1
|
Weber S, Salomoni SE, Hinder MR. Selective cancellation of reactive or anticipated movements: Differences in speed of action reprogramming, but not stopping. Cortex 2024; 177:235-252. [PMID: 38875737 DOI: 10.1016/j.cortex.2024.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/03/2024] [Accepted: 05/03/2024] [Indexed: 06/16/2024]
Abstract
The ability to inhibit movements is an essential component of a healthy executive control system. Two distinct but commonly used tasks to assess motor inhibition are the stop signal task (SST) and the anticipated response inhibition (ARI) task. The SST and ARI tasks are similar in that they both require cancelation of a prepotent movement; however, the SST involves cancelation of a speeded reaction to a temporally unpredictable signal, while the ARI task involves cancelation of an anticipated response that the participant has prepared to enact at a wholly predictable time. 33 participants (mean age = 33.3 years, range = 18-55 years) completed variants of the SST and ARI task. In each task, the majority of trials required bimanual button presses, while on a subset of trials a stop signal indicated that one of the presses should be cancelled (i.e., motor selective inhibition). Additional variants of the tasks also included trials featuring signals which were to be ignored, allowing for insights into the attentional component of the inhibitory response. Electromyographic (EMG) recordings allowed detailed comparison of the characteristics of voluntary action and cancellation. The speed of the inhibitory process was not influenced by whether the enacted movement was reactive (SST) or anticipated (ARI task). However, the ongoing (non-cancelled) component of anticipated movements was more efficient than reactive movements, as a result of faster action reprogramming (i.e., faster ongoing actions following successful motor selective inhibition). Older age was associated with both slower inhibition and slower action reprogramming across all reactive and anticipated tasks.
Collapse
Affiliation(s)
- Simon Weber
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia.
| | - Sauro E Salomoni
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Aging Research Laboratory, School of Psychological Sciences, College of Health and Medicine, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
2
|
Borst B, Jovanovic T, House SL, Bruce SE, Harnett NG, Roeckner AR, Ely TD, Lebois LAM, Young D, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS, van Rooij SJH. Sex Differences in Response Inhibition-Related Neural Predictors of Posttraumatic Stress Disorder in Civilians With Recent Trauma. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:668-680. [PMID: 38522649 PMCID: PMC11227397 DOI: 10.1016/j.bpsc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Females are more likely to develop posttraumatic stress disorder (PTSD) than males. Impaired inhibition has been identified as a mechanism for PTSD development, but studies on potential sex differences in this neurobiological mechanism and how it relates to PTSD severity and progression are relatively rare. Here, we examined sex differences in neural activation during response inhibition and PTSD following recent trauma. METHODS Participants (n = 205, 138 female sex assigned at birth) were recruited from emergency departments within 72 hours of a traumatic event. PTSD symptoms were assessed 2 weeks and 6 months posttrauma. A Go/NoGo task was performed 2 weeks posttrauma in a 3T magnetic resonance imaging scanner to measure neural activity during response inhibition in the ventromedial prefrontal cortex, right inferior frontal gyrus, and bilateral hippocampus. General linear models were used to examine the interaction effect of sex on the relationship between our regions of interest and the whole brain, PTSD symptoms at 6 months, and symptom progression between 2 weeks and 6 months. RESULTS Lower response inhibition-related ventromedial prefrontal cortex activation 2 weeks posttrauma predicted more PTSD symptoms at 6 months in females but not in males, while greater response inhibition-related right inferior frontal gyrus activation predicted lower PTSD symptom progression in males but not females. Whole-brain interaction effects were observed in the medial temporal gyrus and left precentral gyrus. CONCLUSIONS There are sex differences in the relationship between inhibition-related brain activation and PTSD symptom severity and progression. These findings suggest that sex differences should be assessed in future PTSD studies and reveal potential targets for sex-specific interventions.
Collapse
Affiliation(s)
- Bibian Borst
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri St. Louis, St. Louis, Missouri
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dmitri Young
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Rehabilitation International, Providence, Rhode Island; Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Many Brains Project, Belmont, Massachusetts
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University College of Nursing, Columbus, Ohio
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth M Datner
- Department of Emergency Medicine, Jefferson Einstein Hospital, Jefferson Health, Philadelphia, Pennsylvania; Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health, Ann Arbor, Ypsilanti, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, Michigan
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, Texas
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
3
|
Wei JN, Zhang MK, Wang Z, Liu Y, Zhang J. Table tennis experience enhances motor control in older adults: Insights into sensorimotor-related cortical connectivity. Int J Clin Health Psychol 2024; 24:100464. [PMID: 38660391 PMCID: PMC11039312 DOI: 10.1016/j.ijchp.2024.100464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Background Motor control declines with age and requires effective connectivity between the sensorimotor cortex and the primary motor cortex (M1). Despite research indicating that physical exercise can improve motor control in older individuals the effect of physical exercise on neural connectivity in older adults remains to be elucidated. Methods Older adults with experience in table tennis and fit aerobics and individuals without such experience for comparison were recruited for the study. Differences in motor control were assessed using the stop-signal task. The impact of exercise experience on DLPFC-M1 and pre-SMA-M1 neural connectivity was assessed with transcranial magnetic stimulation. Varied time intervals (short and long term) and stimulus intensities (subthreshold and suprathreshold) were used to explore neural connectivity across pathways. Results The present study showed that behavioral iexpression of the table tennis group was significantly better than the other two groups;The facilitatory regulation of preSMA-M1 in all groups is negatively correlated with SSRT. Regulatory efficiency was highest in the table tennis group. Only the neural network regulatory ability of the Table Tennis group showed a negative correlation with SSRT; Inhibitory regulation of DLPFC-M1 was positively correlated with SSRT; this effect was most robust in the table tennis group. Conclusion The preliminary findings of this study suggest that table tennis exercise may enhance the motor system regulated by neural networks and stabilize inhibitory regulation of DLPFC-M1, thereby affecting motor control in older adults.
Collapse
Affiliation(s)
- Jia-Ning Wei
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Ming-Kai Zhang
- School of Physical Education, Shanghai University of Sport, Shanghai, China
| | - Zhen Wang
- School of Sport and Health Science, Xi'an Physical Education University, Xi'an, China
| | - Yu Liu
- Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Jian Zhang
- Center for Exercise and Brain Science, School of Psychology, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
4
|
Bunzeck N, Steiger TK, Krämer UM, Luedtke K, Marshall L, Obleser J, Tune S. Trajectories and contributing factors of neural compensation in healthy and pathological aging. Neurosci Biobehav Rev 2024; 156:105489. [PMID: 38040075 DOI: 10.1016/j.neubiorev.2023.105489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
Neural degeneration is a hallmark of healthy aging and can be associated with specific cognitive impairments. However, neural degeneration per se is not matched by unremitting declines in cognitive abilities. Instead, middle-aged and older adults typically maintain surprisingly high levels of cognitive functioning, suggesting that the human brain can adapt to structural degeneration by neural compensation. Here, we summarize prevailing theories and recent empirical studies on neural compensation with a focus on often neglected contributing factors, such as lifestyle, metabolism and neural plasticity. We suggest that these factors moderate the relationship between structural integrity and neural compensation, maintaining psychological well-being and behavioral functioning. Finally, we discuss that a breakdown in neural compensation may pose a tipping point that distinguishes the trajectories of healthy vs pathological aging, but conjoint support from psychology and cognitive neuroscience for this alluring view is still scarce. Therefore, future experiments that target the concomitant processes of neural compensation and associated behavior will foster a comprehensive understanding of both healthy and pathological aging.
Collapse
Affiliation(s)
- Nico Bunzeck
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany.
| | | | - Ulrike M Krämer
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany; Department of Neurology, University of Lübeck, Lübeck, Germany
| | - Kerstin Luedtke
- Institute of Health Sciences, Department of Physiotherapy, University of Lübeck, Germany
| | - Lisa Marshall
- Center of Brain, Behavior and Metabolism, University of Lübeck, Germany; Institute of Experimental and Clinical Pharmacology and Toxicology, University of Lübeck, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| | - Sarah Tune
- Department of Psychology, University of Lübeck, Germany; Center of Brain, Behavior and Metabolism, University of Lübeck, Germany
| |
Collapse
|
5
|
Weber S, Salomoni SE, Kilpatrick C, Hinder MR. Dissociating attentional capture from action cancellation during the inhibition of bimanual movement. Psychophysiology 2023; 60:e14372. [PMID: 37366262 DOI: 10.1111/psyp.14372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/27/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023]
Abstract
Inhibiting ongoing responses when environmental demands change is a critical component of motor control. Experimentally, the stop signal task (SST) represents the gold standard response inhibition paradigm. However, an emerging body of evidence suggests that the SST conflates two dissociable sources of inhibition, namely an involuntarily pause associated with attentional capture and the (subsequent) voluntary cancellation of action. The extent to which these processes also occur in other response tasks is unknown. Younger n = 24 (20-35 years) and older n = 23 (60-85 years) adults completed tasks involving rapid unimanual or bimanual responses to visual stimuli. A subset of trials required cancellation of one component of an initial bimanual response (i.e., selective stop task; stop left response, continue right response) or enacting an additional response (e.g., press left button as well as right button). Critically, both tasks involved some infrequent stimuli baring no behavioral imperative (i.e., they had to be ignored). EMG recordings of voluntary responses during stopping tasks revealed bimanual covert responses (muscle activation, which was suppressed before a button press ensued), consistent with a pause process, following both stop and ignore stimuli, before the required response was subsequently enacted. Critically, we also observed the behavioral consequences of a similar involuntary pause in trials where action cancellation was not part of the response set. Notably, the period over which movements were susceptible to response delays from additional stimuli was longer for older adults than younger adults. The findings demonstrate that an involuntary attentional component of inhibition significantly contributes to action cancellation processes.
