1
|
Jafarian A, Assem MK, Kocagoncu E, Lanskey JH, Fye H, Williams R, Quinn AJ, Pitt J, Raymont V, Lowe S, Singh KD, Woolrich M, Nobre AC, Henson RN, Friston KJ, Rowe JB. Neurophysiological Progression in Alzheimer's Disease: Insights From Dynamic Causal Modelling of Longitudinal Magnetoencephalography. Hum Brain Mapp 2025; 46:e70234. [PMID: 40396657 DOI: 10.1002/hbm.70234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
Neurodegenerative diseases, including Alzheimer's disease, are characterised by selective neuronal vulnerability with regional, laminar, cellular and neurotransmitter specificity. The regional losses of neurons and their synapses are associated with neurophysiological changes and cognitive decline. Hypotheses related to these mechanisms can be tested and compared by dynamic causal modelling (DCM) of human neuroimaging data, including magnetoencephalography (MEG). In this paper, we use DCM of cross-spectral densities to model changes between baseline and follow-up data in cortical regions of the default mode network, to characterise longitudinal changes in cortical microcircuits and their connectivity underlying resting-state MEG. Twenty-nine people with amyloid-positive mild cognitive impairment and Alzheimer's disease early dementia were studied at baseline and after an average interval of 16 months. To study longitudinal changes induced by Alzheimer's disease, we evaluate three complementary sets of DCM: (i) with regional specificity, of the contributions of neurons to measurements to accommodate regional variability in disease burden; (ii) with dual parameterisation of excitatory neurotransmission, motivated by preclinical and clinical evidence of distinct effects of disease on AMPA versus NMDA type glutamate receptors; and (iii) with constraints to test specific clinical hypothesis about the effects of disease-progression. Bayesian model selection at the group level confirmed evidence for regional specificity of the effects of Alzheimer's disease, with evidence for selective changes in NMDA neurotransmission, and progressive changes in connectivity within and between Precuneus and medial prefrontal cortex. Moreover, alterations in effective connectivity vary in accordance with individual differences in cognitive decline during follow-up. These applications of DCM enrich the mechanistic understanding of the pathophysiology of human Alzheimer's disease and inform experimental medicine studies of novel therapies. More generally, longitudinal DCM provides a potential platform for natural history and interventional studies of neurodegenerative and neuropsychiatric diseases, with selective neuronal vulnerability.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Melek Karadag Assem
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Juliette H Lanskey
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Haddy Fye
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Rebecca Williams
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| | - Andrew J Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology, University of Birmingham, Birmingham, UK
| | - Jemma Pitt
- Department of Psychiatry, University of Oxford, Oxford, UK
| | | | - Stephen Lowe
- Lilly Centre for Clinical Pharmacology, Singapore
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, Cardiff, UK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, UK
| | - Anna C Nobre
- Department of Psychiatry, University of Oxford, Oxford, UK
- Department of Psychology and Centre for Neurocognition and Behaviour, Wu Tsai Institute, Yale University, New Haven, Connecticut, USA
| | - Richard N Henson
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
| | - Karl J Friston
- Queen Square, Institute of Neurology, University College London, London, UK
| | - James B Rowe
- MRC Cognition and Brain Sciences, University of Cambridge, Cambridge, UK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation Trust, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
2
|
Jafarian A, Assem MK, Kocagoncu E, Lanskey JH, Williams R, Cheng Y, Quinn AJ, Pitt J, Raymont V, Lowe S, Singh KD, Woolrich M, Nobre AC, Henson RN, Friston KJ, Rowe JB. Reliability of dynamic causal modelling of resting-state magnetoencephalography. Hum Brain Mapp 2024; 45:e26782. [PMID: 38989630 PMCID: PMC11237883 DOI: 10.1002/hbm.26782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 06/20/2024] [Accepted: 06/30/2024] [Indexed: 07/12/2024] Open
Abstract
This study assesses the reliability of resting-state dynamic causal modelling (DCM) of magnetoencephalography (MEG) under conductance-based canonical microcircuit models, in terms of both posterior parameter estimates and model evidence. We use resting-state MEG data from two sessions, acquired 2 weeks apart, from a cohort with high between-subject variance arising from Alzheimer's disease. Our focus is not on the effect of disease, but on the reliability of the methods (as within-subject between-session agreement), which is crucial for future studies of disease progression and drug intervention. To assess the reliability of first-level DCMs, we compare model evidence associated with the covariance among subject-specific free energies (i.e., the 'quality' of the models) with versus without interclass correlations. We then used parametric empirical Bayes (PEB) to investigate the differences between the inferred DCM parameter probability distributions at the between subject level. Specifically, we examined the evidence for or against parameter differences (i) within-subject, within-session, and between-epochs; (ii) within-subject between-session; and (iii) within-site between-subjects, accommodating the conditional dependency among parameter estimates. We show that for data acquired close in time, and under similar circumstances, more than 95% of inferred DCM parameters are unlikely to differ, speaking to mutual predictability over sessions. Using PEB, we show a reciprocal relationship between a conventional definition of 'reliability' and the conditional dependency among inferred model parameters. Our analyses confirm the reliability and reproducibility of the conductance-based DCMs for resting-state neurophysiological data. In this respect, the implicit generative modelling is suitable for interventional and longitudinal studies of neurological and psychiatric disorders.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Melek Karadag Assem
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Ece Kocagoncu
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Juliette H. Lanskey
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | - Rebecca Williams
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| | | | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
- Department of PsychologyUniversity of BirminghamBirminghamUK
| | - Jemma Pitt
- Department of PsychiatryUniversity of OxfordOxfordUK
| | | | - Stephen Lowe
- Lilly Centre for Clinical PharmacologySingaporeSingapore
| | - Krish D. Singh
- Cardiff University Brain Research Imaging Centre, School of PsychologyCardiff UniversityCardiffUK
| | - Mark Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of PsychiatryUniversity of OxfordOxfordUK
| | - Anna C. Nobre
- Department of PsychiatryUniversity of OxfordOxfordUK
- Department of Psychology and Center for Neurocognition and Behavior, Wu Tsai InstituteYale UniversityNew HavenConnecticutUSA
| | - Richard N. Henson
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
| | - Karl J. Friston
- Wellcome Centre for Human NeuroimagingUniversity College LondonLondonUK
| | - James B. Rowe
- MRC Cognition and Brain Sciences UnitUniversity of CambridgeCambridgeUK
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Foundation TrustCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
3
|
Jafarian A, Hughes LE, Adams NE, Lanskey JH, Naessens M, Rouse MA, Murley AG, Friston KJ, Rowe JB. Neurochemistry-enriched dynamic causal models of magnetoencephalography, using magnetic resonance spectroscopy. Neuroimage 2023; 276:120193. [PMID: 37244323 DOI: 10.1016/j.neuroimage.2023.120193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/11/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023] Open
Abstract
We present a hierarchical empirical Bayesian framework for testing hypotheses about neurotransmitters' concertation as empirical prior for synaptic physiology using ultra-high field magnetic resonance spectroscopy (7T-MRS) and magnetoencephalography data (MEG). A first level dynamic causal modelling of cortical microcircuits is used to infer the connectivity parameters of a generative model of individuals' neurophysiological observations. At the second level, individuals' 7T-MRS estimates of regional neurotransmitter concentration supply empirical priors on synaptic connectivity. We compare the group-wise evidence for alternative empirical priors, defined by monotonic functions of spectroscopic estimates, on subsets of synaptic connections. For efficiency and reproducibility, we used Bayesian model reduction (BMR), parametric empirical Bayes and variational Bayesian inversion. In particular, we used Bayesian model reduction to compare alternative model evidence of how spectroscopic neurotransmitter measures inform estimates of synaptic connectivity. This identifies the subset of synaptic connections that are influenced by individual differences in neurotransmitter levels, as measured by 7T-MRS. We demonstrate the method using resting-state MEG (i.e., task-free recording) and 7T-MRS data from healthy adults. Our results confirm the hypotheses that GABA concentration influences local recurrent inhibitory intrinsic connectivity in deep and superficial cortical layers, while glutamate influences the excitatory connections between superficial and deep layers and connections from superficial to inhibitory interneurons. Using within-subject split-sampling of the MEG dataset (i.e., validation by means of a held-out dataset), we show that model comparison for hypothesis testing can be highly reliable. The method is suitable for applications with magnetoencephalography or electroencephalography, and is well-suited to reveal the mechanisms of neurological and psychiatric disorders, including responses to psychopharmacological interventions.
