ravikumar N, Gooya A, Beltrachini L, Frangi AF, Taylor ZA. Generalised coherent point drift for group-wise multi-dimensional analysis of diffusion brain MRI data. Med Image Anal 2019; 53:47-63. [PMID: 30684740 DOI: 10.1016/j.media.2019.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 10/11/2018] [Accepted: 01/04/2019] [Indexed: 01/14/2023]
Abstract
A probabilistic framework for registering generalised point sets comprising multiple voxel-wise data features such as positions, orientations and scalar-valued quantities, is proposed. It is employed for the analysis of magnetic resonance diffusion tensor image (DTI)-derived quantities, such as fractional anisotropy (FA) and fibre orientation, across multiple subjects. A hybrid Student's t-Watson-Gaussian mixture model-based non-rigid registration framework is formulated for the joint registration and clustering of voxel-wise DTI-derived data, acquired from multiple subjects. The proposed approach jointly estimates the non-rigid transformations necessary to register an unbiased mean template (represented as a 7-dimensional hybrid point set comprising spatial positions, fibre orientations and FA values) to white matter regions of interest (ROIs), and approximates the joint distribution of voxel spatial positions, their associated principal diffusion axes, and FA. Specific white matter ROIs, namely, the corpus callosum and cingulum, are analysed across healthy control (HC) subjects (K = 20 samples) and patients diagnosed with mild cognitive impairment (MCI) (K = 20 samples) or Alzheimer's disease (AD) (K = 20 samples) using the proposed framework, facilitating inter-group comparisons of FA and fibre orientations. Group-wise analyses of the latter is not afforded by conventional approaches such as tract-based spatial statistics (TBSS) and voxel-based morphometry (VBM).
Collapse
Affiliation(s)
- Nishant Ravikumar
- CISTIB for Computational Imaging & Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, UK.
| | - Ali Gooya
- School of Computing, University of Leeds, Leeds, UK; CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, University of Leeds, Leeds, UK.
| | - Leandro Beltrachini
- CISTIB for Computational Imaging & Simulation Technologies in Biomedicine, University of Sheffield, Sheffield, UK.
| | - Alejandro F Frangi
- LICAMM Leeds Institute of Cardiovascular and Metabolic Medicine, School of Medicine, University of Leeds, Leeds, UK; iMBE Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK; School of Computing, University of Leeds, Leeds, UK; CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, University of Leeds, Leeds, UK.
| | - Zeike A Taylor
- iMBE Institute of Medical and Biological Engineering, University of Leeds, Leeds, UK; School of Mechanical Engineering, University of Leeds, Leeds, UK; CISTIB Centre for Computational Imaging & Simulation Technologies in Biomedicine, University of Leeds, Leeds, UK.
| |
Collapse
|
35
|
Waugh JL, Kuster JK, Makhlouf ML, Levenstein JM, Multhaupt-Buell TJ, Warfield SK, Sharma N, Blood AJ. A registration method for improving quantitative assessment in probabilistic diffusion tractography. Neuroimage 2019; 189:288-306. [PMID: 30611874 DOI: 10.1016/j.neuroimage.2018.12.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Revised: 12/26/2018] [Accepted: 12/28/2018] [Indexed: 01/07/2023] Open
Abstract
Diffusion MRI-based probabilistic tractography is a powerful tool for non-invasively investigating normal brain architecture and alterations in structural connectivity associated with disease states. Both voxelwise and region-of-interest methods of analysis are capable of integrating population differences in tract amplitude (streamline count or density), given proper alignment of the tracts of interest. However, quantification of tract differences (between groups, or longitudinally within individuals) has been hampered by two related features of white matter. First, it is unknown to what extent healthy individuals differ in the precise location of white matter tracts, and to what extent experimental factors influence perceived tract location. Second, white matter lacks the gross neuroanatomical features (e.g., gyri, histological subtyping) that make parcellation of grey matter plausible - determining where tracts "should" lie within larger white matter structures is difficult. Accurately quantifying tractographic connectivity between individuals is thus inherently linked to the difficulty of identifying and aligning precise tract location. Tractography is often utilized to study neurological diseases in which the precise structural and connectivity abnormalities are unknown, underscoring the importance of accounting for individual differences in tract location when evaluating the strength of structural connectivity. We set out to quantify spatial variance in tracts aligned through a standard, whole-brain registration method, and to assess the impact of location mismatch on groupwise assessments of tract amplitude. We then developed a method for tract alignment that enhances the existing standard whole brain registration, and then tested whether this method improved the reliability of groupwise contrasts. Specifically, we conducted seed-based probabilistic diffusion tractography from primary motor, supplementary motor, and visual cortices, projecting through the corpus callosum. Streamline counts decreased rapidly with movement from the tract center (-35% per millimeter); tract misalignment of a few millimeters caused substantial compromise of amplitude comparisons. Alignment of tracts "peak-to-peak" is essential for accurate amplitude comparisons. However, for all transcallosal tracts registered through the whole-brain method, the mean separation distance between an individual subject's tract and the average tract (3.2 mm) precluded accurate comparison: at this separation, tract amplitudes were reduced by 74% from peak value. In contrast, alignment of subcortical tracts (thalamo-putaminal, pallido-rubral) was substantially better than alignment for cortical tracts; whole-brain registration was sufficient for these subcortical tracts. We demonstrated that location mismatches in cortical tractography were sufficient to produce false positive and false negative amplitude estimates in both groupwise and longitudinal comparisons. We then showed that our new tract alignment method substantially reduced location mismatch and improved both reliability and statistical power of subsequent quantitative comparisons.
