1
|
Bertoli M, Zappasodi F, Croce P, De Iure D, Pettorruso M, Cavallotto C, Martinotti G, Di Matteo R, Brunetti M. Inhibitory control in Bipolar Disorder disclosed by theta band modulation. J Affect Disord 2025; 379:58-71. [PMID: 40058466 DOI: 10.1016/j.jad.2025.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 02/11/2025] [Accepted: 03/05/2025] [Indexed: 04/12/2025]
Abstract
BACKGROUND Cognitive inhibition is key to cognitive control in healthy and psychiatric conditions. Bipolar Disorder (BD) individuals display a range of inhibitory deficits and high levels of impulsivity across all stages of the disease, including euthymia. METHODS We tested how the inhibition of heuristics in favor of analytical strategies influences the elaboration of sentences with logical quantifiers by means of a sentence-picture matching task in which the processing of quantified sentences containing the logical universal and particular quantifiers was required. Behavioral and brain oscillatory responses were assessed employing EEG recordings. RESULTS In Experiment 1, in a group of healthy volunteers, we demonstrated how the presence of a universal quantifier generates an inhibition, characterized by a high cognitive load, which is resolved at the expense of a poorer behavioral performance compared to a lower cognitive load and neutral control task. In Experiment 2, comparing healthy adults and BD patients, EEG time-frequency analysis showed a different modulation of the theta frequency band localized centrally in the medial frontal areas and representative of the different degrees of cognitive control between groups. LIMITATIONS Electrophysiological description should be interpreted with caution in light of the high signal-to-noise ratio determined by the complexity of the task. CONCLUSIONS Even in euthymia, BD limited availability of resources for cognitive inhibition impacts the functionality of a fronto-parietal cortical network, responsible for cognitive control, and orchestrated by the activity of frontal areas synchronized in theta and beta frequency.
Collapse
Affiliation(s)
- Massimo Bertoli
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy.
| | - Filippo Zappasodi
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Pierpaolo Croce
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Danilo De Iure
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Clara Cavallotto
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Giovanni Martinotti
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Rosalia Di Matteo
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| | - Marcella Brunetti
- Department of Neuroscience, Imaging and Clinical Sciences, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, University 'G. D'Annunzio' of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
2
|
Ruiz-Martínez FJ, Muñoz-Caracuel M, Muñoz V, Treviño AG, Gómez CM. Event-Related Spectral Perturbations differences analyzed in standard-deviant tone sequences presented in passive and active conditions. Neuroscience 2025; 571:19-30. [PMID: 39993666 DOI: 10.1016/j.neuroscience.2025.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 02/01/2025] [Accepted: 02/11/2025] [Indexed: 02/26/2025]
Abstract
The predictive coding theory, although a well-supported framework for understanding brain processing, remains elusive regarding how different brain rhythms contribute to error prediction and modify the a priori probabilities of predictive events. This study addresses this issue by analyzing Event-Related Spectral Perturbations (ERSP) generated during an auditory oddball paradigm presented in both a passive and active condition. The design involved sequences of four tones, where the last tone was either predictable (standard, S), completing the scale, or less predictable (deviant, D) when the first tone was occasionally repeated. In the passive condition, participants were instructed to ignore the sounds, whereas, in the active condition, they were asked to press the up or down arrow on a keyboard depending on whether the last tone of the sequence presented a higher or lower frequency than the previous one. This experimental design aimed to bias cognitive processing towards predictable (S) or unpredictable scenarios (D) in two different conditions: passive and attentional. EEG data from 13 channels were analyzed with Morlet wavelets, revealing event-related synchronization (ERS) and desynchronization (ERD) induced by the stimuli. Early theta activity was key in computing prediction errors and updating next-trial expectations. In the active condition, theta responses were higher in D than in S trials, indicating enhanced prediction error processing with attention. Early beta activity also increased during D, likely reflecting motor adjustments. These findings emphasize the critical role of early theta rhythms and the amplifying effect of attention on prediction error processing.
Collapse
Affiliation(s)
| | - Manuel Muñoz-Caracuel
- Department of Experimental Psychology, University of Seville, Seville, Spain; Mental Health Unit, Virgen del Rocio Hospital, Seville, Spain
| | - Vanesa Muñoz
- Department of Experimental Psychology, University of Seville, Seville, Spain
| | | | - Carlos M Gómez
- Department of Experimental Psychology, University of Seville, Seville, Spain
| |
Collapse
|
3
|
Duan K, Xie S, Xie X, Obermayer K, Zheng D, Zhang Y, Zhang X. Neural dynamics underlying the cue validity effect in target conflict resolution. Cereb Cortex 2025; 35:bhaf066. [PMID: 40168771 DOI: 10.1093/cercor/bhaf066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Cue validity significantly influences attention guidance, either facilitating or hindering the ability for conflict resolution. Previous studies have demonstrated that the validity effect and conflict resolution are associated with better/worse behavioral performance and specific neural activations; however, the underlying neural mechanism of their interaction remains unclear. We hypothesized that the effect of cue validity might sustain specific sequences of neural activities until target occurrence and throughout the subsequent conflict resolution. In this study, we recorded the scalp electroencephalography during the Attention Network Test paradigm to investigate their interactions in neural dynamics. Specifically, we performed a cluster-level channel-time-frequency analysis to explore significant time-frequency neural activity patterns associated with these interactions, in scalp regions of interest determined by a data-driven strategy. Our results revealed a string of significant neural dynamics in the frontal and parietal regions, including initial broad-band (especially the gamma-band) activations and subsequent complex cognitive processes evoked/effected by the invalid cue, that were firstly elicited. Finally, the resolution of conflict was completed by the frontal behavior-related theta-band power reduction. In summary, our findings advanced the understanding of the temporal and spectral sequences of neural dynamics, with the key regions involved in the resolution of conflict after invalid cueing.