Collapse
Affiliation(s)
- Amirhossein Jafarian
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Laura E Hughes
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Natalie E Adams
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| | - Juliette H Lanskey
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Michelle Naessens
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Matthew A Rouse
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Alexander G Murley
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom.
| | - Karl J Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, United Kingdom.
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, United Kingdom; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| |
Collapse
|
4
|
Koutsouleris N, Hauser TU, Skvortsova V, De Choudhury M. From promise to practice: towards the realisation of AI-informed mental health care. Lancet Digit Health 2022; 4:e829-e840. [PMID: 36229346 DOI: 10.1016/s2589-7500(22)00153-4] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/14/2022] [Accepted: 07/27/2022] [Indexed: 11/07/2022]
Abstract
In this Series paper, we explore the promises and challenges of artificial intelligence (AI)-based precision medicine tools in mental health care from clinical, ethical, and regulatory perspectives. The real-world implementation of these tools is increasingly considered the prime solution for key issues in mental health, such as delayed, inaccurate, and inefficient care delivery. Similarly, machine-learning-based empirical strategies are becoming commonplace in psychiatric research because of their potential to adequately deconstruct the biopsychosocial complexity of mental health disorders, and hence to improve nosology of prognostic and preventive paradigms. However, the implementation steps needed to translate these promises into practice are currently hampered by multiple interacting challenges. These obstructions range from the current technology-distant state of clinical practice, over the lack of valid real-world databases required to feed data-intensive AI algorithms, to model development and validation considerations being disconnected from the core principles of clinical utility and ethical acceptability. In this Series paper, we provide recommendations on how these challenges could be addressed from an interdisciplinary perspective to pave the way towards a framework for mental health care, leveraging the combined strengths of human intelligence and AI.
Collapse
Affiliation(s)
- Nikolaos Koutsouleris
- Section for Precision Psychiatry, Department of Psychiatry and Psychotherapy, Ludwig Maximilian University, Munich, Germany; Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK; Max Planck Institute of Psychiatry, Munich, Germany.
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Vasilisa Skvortsova
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK; Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | - Munmun De Choudhury
- School of Interactive Computing, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
5
|
Karvelis P, Charlton CE, Allohverdi SG, Bedford P, Hauke DJ, Diaconescu AO. Computational approaches to treatment response prediction in major depression using brain activity and behavioral data: A systematic review. Netw Neurosci 2022; 6:1066-1103. [PMID: 38800454 PMCID: PMC11117101 DOI: 10.1162/netn_a_00233] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 01/14/2022] [Indexed: 05/29/2024] Open
Abstract
Major depressive disorder is a heterogeneous diagnostic category with multiple available treatments. With the goal of optimizing treatment selection, researchers are developing computational models that attempt to predict treatment response based on various pretreatment measures. In this paper, we review studies that use brain activity data to predict treatment response. Our aim is to highlight and clarify important methodological differences between various studies that relate to the incorporation of domain knowledge, specifically within two approaches delineated as data-driven and theory-driven. We argue that theory-driven generative modeling, which explicitly models information processing in the brain and thus can capture disease mechanisms, is a promising emerging approach that is only beginning to be utilized in treatment response prediction. The predictors extracted via such models could improve interpretability, which is critical for clinical decision-making. We also identify several methodological limitations across the reviewed studies and provide suggestions for addressing them. Namely, we consider problems with dichotomizing treatment outcomes, the importance of investigating more than one treatment in a given study for differential treatment response predictions, the need for a patient-centered approach for defining treatment outcomes, and finally, the use of internal and external validation methods for improving model generalizability.
Collapse
Affiliation(s)
- Povilas Karvelis
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Colleen E. Charlton
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Shona G. Allohverdi
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Peter Bedford
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J. Hauke
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
- Department of Mathematics and Computer Science, University of Basel, Basel, Switzerland
| | - Andreea O. Diaconescu
- Krembil Centre for Neuroinformatics, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- University of Toronto, Department of Psychiatry, Toronto, ON, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, ON, Canada
- Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Schöbi D, Do CT, Frässle S, Tittgemeyer M, Heinzle J, Stephan KE. Technical note: A fast and robust integrator of delay differential equations in DCM for electrophysiological data. Neuroimage 2021; 244:118567. [PMID: 34530135 DOI: 10.1016/j.neuroimage.2021.118567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 07/05/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022] Open
Abstract
Dynamic causal models (DCMs) of electrophysiological data allow, in principle, for inference on hidden, bulk synaptic function in neural circuits. The directed influences between the neuronal elements of modeled circuits are subject to delays due to the finite transmission speed of axonal connections. Ordinary differential equations are therefore not adequate to capture the ensuing circuit dynamics, and delay differential equations (DDEs) are required instead. Previous work has illustrated that the integration of DDEs in DCMs benefits from sophisticated integration schemes in order to ensure rigorous parameter estimation and correct model identification. However, integration schemes that have been proposed for DCMs either emphasize speed (at the possible expense of accuracy) or robustness (but with computational costs that are problematic in practice). In this technical note, we propose an alternative integration scheme that overcomes these shortcomings and offers high computational efficiency while correctly preserving the nature of delayed effects. This integration scheme is available as open-source code in the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) toolbox and can be easily integrated into existing software (SPM) for the analysis of DCMs for electrophysiological data. While this paper focuses on its application to the convolution-based formalism of DCMs, the new integration scheme can be equally applied to more advanced formulations of DCMs (e.g. conductance based models). Our method provides a new option for electrophysiological DCMs that offers the speed required for scientific projects, but also the accuracy required for rigorous translational applications, e.g. in computational psychiatry.
Collapse
Affiliation(s)
- Dario Schöbi
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Cao-Tri Do
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Stefan Frässle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Gleuler Strasse 50, Cologne 50931, Germany; Cluster of Excellence in Cellular Stress and Aging associated Disease (CECAD), Cologne 50931, Germany
| | - Jakob Heinzle
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland.