Collapse
Affiliation(s)
- J L Waugh
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States; Division of Child Neurology, Boston Children's Hospital, United States; Harvard Medical School, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - J K Kuster
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - M L Makhlouf
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Harvard-MIT HST Program, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - J M Levenstein
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| | - T J Multhaupt-Buell
- Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States.
| | - S K Warfield
- Department of Radiology, Boston Children's Hospital, United States; Harvard Medical School, Boston, MA, United States.
| | - N Sharma
- Dept. of Neurology, Massachusetts General Hospital, Boston, MA, United States; Department of Neurology, Brigham and Women's Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States.
| | - A J Blood
- Mood and Motor Control Laboratory, Massachusetts General Hospital, Charlestown, MA, United States; Laboratory of Neuroimaging and Genetics, Massachusetts General Hospital, Charlestown, MA, United States; Dept. Psychiatry, Massachusetts General Hospital, Boston, MA, United States; Harvard Medical School, Boston, MA, United States; Martinos Center for Biomedical Imaging, MGH, Charlestown, MA, United States.
| |
Collapse
|
36
|
Comparison of spatial normalization strategies of diffusion MRI data for studying motor outcome in subacute-chronic and acute stroke. Neuroimage 2018; 183:186-199. [PMID: 30086410 DOI: 10.1016/j.neuroimage.2018.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 07/02/2018] [Accepted: 08/03/2018] [Indexed: 01/22/2023] Open
Abstract
A common means of studying motor recovery in stroke patients is to extract Diffusion Tensor Imaging (DTI) parameters from the corticospinal tract (CST) and correlate them with clinical outcome scores. To that purpose, conducting group-level analyses through spatial normalization has become a popular approach. However, the reliability of such analyses depends on the accuracy of the particular registration strategy employed. To date, most studies have employed scalar-based registration using either high-resolution T1 images or Fractional Anisotropy (FA) maps to warp diffusion data to a common space. However, more powerful registration algorithms exist for aligning major white matter structures, such as Fiber Orientation Distribution (FOD)-based registration. Regardless of the strategy chosen, automatic normalization algorithms are prone to distortions caused by stroke lesions. While lesion masking is a common means to lessen such distortions, the extent of its effect on tract-related DTI parameters and their correlation with motor outcome has yet to be determined. Here, we aimed to address these concerns by first investigating the effect of common T1 and FA-based registration as well as novel FOD-based registration algorithms with and without lesion masking on lesion load and DTI parameter extraction of the CST in datasets typically acquired for subacute-chronic and acute stroke patients. Second, we studied how differences in these procedures influenced correlation strength between CST damage (through DTI parameters) and motor outcome. Our results showed that, for high-quality subacute-chronic stroke data, FOD-based registration captured significantly higher lesion loads and significantly larger FA asymmetries in the CST. This was also associated with significantly stronger correlations in motor outcome with respect to T1 or FA-based registration methods. For acute data acquired in a clinical setting, there were few observed differences, suggesting that commonly employed FA-based registration is appropriate for group-level analyses.
Collapse
|
37
|
Ugurlu D, Firat Z, Türe U, Unal G. Neighborhood resolved fiber orientation distributions (NRFOD) in automatic labeling of white matter fiber pathways. Med Image Anal 2018. [PMID: 29523000 DOI: 10.1016/j.media.2018.02.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Accurate digital representation of major white matter bundles in the brain is an important goal in neuroscience image computing since the representations can be used for surgical planning, intra-patient longitudinal analysis and inter-subject population connectivity studies. Reconstructing desired fiber bundles generally involves manual selection of regions of interest by an expert, which is subject to user bias and fatigue, hence an automation is desirable. To that end, we first present a novel anatomical representation based on Neighborhood Resolved Fiber Orientation Distributions (NRFOD) along the fibers. The resolved fiber orientations are obtained by generalized q-sampling imaging (GQI) and a subsequent diffusion decomposition method. A fiber-to-fiber distance measure between the proposed fiber representations is then used in a density-based clustering framework to select the clusters corresponding to the major pathways of interest. In addition, neuroanatomical priors are utilized to constrain the set of candidate fibers before density-based clustering. The proposed fiber clustering approach is exemplified on automation of the reconstruction of the major fiber pathways in the brainstem: corticospinal tract (CST); medial lemniscus (ML); middle cerebellar peduncle (MCP); inferior cerebellar peduncle (ICP); superior cerebellar peduncle (SCP). Experimental results on Human Connectome Project (HCP)'s publicly available "WU-Minn 500 Subjects + MEG2 dataset" and expert evaluations demonstrate the potential of the proposed fiber clustering method in brainstem white matter structure analysis.