Collapse
Affiliation(s)
- Keyi Duan
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| | - Songyun Xie
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| | - Xinzhou Xie
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| | - Klaus Obermayer
- Faculty of Electrical Engineering and Computer Science, Technische Universität Berlin, Marchstrasse 23, D-10587 Berlin, Germany
| | - Dalu Zheng
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| | - Ying Zhang
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| | - Xin Zhang
- Northwestern Polytechnical University, 1st Dongxiang Road, Chang'an District, Xi'an 710072, Shaanxi, People's Republic of China
| |
Collapse
|
4
|
Liu F, Li F, Du B. The role of brain oscillatory activity in processing the informative value of feedback during rule acquisition. Eur J Neurosci 2025; 61. [PMID: 39676282 DOI: 10.1111/ejn.16645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024]
Abstract
Information conveyed through feedback enables individuals to learn new routines and better adapt to their environment. However, the neural mechanisms of rule-related information of feedback have not been fully elucidated. Herein, we quantified the effect of informative value on feedback via a rule induction task (RIT), in which participants were required to find the correct sorting rule based on feedback. To disengage the effects of informative value and valence on feedback in the RIT, a control task was developed in which feedback only involved the valence aspect and no reference for subsequent selections. We measured power and intertrial phase clustering (ITPC) values via EEG to determine the neural mechanisms of rule-related feedback. The results revealed that (1) differences in oscillatory activities between positive and negative feedback were only observed during the control task, and no such effect was found in the RIT task. This finding suggests that the participants paid more attention to rule-related information than to the correctness of feedback during rule learning. (2) The task differences under positive or negative feedback were associated with the delta-theta and alpha-beta bands, and this pattern was similar within the frontal and parietal regions. These findings suggest that the processing of rule-related information of feedback relies on broad frequency bands within the frontoparietal cortex to facilitate rule information integration. In summary, these findings indicate that multiple frequency bands are involved in encoding the informative value aspect of feedback, and individuals rely on this aspect of feedback rather than valence during rule learning.
Collapse
Affiliation(s)
- Fangfang Liu
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang, China
| | - Bin Du
- Department of Psychology, Institute of Education, China West Normal University, Nanchong, China
| |
Collapse
|
5
|
Abid A, Hamrick HC, Mach RJ, Hager NM, Judah MR. Emotion regulation strategies explain associations of theta and Beta with positive affect. Psychophysiology 2025; 62:e14745. [PMID: 39690435 DOI: 10.1111/psyp.14745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/19/2024]
Abstract
Maladaptive emotion regulation (ER) strategies are a transdiagnostic construct in psychopathology. ER depends on cognitive control, so brain activity associated with cognitive control, such as frontal theta and beta, may be a factor in ER. This study investigated the association of theta and beta power with positive affect and whether emotion regulation strategies explain this association. One hundred and twenty-one undergraduate students (mean age = 20.74, SD = 5.29; 73% women) completed self-report questionnaires, including the Emotion Regulation Questionnaire and the Positive and Negative Affect Schedule. Spectral analysis was performed on resting state frontal electroencephalogram activity that was collected for eight 1-min periods of alternating open and closed eyes. Relative beta and theta band power were extracted relative to global field power at frontal channels. Regression analysis revealed that positive affect is significantly predicted by theta power (β = 0.24, p = .007) and beta power (β = -0.33, p < .0001). There was an indirect effect of beta power on positive affect via reappraisal, but not suppression. Additionally, theta power significantly predicted suppression, but no indirect effect was observed between theta power and positive affect. These findings are consistent with a prior study reporting a positive and negative relationship between theta and beta power, respectively, and positive affect induction. This study elucidates how modulation of theta and beta bands link to ER strategies.