Collapse
Affiliation(s)
- Simon Weber
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Sauro E Salomoni
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Callum Kilpatrick
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| | - Mark R Hinder
- Sensorimotor Neuroscience and Aging Research Lab, The University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
6
|
Xu L, Ma H, Guan Y, Liu J, Huang H, Zhang Y, Tian L. A Siamese Network With Node Convolution for Individualized Predictions Based on Connectivity Maps Extracted From Resting-State fMRI Data. IEEE J Biomed Health Inform 2023; 27:5418-5429. [PMID: 37578917 DOI: 10.1109/jbhi.2023.3304974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
Deep learning has demonstrated great potential for objective diagnosis of neuropsychiatric disorders based on neuroimaging data, which includes the promising resting-state functional magnetic resonance imaging (RS-fMRI). However, the insufficient sample size has long been a bottleneck for deep model training for the purpose. In this study, we proposed a Siamese network with node convolution (SNNC) for individualized predictions based on RS-fMRI data. With the involvement of Siamese network, which uses sample pair (rather than a single sample) as input, the problem of insufficient sample size can largely be alleviated. To adapt to connectivity maps extracted from RS-fMRI data, we applied node convolution to each of the two branches of the Siamese network. For regression purposes, we replaced the contrastive loss in classic Siamese network with the mean square error loss and thus enabled Siamese network to quantitatively predict label differences. The label of a test sample can be predicted based on any of the training samples, by adding the label of the training sample to the predicted label difference between them. The final prediction for a test sample in this study was made by averaging the predictions based on each of the training samples. The performance of the proposed SNNC was evaluated with age and IQ predictions based on a public dataset (Cam-CAN). The results indicated that SNNC can make effective predictions even with a sample size of as small as 40, and SNNC achieved state-of-the-art accuracy among a variety of deep models and standard machine learning approaches.
Collapse
|
7
|
Ren P, Hou G, Ma M, Zhuang Y, Huang J, Tan M, Wu D, Luo G, Zhang Z, Rong H. Enhanced putamen functional connectivity underlies altered risky decision-making in age-related cognitive decline. Sci Rep 2023; 13:6619. [PMID: 37095127 PMCID: PMC10126002 DOI: 10.1038/s41598-023-33634-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/16/2023] [Indexed: 04/26/2023] Open
Abstract
Risky decision-making is critical to survival and development, which has been compromised in elderly populations. However, the neural substrates of altered financial risk-taking behavior in aging are still under-investigated. Here we examined the intrinsic putamen network in modulating risk-taking behaviors of Balloon Analogue Risk Task in healthy young and older adults using resting-state fMRI. Compared with the young group, the elderly group showed significantly different task performance. Based on the task performance, older adults were further subdivided into two subgroups, showing young-like and over-conservative risk behaviors, regardless of cognitive decline. Compared with young adults, the intrinsic pattern of putamen connectivity was significantly different in over-conservative older adults, but not in young-like older adults. Notably, age-effects on risk behaviors were mediated via the putamen functional connectivity. In addition, the putamen gray matter volume showed significantly different relationships with risk behaviors and functional connectivity in over-conservative older adults. Our findings suggest that reward-based risky behaviors might be a sensitive indicator of brain aging, highlighting the critical role of the putamen network in maintaining optimal risky decision-making in age-related cognitive decline.
Collapse
Affiliation(s)
- Ping Ren
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| | - Gangqiang Hou
- Department of Radiology, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Manxiu Ma
- Queensland Brain Institute, University of Queensland, St. Lucia, QLD, Australia
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jiayin Huang
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Meiling Tan
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Donghui Wu
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Guozhi Luo
- Department of Geriatric Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China
| | - Zhiguo Zhang
- School of Biomedical Engineering, Health Science Center, Shenzhen University, Shenzhen, Guangdong, China
| | - Han Rong
- Department of Psychiatry, Shenzhen Mental Health Center/Shenzhen Kangning Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
8
|
Hsieh S, Chen EH. Specific but not general declines in attention and executive function with aging: Converging cross-sectional and longitudinal evidence across the adult lifespan. Front Psychol 2023; 14:1108725. [PMID: 37008838 PMCID: PMC10050892 DOI: 10.3389/fpsyg.2023.1108725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 02/24/2023] [Indexed: 03/17/2023] Open
Abstract
ObjectiveAttention and executive function (EF) are vulnerable to aging. However, whether all these functions generally decline with aging is not known. Furthermore, most evidence is based on cross-sectional data and fewer follow-up data are available in the literature. Longitudinal follow-up studies are necessary to characterize individualized and precise changes in cognitive function. Additionally, relatively few aging studies have included middle-aged adults to examine age-related differences in attention and EF. Therefore, this study aims to examine whether general or specific attention and EF decline with aging from adulthood to old age by combining cross-sectional and longitudinal follow-up approaches.MethodsThis study recruited 253 participants aged 20 to 78 years. passing a prescreening procedure (see main text for detail) for the baseline session, and 123 of them were invited to return 1 ~ 2 years after their first visit to participate in the follow-up session. The participants completed a series of attention and EF tasks at both the baseline and follow-up sessions, which measured alerting, orienting, conflict control, stopping, memory updating, and switching abilities. We applied linear and nonlinear regression models to evaluate the cross-sectional age effect on attention and EF and employed a modified Brinley plot to inspect follow-up performance against baseline in attention and EF.ResultsThe results of cross-sectional data showed that older adults exhibited decreased efficiency in alerting, stopping, and memory updating but paradoxically increased efficiency in conflict control and switching abilities and no changes in orienting efficiency with age. However, the results of longitudinal data showed that only alerting and memory updating continued to show decreased efficiency. Furthermore, conflict control and switching showed increased efficiency with aging, whereas the orienting network, and stopping no longer showed decreased efficiency.ConclusionThus, converging the cross-sectional and longitudinal data showed that the alerting and memory updating function exhibited the most robust deficit with age (cross-sectional) and aging (longitudinal). Alerting and memory updating abilities are crucial survival skills for human beings. Therefore, developing methods to prevent and improve an individual’s alertness and working memory ability is an important practical issue in aging research.
Collapse
Affiliation(s)
- Shulan Hsieh
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion (CASE), Department of Psychology, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, National Cheng Kung University, Tainan, Taiwan
- Department of Public Health, National Cheng Kung University, Tainan, Taiwan
- *Correspondence: Shulan Hsieh,
| | - En-Ho Chen
- Cognitive Electrophysiology Laboratory: Control, Aging, Sleep, and Emotion (CASE), Department of Psychology, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
9
|
Long J, Song X, Wang Y, Wang C, Huang R, Zhang R. Distinct neural activation patterns of age in subcomponents of inhibitory control: A fMRI meta-analysis. Front Aging Neurosci 2022; 14:938789. [PMID: 35992590 PMCID: PMC9389163 DOI: 10.3389/fnagi.2022.938789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 07/11/2022] [Indexed: 11/15/2022] Open
Abstract
Inhibitory control (IC) is a fundamental cognitive function showing age-related change across the healthy lifespan. Since different cognitive resources are needed in the two subcomponents of IC (cognitive inhibition and response inhibition), regions of the brain are differentially activated. In this study, we aimed to determine whether there is a distinct age-related activation pattern in these two subcomponents. A total of 278 fMRI articles were included in the current analysis. Multilevel kernel density analysis was used to provide data on brain activation under each subcomponent of IC. Contrast analyses were conducted to capture the distinct activated brain regions for the two subcomponents, whereas meta-regression analyses were performed to identify brain regions with distinct age-related activation patterns in the two subcomponents of IC. The results showed that the right inferior frontal gyrus and the bilateral insula were activated during the two IC subcomponents. Contrast analyses revealed stronger activation in the superior parietal lobule during cognitive inhibition, whereas stronger activation during response inhibition was observed primarily in the right inferior frontal gyrus, bilateral insula, and angular gyrus. Furthermore, regression analyses showed that activation of the left anterior cingulate cortex, left inferior frontal gyrus, bilateral insula, and left superior parietal lobule increased and decreased with age during cognitive inhibition and response inhibition, respectively. The results showed distinct activation patterns of aging for the two subcomponents of IC, which may be related to the differential cognitive resources recruited. These findings may help to enhance knowledge of age-related changes in the activation patterns of IC.