Collapse
Affiliation(s)
- Devran Ugurlu
- Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul, Turkey
| | - Zeynep Firat
- Radiology Department, Yeditepe University Hospital, Istanbul, Turkey
| | - Uğur Türe
- Neurosurgery Department, Yeditepe University Hospital, Istanbul, Turkey
| | - Gozde Unal
- Computer Engineering Department, Istanbul Technical University, Istanbul, Turkey.
| |
Collapse
|
38
|
Glozman T, Bruckert L, Pestilli F, Yecies DW, Guibas LJ, Yeom KW. Framework for shape analysis of white matter fiber bundles. Neuroimage 2018; 167:466-477. [PMID: 29203454 PMCID: PMC5845796 DOI: 10.1016/j.neuroimage.2017.11.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/26/2017] [Accepted: 11/22/2017] [Indexed: 12/24/2022] Open
Abstract
Diffusion imaging coupled with tractography algorithms allows researchers to image human white matter fiber bundles in-vivo. These bundles are three-dimensional structures with shapes that change over time during the course of development as well as in pathologic states. While most studies on white matter variability focus on analysis of tissue properties estimated from the diffusion data, e.g. fractional anisotropy, the shape variability of white matter fiber bundle is much less explored. In this paper, we present a set of tools for shape analysis of white matter fiber bundles, namely: (1) a concise geometric model of bundle shapes; (2) a method for bundle registration between subjects; (3) a method for deformation estimation. Our framework is useful for analysis of shape variability in white matter fiber bundles. We demonstrate our framework by applying our methods on two datasets: one consisting of data for 6 normal adults and another consisting of data for 38 normal children of age 11 days to 8.5 years. We suggest a robust and reproducible method to measure changes in the shape of white matter fiber bundles. We demonstrate how this method can be used to create a model to assess age-dependent changes in the shape of specific fiber bundles. We derive such models for an ensemble of white matter fiber bundles on our pediatric dataset and show that our results agree with normative human head and brain growth data. Creating these models for a large pediatric longitudinal dataset may improve understanding of both normal development and pathologic states and propose novel parameters for the examination of the pediatric brain.
Collapse
Affiliation(s)
- Tanya Glozman
- Electrical Engineering, Stanford University, Stanford, CA, USA.
| | | | - Franco Pestilli
- Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Derek W Yecies
- Pediatric Neurosurgery, Stanford University, Stanford, CA, USA
| | | | - Kristen W Yeom
- Department of Radiology, Lucile Packard Children's Hospital, Stanford University, Stanford, CA, USA
| |
Collapse
|
39
|
Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, Chamberland M, Yeh FC, Lin YC, Ji Q, Reddick WE, Glass JO, Chen DQ, Feng Y, Gao C, Wu Y, Ma J, He R, Li Q, Westin CF, Deslauriers-Gauthier S, González JOO, Paquette M, St-Jean S, Girard G, Rheault F, Sidhu J, Tax CMW, Guo F, Mesri HY, Dávid S, Froeling M, Heemskerk AM, Leemans A, Boré A, Pinsard B, Bedetti C, Desrosiers M, Brambati S, Doyon J, Sarica A, Vasta R, Cerasa A, Quattrone A, Yeatman J, Khan AR, Hodges W, Alexander S, Romascano D, Barakovic M, Auría A, Esteban O, Lemkaddem A, Thiran JP, Cetingul HE, Odry BL, Mailhe B, Nadar MS, Pizzagalli F, Prasad G, Villalon-Reina JE, Galvis J, Thompson PM, Requejo FDS, Laguna PL, Lacerda LM, Barrett R, Dell'Acqua F, Catani M, Petit L, Caruyer E, Daducci A, Dyrby TB, Holland-Letz T, Hilgetag CC, Stieltjes B, Descoteaux M. The challenge of mapping the human connectome based on diffusion tractography. Nat Commun 2017; 8:1349. [PMID: 29116093 PMCID: PMC5677006 DOI: 10.1038/s41467-017-01285-x] [Citation(s) in RCA: 798] [Impact Index Per Article: 99.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 09/01/2017] [Indexed: 01/14/2023] Open
Abstract
Tractography based on non-invasive diffusion imaging is central to the study of human brain connectivity. To date, the approach has not been systematically validated in ground truth studies. Based on a simulated human brain data set with ground truth tracts, we organized an open international tractography challenge, which resulted in 96 distinct submissions from 20 research groups. Here, we report the encouraging finding that most state-of-the-art algorithms produce tractograms containing 90% of the ground truth bundles (to at least some extent). However, the same tractograms contain many more invalid than valid bundles, and half of these invalid bundles occur systematically across research groups. Taken together, our results demonstrate and confirm fundamental ambiguities inherent in tract reconstruction based on orientation information alone, which need to be considered when interpreting tractography and connectivity results. Our approach provides a novel framework for estimating reliability of tractography and encourages innovation to address its current limitations. Though tractography is widely used, it has not been systematically validated. Here, authors report results from 20 groups showing that many tractography algorithms produce both valid and invalid bundles.