Collapse
Affiliation(s)
- Arooj Abid
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Hannah C Hamrick
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Russell J Mach
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, USA
| | - Nathan M Hager
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Matt R Judah
- Department of Psychological Science, University of Arkansas, Fayetteville, Arkansas, USA
| |
Collapse
|
6
|
Lu R, Dermody N, Duncan J, Woolgar A. Aperiodic and oscillatory systems underpinning human domain-general cognition. Commun Biol 2024; 7:1643. [PMID: 39695307 DOI: 10.1038/s42003-024-07397-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 12/12/2024] [Indexed: 12/20/2024] Open
Abstract
Domain-general cognitive systems are essential for adaptive human behaviour, supporting various cognitive tasks through flexible neural mechanisms. While fMRI studies link frontoparietal network activation to increasing demands across various tasks, the electrophysiological mechanisms underlying this domain-general response to demand remain unclear. Here, we used MEG/EEG, and separated the aperiodic and oscillatory components of the signals to examine their roles in domain-general cognition across three cognitive tasks using multivariate analysis. We found that both aperiodic (broadband power, slope, and intercept) and oscillatory (theta, alpha, and beta power) components coded task demand and content across all subtasks. Aperiodic broadband power in particular strongly coded task demand, in a manner that generalised across all subtasks. Source estimation suggested that increasing cognitive demand decreased aperiodic broadband power across the brain, with the strongest modulations overlapping with the frontoparietal network. In contrast, oscillatory activity showed more localised patterns of modulation, primarily in frontal or occipital regions. These results provide insights into the electrophysiological underpinnings of human domain-general cognition, highlighting the critical role of aperiodic broadband power.
Collapse
Affiliation(s)
- Runhao Lu
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK.
| | - Nadene Dermody
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Alexandra Woolgar
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| |
Collapse
|
7
|
Pereira Soares SM, Prystauka Y, DeLuca V, Poch C, Rothman J. Brain correlates of attentional load processing reflect degree of bilingual engagement: Evidence from EEG. Neuroimage 2024; 298:120786. [PMID: 39147289 DOI: 10.1016/j.neuroimage.2024.120786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/09/2024] [Accepted: 08/12/2024] [Indexed: 08/17/2024] Open
Abstract
The present study uses electroencephalography (EEG) with an N-back task (0-, 1-, and 2-back) to investigate if and how individual bilingual experiences modulate brain activity and cognitive processes. The N-back is an especially appropriate task given recent proposals situating bilingual effects on neurocognition within the broader attentional control system (Bialystok and Craik, 2022). Beyond its working memory component, the N-Back task builds in complexity incrementally, progressively taxing the attentional system. EEG, behavioral and language/social background data were collected from 60 bilinguals. Two cognitive loads were calculated: low (1-back minus 0-back) and high (2-back minus 0-back). Behavioral performance and brain recruitment were modeled as a function of individual differences in bilingual engagement. We predicted task performance as modulated by bilingual engagement would reflect cognitive demands of increased complexity: slower reaction times and lower accuracy, and increase in theta, decrease in alpha and modulated N2/P3 amplitudes. The data show no modulation of the expected behavioral effects by degree of bilingual engagement. However, individual differences analyses reveal significant correlations between non-societal language use in Social contexts and alpha in the low cognitive load condition and age of acquisition of the L2/2L1 with theta in the high cognitive load. These findings lend some initial support to Bialystok and Craik (2022), showing how certain adaptations at the brain level take place in order to deal with the cognitive demands associated with variations in bilingual language experience and increases in attentional load. Furthermore, the present data highlight how these effects can play out differentially depending on cognitive testing/modalities - that is, effects were found at the TFR level but not behaviorally or in the ERPs, showing how the choice of analysis can be deterministic when investigating bilingual effects.
Collapse
Affiliation(s)
| | - Yanina Prystauka
- Department of Linguistic, Literary and Aesthetic Studies, University of Bergen, Bergen, Norway
| | - Vincent DeLuca
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Claudia Poch
- Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain
| | - Jason Rothman
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway; Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain; Department of Linguistics and English Language, Lancaster University, Bailrigg, Lancaster LA1 4YW, UK
| |
Collapse
|
8
|
Wendiggensen P, Beste C. How Intermittent Brain States Modulate Neurophysiological Processes in Cognitive Flexibility. J Cogn Neurosci 2023; 35:749-764. [PMID: 36724399 DOI: 10.1162/jocn_a_01970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cognitive flexibility is an essential facet of everyday life, for example, when switching between different tasks. Neurophysiological accounts on cognitive flexibility have often focused on the task switch itself, disregarding preceding processes and the possible impact of "brain states" before engaging in cognitive flexibility. In a combined working memory/task-switching paradigm, we examined how neuronal processes during cognitive flexibility are interrelated to preceding neuronal processes across time and brain regions in a sample of n = 42 healthy adults. The interrelation of alpha- and theta-band-related processes over brain states ahead and during response selection was investigated on a functional neuroanatomical level using EEG-beamforming. The results showed that response selection processes (reflected by theta-band activity) seem to be strongly connected to "idling" and preparatory brain activity states (in both the theta- and alpha-band). Notably, the superior parietal cortex seems to play a crucial role by assembling alpha-band-related inhibitory processes from the rule- and goal-based actions during "idling" brain states, namely, short-term maintenance of rules (temporal cortex), task-set reconfiguration (superior frontal/precentral regions), and perceptual control (occipital cortex). This information is further relayed to response selection processes associated with theta-band activity. Notably, when the task has to be switched, theta-band activity in the superior frontal gyrus indicates a need for cognitive control in the "idling" brain state, which also seems to be relayed by BA7. The results indicate the importance of brain activity states ahead of response selection processes for cognitive flexibility.