Collapse
Affiliation(s)
- Jixin Long
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Xiaoqi Song
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - You Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Chanyu Wang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
| | - Ruiwang Huang
- School of Psychology, South China Normal University, Guangzhou, China
| | - Ruibin Zhang
- Cognitive Control and Brain Healthy Laboratory, Department of Psychology, School of Public Health, Southern Medical University, Guangzhou, China
- Department of Psychiatry, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
10
|
Chen HY, Lombardi G, Li SC, Hare TA. Older adults process the probability of winning sooner but weigh it less during lottery decisions. Sci Rep 2022; 12:11381. [PMID: 35790772 PMCID: PMC9256676 DOI: 10.1038/s41598-022-15432-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 06/23/2022] [Indexed: 11/23/2022] Open
Abstract
Empirical evidence has shown that visually enhancing the saliency of reward probabilities can ease the cognitive demands of value comparisons and improve value-based decisions in old age. In the present study, we used a time-varying drift diffusion model that includes starting time parameters to better understand (1) how increasing the saliency of reward probabilities may affect the dynamics of value-based decision-making and (2) how these effects may interact with age. We examined choices made by younger and older adults in a mixed lottery choice task. On a subset of trials, we used a color-coding scheme to highlight the saliency of reward probabilities, which served as a decision-aid. The results showed that, in control trials, older adults started to consider probability relative to magnitude information sooner than younger adults, but that their evidence accumulation processes were less sensitive to reward probabilities than that of younger adults. This may indicate a noisier and more stochastic information accumulation process during value-based decisions in old age. The decision-aid increased the influence of probability information on evidence accumulation rates in both age groups, but did not alter the relative timing of accumulation for probability versus magnitude in either group.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany. .,Chair of Methods of Psychology and Cognitive Modelling, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Gaia Lombardi
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.,Centre for Tactile Internet With Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Todd A Hare
- Department of Economics, Zurich Center for Neuroeconomics, University of Zurich, 8006, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zürich, 8006, Zurich, Switzerland
| |
Collapse
|
11
|
Wang Z, Pi YL, Wu Y, Wei J, Li Y, Zhang J, Wang Z. Selective effects of exercise on reactive and proactive inhibition in Parkinson's disease. PeerJ 2022; 10:e13628. [PMID: 35765594 PMCID: PMC9233896 DOI: 10.7717/peerj.13628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/02/2022] [Indexed: 01/17/2023] Open
Abstract
Objective Patients with Parkinson's disease (PD) have an obvious motor inhibition disorder, which is closely related to their motor symptoms. Although previous studies have shown that exercise can improve their inhibition deficits, the effect of exercise on different types of inhibition (proactive and reactive inhibition) has not been addressed. Methods We used a behavioral paradigm combined with a series of questionnaires to explore the effect of long-term exercise on different types of motor inhibition in 59 patients with PD aged 55-75 years. According to the intensity and frequency of exercise, the participants were divided into regular-exercise and no-exercise groups. To obtain the average reference value for inhibition ability at the same age, we also recruited 30 healthy elderly people as controls. Results The main defect in the motor inhibition of PD is reactive inhibition, while proactive inhibition has no obvious differences compared with healthy controls. Additionally, compared with the non-exercise group, PD in the exercise group showed significantly better reaction speeds and reactive control ability, fewer motor symptoms and negative emotions. Conclusions Taken together, the motor inhibition defects of patients with PD affect only reactive inhibition. In addition, PD with exercise reported fewer negative emotions than that of the non-exercise group, indicating that exercise can relieve negative emotions and improve behavioral symptoms and quality of life in PD to a certain extent. We demonstrate for the first time that exercise has and can improve reactive inhibition in PD patients and has no effect on proactive inhibition.
Collapse
Affiliation(s)
- Zhen Wang
- School of Exercise and Health Science, Xi’an Physical Education University, Xi’an, China,School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yan-Ling Pi
- Shanghai Punan Hospital of Pudong New District, Shanghai, China
| | - Yin Wu
- School of Economics and Management, Shanghai University of Sport, Shanghai, China
| | - Jianing Wei
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Yuting Li
- School of Psychology, Shanghai University of Sport, Shanghai, China,School of Nursing, Anhui University of Chinese Medicine, Hefei, China
| | - Jian Zhang
- School of Psychology, Shanghai University of Sport, Shanghai, China
| | - Zhen Wang
- School of Martial Arts, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
12
|
Chen J, Wu S, Li F. Cognitive Neural Mechanism of Backward Inhibition and Deinhibition: A Review. Front Behav Neurosci 2022; 16:846369. [PMID: 35668866 PMCID: PMC9165717 DOI: 10.3389/fnbeh.2022.846369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/19/2022] [Indexed: 11/18/2022] Open
Abstract
Task switching is one of the typical paradigms to study cognitive control. When switching back to a recently inhibited task (e.g., “A” in an ABA sequence), the performance is often worse compared to a task without N-2 task repetitions (e.g., CBA). This difference is called the backward inhibitory effect (BI effect), which reflects the process of overcoming residual inhibition from a recently performed task (i.e., deinhibition). The neural mechanism of backward inhibition and deinhibition has received a lot of attention in the past decade. Multiple brain regions, including the frontal lobe, parietal, basal ganglia, and cerebellum, are activated during deinhibition. The event-related potentials (ERP) studies have shown that deinhibition process is reflected in the P1/N1 and P3 components, which might be related to early attention control, context updating, and response selection, respectively. Future research can use a variety of new paradigms to separate the neural mechanisms of BI and deinhibition.
Collapse
Affiliation(s)
- Jiwen Chen
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Shujie Wu
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
13
|
Powers A, Hinojosa CA, Stevens JS, Harvey B, Pas P, Rothbaum BO, Ressler KJ, Jovanovic T, van Rooij SJH. Right inferior frontal gyrus and ventromedial prefrontal activation during response inhibition is implicated in the development of PTSD symptoms. Eur J Psychotraumatol 2022; 13:2059993. [PMID: 35432781 PMCID: PMC9009908 DOI: 10.1080/20008198.2022.2059993] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inhibition is a critical executive control process and an established neurobiological phenotype of PTSD, yet to our knowledge, no prospective studies have examined this using a contextual cue task that enables measurement of behavioural response and neural activation patterns across proactive and reactive inhibition. Objective The current longitudinal study utilised functional magnetic resonance imaging (fMRI) to examine whether deficits in proactive and reactive inhibition predicted PTSD symptoms six months after trauma. Method Twenty-three (65% males) medical patients receiving emergency medical care from a level 1 trauma centre were enrolled in the study and invited for an MRI scan 1-2-months post-trauma. PTSD symptoms were measured using self-report at scan and 6-months post-trauma. A stop-signal anticipation task (SSAT) during an fMRI scan was used to test whether impaired behavioural proactive and reactive inhibition, and reduced activation in right inferior frontal gyrus (rIFG), ventromedial prefrontal cortex (vmPFC), and bilateral hippocampus, were related to PTSD symptoms. We predicted that lower activation levels of vmPFC and rIFG during reactive inhibition and lower activation of hippocampus and rIFG during proactive inhibition would relate to higher 6-month PTSD symptoms. Results No significant associations were found between behavioural measures and 6-month PTSD. Separate linear regression analyses showed that reduced rIFG activation (F1,21 = 9.97, R2 = .32, p = .005) and reduced vmPFC activation (F1,21 = 5.19, R2 = .20, p = .03) significantly predicted greater 6-month PTSD symptoms; this result held for rIFG activation controlling for demographic variables and baseline PTSD symptoms (β = -.45, p = .04) and Bonferroni correction. Conclusion Our findings suggest that impaired rIFG and, to a lesser extent, vmPFC activation during response inhibition may predict the development of PTSD symptoms following acute trauma exposure. Given the small sample size, future replication studies are needed. HIGHLIGHTS Impaired inhibition may be an important risk factor for the development of PTSD following trauma, with less right inferior frontal gyrus and ventromedial prefrontal cortex activation during response inhibition predicting PTSD development.
Collapse
Affiliation(s)
- Abigail Powers
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
| | - Cecilia A Hinojosa
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
| | - Brandon Harvey
- Department of Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Pascal Pas
- Experimental Psychology, Utrecht University, Utrecht, the Netherlands
| | - Barbara O Rothbaum
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
| | - Kerry J Ressler
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, MI, USA
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, 69 Jesse Hill Jr Drive, Atlanta, GA, USA
| |
Collapse
|
14
|
Paitel ER, Nielson KA. Temporal Dynamics of Event-Related Potentials during Inhibitory Control Characterize Age-Related Neural Compensation. Symmetry (Basel) 2021; 13:2323. [PMID: 35923222 PMCID: PMC9345327 DOI: 10.3390/sym13122323] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aging is accompanied by frontal lobe and non-dominant hemisphere recruitment that supports executive functioning, such as inhibitory control, which is crucial to all cognitive functions. However, the spatio-temporal sequence of processing underlying successful inhibition and how it changes with age is understudied. Thus, we capitalized on the temporal precision of event-related potentials (ERPs) to assess the functional lateralization of N200 (conflict monitoring) and P300 (inhibitory performance evaluation) in young and healthy older adults during comparably performed successful stop-signal inhibition. We additionally used temporal principal components analysis (PCA) to further interrogate the continuous spatio-temporal dynamics underlying N200 and P300 activation for each group. Young adults demonstrated left hemisphere-dominant N200, while older adults demonstrated overall larger amplitudes and right hemisphere dominance. N200 activation was explained by a single PCA factor in both age groups, but with a more anterior scalp distribution in older adults. The P300 amplitudes were larger in the right hemisphere in young, but bilateral in old, with old larger than young in the left hemisphere. P300 was also explained by a single factor in young adults but by two factors in older adults, including distinct parieto-occipital and anterior activation. These findings highlight the differential functional asymmetries of conflict monitoring (N200) and inhibitory evaluation and adaptation (P300) processes and further illuminate unique age-related spatio-temporal recruitment patterns. Older adults demonstrated lateralized recruitment during conflict processing and bilateral recruitment during evaluation and adaptation, with anterior recruitment common to both processes. These fine-grained analyses are critically important for more precise understanding of age-related compensatory activation.
Collapse
Affiliation(s)
| | - Kristy A. Nielson
- Department of Psychology, Marquette University, Milwaukee, WI 53201, USA
- Department of Neurology and the Center for Imaging Research, Medical College of Wisconsin, Wauwatosa, WI 53226, USA
| |
Collapse
|
15
|
Swartz M, Burton F, Vakamudi K, Al-Khalil K, Witkiewitz K, Claus ED. Age dependent neural correlates of inhibition and control mechanisms in moderate to heavy drinkers. NEUROIMAGE-CLINICAL 2021; 32:102875. [PMID: 34781154 PMCID: PMC8604718 DOI: 10.1016/j.nicl.2021.102875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 11/22/2022]
Abstract
Older age was associated with reductions in inhibition related activity. Older drinkers had greater reductions in frontal activity than younger drinkers. Men and women had opposite correlations between alcohol use severity and activity.