Collapse
Affiliation(s)
- Klaus H Maier-Hein
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany.
| | - Peter F Neher
- Division of Medical Image Computing, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Jean-Christophe Houde
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Marc-Alexandre Côté
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Eleftherios Garyfallidis
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.,Department of Intelligent Systems Engineering, School of Informatics and Computing, Indiana University, Bloomington, IN 47408, USA
| | - Jidan Zhong
- Krembil Research Institute, University Health Network, Toronto, Canada, M5G 2C4
| | - Maxime Chamberland
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Ying-Chia Lin
- IMT-Institute for Advanced Studies, Lucca, 55100, Italy
| | - Qing Ji
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Wilburn E Reddick
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - John O Glass
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - David Qixiang Chen
- University of Toronto Institute of Medical Science, Toronto, Canada, M5S 1A8
| | - Yuanjing Feng
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Chengfeng Gao
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Ye Wu
- Institute of Information Processing and Automation, Zhejiang University of Technology, Hangzhou, 310023, Zhejiang, China
| | - Jieyan Ma
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Renjie He
- United Imaging Healthcare Co., Shanghai, 201807, China
| | - Qiang Li
- United Imaging Healthcare Co., Shanghai, 201807, China.,Shanghai Advanced Research Institute, Shanghai, 201210, China
| | - Carl-Fredrik Westin
- Laboratory of Mathematics in Imaging, Harvard Medical School, Boston, MA, 02215, USA
| | | | | | - Michael Paquette
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Samuel St-Jean
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Gabriel Girard
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - François Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada
| | - Chantal M W Tax
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands.,Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Fenghua Guo
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Hamed Y Mesri
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Szabolcs Dávid
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Anneriet M Heemskerk
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Alexander Leemans
- PROVIDI Lab, Image Sciences Institute, University Medical Center Utrecht, Utrecht, 3508, The Netherlands
| | - Arnaud Boré
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Basile Pinsard
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, INSERM, Laboratoire d'Imagerie Biomédicale (LIB), 75013, Paris, France
| | - Christophe Bedetti
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5.,Center for Advanced Research in Sleep Medicine, Hôpital du Sacré-Coeur de Montréal, Montreal, Canada, H4J 1C5
| | - Matthieu Desrosiers
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Simona Brambati
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Julien Doyon
- Centre de recherche institut universitaire de geriatrie de Montreal (CRIUGM), Université de Montréal, Montreal, QC, Canada, H3W 1W5
| | - Alessia Sarica
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Roberta Vasta
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Antonio Cerasa
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Aldo Quattrone
- Neuroimaging Unit, Institute of Bioimaging and Molecular Physiology (IBFM), National Research Council (CNR), Policlinico Magna Graecia, Germaneto, 88100, CZ, Italy.,Institute of Neurology, University Magna Graecia, Germaneto, 88100, CZ, Italy
| | - Jason Yeatman
- Institute for Learning & Brain Sciences and Department of Speech & Hearing Sciences, University of Washington, Seattle, WA, 98195, USA
| | - Ali R Khan
- Departments of Medical Biophysics & Medical Imaging, Schulich School of Medicine and Dentistry, Western University, 1151 Richmond St N, London, ON, Canada, N6A 5C1
| | - Wes Hodges
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - Simon Alexander
- Synaptive Medical Inc., MaRS Discovery District, 101 College Street, Suite 200, Toronto, ON, Canada, M5V 3B1
| | - David Romascano
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Muhamed Barakovic
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Anna Auría
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Oscar Esteban
- Biomedical Image Technologies (BIT), ETSI Telecom., U. Politécnica de Madrid and CIBER-BBN, Madrid, 28040, Spain
| | - Alia Lemkaddem
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - H Ertan Cetingul
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Benjamin L Odry
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Boris Mailhe
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Mariappan S Nadar
- Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ, 08540, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Gautam Prasad
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Justin Galvis
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuro Imaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, 90033, USA
| | | | - Pedro Luque Laguna
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Luis Miguel Lacerda
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Rachel Barrett
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Flavio Dell'Acqua
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Marco Catani
- NatBrainLab, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, SE5 8AF, UK
| | - Laurent Petit
- Groupe d'imagerie Neurofonctionnelle-Institut des Maladies Neurodégénératives (GIN-IMN), UMR5293 CNRS, CEA, University of Bordeaux, Bordeaux, 33000, France
| | - Emmanuel Caruyer
- Centre national de la recherche scientifique (CNRS), Institute for Research in IT and Random Systems (IRISA), UMR 6074 VISAGES Project-Team, Rennes, 35042, France
| | - Alessandro Daducci
- Signal Processing Lab (LTS5), Ecole Polytechnique Federale de Lausanne, Lausanne, 1015, Switzerland.,Department of Radiology, University Hospital Center (CHUV) and University of Lausanne (UNIL), Lausanne, 1011, Switzerland
| | - Tim B Dyrby
- Danish Research Centre for Magnetic Resonance, Center for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, 2650, Denmark.,Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, 2800, Denmark
| | - Tim Holland-Letz
- Division of Biostatistics, German Cancer Research Center (DKFZ), Heidelberg, 69120, Germany
| | - Claus C Hilgetag
- Department of Computational Neuroscience, University Medical Center Eppendorf, Hamburg, 20246, Germany
| | - Bram Stieltjes
- University Hospital Basel, Radiology & Nuclear Medicine Clinic, Basel, 4031, Switzerland
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Université de Sherbrooke, Sherbrooke, QC J1K 0A5, QC, Canada.