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & Swiss Institute of Technology (ETH Zurich), Wilfriedstrasse 6, Zurich 8032, Switzerland; Max Planck Institute for Metabolism Research, Gleuler Strasse 50, Cologne 50931, Germany
| |
Collapse
|
7
|
Pereira I, Frässle S, Heinzle J, Schöbi D, Do CT, Gruber M, Stephan KE. Conductance-based dynamic causal modeling: A mathematical review of its application to cross-power spectral densities. Neuroimage 2021; 245:118662. [PMID: 34687862 DOI: 10.1016/j.neuroimage.2021.118662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 11/19/2022] Open
Abstract
Dynamic Causal Modeling (DCM) is a Bayesian framework for inferring on hidden (latent) neuronal states, based on measurements of brain activity. Since its introduction in 2003 for functional magnetic resonance imaging data, DCM has been extended to electrophysiological data, and several variants have been developed. Their biophysically motivated formulations make these models promising candidates for providing a mechanistic understanding of human brain dynamics, both in health and disease. However, due to their complexity and reliance on concepts from several fields, fully understanding the mathematical and conceptual basis behind certain variants of DCM can be challenging. At the same time, a solid theoretical knowledge of the models is crucial to avoid pitfalls in the application of these models and interpretation of their results. In this paper, we focus on one of the most advanced formulations of DCM, i.e. conductance-based DCM for cross-spectral densities, whose components are described across multiple technical papers. The aim of the present article is to provide an accessible exposition of the mathematical background, together with an illustration of the model's behavior. To this end, we include step-by-step derivations of the model equations, point to important aspects in the software implementation of those models, and use simulations to provide an intuitive understanding of the type of responses that can be generated and the role that specific parameters play in the model. Furthermore, all code utilized for our simulations is made publicly available alongside the manuscript to allow readers an easy hands-on experience with conductance-based DCM.
Collapse
Affiliation(s)
- Inês Pereira
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland.
| | - Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Cao Tri Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Moritz Gruber
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Wilfriedstrasse 6, Zurich 8032, Switzerland; Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
8
|
Frässle S, Aponte EA, Bollmann S, Brodersen KH, Do CT, Harrison OK, Harrison SJ, Heinzle J, Iglesias S, Kasper L, Lomakina EI, Mathys C, Müller-Schrader M, Pereira I, Petzschner FH, Raman S, Schöbi D, Toussaint B, Weber LA, Yao Y, Stephan KE. TAPAS: An Open-Source Software Package for Translational Neuromodeling and Computational Psychiatry. Front Psychiatry 2021; 12:680811. [PMID: 34149484 PMCID: PMC8206497 DOI: 10.3389/fpsyt.2021.680811] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/10/2021] [Indexed: 12/26/2022] Open
Abstract
Psychiatry faces fundamental challenges with regard to mechanistically guided differential diagnosis, as well as prediction of clinical trajectories and treatment response of individual patients. This has motivated the genesis of two closely intertwined fields: (i) Translational Neuromodeling (TN), which develops "computational assays" for inferring patient-specific disease processes from neuroimaging, electrophysiological, and behavioral data; and (ii) Computational Psychiatry (CP), with the goal of incorporating computational assays into clinical decision making in everyday practice. In order to serve as objective and reliable tools for clinical routine, computational assays require end-to-end pipelines from raw data (input) to clinically useful information (output). While these are yet to be established in clinical practice, individual components of this general end-to-end pipeline are being developed and made openly available for community use. In this paper, we present the Translational Algorithms for Psychiatry-Advancing Science (TAPAS) software package, an open-source collection of building blocks for computational assays in psychiatry. Collectively, the tools in TAPAS presently cover several important aspects of the desired end-to-end pipeline, including: (i) tailored experimental designs and optimization of measurement strategy prior to data acquisition, (ii) quality control during data acquisition, and (iii) artifact correction, statistical inference, and clinical application after data acquisition. Here, we review the different tools within TAPAS and illustrate how these may help provide a deeper understanding of neural and cognitive mechanisms of disease, with the ultimate goal of establishing automatized pipelines for predictions about individual patients. We hope that the openly available tools in TAPAS will contribute to the further development of TN/CP and facilitate the translation of advances in computational neuroscience into clinically relevant computational assays.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Eduardo A. Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Saskia Bollmann
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland
- Centre for Advanced Imaging, The University of Queensland, Brisbane, QLD, Australia
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
- Department of Radiology, Harvard Medical School, Charlestown, MA, United States
| | - Kay H. Brodersen
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Cao T. Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Olivia K. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | - Samuel J. Harrison
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lars Kasper
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Techna Institute, University Health Network, Toronto, ON, Canada
| | - Ekaterina I. Lomakina
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Department of Computer Science, ETH Zurich, Zurich, Switzerland
| | - Christoph Mathys
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
- Interacting Minds Center, Aarhus University, Aarhus, Denmark
| | - Matthias Müller-Schrader
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Inês Pereira
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Frederike H. Petzschner
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sudhir Raman
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Birte Toussaint
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Lilian A. Weber
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Yu Yao
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Klaas E. Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
9
|
Adams NE, Hughes LE, Rouse MA, Phillips HN, Shaw AD, Murley AG, Cope TE, Bevan-Jones WR, Passamonti L, Street D, Holland N, Nesbitt D, Friston K, Rowe JB. GABAergic cortical network physiology in frontotemporal lobar degeneration. Brain 2021; 144:2135-2145. [PMID: 33710299 PMCID: PMC8370432 DOI: 10.1093/brain/awab097] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/23/2022] Open
Abstract
The clinical syndromes caused by frontotemporal lobar degeneration are heterogeneous, including the behavioural variant frontotemporal dementia (bvFTD) and progressive supranuclear palsy. Although pathologically distinct, they share many behavioural, cognitive and physiological features, which may in part arise from common deficits of major neurotransmitters such as γ-aminobutyric acid (GABA). Here, we quantify the GABAergic impairment and its restoration with dynamic causal modelling of a double-blind placebo-controlled crossover pharmaco-magnetoencephalography study. We analysed 17 patients with bvFTD, 15 patients with progressive supranuclear palsy, and 20 healthy age- and gender-matched controls. In addition to neuropsychological assessment and structural MRI, participants undertook two magnetoencephalography sessions using a roving auditory oddball paradigm: once on placebo and once on 10 mg of the oral GABA reuptake inhibitor tiagabine. A subgroup underwent ultrahigh-field magnetic resonance spectroscopy measurement of GABA concentration, which was reduced among patients. We identified deficits in frontotemporal processing using conductance-based biophysical models of local and global neuronal networks. The clinical relevance of this physiological deficit is indicated by the correlation between top-down connectivity from frontal to temporal cortex and clinical measures of cognitive and behavioural change. A critical validation of the biophysical modelling approach was evidence from parametric empirical Bayes analysis that GABA levels in patients, measured by spectroscopy, were related to posterior estimates of patients’ GABAergic synaptic connectivity. Further evidence for the role of GABA in frontotemporal lobar degeneration came from confirmation that the effects of tiagabine on local circuits depended not only on participant group, but also on individual baseline GABA levels. Specifically, the phasic inhibition of deep cortico-cortical pyramidal neurons following tiagabine, but not placebo, was a function of GABA concentration. The study provides proof-of-concept for the potential of dynamic causal modelling to elucidate mechanisms of human neurodegenerative disease, and explains the variation in response to candidate therapies among patients. The laminar- and neurotransmitter-specific features of the modelling framework, can be used to study other treatment approaches and disorders. In the context of frontotemporal lobar degeneration, we suggest that neurophysiological restoration in selected patients, by targeting neurotransmitter deficits, could be used to bridge between clinical and preclinical models of disease, and inform the personalized selection of drugs and stratification of patients for future clinical trials.