Background Long-term, heavy alcohol consumption has been associated with impairments in control over alcohol use, but whether this extends to other areas of cognitive and behavioral control such as response inhibition remains unclear. Understanding individual differences in the neural correlates of response inhibition will provide further insight into the neurobiology of heavy drinking. The current study investigated response inhibition in a large sample of moderate to heavy drinkers Methods One hundred fifty-three individuals completed a stop signal task while undergoing functional magnetic resonance imaging. Multiple regression analyses focused on blood oxygen level-dependent (BOLD) response contrasts of correct inhibition and failed inhibition as dependent variables and included age, sex, and hazardous drinking (as measured by the Alcohol Use Disorders Identification Test (AUDIT)), and their interactions, as independent variables Results Age was negatively associated with BOLD response in lateral inferior and middle frontal gyri, anterior cingulate cortex, and inferior parietal lobe for both successful inhibition and failed inhibition contrasts. In addition, there was a significant age × AUDIT interaction in the successful inhibition contrast in the left middle frontal gyrus, with significant negative correlations between AUDIT and BOLD response in older participants, and a significant positive correlation between AUDIT and BOLD response in younger participants Conclusions Age appears to be a particularly important factor in predicting BOLD response and may be a critical variable to include in future studies of heavy drinking and alcohol use disorder, particularly those that assess cognitive function. Finally, the age × AUDIT interaction observed in the current study may represent evidence for accelerated aging effects of alcohol on cognitive function.
Collapse
Affiliation(s)
| | | | | | | | - Katie Witkiewitz
- Department of Psychology, University of New Mexico and the Center on Alcohol, Substance Use, and Addictions, Albuquerque, NM, USA
| | - Eric D Claus
- The Mind Research Network, Albuquerque, NM, USA; Department of Biobehavioral Health, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
16
|
Nguyen T, Condy EE, Park S, Friedman BH, Gandjbakhche A. Comparison of Functional Connectivity in the Prefrontal Cortex during a Simple and an Emotional Go/No-Go Task in Female versus Male Groups: An fNIRS Study. Brain Sci 2021; 11:brainsci11070909. [PMID: 34356143 PMCID: PMC8304823 DOI: 10.3390/brainsci11070909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 11/23/2022] Open
Abstract
Inhibitory control is a cognitive process to suppress prepotent behavioral responses to stimuli. This study aimed to investigate prefrontal functional connectivity during a behavioral inhibition task and its correlation with the subject’s performance. Additionally, we identified connections that are specific to the Go/No-Go task. The experiment was performed on 42 normal, healthy adults who underwent a vanilla baseline and a simple and emotional Go/No-Go task. Cerebral hemodynamic responses were measured in the prefrontal cortex using a 16-channel near infrared spectroscopy (NIRS) device. Functional connectivity was calculated from NIRS signals and correlated to the Go/No-Go performance. Strong connectivity was found in both the tasks in the right hemisphere, inter-hemispherically, and the left medial prefrontal cortex. Better performance (fewer errors, faster response) is associated with stronger prefrontal connectivity during the simple Go/No-Go in both sexes and the emotional Go/No-Go connectivity in males. However, females express a lower emotional Go/No-Go connectivity while performing better on the task. This study reports a complete prefrontal network during a simple and emotional Go/No-Go and its correlation with the subject’s performance in females and males. The results can be applied to examine behavioral inhibitory control deficits in population with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Thien Nguyen
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, 49 Convent Drive, Bethesda, MD 20814, USA; (T.N.); (E.E.C.); (S.P.)
| | - Emma E. Condy
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, 49 Convent Drive, Bethesda, MD 20814, USA; (T.N.); (E.E.C.); (S.P.)
| | - Soongho Park
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, 49 Convent Drive, Bethesda, MD 20814, USA; (T.N.); (E.E.C.); (S.P.)
| | - Bruce H. Friedman
- Department of Psychology, Virginia Tech, 109 Williams Hall, Blacksburg, VA 24061, USA;
| | - Amir Gandjbakhche
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institute of Health, 49 Convent Drive, Bethesda, MD 20814, USA; (T.N.); (E.E.C.); (S.P.)
- Correspondence:
| |
Collapse
|
17
|
Chen HY, Dix A, Goh JOS, Smolka MN, Thurm F, Li SC. Effects and mechanisms of information saliency in enhancing value-based decision-making in younger and older adults. Neurobiol Aging 2020; 99:86-98. [PMID: 33422897 DOI: 10.1016/j.neurobiolaging.2020.11.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 10/12/2020] [Accepted: 11/27/2020] [Indexed: 11/16/2022]
Abstract
Aging attenuates frontostriatal network functioning, which could lead to deficits in value computation when decision-making involves uncertainty. Although it has been shown that visually enhancing information saliency of outcome probability can improve decision-making in old age, mechanisms of this effect are still unclear. In the present study, the saliency of outcome probability was increased using a color-coding scheme as a decision aid in a mixed lottery choice task, and spontaneous eye-blink rate and pupillary responses were assessed in younger and older adults. Older adults showed lower value sensitivity than younger adults; however, increasing information saliency benefitted choice behaviors in both age groups. Furthermore, the decision aid reduced pupil size during decision-making in both age groups, suggesting that enhancing information saliency decreases cognitive demands of value computation. Baseline value sensitivity was negatively correlated with benefit of enhancing information saliency only in older adults. As value representations in older decision makers are less distinctive at baseline, they may have required more environmental compensation than younger adults.
Collapse
Affiliation(s)
- Hsiang-Yu Chen
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany.
| | - Annika Dix
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Chair of Engineering Psychology and Applied Cognitive Research, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| | - Joshua Oon Soo Goh
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, Taiwan; Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Michael N Smolka
- Department of Psychiatry and Neuroimaging Center, Technische Universität Dresden, Dresden, Germany
| | - Franka Thurm
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany
| | - Shu-Chen Li
- Chair of Lifespan Developmental Neuroscience, Faculty of Psychology, Technische Universität Dresden, Dresden, Germany; Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
18
|
Williams SE, Lenze EJ, Waring JD. Positive information facilitates response inhibition in older adults only when emotion is task-relevant. Cogn Emot 2020; 34:1632-1645. [PMID: 32677540 DOI: 10.1080/02699931.2020.1793303] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Emotional information is integral to everyday life and impacts a variety of cognitive abilities including response inhibition, a critical skill for maintaining appropriate and flexible behaviour. However, reported effects of emotion on response inhibition are inconsistent in younger adults, and very limited in older adults. Effects of aging are especially relevant because emotion regulation improves with aging despite declining inhibitory control over neutral information. Across three studies, we assessed the impact of emotional facial expressions on response inhibition in younger and older adults while manipulating attention to task stimuli. Emotional faces (versus neutral faces) altered response inhibition only when task instructions required explicit attention to emotional attributes of the faces. When directly comparing fear faces to happy faces, both age groups had better response inhibition to happy faces. Age further influenced differences across conditions, in that happy faces enhanced response inhibition relative to neutral faces in older adults but not younger adults. Thus, emotional response inhibition for task-relevant (but not task-irrelevant) positive information is enhanced in late life compared to early adulthood. The present work extends the nascent literature on emotional response inhibition in aging, and proffers a framework to reconcile the mixed literature on this topic in younger adults.
Collapse
Affiliation(s)
| | - Eric J Lenze
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | - Jill D Waring
- Department of Psychology, Saint Louis University, St. Louis, MO, USA
| |
Collapse
|
19
|
Weerasekera A, Levin O, Clauwaert A, Heise KF, Hermans L, Peeters R, Mantini D, Cuypers K, Leunissen I, Himmelreich U, Swinnen SP. Neurometabolic Correlates of Reactive and Proactive Motor Inhibition in Young and Older Adults: Evidence from Multiple Regional 1H-MR Spectroscopy. Cereb Cortex Commun 2020; 1:tgaa028. [PMID: 34296102 PMCID: PMC8152832 DOI: 10.1093/texcom/tgaa028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 06/19/2020] [Accepted: 06/20/2020] [Indexed: 11/13/2022] Open
Abstract
Suboptimal inhibitory control is a major factor contributing to motor/cognitive deficits in older age and pathology. Here, we provide novel insights into the neurochemical biomarkers of inhibitory control in healthy young and older adults and highlight putative neurometabolic correlates of deficient inhibitory functions in normal aging. Age-related alterations in levels of glutamate–glutamine complex (Glx), N-acetylaspartate (NAA), choline (Cho), and myo-inositol (mIns) were assessed in the right inferior frontal gyrus (RIFG), pre-supplementary motor area (preSMA), bilateral sensorimotor cortex (SM1), bilateral striatum (STR), and occipital cortex (OCC) with proton magnetic resonance spectroscopy (1H-MRS). Data were collected from 30 young (age range 18–34 years) and 29 older (age range 60–74 years) adults. Associations between age-related changes in the levels of these metabolites and performance measures or reactive/proactive inhibition were examined for each age group. Glx levels in the right striatum and preSMA were associated with more efficient proactive inhibition in young adults but were not predictive for reactive inhibition performance. Higher NAA/mIns ratios in the preSMA and RIFG and lower mIns levels in the OCC were associated with better deployment of proactive and reactive inhibition in older adults. Overall, these findings suggest that altered regional concentrations of NAA and mIns constitute potential biomarkers of suboptimal inhibitory control in aging.