Collapse
|
9
|
Towards a systematization of brain oscillatory activity in actions. Commun Biol 2023; 6:137. [PMID: 36732548 PMCID: PMC9894929 DOI: 10.1038/s42003-023-04531-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/25/2023] [Indexed: 02/04/2023] Open
Abstract
Information processing in the brain is governed by oscillatory activity. Activity oscillations in specific frequency bands (theta, alpha, beta and gamma) have been associated with various cognitive functions. A drawback of this is that the plethora of findings led to considerable uncertainty as to the functional relevance of activity in different frequency bands and their interrelation. Here, we use a novel cognitive-science theoretical framework to better understand and conceptually harmonize neurophysiological research on human action control. We outline how this validated starting point can systematize and probably reframe the functional relevance of oscillatory activity relevant for action control and beyond.
Collapse
|
10
|
Cao C, Wen W, Chen A, Wang S, Xu G, Niu C, Song J. Neuropsychological Alterations of Prolactinomas' Cognitive Flexibility in Task Switching. Brain Sci 2023; 13:brainsci13010082. [PMID: 36672063 PMCID: PMC9856801 DOI: 10.3390/brainsci13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/14/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Prolactinomas have been reported to impair cognition in broad aspects. However, few studies investigated the influence of prolactinomas on cognitive flexibility never mentioning the underlying neural and electrophysiological mechanism. We recorded scalp electroencephalography (EEG) in a colour-shape switching task. Patients with prolactinomas showed longer reaction time in switch trials and larger switch costs relative to healthy controls (HCs). Compared to HCs who showed stronger frontal theta activity in switch trials, the generally weak frontal theta activity in patients implied that they could not afford the executive control to configure task sets. Meanwhile, machine-learning based classification revealed that patients manifested non-selective brain patterns in response to different task types (colour vs. shape task) and different task states (switch vs. repeat state), which collectively suggested the cognitive dysfunction in preparation for a changing environment. Compared to HCs who showed stronger frontoparietal synchronization in switch trials, this enhanced frontoparietal connectivity was disrupted among patients with severe prolactinomas. This finding implicated greater hyperprolactinemia was linked to a larger decrease in cognitive performance. Taken together, the present study highlighted frontal theta power, and frontoparietal connectivity at theta band as the electrophysiological markers of the impaired cognitive flexibility and task control in patients with prolactinomas.
Collapse
Affiliation(s)
- Chenglong Cao
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Wen Wen
- Department of Psychological & Brain Sciences, Boston University, Boston, MA 02215, USA
| | - Aobo Chen
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Shuochen Wang
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Guozheng Xu
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
| | - Chaoshi Niu
- Department of Neurosurgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Correspondence: (C.N.); (J.S.)
| | - Jian Song
- Department of Neurosurgery, The General Hospital of Chinese PLA Central Theater Command, Wuhan 430074, China
- Correspondence: (C.N.); (J.S.)
| |
Collapse
|
11
|
Zhang J, Zhu C, Han J. The neural mechanism of non-phase-locked EEG activity in task switching. Neurosci Lett 2023; 792:136957. [PMID: 36347341 DOI: 10.1016/j.neulet.2022.136957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/23/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Flexible switching between different tasks is an important cognitive ability for humans and it is often studied using the task-switching paradigm. Although the neural mechanisms of task switching have been extensively explored in previous studies using event-related potentials techniques, the activity and process mechanisms of non-phase-locked electroencephalography (EEG) have rarely been revealed. For this reason, this paper discusses the processing of non-phase-locked EEG oscillations in task switching based on frequency-band delineation. First, the roles of each frequency band in local brain regions were summarized. In particular, during the proactive control process (the cue-stimulus interval), delta, theta, and alpha oscillations played more roles in the switch condition while beta played more roles in repeat task. In the reactive control process (post-target), delta, alpha, and beta are all related to sensorimotor function. Then, utilizing the functional connectivity (FC) method, delta connections in the frontotemporal regions and theta connections located in the parietal-to-occipital sites are involved in the preparatory period before task switching, while alpha connections located in the sensorimotor areas and beta connections located in the frontal-parietal cortex are involved in response inhibition. Finally, cross-frequency coupling (CFC) play an important role in working memory among different band oscillation. The present study shows that in addition to the processing mechanisms specific to each frequency band, there are some shared and interactive neural mechanism in task switching by using different analysis techniques.