Collapse
Affiliation(s)
- Natalie E Adams
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Laura E Hughes
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK
| | - Matthew A Rouse
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Holly N Phillips
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Alexander G Murley
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Thomas E Cope
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - W Richard Bevan-Jones
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Duncan Street
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Negin Holland
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - David Nesbitt
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, London WC1N 3AR, UK
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge Biomedical Campus, University of Cambridge, Cambridge CB2 0QQ, UK.,MMRC Cognition and Brain Sciences Unit, Cambridge CB2 7EF, UK.,Cambridge University Hospitals, Cambridge, CB2 0QQ, UK
| |
Collapse
|
10
|
Shaw AD, Hughes LE, Moran R, Coyle-Gilchrist I, Rittman T, Rowe JB. In Vivo Assay of Cortical Microcircuitry in Frontotemporal Dementia: A Platform for Experimental Medicine Studies. Cereb Cortex 2021; 31:1837-1847. [PMID: 31216360 PMCID: PMC7869085 DOI: 10.1093/cercor/bhz024] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/07/2019] [Indexed: 11/13/2022] Open
Abstract
The analysis of neural circuits can provide crucial insights into the mechanisms of neurodegeneration and dementias, and offer potential quantitative biological tools to assess novel therapeutics. Here we use behavioral variant frontotemporal dementia (bvFTD) as a model disease. We demonstrate that inversion of canonical microcircuit models to noninvasive human magnetoencephalography, using dynamic causal modeling, can identify the regional- and laminar-specificity of bvFTD pathophysiology, and their parameters can accurately differentiate patients from matched healthy controls. Using such models, we show that changes in local coupling in frontotemporal dementia underlie the failure to adequately establish sensory predictions, leading to altered prediction error responses in a cortical information-processing hierarchy. Using machine learning, this model-based approach provided greater case-control classification accuracy than conventional evoked cortical responses. We suggest that this approach provides an in vivo platform for testing mechanistic hypotheses about disease progression and pharmacotherapeutics.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Laura E Hughes
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council, Cognition and Brain, Sciences Unit, Cambridge, UK
| | - Rosalyn Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, UK
| | - Ian Coyle-Gilchrist
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Tim Rittman
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Medical Research Council, Cognition and Brain, Sciences Unit, Cambridge, UK
| |
Collapse
|
11
|
Shaw AD, Muthukumaraswamy SD, Saxena N, Sumner RL, Adams NE, Moran RJ, Singh KD. Generative modelling of the thalamo-cortical circuit mechanisms underlying the neurophysiological effects of ketamine. Neuroimage 2020; 221:117189. [PMID: 32711064 PMCID: PMC7762824 DOI: 10.1016/j.neuroimage.2020.117189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/15/2020] [Accepted: 07/19/2020] [Indexed: 11/25/2022] Open
Abstract
Cortical recordings of task-induced oscillations following subanaesthetic ketamine administration demonstrate alterations in amplitude, including increases at high-frequencies (gamma) and reductions at low frequencies (theta, alpha). To investigate the population-level interactions underlying these changes, we implemented a thalamo-cortical model (TCM) capable of recapitulating broadband spectral responses. Compared with an existing cortex-only 4-population model, Bayesian Model Selection preferred the TCM. The model was able to accurately and significantly recapitulate ketamine-induced reductions in alpha amplitude and increases in gamma amplitude. Parameter analysis revealed no change in receptor time-constants but significant increases in select synaptic connectivity with ketamine. Significantly increased connections included both AMPA and NMDA mediated connections from layer 2/3 superficial pyramidal cells to inhibitory interneurons and both GABAA and NMDA mediated within-population gain control of layer 5 pyramidal cells. These results support the use of extended generative models for explaining oscillatory data and provide in silico support for ketamine's ability to alter local coupling mediated by NMDA, AMPA and GABA-A.
Collapse
Affiliation(s)
- Alexander D Shaw
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK.
| | - Suresh D Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Neeraj Saxena
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK; Department of Anaesthetics, Intensive Care and Pain Medicine, Cwm Taf Morgannwg University Health Board, Llantrisant CF72 8XR, UK
| | - Rachael L Sumner
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Natalie E Adams
- Department of Clinical Neurosciences, University of Cambridge, Cambridge CB2 0SZ, UK
| | - Rosalyn J Moran
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London SE5 8AF, UK
| | - Krish D Singh
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Maindy Road, Cardiff CF24 4HQ, UK
| |
Collapse
|
12
|
Pinotsis DA, Buschman TJ, Miller EK. Working Memory Load Modulates Neuronal Coupling. Cereb Cortex 2020; 29:1670-1681. [PMID: 29608671 DOI: 10.1093/cercor/bhy065] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Revised: 02/22/2018] [Accepted: 02/28/2018] [Indexed: 12/27/2022] Open
Abstract
There is a severe limitation in the number of items that can be held in working memory. However, the neurophysiological limits remain unknown. We asked whether the capacity limit might be explained by differences in neuronal coupling. We developed a theoretical model based on Predictive Coding and used it to analyze Cross Spectral Density data from the prefrontal cortex (PFC), frontal eye fields (FEF), and lateral intraparietal area (LIP). Monkeys performed a change detection task. The number of objects that had to be remembered (memory load) was varied (1-3 objects in the same visual hemifield). Changes in memory load changed the connectivity in the PFC-FEF-LIP network. Feedback (top-down) coupling broke down when the number of objects exceeded cognitive capacity. Thus, impaired behavioral performance coincided with a break-down of Prediction signals. This provides new insights into the neuronal underpinnings of cognitive capacity and how coupling in a distributed working memory network is affected by memory load.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,The Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| | - Timothy J Buschman
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.,Princeton Neuroscience Institute and Department of Psychology, Princeton University, Princeton, NJ, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
13
|
GABA-ergic Dynamics in Human Frontotemporal Networks Confirmed by Pharmaco-Magnetoencephalography. J Neurosci 2020; 40:1640-1649. [PMID: 31915255 DOI: 10.1523/jneurosci.1689-19.2019] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 11/25/2019] [Accepted: 12/25/2019] [Indexed: 12/15/2022] Open
Abstract
To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here we assess dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults. This paradigm induces robust perturbations that permeate frontotemporal networks, including an evoked 'mismatch negativity' response and transiently induced oscillations. Here, we probe GABAergic influences in the networks using double-blind placebo-controlled randomized-crossover administration of the GABA reuptake inhibitor, tiagabine (oral, 10 mg) in healthy older adults. We demonstrate the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, we identify the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations. We found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials. The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.SIGNIFICANCE STATEMENT Understanding human brain function and developing new treatments require good models of brain function. We tested a detailed generative model of cortical microcircuits that accurately reproduced human magnetoencephalography, to quantify network dynamics and connectivity in frontotemporal cortex. This approach identified the effect of a test drug (GABA-reuptake inhibitor, tiagabine) on neuronal function (GABA-ergic dynamics), opening the way for psychopharmacological studies in health and disease with the mechanistic precision afforded by generative models of the brain.