Collapse
Affiliation(s)
- Akila Weerasekera
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Oron Levin
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Amanda Clauwaert
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Kirstin-Friederike Heise
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Lize Hermans
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Ronald Peeters
- Department of Radiology, University Hospitals KU Leuven, 3000, Leuven, Belgium
| | - Dante Mantini
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Koen Cuypers
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Inge Leunissen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| | - Uwe Himmelreich
- Biomedical MRI Unit, Department of Imaging and Pathology, Group Biomedical Sciences, KU Leuven, 3000, Leuven, Belgium
| | - Stephan P Swinnen
- Movement Control & Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, KU Leuven, 3001, Heverlee, Belgium
| |
Collapse
|
20
|
Abstract
Previous research has reported reduced efficiency in reactive inhibition, along with reduced brain activations, in older adults. The current study investigated age-related behavioral and neural changes in proactive inhibition, and whether age may influence the relationship between proactive and reactive inhibition. One-hundred-and-forty-nine adults (18 to 72 years) underwent fMRI while performing a stop signal task (SST). Proactive inhibition was defined by the sequential effect, the correlation between the estimated probability of stop signal - p(Stop) - and go trial reaction time (goRT). P(Stop) was estimated trial by trial with a Bayesian belief model; reactive inhibition was defined by the stop signal reaction time (SSRT). Behaviorally the magnitude of sequential effect was not correlated with age, replicating earlier reports of spared proactive control in older adults. Age was associated with greater activations to p(Stop) in the lateral prefrontal cortex (PFC), paracentral lobule, superior parietal lobule, and cerebellum, and activations to goRT in the inferior occipital gyrus (IOG). Granger Causality analysis demonstrated that the PFC Granger caused IOG, with the PFC-IOG connectivity significantly correlated with p(Stop) in older but not younger adults. These findings suggest that the PFC and IOG activations and PFC-IOG connectivity may compensate for proactive control during aging. In contrast, while the activations of the ventromedial prefrontal cortex and caudate head to p(Stop) were negatively correlated with SSRT, relating proactive to reactive control, these activities did not vary with age. These findings highlighted distinct neural processes underlying proactive inhibition and limited neural plasticity to support cognitive control in the aging brain.
Collapse
|
21
|
Age-related alterations in the modulation of intracortical inhibition during stopping of actions. Aging (Albany NY) 2020; 11:371-385. [PMID: 30670675 PMCID: PMC6366958 DOI: 10.18632/aging.101741] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/19/2018] [Indexed: 01/19/2023]
Abstract
We investigated the effect of age on the ability to modulate GABAA-ergic and GABAB-ergic inhibitory activity during stopping of action (reactive inhibition) and preparation to stop (proactive inhibition). Twenty-five young and twenty-nine older adults performed an anticipated response version of the stop-signal task with varying levels of stop-signal probability. Paired-pulse transcranial magnetic stimulation was applied to left primary motor cortex to assess the modulation of GABAA-mediated short-interval intracortical inhibition (SICI) during stopping and GABAB-mediated long-interval intracortical inhibition (LICI) during the anticipation of a stop-signal. At the behavioral level, reactive inhibition was affected by aging as indicated by longer stop-signal reaction times in older compared to young adults. In contrast, proactive inhibition was preserved at older age as both groups slowed down their go response to a similar degree with increasing stop-signal probability. At the neural level, the amount of SICI was higher in successful stop relative to go trials in young but not in older adults. LICI at the start of the trial was modulated as a function of stop-signal probability in both young and older adults. Our results suggest that specifically the recruitment of GABAA-mediated intracortical inhibition during stopping of action is affected by aging.
Collapse
|
22
|
Pas P, Plessis SD, van den Munkhof HE, Gladwin TE, Vink M. Using subjective expectations to model the neural underpinnings of proactive inhibition. Eur J Neurosci 2019; 49:1575-1586. [PMID: 30556927 PMCID: PMC6618303 DOI: 10.1111/ejn.14308] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 12/22/2022]
Abstract
Proactive inhibition – the anticipation of having to stop a response – relies on objective information contained in cue‐related contingencies in the environment, as well as on the subjective interpretation derived from these cues. To date, most studies of brain areas underlying proactive inhibition have exclusively considered the objective predictive value of environmental cues, by varying the probability of stop‐signals. However, by only taking into account the effect of different cues on brain activation, the subjective component of how cues affect behavior is ignored. We used a modified stop‐signal response task that includes a measurement for subjective expectation, to investigate the effect of this subjective interpretation. After presenting a cue indicating the probability that a stop‐signal will occur, subjects were asked whether they expected a stop‐signal to occur. Furthermore, response time was used to retrospectively model brain activation related to stop‐expectation. We found more activation during the cue period for 50% stop‐signal probability, when contrasting with 0%, in the mid and inferior frontal gyrus, inferior parietal lobe and putamen. When contrasting expected vs. unexpected trials, we found modest effects in the mid frontal gyrus, parietal, and occipital areas. With our third contrast, we modeled brain activation during the cue with trial‐by‐trial variances in response times. This yielded activation in the putamen, inferior parietal lobe, and mid frontal gyrus. Our study is the first to use the behavioral effects of proactive inhibition to identify the underlying brain regions, by employing an unbiased task‐design that temporally separates cue and response.
Collapse
Affiliation(s)
- Pascal Pas
- University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Stefan Du Plessis
- Department of Psychiatry, Stellenbosch University, Cape Town, South Africa
| | | | | | - Matthijs Vink
- Departments of Experimental & Developmental Psychology, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
23
|
Zhou H, Dai Z, Hua L, Jiang H, Tian S, Han Y, Lin P, Wang H, Lu Q, Yao Z. Decreased Task-Related HRV Is Associated With Inhibitory Dysfunction Through Functional Inter-Region Connectivity of PFC in Major Depressive Disorder. Front Psychiatry 2019; 10:989. [PMID: 32038327 PMCID: PMC6988511 DOI: 10.3389/fpsyt.2019.00989] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/12/2019] [Indexed: 12/28/2022] Open
Abstract
The regulation of the autonomic nervous system (ANS) can improve cognitive function in major depressive disorders (MDD). Heart rate variability (HRV) derives from the dynamic control of the ANS and reflects the balance between the activities of the sympathetic and parasympathetic nervous systems by measuring tiny changes in adjacent heart beats. Task-related HRV may reflect the association between the flexibility of cognition and ANS function. The study was to investigate the neural mechanism of interactions between ANS and cognitive function in MDD with Magnetoencephalography (MEG) measurements. Participants included 20 MDD patients and 18 healthy controls (HCs). All participants were measured with a go/no-go task MEG. HRV indices, the standard deviation of the average normal-to-normal (NN) interval calculated over short periods (SDANN) and the square root of the mean squared differences of successive NN intervals (RMSSD), were derived from the raw MEG data. Results showed that MDD patients showed decreased SDANN and RMSSD. In MDD patients, both resting-state and task-related RMSSD were related to inhibitory and control dysfunction. In the go/no-go task, many areas in the prefrontal cortex (PFC) are responsible for an individual's inhibitory function. A brain MEG functional connectivity analysis revealed that there were significant differences in four brain regions within the prefrontal cortex (PFC) between MDD patients and HCs. Task-related RMSSD in HCs were related to the functional connectivity between the left middle frontal gyrus and the anterior cingulate cortex (ACC), while in MDD patients, these values were not related to the above functional connectivity but were related to the functional connectivity between the left middle frontal gyrus and insula. However, the resting-state RMSSD value was not related to these significant difference functional connectivity networks in all participants. It concludes that the decreased task-related HRV is associated with inhibitory dysfunction through functional inter-region connectivity in the PFC in MDD, and the task-related HRV can be used as an index of the association between MDD and autonomic dysregulation.
Collapse
Affiliation(s)
- Hongliang Zhou
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Zongpeng Dai
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Lingling Hua
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haiteng Jiang
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Shui Tian
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China
| | - Yinglin Han
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Pinhua Lin
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haofei Wang
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qing Lu
- School of Biological Sciences & Medical Engineering, Southeast University, Nanjing, China.,Child Development and Learning Science, Key Laboratory of Ministry of Education, Nanjing, China
| | - Zhjjian Yao
- Department of Psychiatry, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.,Nanjing Brain Hospital, Medical School of Nanjing University, Nanjing, China
| |
Collapse
|
24
|
Pauwels L, Maes C, Hermans L, Swinnen SP. Motor inhibition efficiency in healthy aging: the role of γ-aminobutyric acid. Neural Regen Res 2019; 14:741-744. [PMID: 30688254 PMCID: PMC6375039 DOI: 10.4103/1673-5374.249216] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The ability to cancel a motor response is critical for optimal functioning in various facets of daily life. Hence, efficient inhibitory motor control is a key function throughout the lifespan. Considering the fact that inhibitory motor function gradually declines with advancing age, it is not surprising that the study of motor inhibition in this age group is gaining considerable interest. In general, we can distinguish between two prominent types of motor inhibition, namely proactive and reactive inhibition. Whereas the anticipation for upcoming stops (proactive inhibition) appears readily preserved at older age, the ability to stop an already planned or initiated action (reactive inhibition) generally declines with advancing age. The differential impact of aging on proactive and reactive inhibition at the behavioral level prompts questions about the neural architecture underlying both types of inhibitory motor control. Here we will not only highlight the underlying structural brain properties of proactive and reactive inhibitory control but we will also discuss recent developments in brain-behavioral approaches, namely the registration of neurochemical compounds using magnetic resonance spectroscopy. This technique allows for the direct detection of the primary inhibitory neurotransmitter in the brain, i.e., γ-aminobutyric acid, across the broader cortical/subcortical territory, thereby opening new perspectives for better understanding the neural mechanisms mediating efficient inhibitory control in the context of healthy aging. Ultimately, these insights may contribute to the development of interventions specifically designed to counteract age-related declines in motor inhibition.