| |
Collapse
|
40
|
Zhang J, Huang C, Ibrahim JG, Jha S, Knickmeyer RC, Gilmore JH, Styner M, Zhu H. HFPRM: Hierarchical Functional Principal Regression Model for Diffusion Tensor Image Bundle Statistics. INFORMATION PROCESSING IN MEDICAL IMAGING : PROCEEDINGS OF THE ... CONFERENCE 2017; 10265:478-489. [PMID: 28947871 DOI: 10.1007/978-3-319-59050-9_38] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Diffusion-weighted magnetic resonance imaging (MRI) provides a unique approach to understand the geometric structure of brain fiber bundles and to delineate the diffusion properties across subjects and time. It can be used to identify structural connectivity abnormalities and helps to diagnose brain-related disorders. The aim of this paper is to develop a novel, robust, and efficient dimensional reduction and regression framework, called hierarchical functional principal regression model (HFPRM), to effectively correlate high-dimensional fiber bundle statistics with a set of predictors of interest, such as age, diagnosis status, and genetic markers. The three key novelties of HFPRM include the simultaneous analysis of a large number of fiber bundles, the disentanglement of global and individual latent factors that characterizes between-tract correlation patterns, and a bi-level analysis on the predictor effects. Simulations are conducted to evaluate the finite sample performance of HFPRM. We have also applied HFPRM to a genome-wide association study to explore important genetic variants in neonatal white matter development.
Collapse
Affiliation(s)
- Jingwen Zhang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Chao Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Joseph G Ibrahim
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA
| | - Shaili Jha
- Curriculum in Neurobiology, University of North Carolina at Chapel Hill, USA
| | | | - John H Gilmore
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Martin Styner
- Department of Psychiatry, University of North Carolina at Chapel Hill, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, USA.,Department of Biostatistics, University of Texas MD Anderson Cancer Center, USA
| |
Collapse
|
41
|
Labra N, Guevara P, Duclap D, Houenou J, Poupon C, Mangin JF, Figueroa M. Fast Automatic Segmentation of White Matter Streamlines Based on a Multi-Subject Bundle Atlas. Neuroinformatics 2017; 15:71-86. [PMID: 27722821 DOI: 10.1007/s12021-016-9316-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This paper presents an algorithm for fast segmentation of white matter bundles from massive dMRI tractography datasets using a multisubject atlas. We use a distance metric to compare streamlines in a subject dataset to labeled centroids in the atlas, and label them using a per-bundle configurable threshold. In order to reduce segmentation time, the algorithm first preprocesses the data using a simplified distance metric to rapidly discard candidate streamlines in multiple stages, while guaranteeing that no false negatives are produced. The smaller set of remaining streamlines is then segmented using the original metric, thus eliminating any false positives from the preprocessing stage. As a result, a single-thread implementation of the algorithm can segment a dataset of almost 9 million streamlines in less than 6 minutes. Moreover, parallel versions of our algorithm for multicore processors and graphics processing units further reduce the segmentation time to less than 22 seconds and to 5 seconds, respectively. This performance enables the use of the algorithm in truly interactive applications for visualization, analysis, and segmentation of large white matter tractography datasets.
Collapse
Affiliation(s)
| | | | | | - Josselin Houenou
- Neurospin, I2BM, CEA, Gif-sur-Yvette, France.,APHP, Pôle de Psychiatrie, DHU PePsy, INSERM U955 Eq. 15 "Psychiatrie Translationnelle", Université Paris Est, Créteil, France
| | | | | | | |
Collapse
|
42
|
Fiberprint: A subject fingerprint based on sparse code pooling for white matter fiber analysis. Neuroimage 2017; 158:242-259. [DOI: 10.1016/j.neuroimage.2017.06.083] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 06/20/2017] [Accepted: 06/30/2017] [Indexed: 11/18/2022] Open
|
43
|
Garyfallidis E, Côté MA, Rheault F, Sidhu J, Hau J, Petit L, Fortin D, Cunanne S, Descoteaux M. Recognition of white matter bundles using local and global streamline-based registration and clustering. Neuroimage 2017; 170:283-295. [PMID: 28712994 DOI: 10.1016/j.neuroimage.2017.07.015] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 06/06/2017] [Accepted: 07/10/2017] [Indexed: 11/17/2022] Open
Abstract
Virtual dissection of diffusion MRI tractograms is cumbersome and needs extensive knowledge of white matter anatomy. This virtual dissection often requires several inclusion and exclusion regions-of-interest that make it a process that is very hard to reproduce across experts. Having automated tools that can extract white matter bundles for tract-based studies of large numbers of people is of great interest for neuroscience and neurosurgical planning. The purpose of our proposed method, named RecoBundles, is to segment white matter bundles and make virtual dissection easier to perform. This can help explore large tractograms from multiple persons directly in their native space. RecoBundles leverages latest state-of-the-art streamline-based registration and clustering to recognize and extract bundles using prior bundle models. RecoBundles uses bundle models as shape priors for detecting similar streamlines and bundles in tractograms. RecoBundles is 100% streamline-based, is efficient to work with millions of streamlines and, most importantly, is robust and adaptive to incomplete data and bundles with missing components. It is also robust to pathological brains with tumors and deformations. We evaluated our results using multiple bundles and showed that RecoBundles is in good agreement with the neuroanatomical experts and generally produced more dense bundles. Across all the different experiments reported in this paper, RecoBundles was able to identify the core parts of the bundles, independently from tractography type (deterministic or probabilistic) or size. Thus, RecoBundles can be a valuable method for exploring tractograms and facilitating tractometry studies.