Collapse
|
14
|
Manjaly ZM, Harrison NA, Critchley HD, Do CT, Stefanics G, Wenderoth N, Lutterotti A, Müller A, Stephan KE. Pathophysiological and cognitive mechanisms of fatigue in multiple sclerosis. J Neurol Neurosurg Psychiatry 2019; 90:642-651. [PMID: 30683707 PMCID: PMC6581095 DOI: 10.1136/jnnp-2018-320050] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 02/07/2023]
Abstract
Fatigue is one of the most common symptoms in multiple sclerosis (MS), with a major impact on patients' quality of life. Currently, treatment proceeds by trial and error with limited success, probably due to the presence of multiple different underlying mechanisms. Recent neuroscientific advances offer the potential to develop tools for differentiating these mechanisms in individual patients and ultimately provide a principled basis for treatment selection. However, development of these tools for differential diagnosis will require guidance by pathophysiological and cognitive theories that propose mechanisms which can be assessed in individual patients. This article provides an overview of contemporary pathophysiological theories of fatigue in MS and discusses how the mechanisms they propose may become measurable with emerging technologies and thus lay a foundation for future personalised treatments.
Collapse
Affiliation(s)
- Zina-Mary Manjaly
- Department of Neurology, Schulthess Clinic, Zürich, Switzerland .,Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Neil A Harrison
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Hugo D Critchley
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK.,Sussex Partnership NHS Foundation Trust, Brighton, UK
| | - Cao Tri Do
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Gabor Stefanics
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Laboratory for Social and Neural Systems Research (SNS), Department of Economics, University of Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Department of Health Sciences and Technology, ETH Zurich, Zürich, Switzerland
| | - Andreas Lutterotti
- Department of Neurology, University Hospital Zurich, Zurich, Switzerland
| | - Alfred Müller
- Department of Neurology, Schulthess Clinic, Zürich, Switzerland
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland.,Wellcome Centre for Human Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
15
|
Symmonds M, Moran CH, Leite MI, Buckley C, Irani SR, Stephan KE, Friston KJ, Moran RJ. Ion channels in EEG: isolating channel dysfunction in NMDA receptor antibody encephalitis. Brain 2018; 141:1691-1702. [PMID: 29718139 PMCID: PMC6207885 DOI: 10.1093/brain/awy107] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 12/15/2022] Open
Abstract
See Roberts and Breakspear (doi:10.1093/brain/awy136) for a scientific commentary on this article.Neurological and psychiatric practice frequently lack diagnostic probes that can assess mechanisms of neuronal communication non-invasively in humans. In N-methyl-d-aspartate (NMDA) receptor antibody encephalitis, functional molecular assays are particularly important given the presence of NMDA antibodies in healthy populations, the multifarious symptomology and the lack of radiological signs. Recent advances in biophysical modelling techniques suggest that inferring cellular-level properties of neural circuits from macroscopic measures of brain activity is possible. Here, we estimated receptor function from EEG in patients with NMDA receptor antibody encephalitis (n = 29) as well as from encephalopathic and neurological patient controls (n = 36). We show that the autoimmune patients exhibit distinct fronto-parietal network changes from which ion channel estimates can be obtained using a microcircuit model. Specifically, a dynamic causal model of EEG data applied to spontaneous brain responses identifies a selective deficit in signalling at NMDA receptors in patients with NMDA receptor antibody encephalitis but not at other ionotropic receptors. Moreover, though these changes are observed across brain regions, these effects predominate at the NMDA receptors of excitatory neurons rather than at inhibitory interneurons. Given that EEG is a ubiquitously available clinical method, our findings suggest a unique re-purposing of EEG data as an assay of brain network dysfunction at the molecular level.
Collapse
Affiliation(s)
- Mkael Symmonds
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
- Department of Clinical Neurophysiology, John Radcliffe Hospital, Oxford, UK
- Epilepsy Research Group, Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford, Oxford, UK
| | - Catherine H Moran
- Department of Neurological Surgery, Beaumont Hospital, Dublin, Ireland
| | - M Isabel Leite
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
- Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford, Oxford, UK
| | - Camilla Buckley
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
| | - Sarosh R Irani
- Division of Clinical Neurology, John Radcliffe Hospital, Oxford, UK
- Autoimmune Neurology Group, Nuffield Department of Clinical Neurosciences, Oxford University, John Radcliffe Hospital, Oxford, Oxford, UK
| | - Klaas Enno Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, 6 Wilfriedstrasse, Zurich, Switzerland
| | - Karl J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, 12 Queen Square, London, UK
| | - Rosalyn J Moran
- Department of Engineering Mathematics, Merchant Venturers School of Engineering, University of Bristol, 75 Woodland Rd, Bristol, UK
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
16
|
Murley AG, Rowe JB. Neurotransmitter deficits from frontotemporal lobar degeneration. Brain 2018; 141:1263-1285. [PMID: 29373632 PMCID: PMC5917782 DOI: 10.1093/brain/awx327] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 09/05/2017] [Accepted: 10/03/2017] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal lobar degeneration causes a spectrum of complex degenerative disorders including frontotemporal dementia, progressive supranuclear palsy and corticobasal syndrome, each of which is associated with changes in the principal neurotransmitter systems. We review the evidence for these neurochemical changes and propose that they contribute to symptomatology of frontotemporal lobar degeneration, over and above neuronal loss and atrophy. Despite the development of disease-modifying therapies, aiming to slow neuropathological progression, it remains important to advance symptomatic treatments to reduce the disease burden and improve patients' and carers' quality of life. We propose that targeting the selective deficiencies in neurotransmitter systems, including dopamine, noradrenaline, serotonin, acetylcholine, glutamate and gamma-aminobutyric acid is an important strategy towards this goal. We summarize the current evidence-base for pharmacological treatments and suggest strategies to improve the development of new, effective pharmacological treatments.