Collapse
Affiliation(s)
- Lisa Pauwels
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Celine Maes
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Lize Hermans
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences, Leuven, Belgium
| | - Stephan P Swinnen
- KU Leuven, Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, Group Biomedical Sciences; Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| |
Collapse
|
25
|
Tan J, Iyer KK, Tang AD, Jamil A, Martins RN, Sohrabi HR, Nitsche MA, Hinder MR, Fujiyama H. Modulating functional connectivity with non-invasive brain stimulation for the investigation and alleviation of age-associated declines in response inhibition: A narrative review. Neuroimage 2018; 185:490-512. [PMID: 30342977 DOI: 10.1016/j.neuroimage.2018.10.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 10/12/2018] [Accepted: 10/17/2018] [Indexed: 12/25/2022] Open
Abstract
Response inhibition, the ability to withhold a dominant and prepotent response following a change in circumstance or sensory stimuli, declines with advancing age. While non-invasive brain stimulation (NiBS) has shown promise in alleviating some cognitive and motor functions in healthy older individuals, NiBS research focusing on response inhibition has mostly been conducted on younger adults. These extant studies have primarily focused on modulating the activity of distinct neural regions known to be critical for response inhibition, including the right inferior frontal gyrus (rIFG) and the pre-supplementary motor area (pre-SMA). However, given that changes in structural and functional connectivity have been associated with healthy aging, this review proposes that NiBS protocols aimed at modulating the functional connectivity between the rIFG and pre-SMA may be the most efficacious approach to investigate-and perhaps even alleviate-age-related deficits in inhibitory control.
Collapse
Affiliation(s)
- Jane Tan
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia
| | - Kartik K Iyer
- Centre for Clinical Research, Faculty of Medicine, University of Queensland, Brisbane, Australia
| | - Alexander D Tang
- Experimental and Regenerative Neurosciences, School of Biological Sciences, University of Western Australia, Australia
| | - Asif Jamil
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Ralph N Martins
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Hamid R Sohrabi
- Centre of Excellence for Alzheimer's Disease Research and Care, School of Medical and Health Sciences, Edith Cowan University, Western Australia, Australia; Department of Biomedical Sciences, Macquarie University, New South Wales, Australia; The School of Psychiatry and Clinical Neurosciences, University of Western Australia, Western Australia, Australia
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany; Department of Neurology, University Medical Hospital Bergmannsheil, Bochum, Germany
| | - Mark R Hinder
- Sensorimotor Neuroscience and Ageing Research Laboratory, School of Medicine (Division of Psychology), University of Tasmania, Hobart, Australia
| | - Hakuei Fujiyama
- Action and Cognition Laboratory, School of Psychology and Exercise Science, Murdoch University, Perth, Australia.
| |
Collapse
|
26
|
Competing Motivations: Proactive Response Inhibition Toward Addiction-Related Stimuli in Quitting-Motivated Individuals. J Gambl Stud 2018; 34:785-806. [PMID: 29067545 DOI: 10.1007/s10899-017-9722-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We examined whether addiction-related cues impact proactive inhibition (the restraint of actions in preparation for stopping) in individuals who are motivated to quit gambling or cannabis use. In Study 1, treatment-seeking individuals with cannabis use disorder and matched controls performed a stop-signal task that required them to inhibit categorizing cannabis or neutral pictures, and within varying levels of stop-signal probability. In Study 2, two groups of individuals, who applied to a voluntary self-exclusion program toward gambling, performed the stop-task following relaxation or gambling craving induction, with results compared to non-gamblers. Study 1 showed that despite being less efficient in proactive inhibition, individuals with cannabis use disorder exhibited heightened proactive inhibition toward cannabis cues. In Study 2, proactive inhibition toward gambling cues was heightened in gamblers after craving, but the degree of proactive adjustment decreased as a function of induced changes in gambling-related motivation. Present findings demonstrate that exposure to addiction-related cues can modulate proactive inhibition in individuals who are motivated to restrict their addictive behaviors.
Collapse
|
27
|
Hu S, Ide JS, Chao HH, Castagna B, Fischer KA, Zhang S, Li CSR. Structural and functional cerebral bases of diminished inhibitory control during healthy aging. Hum Brain Mapp 2018; 39:5085-5096. [PMID: 30113124 DOI: 10.1002/hbm.24347] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/23/2018] [Accepted: 07/30/2018] [Indexed: 12/20/2022] Open
Abstract
Inhibitory control or the ability to refrain from incorrect responses is a critical executive function known to diminish during aging. Imaging studies have elucidated cerebral changes that may underlie the age-related deficits. However, it remains unclear whether the structural and functional changes occur in the same brain regions and whether reduced gray matter volumes (GMV) mediate decreased activation during inhibition. Here, in a sample of 149 participants, we addressed the issues using structural and functional magnetic resonance imaging. Individual's response inhibition was evaluated by the stop signal reaction time (SSRT) in a stop signal task. The results showed that age was associated with prolonged SSRT across participants. Many cortical and subcortical regions demonstrated age-related reduction in GMV and activation to response inhibition. Additionally, age-related diminution in inhibitory control, as indexed by the SSRT, was associated with both shared and distinct morphometric and functional changes. Voxel-based morphometry demonstrated age-related reduction in GMV in the right dorsolateral prefrontal cortex and caudate head as well as bilateral insula, in association with prolonged SSRT. In a contrast of stop success versus go success trials, age was associated with lower activation in the medial and inferior frontal cortex and inferior parietal cortex. Further, reduction in GMV mediated age-related differences in activations only of the medial prefrontal cortex, providing limited evidence for structure function association. Thus, the decline in inhibitory control, as evidenced in the stop signal task, manifest with both shared and distinct structural and functional processes during aging.
Collapse
Affiliation(s)
- Sien Hu
- Department of Psychology, State University of New York at Oswego, Oswego, New York
| | - Jaime S Ide
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Herta H Chao
- Department of Medicine, Yale University School of Medicine, New Haven, Connecticut.,VA Connecticut Healthcare Systems, West Haven, Connecticut
| | - Brittney Castagna
- Department of Psychology, State University of New York at Oswego, Oswego, New York
| | - Kimberly A Fischer
- Department of Psychology, State University of New York at Oswego, Oswego, New York
| | - Sheng Zhang
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Chiang-Shan R Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.,Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut.,Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, Connecticut.,Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
28
|
Brain GABA Levels Are Associated with Inhibitory Control Deficits in Older Adults. J Neurosci 2018; 38:7844-7851. [PMID: 30064995 DOI: 10.1523/jneurosci.0760-18.2018] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 07/06/2018] [Accepted: 07/24/2018] [Indexed: 01/20/2023] Open
Abstract
Healthy aging is accompanied by motor inhibition deficits that involve a slower process of stopping a prepotent motor response (i.e., reactive inhibition) rather than a diminished ability to anticipate stopping (i.e., proactive inhibition). Some studies suggest that efficient motor inhibition is related to GABAergic function. Since age-related alterations in the GABA system have also been reported, motor inhibition impairments might be linked to GABAergic alterations in the cortico-subcortical network that mediates motor inhibition. Thirty young human adults (mean age, 23.2 years; age range, 18-34 years; 14 men) and 29 older human adults (mean age, 67.5 years; age range, 60-74 years; 13 men) performed a stop-signal task with varying levels of stop-signal probability. GABA+ levels were measured with magnetic resonance spectroscopy (MRS) in right inferior frontal cortex, pre-supplementary motor area (pre-SMA), left sensorimotor cortex, bilateral striatum, and occipital cortex. We found that reactive inhibition was worse in older adults compared with young adults, as indicated by longer stop-signal reaction times (SSRTs). No group differences in proactive inhibition were observed as both groups slowed down their response to a similar degree with increasing stop-signal probability. The MRS results showed that tissue-corrected GABA+ levels were on average lower in older as compared with young adults. Moreover, older adults with lower GABA+ levels in the pre-SMA were slower at stopping (i.e., had longer SSRTs). These findings suggest a role for the GABA system in reactive inhibition deficits.SIGNIFICANCE STATEMENT Inhibitory control has been shown to diminish as a consequence of aging. We investigated whether the ability to stop a prepotent motor response and the ability to prepare to stop were related to GABA levels in different regions of the network that was previously identified to mediate inhibitory control. Overall, we found lower GABA levels in older adults compared with young adults. Importantly, those older adults who were slower at stopping had less GABA in the pre-supplementary motor area, a key node of the inhibitory control network. We propose that deficits in the stop process in part depend on the integrity of the GABA system.
Collapse
|
29
|
Neuro-Cognitive Effects of Acute Tyrosine Administration on Reactive and Proactive Response Inhibition in Healthy Older Adults. eNeuro 2018; 5:eN-NWR-0035-17. [PMID: 30094335 PMCID: PMC6084775 DOI: 10.1523/eneuro.0035-17.2018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 03/01/2018] [Accepted: 03/24/2018] [Indexed: 01/02/2023] Open
Abstract
The aging brain is characterized by altered dopamine signaling. The amino acid tyrosine, a catecholamine precursor, is known to improve cognitive performance in young adults, especially during high environmental demands. Tyrosine administration might also affect catecholamine transmission in the aging brain, thereby improving cognitive functioning. In healthy older adults, impairments have been demonstrated in two forms of response inhibition: reactive inhibition (outright stopping) and proactive inhibition (anticipatory response slowing) under high information load. However, no study has directly compared the effects of a catecholamine precursor on reactive and load-dependent proactive inhibition. In this study we explored the effects of tyrosine on reactive and proactive response inhibition and signal in dopaminergically innervated fronto-striatal regions. Depending on age, tyrosine might lead to beneficial or detrimental neurocognitive effects. We aimed to address these hypotheses in 24 healthy older human adults (aged 61-72 years) using fMRI in a double blind, counterbalanced, placebo-controlled, within-subject design. Across the group, tyrosine did not alter reactive or proactive inhibition behaviorally but did increase fronto-parietal proactive inhibition-related activation. When taking age into account, tyrosine affected proactive inhibition both behaviorally and neurally. Specifically, increasing age was associated with a greater detrimental effect of tyrosine compared with placebo on proactive slowing. Moreover, with increasing age, tyrosine decreased fronto-striatal and parietal proactive signal, which correlated positively with tyrosine's effects on proactive slowing. Concluding, tyrosine negatively affected proactive response slowing and associated fronto-striatal activation in an age-dependent manner, highlighting the importance of catecholamines, perhaps particularly dopamine, for proactive response inhibition in older adults.