Collapse
Affiliation(s)
- Jing Zhang
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China
| | - Chengdong Zhu
- School of Physical Education, Liaoning Normal University, Dalian, China
| | - Jiahui Han
- Brain and Cognitive Neuroscience Research Center, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, China.
| |
Collapse
|
12
|
Díaz-Rivera MN, Birba A, Fittipaldi S, Mola D, Morera Y, de Vega M, Moguilner S, Lillo P, Slachevsky A, González Campo C, Ibáñez A, García AM. Multidimensional inhibitory signatures of sentential negation in behavioral variant frontotemporal dementia. Cereb Cortex 2022; 33:403-420. [PMID: 35253864 PMCID: PMC9837611 DOI: 10.1093/cercor/bhac074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Processing of linguistic negation has been associated to inhibitory brain mechanisms. However, no study has tapped this link via multimodal measures in patients with core inhibitory alterations, a critical approach to reveal direct neural correlates and potential disease markers. METHODS Here we examined oscillatory, neuroanatomical, and functional connectivity signatures of a recently reported Go/No-go negation task in healthy controls and behavioral variant frontotemporal dementia (bvFTD) patients, typified by primary and generalized inhibitory disruptions. To test for specificity, we also recruited persons with Alzheimer's disease (AD), a disease involving frequent but nonprimary inhibitory deficits. RESULTS In controls, negative sentences in the No-go condition distinctly involved frontocentral delta (2-3 Hz) suppression, a canonical inhibitory marker. In bvFTD patients, this modulation was selectively abolished and significantly correlated with the volume and functional connectivity of regions supporting inhibition (e.g. precentral gyrus, caudate nucleus, and cerebellum). Such canonical delta suppression was preserved in the AD group and associated with widespread anatomo-functional patterns across non-inhibitory regions. DISCUSSION These findings suggest that negation hinges on the integrity and interaction of spatiotemporal inhibitory mechanisms. Moreover, our results reveal potential neurocognitive markers of bvFTD, opening a new agenda at the crossing of cognitive neuroscience and behavioral neurology.
Collapse
Affiliation(s)
- Mariano N Díaz-Rivera
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,Agencia Nacional de Promoción Científica y Tecnológica (ANPCyT), C1425FQD, Godoy Cruz 2370, Buenos Aires, Argentina
| | - Agustina Birba
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Sol Fittipaldi
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Débora Mola
- Instituto de Investigaciones Psicológicas, CONICET, 5000, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yurena Morera
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Manuel de Vega
- Instituto Universitario de Neurociencia (IUNE), Universidad de La Laguna, Campus de Guajara, 38205 La Laguna, Santa Cruz de Tenerife, Spain
| | - Sebastian Moguilner
- Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Patricia Lillo
- Departamento de Neurología Sur, Facultad de Medicina, Universidad de Chile, 8380000, Santiago, Chile.,Unidad de Neurología, Hospital San José, 8380000, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile
| | - Andrea Slachevsky
- Geroscience Center for Brain Health and Metabolism (GERO), 7800003, Santiago, Chile.,Neuropsychology and Clinical Neuroscience Laboratory (LANNEC), Physiopathology Department, Neuroscience and East Neuroscience Departments, Faculty of Medicine, Institute of Biomedical Sciences (ICBM), University of Chile, 8380000, Santiago, Chile.,Memory and Neuropsychiatric Clinic (CMYN) Neurology Department, Hospital del Salvador and Faculty of Medicine, University of Chile, 7500000, Santiago, Chile.,Departamento de Medicina, Servicio de Neurología, Clínica Alemana-Universidad del Desarrollo, 7550000, Santiago, Chile
| | - Cecilia González Campo
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina
| | - Agustín Ibáñez
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibáñez, 8320000, Santiago, Chile
| | - Adolfo M García
- Centro de Neurociencias Cognitivas, Universidad de San Andrés, Vito Dumas 284, Buenos Aires B1644BID, Argentina.,National Scientific and Technical Research Council (CONICET), C1425FQD, Godoy Cruz 2290, Buenos Aires, Argentina.,Global Brain Health Institute, University of California, San Francisco, CA94158, US; and Trinity College, Dublin D02DP21, , Ireland.,Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, 7550000, Santiago, Chile
| |
Collapse
|
13
|
Pereira Soares SM, Prystauka Y, DeLuca V, Rothman J. Type of bilingualism conditions individual differences in the oscillatory dynamics of inhibitory control. Front Hum Neurosci 2022; 16:910910. [PMID: 35966987 PMCID: PMC9369864 DOI: 10.3389/fnhum.2022.910910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
The present study uses EEG time-frequency representations (TFRs) with a Flanker task to investigate if and how individual differences in bilingual language experience modulate neurocognitive outcomes (oscillatory dynamics) in two bilingual group types: late bilinguals (L2 learners) and early bilinguals (heritage speakers-HSs). TFRs were computed for both incongruent and congruent trials. The difference between the two (Flanker effect vis-à-vis cognitive interference) was then (1) compared between the HSs and the L2 learners, (2) modeled as a function of individual differences with bilingual experience within each group separately and (3) probed for its potential (a)symmetry between brain and behavioral data. We found no differences at the behavioral and neural levels for the between-groups comparisons. However, oscillatory dynamics (mainly theta increase and alpha suppression) of inhibition and cognitive control were found to be modulated by individual differences in bilingual language experience, albeit distinctly within each bilingual group. While the results indicate adaptations toward differential brain recruitment in line with bilingual language experience variation overall, this does not manifest uniformly. Rather, earlier versus later onset to bilingualism-the bilingual type-seems to constitute an independent qualifier to how individual differences play out.