Collapse
Affiliation(s)
- Alexander G Murley
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, Herchel Smith Building, Robinson Way, Cambridge, CB2 0SZ, UK
- MRC Cognition and Brain Sciences Unit, University of Cambridge, 15 Chaucer Road, Cambridge, CB2 7EF, UK
- Behavioural and Clinical Neurosciences Institute, University of Cambridge, Sir William Hardy Building, Downing Street, Cambridge, CB2 3EB, UK
| |
Collapse
|
17
|
Frässle S, Yao Y, Schöbi D, Aponte EA, Heinzle J, Stephan KE. Generative models for clinical applications in computational psychiatry. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2018; 9:e1460. [PMID: 29369526 DOI: 10.1002/wcs.1460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/19/2017] [Accepted: 11/06/2017] [Indexed: 12/18/2022]
Abstract
Despite the success of modern neuroimaging techniques in furthering our understanding of cognitive and pathophysiological processes, translation of these advances into clinically relevant tools has been virtually absent until now. Neuromodeling represents a powerful framework for overcoming this translational deadlock, and the development of computational models to solve clinical problems has become a major scientific goal over the last decade, as reflected by the emergence of clinically oriented neuromodeling fields like Computational Psychiatry, Computational Neurology, and Computational Psychosomatics. Generative models of brain physiology and connectivity in the human brain play a key role in this endeavor, striving for computational assays that can be applied to neuroimaging data from individual patients for differential diagnosis and treatment prediction. In this review, we focus on dynamic causal modeling (DCM) and its use for Computational Psychiatry. DCM is a widely used generative modeling framework for functional magnetic resonance imaging (fMRI) and magneto-/electroencephalography (M/EEG) data. This article reviews the basic concepts of DCM, revisits examples where it has proven valuable for addressing clinically relevant questions, and critically discusses methodological challenges and recent methodological advances. We conclude this review with a more general discussion of the promises and pitfalls of generative models in Computational Psychiatry and highlight the path that lies ahead of us. This article is categorized under: Neuroscience > Computation Neuroscience > Clinical Neuroscience.
Collapse
Affiliation(s)
- Stefan Frässle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Yu Yao
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Dario Schöbi
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Eduardo A Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Jakob Heinzle
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK
| |
Collapse
|
18
|
Shaw AD, Moran RJ, Muthukumaraswamy SD, Brealy J, Linden DE, Friston KJ, Singh KD. Neurophysiologically-informed markers of individual variability and pharmacological manipulation of human cortical gamma. Neuroimage 2017; 161:19-31. [PMID: 28807873 PMCID: PMC5692925 DOI: 10.1016/j.neuroimage.2017.08.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/13/2022] Open
Abstract
The ability to quantify synaptic function at the level of cortical microcircuits from non-invasive data would be enormously useful in the study of neuronal processing in humans and the pathophysiology that attends many neuropsychiatric disorders. Here, we provide proof of principle that one can estimate inter-and intra-laminar interactions among specific neuronal populations using induced gamma responses in the visual cortex of human subjects - using dynamic causal modelling based upon the canonical microcircuit (CMC; a simplistic model of a cortical column). Using variability in induced (spectral) responses over a large cohort of normal subjects, we find that the predominant determinants of gamma responses rest on recurrent and intrinsic connections between superficial pyramidal cells and inhibitory interneurons. Furthermore, variations in beta responses were mediated by inter-subject differences in the intrinsic connections between deep pyramidal cells and inhibitory interneurons. Interestingly, we also show that increasing the self-inhibition of superficial pyramidal cells suppresses the amplitude of gamma activity, while increasing its peak frequency. This systematic and nonlinear relationship was only disclosed by modelling the causes of induced responses. Crucially, we were able to validate this form of neurophysiological phenotyping by showing a selective effect of the GABA re-uptake inhibitor tiagabine on the rate constants of inhibitory interneurons. Remarkably, we were able to recover the pharmacodynamics of this effect over the course of several hours on a per subject basis. These findings speak to the possibility of measuring population specific synaptic function - and its response to pharmacological intervention - to provide subject-specific biomarkers of mesoscopic neuronal processes using non-invasive data. Finally, our results demonstrate that, using the CMC as a proxy, the synaptic mechanisms that underlie the gain control of neuronal message passing within and between different levels of cortical hierarchies may now be amenable to quantitative study using non-invasive (MEG) procedures.
Collapse
Affiliation(s)
- A D Shaw
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, UK
| | - R J Moran
- Department of Engineering Mathematics, Merchant Venturers School of Engineering, University of Bristol, UK
| | - S D Muthukumaraswamy
- School of Pharmacy, The University of Auckland, Auckland, New Zealand; School of Psychology, The University of Auckland, Auckland, New Zealand
| | - J Brealy
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, UK
| | - D E Linden
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, UK
| | - K J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, UK
| | - K D Singh
- Cardiff University Brain Research Imaging Centre, School of Psychology, Cardiff University, UK.
| |
Collapse
|
19
|
Great Expectations: Is there Evidence for Predictive Coding in Auditory Cortex? Neuroscience 2017; 389:54-73. [PMID: 28782642 DOI: 10.1016/j.neuroscience.2017.07.061] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/26/2017] [Indexed: 11/21/2022]
Abstract
Predictive coding is possibly one of the most influential, comprehensive, and controversial theories of neural function. While proponents praise its explanatory potential, critics object that key tenets of the theory are untested or even untestable. The present article critically examines existing evidence for predictive coding in the auditory modality. Specifically, we identify five key assumptions of the theory and evaluate each in the light of animal, human and modeling studies of auditory pattern processing. For the first two assumptions - that neural responses are shaped by expectations and that these expectations are hierarchically organized - animal and human studies provide compelling evidence. The anticipatory, predictive nature of these expectations also enjoys empirical support, especially from studies on unexpected stimulus omission. However, for the existence of separate error and prediction neurons, a key assumption of the theory, evidence is lacking. More work exists on the proposed oscillatory signatures of predictive coding, and on the relation between attention and precision. However, results on these latter two assumptions are mixed or contradictory. Looking to the future, more collaboration between human and animal studies, aided by model-based analyses will be needed to test specific assumptions and implementations of predictive coding - and, as such, help determine whether this popular grand theory can fulfill its expectations.
Collapse
|
20
|
Inference in the age of big data: Future perspectives on neuroscience. Neuroimage 2017; 155:549-564. [PMID: 28456584 DOI: 10.1016/j.neuroimage.2017.04.061] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 11/23/2022] Open
Abstract
Neuroscience is undergoing faster changes than ever before. Over 100 years our field qualitatively described and invasively manipulated single or few organisms to gain anatomical, physiological, and pharmacological insights. In the last 10 years neuroscience spawned quantitative datasets of unprecedented breadth (e.g., microanatomy, synaptic connections, and optogenetic brain-behavior assays) and size (e.g., cognition, brain imaging, and genetics). While growing data availability and information granularity have been amply discussed, we direct attention to a less explored question: How will the unprecedented data richness shape data analysis practices? Statistical reasoning is becoming more important to distill neurobiological knowledge from healthy and pathological brain measurements. We argue that large-scale data analysis will use more statistical models that are non-parametric, generative, and mixing frequentist and Bayesian aspects, while supplementing classical hypothesis testing with out-of-sample predictions.