Collapse
Affiliation(s)
- Eleftherios Garyfallidis
- Department of Intelligent Systems Engineering, School of Informatics and Computing, Indiana University, Bloomington, USA.
| | - Marc-Alexandre Côté
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
| | - Francois Rheault
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
| | - Jasmeen Sidhu
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
| | - Janice Hau
- Brain Development Imaging Lab (BDIL), Department of Psychology, San Diego State University, USA; Groupe d' Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, CEA Université de Bordeaux, Bordeaux, France
| | - Laurent Petit
- Groupe d' Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives, UMR5293, CNRS, CEA Université de Bordeaux, Bordeaux, France
| | - David Fortin
- Division of Neurosurgery and Neuro-Oncology, Faculty of Medicine and Health Science, University of Sherbrooke, Sherbrooke, Québec, Canada
| | - Stephen Cunanne
- Research Center on Aging and Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Maxime Descoteaux
- Sherbrooke Connectivity Imaging Lab (SCIL), Computer Science Department, Université de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
44
|
Rokem A, Takemura H, Bock AS, Scherf KS, Behrmann M, Wandell BA, Fine I, Bridge H, Pestilli F. The visual white matter: The application of diffusion MRI and fiber tractography to vision science. J Vis 2017; 17:4. [PMID: 28196374 PMCID: PMC5317208 DOI: 10.1167/17.2.4] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022] Open
Abstract
Visual neuroscience has traditionally focused much of its attention on understanding the response properties of single neurons or neuronal ensembles. The visual white matter and the long-range neuronal connections it supports are fundamental in establishing such neuronal response properties and visual function. This review article provides an introduction to measurements and methods to study the human visual white matter using diffusion MRI. These methods allow us to measure the microstructural and macrostructural properties of the white matter in living human individuals; they allow us to trace long-range connections between neurons in different parts of the visual system and to measure the biophysical properties of these connections. We also review a range of findings from recent studies on connections between different visual field maps, the effects of visual impairment on the white matter, and the properties underlying networks that process visual information supporting visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open datasets that are becoming available to study brain connectivity and white matter properties, and open source software for the analysis of these data.
Collapse
Affiliation(s)
- Ariel Rokem
- The University of Washington eScience Institute, Seattle, WA, ://arokem.org
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), National Institute of Information and Communications Technology, and Osaka University, Suita-shi, JapanGraduate School of Frontier Biosciences, Osaka University, Suita-shi,
| | | | | | | | | | - Ione Fine
- University of Washington, Seattle, WA,
| | | | | |
Collapse
|
45
|
Chekir A, Hassas S, Descoteaux M, Côté M, Garyfallidis E, Oulebsir-Boumghar F. 3D-SSF: A bio-inspired approach for dynamic multi-subject clustering of white matter tracts. Comput Biol Med 2017; 83:10-21. [PMID: 28188985 DOI: 10.1016/j.compbiomed.2017.01.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 01/22/2017] [Accepted: 01/25/2017] [Indexed: 11/26/2022]
Abstract
There is growing interest in the study of white matter (WM) variation across subjects, and in particular the analysis of specific WM bundles, to better understand brain development and aging, as well as to improve early detection of some diseases. Several WM multi-subject clustering methods have been proposed to study WM bundles. These methods aim to overcome the complexity of the problem, which includes the huge size of the WM tractography datasets generated from multiple subjects, the existence of various streamlines with different positions, lengths and geometric forms, as well as the presence of outliers. However, the current methods are not sufficiently flexible to address all of these constraints. Here we introduce a novel dynamic multi-subject clustering framework based on a distributed multiagent implementation of the Multiple Species Flocking model, that we name 3D-Streamlines Stream Flocking (3D-SSF). Specifically, we consider streamlines from different subjects as data streams, and each streamline is assigned to a mobile agent. Agents work together following flocking rules in order to form a flock. Thanks to a similarity function, the agents that are associated with similar streamlines form a flock, whereas the agents that are associated with dissimilar streamlines are considered outliers. We use various experiments performed on noisy synthetic and real human brain data to validate 3D-SSF and demonstrate that it is more efficient and robust to outliers compared to other classical approaches. 3D-SSF is able to extract WM bundles at a population level, while considering WM variation across subjects and eliminating outlier streamlines.