Collapse
Affiliation(s)
- Sergio Miguel Pereira Soares
- Department of Linguistics, University of Konstanz, Konstanz, Germany
- Language Development Department, Max Planck Institute for Psycholinguistics, Nijmegen, Netherlands
| | - Yanina Prystauka
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Vincent DeLuca
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
| | - Jason Rothman
- Department of Language and Culture, UiT the Arctic University of Norway, Tromsø, Norway
- Nebrija Research Center in Cognition, University of Nebrija, Madrid, Spain
| |
Collapse
|
14
|
Li J, Maffei L, Pascale A, Masullo M. Effects of spatialized water-sound sequences for traffic noise masking on brain activities. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 152:172. [PMID: 35931502 DOI: 10.1121/10.0012222] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Informational masking of water sounds has been proven effective in mitigating traffic noise perception with different sound levels and signal-to-noise ratios, but less is known about the effects of the spatial distribution of water sounds on the perception of the surrounding environment and corresponding psychophysical responses. Three different spatial settings of water-sound sequences with a traffic noise condition were used to investigate the role of spatialization of water-sound sequences on traffic noise perception. The neural responses of 20 participants were recorded by a portable electroencephalogram (EEG) device during the spatial sound playback time. The mental effects and attention process related to informational masking were assessed by the analysis of the EEG spectral power distribution and sensor-level functional connectivity along with subjective assessments. The results showed higher relative power of the alpha band and greater alpha-beta ratio among water-sound sequence conditions compared to traffic noise conditions, which confirmed the increased relaxation on the mental state induced by the introduction of water sounds. Moreover, different spatial settings of water-sound sequences evoked different cognitive network responses. The setting of two-position switching water brought more attentional network activations than other water sequences related to the information masking process along with more positive subjective feelings.
Collapse
Affiliation(s)
- Jian Li
- Department of Architecture and Industrial Design, Università degli Studi della Campania "Luigi Vanvitelli," Aversa CE 81031, Italy
| | - Luigi Maffei
- Department of Architecture and Industrial Design, Università degli Studi della Campania "Luigi Vanvitelli," Aversa CE 81031, Italy
| | - Aniello Pascale
- Department of Architecture and Industrial Design, Università degli Studi della Campania "Luigi Vanvitelli," Aversa CE 81031, Italy
| | - Massimiliano Masullo
- Department of Architecture and Industrial Design, Università degli Studi della Campania "Luigi Vanvitelli," Aversa CE 81031, Italy
| |
Collapse
|
15
|
Inhibitory Control and Brain–Heart Interaction: An HRV-EEG Study. Brain Sci 2022; 12:brainsci12060740. [PMID: 35741625 PMCID: PMC9221218 DOI: 10.3390/brainsci12060740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/01/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Motor inhibition is a complex cognitive function regulated by specific brain regions and influenced by the activity of the Central Autonomic Network. We investigate the two-way Brain–Heart interaction during a Go/NoGo task. Spectral EEG ϑ, α powerbands, and HRV parameters (Complexity Index (CI), Low Frequency (LF) and High Frequency (HF) powers) were recorded. Methods: Fourteen healthy volunteers were enrolled. We used a modified version of the classical Go/NoGo task, based on Rule Shift Cards, characterized by a baseline and two different tasks of different complexity. The participants were divided into subjects with Good (GP) and Poor (PP) performances. Results: In the baseline, CI was negatively correlated with α/ϑ. In task 1, the CI was negatively correlated with the errors and α/ϑ, while the errors were positively correlated with α/ϑ. In task 2, CI was negatively correlated with the Reaction Time and positively with α, and the errors were negatively correlated with the Reaction Time and positively correlated with α/ϑ. The GP group showed, at baseline, a negative correlation between CI and α/ϑ. Conclusions: We provide a new combined Brain–Heart model underlying inhibitory control abilities. The results are consistent with the complementary role of α and ϑ oscillations in cognitive control.
Collapse
|
16
|
Clements GM, Gyurkovics M, Low KA, Beck DM, Fabiani M, Gratton G. Dynamics of alpha suppression and enhancement may be related to resource competition in cross-modal cortical regions. Neuroimage 2022; 252:119048. [PMID: 35248706 PMCID: PMC9017396 DOI: 10.1016/j.neuroimage.2022.119048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/24/2022] [Accepted: 03/01/2022] [Indexed: 11/17/2022] Open
Abstract
In the face of multiple sensory streams, there may be competition for processing resources in multimodal cortical areas devoted to establishing representations. In such cases, alpha oscillations may serve to maintain the relevant representations and protect them from interference, whereas theta band activity may facilitate their updating when needed. It can be hypothesized that these oscillations would differ in response to an auditory stimulus when the eyes are open or closed, as intermodal resource competition may be more prominent in the former than in the latter case. Across two studies we investigated the role of alpha and theta power in multimodal competition using an auditory task with the eyes open and closed, respectively enabling and disabling visual processing in parallel with the incoming auditory stream. In a passive listening task (Study 1a), we found alpha suppression following a pip tone with both eyes open and closed, but subsequent alpha enhancement only with closed eyes. We replicated this eyes-closed alpha enhancement in an independent sample (Study 1b). In an active auditory oddball task (Study 2), we again observed the eyes open/eyes closed alpha pattern found in Study 1 and also demonstrated that the more attentionally demanding oddball trials elicited the largest oscillatory effects. Theta power did not interact with eye status in either study. We propose a hypothesis to account for the findings in which alpha may be endemic to multimodal cortical areas in addition to visual ones.