Collapse
|
21
|
Stephan KE, Siemerkus J, Bischof M, Haker H. Hat Computational Psychiatry Relevanz für die klinische Praxis der Psychiatrie? ACTA ACUST UNITED AC 2017. [DOI: 10.1024/1661-4747/a000296] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Zusammenfassung. Computational Psychiatry (CP) ist ein junges Wissenschaftsfeld an der Schnittstelle zwischen der klinischen Psychiatrie und den mathematischen Neurowissenschaften, das sich in den letzten Jahren zu entfalten begonnen hat. Dieser Artikel widmet sich den möglichen klinischen Implikationen dieser jungen Disziplin. Wir (i) beginnen mit einer kurzen Übersicht über die Geschichte, Ziele und Inhalte der CP, (ii) beschreiben die zentralen Themen, Modelle und Theorien der CP, (iii) untersuchen die Relevanz und das Potenzial modell-basierter diagnostischer Tests (computational assays) für die Lösung zentraler Probleme in der klinischen Psychiatrie, und (iv) stellen zukünftige Herausforderungen und Chancen der CP dar.
Collapse
Affiliation(s)
- Klaas Enno Stephan
- Translational Neuromodeling Unit (TNU), Institut für Biomedizinische Technik, Universität Zürich & ETH Zürich, Schweiz
| | - Jakob Siemerkus
- Translational Neuromodeling Unit (TNU), Institut für Biomedizinische Technik, Universität Zürich & ETH Zürich, Schweiz
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Psychiatrische Universitätsklinik Zürich, Schweiz
| | - Martin Bischof
- Translational Neuromodeling Unit (TNU), Institut für Biomedizinische Technik, Universität Zürich & ETH Zürich, Schweiz
- Klinik für Psychiatrie, Psychotherapie und Psychosomatik, Psychiatrische Universitätsklinik Zürich, Schweiz
| | - Helene Haker
- Translational Neuromodeling Unit (TNU), Institut für Biomedizinische Technik, Universität Zürich & ETH Zürich, Schweiz
| |
Collapse
|
22
|
Stephan KE, Manjaly ZM, Mathys CD, Weber LAE, Paliwal S, Gard T, Tittgemeyer M, Fleming SM, Haker H, Seth AK, Petzschner FH. Allostatic Self-efficacy: A Metacognitive Theory of Dyshomeostasis-Induced Fatigue and Depression. Front Hum Neurosci 2016; 10:550. [PMID: 27895566 PMCID: PMC5108808 DOI: 10.3389/fnhum.2016.00550] [Citation(s) in RCA: 247] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 10/14/2016] [Indexed: 01/13/2023] Open
Abstract
This paper outlines a hierarchical Bayesian framework for interoception, homeostatic/allostatic control, and meta-cognition that connects fatigue and depression to the experience of chronic dyshomeostasis. Specifically, viewing interoception as the inversion of a generative model of viscerosensory inputs allows for a formal definition of dyshomeostasis (as chronically enhanced surprise about bodily signals, or, equivalently, low evidence for the brain's model of bodily states) and allostasis (as a change in prior beliefs or predictions which define setpoints for homeostatic reflex arcs). Critically, we propose that the performance of interoceptive-allostatic circuitry is monitored by a metacognitive layer that updates beliefs about the brain's capacity to successfully regulate bodily states (allostatic self-efficacy). In this framework, fatigue and depression can be understood as sequential responses to the interoceptive experience of dyshomeostasis and the ensuing metacognitive diagnosis of low allostatic self-efficacy. While fatigue might represent an early response with adaptive value (cf. sickness behavior), the experience of chronic dyshomeostasis may trigger a generalized belief of low self-efficacy and lack of control (cf. learned helplessness), resulting in depression. This perspective implies alternative pathophysiological mechanisms that are reflected by differential abnormalities in the effective connectivity of circuits for interoception and allostasis. We discuss suitably extended models of effective connectivity that could distinguish these connectivity patterns in individual patients and may help inform differential diagnosis of fatigue and depression in the future.
Collapse
Affiliation(s)
- Klaas E Stephan
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College LondonLondon, UK; Max Planck Institute for Metabolism ResearchCologne, Germany
| | - Zina M Manjaly
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Department of Neurology, Schulthess ClinicZurich, Switzerland
| | - Christoph D Mathys
- Wellcome Trust Centre for Neuroimaging, University College London London, UK
| | - Lilian A E Weber
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Saee Paliwal
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Tim Gard
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH ZurichZurich, Switzerland; Center for Complementary and Integrative Medicine, University Hospital ZurichZurich, Switzerland
| | | | - Stephen M Fleming
- Wellcome Trust Centre for Neuroimaging, University College London London, UK
| | - Helene Haker
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| | - Anil K Seth
- Sackler Centre for Consciousness Science, School of Engineering and Informatics, University of Sussex Brighton, UK
| | - Frederike H Petzschner
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich Zurich, Switzerland
| |
Collapse
|
23
|
Iglesias S, Tomiello S, Schneebeli M, Stephan KE. Models of neuromodulation for computational psychiatry. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2016; 8. [PMID: 27653804 DOI: 10.1002/wcs.1420] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/22/2016] [Accepted: 08/09/2016] [Indexed: 12/28/2022]
Abstract
Psychiatry faces fundamental challenges: based on a syndrome-based nosology, it presently lacks clinical tests to infer on disease processes that cause symptoms of individual patients and must resort to trial-and-error treatment strategies. These challenges have fueled the recent emergence of a novel field-computational psychiatry-that strives for mathematical models of disease processes at physiological and computational (information processing) levels. This review is motivated by one particular goal of computational psychiatry: the development of 'computational assays' that can be applied to behavioral or neuroimaging data from individual patients and support differential diagnosis and guiding patient-specific treatment. Because the majority of available pharmacotherapeutic approaches in psychiatry target neuromodulatory transmitters, models that infer (patho)physiological and (patho)computational actions of different neuromodulatory transmitters are of central interest for computational psychiatry. This article reviews the (many) outstanding questions on the computational roles of neuromodulators (dopamine, acetylcholine, serotonin, and noradrenaline), outlines available evidence, and discusses promises and pitfalls in translating these findings to clinical applications. WIREs Cogn Sci 2017, 8:e1420. doi: 10.1002/wcs.1420 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Sandra Iglesias
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Sara Tomiello
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Maya Schneebeli
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland
| | - Klaas E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & Swiss Federal Institute of Technology (ETH Zurich), Zurich, Switzerland.,Wellcome Trust Centre for Neuroimaging, University College London, London, UK.,Max Planck Institute for Metabolism Research, Cologne, Germany
| |
Collapse
|
24
|
Rae CL, Nombela C, Rodríguez PV, Ye Z, Hughes LE, Jones PS, Ham T, Rittman T, Coyle-Gilchrist I, Regenthal R, Sahakian BJ, Barker RA, Robbins TW, Rowe JB. Atomoxetine restores the response inhibition network in Parkinson's disease. Brain 2016; 139:2235-48. [PMID: 27343257 PMCID: PMC4958901 DOI: 10.1093/brain/aww138] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 05/03/2016] [Accepted: 05/06/2016] [Indexed: 01/03/2023] Open
Abstract
Parkinson's disease impairs the inhibition of responses, and whilst impulsivity is mild for some patients, severe impulse control disorders affect ∼10% of cases. Based on preclinical models we proposed that noradrenergic denervation contributes to the impairment of response inhibition, via changes in the prefrontal cortex and its subcortical connections. Previous work in Parkinson's disease found that the selective noradrenaline reuptake inhibitor atomoxetine could improve response inhibition, gambling decisions and reflection impulsivity. Here we tested the hypotheses that atomoxetine can restore functional brain networks for response inhibition in Parkinson's disease, and that both structural and functional connectivity determine the behavioural effect. In a randomized, double-blind placebo-controlled crossover study, 19 patients with mild-to-moderate idiopathic Parkinson's disease underwent functional magnetic resonance imaging during a stop-signal task, while on their usual dopaminergic therapy. Patients received 40 mg atomoxetine or placebo, orally. This regimen anticipates that noradrenergic therapies for behavioural symptoms would be adjunctive to, not a replacement for, dopaminergic therapy. Twenty matched control participants provided normative data. Arterial spin labelling identified no significant changes in regional perfusion. We assessed functional interactions between key frontal and subcortical brain areas for response inhibition, by comparing 20 dynamic causal models of the response inhibition network, inverted to the functional magnetic resonance imaging data and compared using random effects model selection. We found that the normal interaction between pre-supplementary motor cortex and the inferior frontal gyrus was absent in Parkinson's disease patients on placebo (despite dopaminergic therapy), but this connection was restored by atomoxetine. The behavioural change in response inhibition (improvement indicated by reduced stop-signal reaction time) following atomoxetine correlated with structural connectivity as measured by the fractional anisotropy in the white matter underlying the inferior frontal gyrus. Using multiple regression models, we examined the factors that influenced the individual differences in the response to atomoxetine: the reduction in stop-signal reaction time correlated with structural connectivity and baseline performance, while disease severity and drug plasma level predicted the change in fronto-striatal effective connectivity following atomoxetine. These results suggest that (i) atomoxetine increases sensitivity of the inferior frontal gyrus to afferent inputs from the pre-supplementary motor cortex; (ii) atomoxetine can enhance downstream modulation of frontal-subcortical connections for response inhibition; and (iii) the behavioural consequences of treatment are dependent on fronto-striatal structural connections. The individual differences in behavioural responses to atomoxetine highlight the need for patient stratification in future clinical trials of noradrenergic therapies for Parkinson's disease.