Collapse
Affiliation(s)
- A Chekir
- USTHB University, FEI, LRPE, ParIMéd, Algiers, Algeria.
| | - S Hassas
- Université Lyon 1, LIRIS, UMR5205, F-69622, France
| | - M Descoteaux
- Sherbrooke Connectivity Imaging Lab, Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - M Côté
- Sherbrooke Connectivity Imaging Lab, Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - E Garyfallidis
- Sherbrooke Connectivity Imaging Lab, Computer Science, Université de Sherbrooke, Sherbrooke, QC, Canada
| | | |
Collapse
|
46
|
Olivetti E, Sharmin N, Avesani P. Alignment of Tractograms As Graph Matching. Front Neurosci 2016; 10:554. [PMID: 27994537 PMCID: PMC5136564 DOI: 10.3389/fnins.2016.00554] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 11/17/2016] [Indexed: 11/28/2022] Open
Abstract
The white matter pathways of the brain can be reconstructed as 3D polylines, called streamlines, through the analysis of diffusion magnetic resonance imaging (dMRI) data. The whole set of streamlines is called tractogram and represents the structural connectome of the brain. In multiple applications, like group-analysis, segmentation, or atlasing, tractograms of different subjects need to be aligned. Typically, this is done with registration methods, that transform the tractograms in order to increase their similarity. In contrast with transformation-based registration methods, in this work we propose the concept of tractogram correspondence, whose aim is to find which streamline of one tractogram corresponds to which streamline in another tractogram, i.e., a map from one tractogram to another. As a further contribution, we propose to use the relational information of each streamline, i.e., its distances from the other streamlines in its own tractogram, as the building block to define the optimal correspondence. We provide an operational procedure to find the optimal correspondence through a combinatorial optimization problem and we discuss its similarity to the graph matching problem. In this work, we propose to represent tractograms as graphs and we adopt a recent inexact sub-graph matching algorithm to approximate the solution of the tractogram correspondence problem. On tractograms generated from the Human Connectome Project dataset, we report experimental evidence that tractogram correspondence, implemented as graph matching, provides much better alignment than affine registration and comparable if not better results than non-linear registration of volumes.
Collapse
Affiliation(s)
- Emanuele Olivetti
- NeuroInformatics Laboratory, Bruno Kessler FoundationTrento, Italy; Center for Mind and Brain Sciences, University of TrentoTrento, Italy
| | - Nusrat Sharmin
- NeuroInformatics Laboratory, Bruno Kessler FoundationTrento, Italy; Center for Mind and Brain Sciences, University of TrentoTrento, Italy
| | - Paolo Avesani
- NeuroInformatics Laboratory, Bruno Kessler FoundationTrento, Italy; Center for Mind and Brain Sciences, University of TrentoTrento, Italy
| |
Collapse
|
47
|
Gori P, Colliot O, Marrakchi-Kacem L, Worbe Y, De Vico Fallani F, Chavez M, Poupon C, Hartmann A, Ayache N, Durrleman S. Parsimonious Approximation of Streamline Trajectories in White Matter Fiber Bundles. IEEE TRANSACTIONS ON MEDICAL IMAGING 2016; 35:2609-2619. [PMID: 27416589 DOI: 10.1109/tmi.2016.2591080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fiber bundles stemming from tractography algorithms contain many streamlines. They require therefore a great amount of computer memory and computational resources to be stored, visualised and processed. We propose an approximation scheme for fiber bundles which results in a parsimonious representation of weighted prototypes. Prototypes are chosen among the streamlines and they represent groups of similar streamlines. Their weight is related to the number of approximated streamlines. Both streamlines and prototypes are modelled as weighted currents. This computational model does not need point-to-point correspondences and two streamlines are considered similar if their endpoints are close to each other and if their pathways follow similar trajectories. Moreover, the space of weighted currents is a vector space with a closed-form metric. This permits easy computation of the approximation error and the selection of the prototypes is based on the minimisation of this error. We propose an iterative algorithm which approximates independently and simultaneously all the fascicles of the bundle in a fast and accurate way. We show that the resulting representation preserves the shape of the bundle and it can be used to accurately reconstruct the original structural connectivity. We evaluate our algorithm on bundles obtained from both deterministic and probabilistic tractography algorithms. The resulting approximations use on average only 2% of the original streamlines as prototypes. This drastically reduces the computational burden of the processes where the geometry of the streamlines is considered. We demonstrate its effectiveness using as example the registration between two fiber bundles.