Collapse
|
30
|
Brevers D, Dubuisson E, Dejonghe F, Dutrieux J, Petieau M, Cheron G, Verbanck P, Foucart J. Proactive and Reactive Motor Inhibition in Top Athletes Versus Nonathletes. Percept Mot Skills 2018; 125:289-312. [PMID: 29310525 DOI: 10.1177/0031512517751751] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We examined proactive (early restraint in preparation for stopping) and reactive (late correction to stop ongoing action) motor response inhibition in two groups of participants: professional athletes ( n = 28) and nonathletes ( n = 25). We recruited the elite athletes from Belgian national taekwondo and fencing teams. We estimated proactive and reactive inhibition with a modified version of the stop-signal task (SST) in which participants inhibited categorizing left/right arrows. The probability of the stop signal was manipulated across blocks of trials by providing probability cues from the background computer screen color (green = 0%, yellow =17%, orange = 25%, red = 33%). Participants performed two sessions of the SST, where proactive inhibition was operationalized with increased go-signal reaction time as a function of increased stop-signal probability and reactive inhibition was indicated by stop-signal reaction time latency. Athletes exhibited higher reactive inhibition performance than nonathletes. In addition, athletes exhibited higher proactive inhibition than nonathletes in Session 1 (but not Session 2) of the SST. As top-level athletes exhibited heightened reactive inhibition and were faster to reach and maintain consistent proactive motor response inhibition, these results confirm an evaluative process that can discriminate elite athleticism through a fine-grained analysis of inhibitory control.
Collapse
Affiliation(s)
- Damien Brevers
- 1 Laboratory of Psychological Medicine and Addictology, Faculty of Medicine, CHU-Brugmann, Université Libre de Bruxelles, Belgium.,2 Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium
| | - Etienne Dubuisson
- 2 Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium.,3 Physiotherapy Section, Haute Ecole Libre de Bruxelles Ilya Prigogine, Belgium
| | - Fabien Dejonghe
- 3 Physiotherapy Section, Haute Ecole Libre de Bruxelles Ilya Prigogine, Belgium
| | - Julien Dutrieux
- 2 Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium
| | - Mathieu Petieau
- 4 Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium
| | - Guy Cheron
- 4 Laboratory of Neurophysiology and Movement Biomechanics, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium
| | - Paul Verbanck
- 1 Laboratory of Psychological Medicine and Addictology, Faculty of Medicine, CHU-Brugmann, Université Libre de Bruxelles, Belgium.,2 Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium
| | - Jennifer Foucart
- 2 Research in Psychology Applied to Motor Learning, Faculty of Motor Sciences, Université Libre de Bruxelles, Belgium.,3 Physiotherapy Section, Haute Ecole Libre de Bruxelles Ilya Prigogine, Belgium
| |
Collapse
|
31
|
Trajectories of brain system maturation from childhood to older adulthood: Implications for lifespan cognitive functioning. Neuroimage 2017; 163:125-149. [DOI: 10.1016/j.neuroimage.2017.09.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/31/2017] [Accepted: 09/12/2017] [Indexed: 11/24/2022] Open
|
32
|
Perry A, Wen W, Kochan NA, Thalamuthu A, Sachdev PS, Breakspear M. The independent influences of age and education on functional brain networks and cognition in healthy older adults. Hum Brain Mapp 2017; 38:5094-5114. [PMID: 28685910 PMCID: PMC6866868 DOI: 10.1002/hbm.23717] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/19/2017] [Accepted: 06/22/2017] [Indexed: 12/26/2022] Open
Abstract
Healthy aging is accompanied by a constellation of changes in cognitive processes and alterations in functional brain networks. The relationships between brain networks and cognition during aging in later life are moderated by demographic and environmental factors, such as prior education, in a poorly understood manner. Using multivariate analyses, we identified three latent patterns (or modes) linking resting-state functional connectivity to demographic and cognitive measures in 101 cognitively normal elders. The first mode (P = 0.00043) captures an opposing association between age and core cognitive processes such as attention and processing speed on functional connectivity patterns. The functional subnetwork expressed by this mode links bilateral sensorimotor and visual regions through key areas such as the parietal operculum. A strong, independent association between years of education and functional connectivity loads onto a second mode (P = 0.012), characterized by the involvement of key hub regions. A third mode (P = 0.041) captures weak, residual brain-behavior relations. Our findings suggest that circuits supporting lower level cognitive processes are most sensitive to the influence of age in healthy older adults. Education, and to a lesser extent, executive functions, load independently onto functional networks-suggesting that the moderating effect of education acts upon networks distinct from those vulnerable with aging. This has important implications in understanding the contribution of education to cognitive reserve during healthy aging. Hum Brain Mapp 38:5094-5114, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Alistair Perry
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- Program of Mental Health Research, QIMR Berghofer Medical Research InstituteHerstonQueensland4006Australia
| | - Wei Wen
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Nicole A. Kochan
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Perminder S. Sachdev
- Centre for Healthy Brain Ageing (CHeBA), School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
- School of PsychiatryUniversity of New South WalesSydneyNew South Wales2052Australia
| | - Michael Breakspear
- Program of Mental Health Research, QIMR Berghofer Medical Research InstituteHerstonQueensland4006Australia
- Metro North Mental Health Service, Royal Brisbane and Women's HospitalHerstonQueensland4029Australia
| |
Collapse
|
33
|
Petrican R, Grady CL. Contextual and Developmental Differences in the Neural Architecture of Cognitive Control. J Neurosci 2017; 37:7711-7726. [PMID: 28716967 PMCID: PMC6596643 DOI: 10.1523/jneurosci.0667-17.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 06/05/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022] Open
Abstract
Because both development and context impact functional brain architecture, the neural connectivity signature of a cognitive or affective predisposition may similarly vary across different ages and circumstances. To test this hypothesis, we investigated the effects of age and cognitive versus social-affective context on the stable and time-varying neural architecture of inhibition, the putative core cognitive control component, in a subsample (N = 359, 22-36 years, 174 men) of the Human Connectome Project. Among younger individuals, a neural signature of superior inhibition emerged in both stable and dynamic connectivity analyses. Dynamically, a context-free signature emerged as stronger segregation of internal cognition (default mode) and environmentally driven control (salience, cingulo-opercular) systems. A dynamic social-affective context-specific signature was observed most clearly in the visual system. Stable connectivity analyses revealed both context-free (greater default mode segregation) and context-specific (greater frontoparietal segregation for higher cognitive load; greater attentional and environmentally driven control system segregation for greater reward value) signatures of inhibition. Superior inhibition in more mature adulthood was typified by reduced segregation in the default network with increasing reward value and increased ventral attention but reduced cingulo-opercular and subcortical system segregation with increasing cognitive load. Failure to evidence this neural profile after the age of 30 predicted poorer life functioning. Our results suggest that distinguishable neural mechanisms underlie individual differences in cognitive control during different young adult stages and across tasks, thereby underscoring the importance of better understanding the interplay among dispositional, developmental, and contextual factors in shaping adaptive versus maladaptive patterns of thought and behavior.SIGNIFICANCE STATEMENT The brain's functional architecture changes across different contexts and life stages. To test whether the neural signature of a trait similarly varies, we investigated cognitive versus social-affective context effects on the stable and time-varying neural architecture of inhibition during a period of neurobehavioral fine-tuning (age 22-36 years). Younger individuals with superior inhibition showed distinguishable context-free and context-specific neural profiles, evidenced in both static and dynamic connectivity analyses. More mature individuals with superior inhibition evidenced only context-specific profiles, revealed in the static connectivity patterns linked to increased reward or cognitive load. Delayed expression of this profile predicted poorer life functioning. Our results underscore the importance of understanding the interplay among dispositional, developmental, and contextual factors in shaping behavior.
Collapse
Affiliation(s)
- Raluca Petrican
- Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada, and
| | - Cheryl L Grady
- Rotman Research Institute, Toronto, Ontario M6A 2E1, Canada, and
- Departments of Psychology and Psychiatry, University of Toronto, Ontario M6A 2E1, Canada
| |
Collapse
|
34
|
The proactive self-control of actions: Time-course of underlying brain activities. Neuroimage 2017; 156:388-393. [DOI: 10.1016/j.neuroimage.2017.05.043] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 05/05/2017] [Accepted: 05/18/2017] [Indexed: 02/04/2023] Open
|
35
|
Lee HH, Hsieh S. Resting-State fMRI Associated with Stop-Signal Task Performance in Healthy Middle-Aged and Elderly People. Front Psychol 2017; 8:766. [PMID: 28553253 PMCID: PMC5427072 DOI: 10.3389/fpsyg.2017.00766] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/26/2017] [Indexed: 12/12/2022] Open
Abstract
Several brain regions and connectivity networks may be altered as aging occurs. We are interested in investigating if resting-state functional magnetic resonance imaging (RS-fMRI) can also be valid as an indicator of individual differences in association with inhibition performance among aged (including middle-aged) people. Seventy-two healthy adults (40–77 years of age) were recruited. Their RS-fMRI images were acquired and analyzed via two cluster-analysis methods: local synchronization of spontaneous brain activity measured by regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) of blood oxygenation level-dependent signals. After the RS-fMRI acquisition, participants were instructed to perform a stop-signal task, in which the stop signal reaction time (SSRT) was calculated based on the horse-race model. Among participants, the ReHo/fALFF and SSRT were correlated with and without partialling-out the effect of age. The results of this study showed that, although aging may alter brain networks, the spontaneous activity of the age-related brain networks can still serve as an effective indicator of individual differences in association with inhibitory performance in healthy middle-aged and elderly people. This is the first study to use both ReHo and fALFF on the same dataset for conjunction analyses showing the relationship between stopping performance and RS-fMRI in the elderly population. The relationship may have practical clinical applications. Based on the overall results, the current study demonstrated that the bilateral inferior frontal gyrus and parts of the default mode network activation were negatively correlated with SSRT, suggesting that they have crucial roles in inhibitory function. However, the pre-supplementary motor area (pre-SMA) and SMA played only a small role during the resting state in association with stopping performance.