Collapse
Affiliation(s)
- Charlotte L Rae
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - Cristina Nombela
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | | | - Zheng Ye
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Laura E Hughes
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK
| | - P Simon Jones
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Ham
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Timothy Rittman
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ian Coyle-Gilchrist
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Ralf Regenthal
- 3 Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, 04107, Germany
| | - Barbara J Sahakian
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 5 Department of Psychiatry, University of Cambridge, CB2 0SZ, Cambridge, UK
| | - Roger A Barker
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Trevor W Robbins
- 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK 6 Department of Experimental Psychology, University of Cambridge, CB2 3EB, Cambridge, UK
| | - James B Rowe
- 1 Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0SZ, UK 2 Medical Research Council Cognition and Brain Sciences Unit, Cambridge, CB2 7EF, UK 4 Behavioural and Clinical Neuroscience Institute, Cambridge, CB2 3EB, UK
| |
Collapse
|
25
|
Siettos C, Starke J. Multiscale modeling of brain dynamics: from single neurons and networks to mathematical tools. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2016; 8:438-58. [PMID: 27340949 DOI: 10.1002/wsbm.1348] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 05/01/2016] [Accepted: 05/14/2016] [Indexed: 11/09/2022]
Abstract
The extreme complexity of the brain naturally requires mathematical modeling approaches on a large variety of scales; the spectrum ranges from single neuron dynamics over the behavior of groups of neurons to neuronal network activity. Thus, the connection between the microscopic scale (single neuron activity) to macroscopic behavior (emergent behavior of the collective dynamics) and vice versa is a key to understand the brain in its complexity. In this work, we attempt a review of a wide range of approaches, ranging from the modeling of single neuron dynamics to machine learning. The models include biophysical as well as data-driven phenomenological models. The discussed models include Hodgkin-Huxley, FitzHugh-Nagumo, coupled oscillators (Kuramoto oscillators, Rössler oscillators, and the Hindmarsh-Rose neuron), Integrate and Fire, networks of neurons, and neural field equations. In addition to the mathematical models, important mathematical methods in multiscale modeling and reconstruction of the causal connectivity are sketched. The methods include linear and nonlinear tools from statistics, data analysis, and time series analysis up to differential equations, dynamical systems, and bifurcation theory, including Granger causal connectivity analysis, phase synchronization connectivity analysis, principal component analysis (PCA), independent component analysis (ICA), and manifold learning algorithms such as ISOMAP, and diffusion maps and equation-free techniques. WIREs Syst Biol Med 2016, 8:438-458. doi: 10.1002/wsbm.1348 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Constantinos Siettos
- School of Applied Mathematics and Physical Sciences, National Technical University of Athens, Athens, Greece
| | - Jens Starke
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
26
|
Stephan KE, Schlagenhauf F, Huys QJM, Raman S, Aponte EA, Brodersen KH, Rigoux L, Moran RJ, Daunizeau J, Dolan RJ, Friston KJ, Heinz A. Computational neuroimaging strategies for single patient predictions. Neuroimage 2016; 145:180-199. [PMID: 27346545 DOI: 10.1016/j.neuroimage.2016.06.038] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2015] [Revised: 05/21/2016] [Accepted: 06/20/2016] [Indexed: 10/21/2022] Open
Abstract
Neuroimaging increasingly exploits machine learning techniques in an attempt to achieve clinically relevant single-subject predictions. An alternative to machine learning, which tries to establish predictive links between features of the observed data and clinical variables, is the deployment of computational models for inferring on the (patho)physiological and cognitive mechanisms that generate behavioural and neuroimaging responses. This paper discusses the rationale behind a computational approach to neuroimaging-based single-subject inference, focusing on its potential for characterising disease mechanisms in individual subjects and mapping these characterisations to clinical predictions. Following an overview of two main approaches - Bayesian model selection and generative embedding - which can link computational models to individual predictions, we review how these methods accommodate heterogeneity in psychiatric and neurological spectrum disorders, help avoid erroneous interpretations of neuroimaging data, and establish a link between a mechanistic, model-based approach and the statistical perspectives afforded by machine learning.
Collapse
Affiliation(s)
- K E Stephan
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - F Schlagenhauf
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany; Max Planck Institute for Human Cognitive and Brain Sciences, 04130 Leipzig, Germany
| | - Q J M Huys
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Department of Psychiatry, Psychosomatics and Psychotherapy, Hospital of Psychiatry, University of Zurich, Switzerland
| | - S Raman
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - E A Aponte
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - K H Brodersen
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland
| | - L Rigoux
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - R J Moran
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Virgina Institute of Technology, USA
| | - J Daunizeau
- Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH Zurich, 8032 Zurich, Switzerland; ICM Paris, France
| | - R J Dolan
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, UK
| | - K J Friston
- Wellcome Trust Centre for Neuroimaging, University College London, London, WC1N 3BG, UK
| | - A Heinz
- Department of Psychiatry and Psychotherapy, Campus Charité Mitte, Charité - Universitätsmedizin Berlin, 10115 Berlin, Germany; Humboldt Universität zu Berlin, Berlin School of Mind and Brain, 10115 Berlin, Germany
| |
Collapse
|