Collapse
|
48
|
O'Donnell LJ, Suter Y, Rigolo L, Kahali P, Zhang F, Norton I, Albi A, Olubiyi O, Meola A, Essayed WI, Unadkat P, Ciris PA, Wells WM, Rathi Y, Westin CF, Golby AJ. Automated white matter fiber tract identification in patients with brain tumors. NEUROIMAGE-CLINICAL 2016; 13:138-153. [PMID: 27981029 PMCID: PMC5144756 DOI: 10.1016/j.nicl.2016.11.023] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/13/2016] [Accepted: 11/22/2016] [Indexed: 01/06/2023]
Abstract
We propose a method for the automated identification of key white matter fiber tracts for neurosurgical planning, and we apply the method in a retrospective study of 18 consecutive neurosurgical patients with brain tumors. Our method is designed to be relatively robust to challenges in neurosurgical tractography, which include peritumoral edema, displacement, and mass effect caused by mass lesions. The proposed method has two parts. First, we learn a data-driven white matter parcellation or fiber cluster atlas using groupwise registration and spectral clustering of multi-fiber tractography from healthy controls. Key fiber tract clusters are identified in the atlas. Next, patient-specific fiber tracts are automatically identified using tractography-based registration to the atlas and spectral embedding of patient tractography. Results indicate good generalization of the data-driven atlas to patients: 80% of the 800 fiber clusters were identified in all 18 patients, and 94% of the 800 fiber clusters were found in 16 or more of the 18 patients. Automated subject-specific tract identification was evaluated by quantitative comparison to subject-specific motor and language functional MRI, focusing on the arcuate fasciculus (language) and corticospinal tracts (motor), which were identified in all patients. Results indicate good colocalization: 89 of 95, or 94%, of patient-specific language and motor activations were intersected by the corresponding identified tract. All patient-specific activations were within 3mm of the corresponding language or motor tract. Overall, our results indicate the potential of an automated method for identifying fiber tracts of interest for neurosurgical planning, even in patients with mass lesions. Spectral clustering machine learning approach for white matter tract identification Data-driven white matter parcellation learned from healthy subjects tractography White matter parcellation applied to 18 consecutive patients with brain tumors Arcuate fasciculus and corticospinal tracts identified in all patients All tracts within 3 mm of corresponding patient-specific functional activations
Collapse
Affiliation(s)
- Lauren J O'Donnell
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yannick Suter
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Institute for Surgical Technology and Biomechanics, University of Bern, Switzerland
| | - Laura Rigolo
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pegah Kahali
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Fan Zhang
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Isaiah Norton
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Angela Albi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Center for Mind/Brain Sciences (CIMEC), University of Trento, Rovereto, Italy
| | - Olutayo Olubiyi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonio Meola
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Walid I Essayed
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Prashin Unadkat
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Pelin Aksit Ciris
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Engineering, Akdeniz University, Antalya, Turkey
| | - William M Wells
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Yogesh Rathi
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Alexandra J Golby
- Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
49
|
Tax CMW, Dela Haije T, Fuster A, Westin CF, Viergever MA, Florack L, Leemans A. Sheet Probability Index (SPI): Characterizing the geometrical organization of the white matter with diffusion MRI. Neuroimage 2016; 142:260-279. [PMID: 27456538 DOI: 10.1016/j.neuroimage.2016.07.042] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 06/21/2016] [Accepted: 07/20/2016] [Indexed: 12/13/2022] Open
Abstract
The question whether our brain pathways adhere to a geometric grid structure has been a popular topic of debate in the diffusion imaging and neuroscience societies. Wedeen et al. (2012a, b) proposed that the brain's white matter is organized like parallel sheets of interwoven pathways. Catani et al. (2012) concluded that this grid pattern is most likely an artifact, resulting from methodological biases that cause the tractography pathways to cross in orthogonal angles. To date, ambiguities in the mathematical conditions for a sheet structure to exist (e.g. its relation to orthogonal angles) combined with the lack of extensive quantitative evidence have prevented wide acceptance of the hypothesis. In this work, we formalize the relevant terminology and recapitulate the condition for a sheet structure to exist. Note that this condition is not related to the presence or absence of orthogonal crossing fibers, and that sheet structure is defined formally as a surface formed by two sets of interwoven pathways intersecting at arbitrary angles within the surface. To quantify the existence of sheet structure, we present a novel framework to compute the sheet probability index (SPI), which reflects the presence of sheet structure in discrete orientation data (e.g. fiber peaks derived from diffusion MRI). With simulation experiments we investigate the effect of spatial resolution, curvature of the fiber pathways, and measurement noise on the ability to detect sheet structure. In real diffusion MRI data experiments we can identify various regions where the data supports sheet structure (high SPI values), but also areas where the data does not support sheet structure (low SPI values) or where no reliable conclusion can be drawn. Several areas with high SPI values were found to be consistent across subjects, across multiple data sets obtained with different scanners, resolutions, and degrees of diffusion weighting, and across various modeling techniques. Under the strong assumption that the diffusion MRI peaks reflect true axons, our results would therefore indicate that pathways do not form sheet structures at every crossing fiber region but instead at well-defined locations in the brain. With this framework, sheet structure location, extent, and orientation could potentially serve as new structural features of brain tissue. The proposed method can be extended to quantify sheet structure in directional data obtained with techniques other than diffusion MRI, which is essential for further validation.
Collapse
Affiliation(s)
- Chantal M W Tax
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands; Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.
| | - Tom Dela Haije
- Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Andrea Fuster
- Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carl-Fredrik Westin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Max A Viergever
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| | - Luc Florack
- Mathematics and Computer Science, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Alexander Leemans
- Department of Radiology, Image Sciences Institute, University Medical Center Utrecht, Utrecht, Netherlands
| |
Collapse
|