Collapse
Affiliation(s)
- Hsing-Hao Lee
- Department of Psychology, National Cheng Kung UniversityTainan, Taiwan
| | - Shulan Hsieh
- Department of Psychology, National Cheng Kung UniversityTainan, Taiwan.,Institue of Allied Health Sciences, National Cheng Kung UniversityTainan, Taiwan.,Department and Institute of Public Health, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
36
|
Strategies for stimulus selective stopping in the elderly. Acta Psychol (Amst) 2017; 173:122-131. [PMID: 28063944 DOI: 10.1016/j.actpsy.2016.12.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 12/08/2016] [Accepted: 12/20/2016] [Indexed: 11/21/2022] Open
Abstract
This study consisted of two primary aims: (1) to determine if different age groups exhibited different strategies (based on their behavioral reaction time [RT] patterns) while performing a stop-signal task and (2) whether there were age-related differences in reactive and/or proactive control processes. Twenty-four younger adults (20-30years) and 24 older adults (61-76years) participated in this study. Participants performed a stop-signal task, which included a choice RT block, global stop-signal block, and stimulus-selective stop-signal block. Participants' strategies were classified using the Bayes factor to support or reject the null hypotheses at the individual level based on paired comparisons among the mean no-signal, signal-respond, and ignore RTs. We found that older adults used a similar pattern of strategies as younger adults in performing a stimulus-selective stop-signal task; most of them utilized either the Stop then Discriminate strategy or Discriminate then Stop strategy with dependency between go and stop processing. In addition, while older adults exhibited an impaired reactive control deficiency reflected on their increased stop-signal RTs in the stimulus-selective stop-signal task, they did not show an impaired proactive control process because their go trials' RT differences between the choice RT and stop-signal blocks did not differ significantly from those of young adults.
Collapse
|
37
|
Duque J, Petitjean C, Swinnen SP. Effect of Aging on Motor Inhibition during Action Preparation under Sensory Conflict. Front Aging Neurosci 2016; 8:322. [PMID: 28082896 PMCID: PMC5186800 DOI: 10.3389/fnagi.2016.00322] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 12/12/2016] [Indexed: 01/15/2023] Open
Abstract
Motor behaviors often require refraining from selecting options that may be part of the repertoire of natural response tendencies but that are in conflict with ongoing goals. The presence of sensory conflict has a behavioral cost but the latter can be attenuated in contexts where control processes are recruited because conflict is expected in advance, producing a behavioral gain compared to contexts where conflict occurs in a less predictable way. In the present study, we investigated the corticospinal correlates of these behavioral effects (both conflict-driven cost and context-related gain). To do so, we measured motor-evoked potentials (MEPs) elicited by transcranial magnetic stimulation (TMS) over the primary motor cortex (M1) of young and healthy older adults performing the Eriksen Flanker Task. Subjects performed button-presses according to a central arrow, flanked by irrelevant arrows pointing in the same (congruent trial) or opposite direction (incongruent trial). Conflict expectation was manipulated by changing the probability of congruent and incongruent trials in a given block. It was either high (mostly incongruent blocks, MIB, 80% incongruent trials) or low (mostly congruent blocks, MCB, 80% congruent). The MEP data indicate that the conflict-driven behavioral cost is associated with a strong increase in inappropriate motor activity regardless of the age of individuals, as revealed by larger MEPs in the non-responding muscle in incongruent than in congruent trials. However, this aberrant facilitation disappeared in both groups of subjects when conflict could be anticipated (i.e., in the MIBs) compared to when it occurred in a less predictably way (MCBs), probably allowing the behavioral gain observed in both the young and the older individuals. Hence, the ability to overcome and anticipate conflict was surprisingly preserved in the older adults. Nevertheless, some control processes are likely to evolve with age because the behavioral gain observed in the MIB context was associated with an attenuated suppression of MEPs at the time of the imperative signal (i.e., before conflict is actually detected) in older individuals, suggesting altered motor inhibition, compared to young individuals. In addition, the behavioral analysis suggests that young and older adults rely on different strategies to cope with conflict, including a change in speed-accuracy tradeoff.
Collapse
Affiliation(s)
- Julie Duque
- Institute of Neuroscience, Université catholique de Louvain Brussels, Belgium
| | - Charlotte Petitjean
- Institute of Neuroscience, Université catholique de Louvain Brussels, Belgium
| | - Stephan P Swinnen
- Movement Control and Neuroplasticity Research Group, Group Biomedical Sciences, KU Leuven Leuven, Belgium
| |
Collapse
|
38
|
Thielen JW, Kärgel C, Müller BW, Rasche I, Genius J, Bus B, Maderwald S, Norris DG, Wiltfang J, Tendolkar I. Aerobic Activity in the Healthy Elderly Is Associated with Larger Plasticity in Memory Related Brain Structures and Lower Systemic Inflammation. Front Aging Neurosci 2016; 8:319. [PMID: 28082894 PMCID: PMC5183624 DOI: 10.3389/fnagi.2016.00319] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/09/2016] [Indexed: 11/24/2022] Open
Abstract
Cognitive abilities decline over the time course of our life, a process, which may be mediated by brain atrophy and enhanced inflammatory processes. Lifestyle factors, such as regular physical activities have been shown to counteract those noxious processes and are assumed to delay or possibly even prevent pathological states, such as dementing disorders. Whereas the impact of lifestyle and immunological factors and their interactions on cognitive aging have been frequently studied, their effects on neural parameters as brain activation and functional connectivity are less well studied. Therefore, we investigated 32 healthy elderly individuals (60.4 ± 5.0 SD; range 52–71 years) with low or high level of self-reported aerobic physical activity at the time of testing. A higher compared to a lower level in aerobic physical activity was associated with an increased encoding related functional connectivity in an episodic memory network comprising mPFC, thalamus, hippocampus precuneus, and insula. Moreover, encoding related functional connectivity of this network was associated with decreased systemic inflammation, as measured by systemic levels of interleukin 6.
Collapse
Affiliation(s)
- Jan-Willem Thielen
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany
| | - Christian Kärgel
- Division of Forensic Psychiatry, Department of Psychiatry, Psychotherapy and Preventive Medicine, LWL-University Hospital Bochum Bochum, Germany
| | - Bernhard W Müller
- Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-EssenEssen, Germany; Department of Psychology, University of WuppertalWuppertal, Germany
| | - Ina Rasche
- Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-Essen Essen, Germany
| | - Just Genius
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; AbbVie Neuroscience DevelopmentLudwigshafen, Germany
| | - Boudewijn Bus
- Department of Psychiatry, Radboud University Nijmegen Medical Center Nijmegen, Netherlands
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-Duisburg Essen, Germany
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen Göttingen, Germany
| | - Indira Tendolkar
- Donders Institute for Brain, Cognition and Behaviour, Radboud University NijmegenNijmegen, Netherlands; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Essen-DuisburgEssen, Germany; Department for Psychiatry and Psychotherapy, LVR-Hospital Essen, Faculty of Medicine, University of Duisburg-EssenEssen, Germany; Department of Psychiatry, Radboud University Nijmegen Medical CenterNijmegen, Netherlands
| |
Collapse
|
39
|
Stopping ability in younger and older adults: Behavioral and event-related potential. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2016; 17:348-363. [DOI: 10.3758/s13415-016-0483-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Turgeon M, Lustig C, Meck WH. Cognitive Aging and Time Perception: Roles of Bayesian Optimization and Degeneracy. Front Aging Neurosci 2016; 8:102. [PMID: 27242513 PMCID: PMC4870863 DOI: 10.3389/fnagi.2016.00102] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022] Open
Abstract
This review outlines the basic psychological and neurobiological processes associated with age-related distortions in timing and time perception in the hundredths of milliseconds-to-minutes range. The difficulty in separating indirect effects of impairments in attention and memory from direct effects on timing mechanisms is addressed. The main premise is that normal aging is commonly associated with increased noise and temporal uncertainty as a result of impairments in attention and memory as well as the possible reduction in the accuracy and precision of a central timing mechanism supported by dopamine-glutamate interactions in cortico-striatal circuits. Pertinent to these findings, potential interventions that may reduce the likelihood of observing age-related declines in timing are discussed. Bayesian optimization models are able to account for the adaptive changes observed in time perception by assuming that older adults are more likely to base their temporal judgments on statistical inferences derived from multiple trials than on a single trial's clock reading, which is more susceptible to distortion. We propose that the timing functions assigned to the age-sensitive fronto-striatal network can be subserved by other neural networks typically associated with finely-tuned perceptuo-motor adjustments, through degeneracy principles (different structures serving a common function).
Collapse
Affiliation(s)
- Martine Turgeon
- Douglas Mental Health University Institute, McGill UniversityMontreal, QC, Canada
| | - Cindy Lustig
- Department of Psychology, University of MichiganAnn Arbor, MI, USA
| | - Warren H. Meck
- Department of Psychology and Neuroscience, Duke UniversityDurham, NC, USA
| |
Collapse
|