Collapse
Affiliation(s)
- Grace M Clements
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA; Psychology Department, University of Illinois at Urbana-Champaign, IL 61820, USA.
| | - Mate Gyurkovics
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Kathy A Low
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Diane M Beck
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA; Psychology Department, University of Illinois at Urbana-Champaign, IL 61820, USA
| | - Monica Fabiani
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA; Psychology Department, University of Illinois at Urbana-Champaign, IL 61820, USA
| | - Gabriele Gratton
- Beckman Institute, University of Illinois at Urbana-Champaign, IL 61801, USA; Psychology Department, University of Illinois at Urbana-Champaign, IL 61820, USA.
| |
Collapse
|
17
|
Abbasi H, Kadel H, Hickey C, Schubö A. Combined influences of strategy and selection history on attentional control. Psychophysiology 2021; 59:e13987. [PMID: 34932826 DOI: 10.1111/psyp.13987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 10/20/2021] [Accepted: 11/28/2021] [Indexed: 11/26/2022]
Abstract
Visual attention is guided by top-down mechanisms and pre-stimulus task preparation, but also by selection history (i.e., the bias to prioritize previously attended items). Here we examine how these influences combine. Two groups of participants completed two intermingled tasks. One task involved categorization of a unique target; one group categorized the target based on color, and the other based on shape. The other task involved searching for a target defined by unique shape while ignoring a distractor defined by unique color. Our expectation was that the search task would be difficult for the color-categorization group because their categorization task required attentional resolution of color, but the search task required that they ignore color. In some experimental blocks, trials from the two tasks appeared predictably, giving the color-categorization group an opportunity to strategically prepare by switching between color-prioritizing and shape-prioritizing attentional templates. We looked to pre-stimulus oscillatory activity as a direct index of this preparation, and to reaction times and post-stimulus ERPs for markers of resultant change in attentional deployment. Results showed that preparation in the color-categorization group optimized attentional templates, such that these participants became less sensitive to the color distractor in the search task. But preparation was not sufficient to entirely negate the influence of selection history, and participants in the color-categorization group continued to show a propensity to attend to the color distractor. These results indicate that preparatory effort can be scaled to the anticipated attentional requirements, but attention is nevertheless considerably biased by selection history.
Collapse
Affiliation(s)
- Hossein Abbasi
- Cognitive Neuroscience of Perception and Action, Philipps-University of Marburg, Marburg, Germany
| | - Hanna Kadel
- Cognitive Neuroscience of Perception and Action, Philipps-University of Marburg, Marburg, Germany
| | - Clayton Hickey
- School of Psychology and Center for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Anna Schubö
- Cognitive Neuroscience of Perception and Action, Philipps-University of Marburg, Marburg, Germany
| |
Collapse
|
18
|
Petruo V, Takacs A, Mückschel M, Hommel B, Beste C. Multi-level decoding of task sets in neurophysiological data during cognitive flexibility. iScience 2021; 24:103502. [PMID: 34934921 PMCID: PMC8654636 DOI: 10.1016/j.isci.2021.103502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 07/27/2021] [Accepted: 11/22/2021] [Indexed: 11/29/2022] Open
Abstract
Cognitive flexibility is essential to achieve higher level goals. Cognitive theories assume that the activation/deactivation of goals and task rules is central to understand cognitive flexibility. However, how this activation/deactivation dynamic is implemented on a neurophysiological level is unclear. Using EEG-based multivariate pattern analysis (MVPA) methods, we show that activation of relevant information occurs parallel in time at multiple levels in the neurophysiological signal containing aspects of stimulus-related processing, response selection, and motor response execution, and relates to different brain regions. The intensity with which task sets are activated and processed dynamically decreases and increases. The temporal stability of these activations could, however, hardly explain behavioral performance. Instead, task set deactivation processes associated with left orbitofrontal regions and inferior parietal regions selectively acting on motor response task sets are relevant. The study shows how propositions from cognitive theories stressing the importance task set activation/deactivation during cognitive flexibility are implemented on a neurophysiological level. Stimulus-related, motor, and response selection aspects of task set were decoded Activation of task rule information occurs at multiple neurophysiological levels Activation and deactivation of rule sets contributes to cognitive flexibility
Collapse
Affiliation(s)
- Vanessa Petruo
- Brain and Creativity Institute, Dornsife College of Letters, Arts and Sciences, University of Southern California, 3620A McClintock Avenue, Los Angeles, CA, USA
| | - Adam Takacs
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany
| | - Bernhard Hommel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany.,Cognitive Psychology Unit & Leiden Institute for Brain and Cognition, Leiden University, C-2-S LIBC P.O. Box 9600, Leiden, Netherlands.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan 250014, China
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Schubertstrasse 42, 01309 Dresden, Germany.,Cognitive Psychology, Faculty of Psychology, Shandong Normal University, Qianfoshan Campus, No. 88 East Wenhua Road, Lixia District, Ji'nan 250014, China
| |
Collapse
|
19
|
Mendes AJ, Pacheco-Barrios K, Lema A, Gonçalves ÓF, Fregni F, Leite J, Carvalho S. Modulation of the cognitive event-related potential P3 by transcranial direct current stimulation: Systematic review and meta-analysis. Neurosci Biobehav Rev 2021; 132:894-907. [PMID: 34742723 DOI: 10.1016/j.neubiorev.2021.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/16/2021] [Accepted: 11/01/2021] [Indexed: 10/19/2022]
Abstract
Transcranial direct current stimulation (tDCS) has been widely used to modulate cognition and behavior. However, only a few studies have been probing the brain mechanism underlying the effects of tDCS on cognitive processing, especially throughout electrophysiological markers, such as the P3. This meta-analysis assessed the effects of tDCS in P3 amplitude and latency during an oddball, n-back, and Go/No-Go tasks, as well as during emotional processing. A total of 36 studies were identified, but only 23 were included in the quantitative analysis. The results show that the parietal P3 amplitude increased during oddball and n-back tasks, mostly after anodal stimulation over the left dorsolateral prefrontal cortex (p = 0.018, SMD = 0.4) and right inferior frontal gyrus (p < 0.001, SMD = 0.669) respectively. These findings suggest the potential usefulness of the parietal P3 ERP as a marker of tDCS-induced effects during task performance. Nonetheless, this study had a low number of studies and the presence of considerable risk of bias, highlighting issues to be addressed in the future.
Collapse
Affiliation(s)
- Augusto J Mendes
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Kevin Pacheco-Barrios
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA; Universidad San Ignacio de Loyola, Vicerrectorado de Investigación, Unidad de Investigación para la Generación y Síntesis de Evidencias en Salud, Lima, Peru
| | - Alberto Lema
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Óscar F Gonçalves
- Proaction Laboratory - CINEICC, Faculty of Psychology and Educational Sciences, University of Coimbra, Portugal
| | - Felipe Fregni
- Neuromodulation Center and Center for Clinical Research Learning, Spaulding Rehabilitation Hospital and Massachusetts General Hospital, Harvard Medical School, Boston, USA
| | - Jorge Leite
- INPP, Portucalense University, Porto, Portugal
| | - Sandra Carvalho
- Psychological Neuroscience Laboratory, CIPsi, School of Psychology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Education and Psychology, University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal.
| |
Collapse
|
20
|
Tang S, Jia L, Liu M, Ren J, Li F, Luo J, Huang F. The dynamic monitoring and control mechanism in problem solving: Evidence from theta and alpha oscillations. Int J Psychophysiol 2021; 170:112-120. [PMID: 34699862 DOI: 10.1016/j.ijpsycho.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Although both originality and value are considered necessary criteria to identify creative ideas, little is known about how original and valuable ideas are generated in the human brain. To reveal how people monitor and control ongoing processing in the pursuit of original and valuable ideas, high-density electroencephalography (EEG) was used to record electrophysiological signals when participants were performing chunk decomposition tasks via novel-appropriate, novel-inappropriate, ordinary-appropriate and ordinary-inappropriate pathways. The results showed that approximately 100 ms after the problem was presented, novel pathways showed increased theta synchronization in the frontal sites compared to ordinary pathways. Novel pathways were associated with increased alpha desynchronization over the entire brain scale. These theta and alpha oscillations likely indicated rapid monitoring and effective control of novel processing in thinking. In the latter stages of problem solving, particularly during the 2000-2600-ms intervals, increased theta synchronization with decreased alpha desynchronization was found between novel-inappropriate and novel-appropriate pathways, which likely indicated slow monitoring and less control of inappropriate processing in novel thinking. The findings demonstrated the dynamic monitoring and control mechanism in the pursuit of original and valuable ideas.
Collapse
Affiliation(s)
- Shuang Tang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Lujia Jia
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Mingzhu Liu
- Nanchang Institute of Technology, Nanchang 330044, China
| | - Jingyuan Ren
- Donders Institute for Brain, Cognition and Behaviour, Rodboud University Medical Center, Nijmegen 6525EN, Netherlands
| | - Fuhong Li
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing 100048, China
| | - Furong Huang
- School of Psychology, Jiangxi Normal University, Nanchang 330022, China.
| |
Collapse
|
21
|
Cooper PS, Baillet S, Maroun REK, Chong TTJ. Over the rainbow: Guidelines for meaningful use of colour maps in neurophysiology. Neuroimage 2021; 245:118628. [PMID: 34637902 DOI: 10.1016/j.neuroimage.2021.118628] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/16/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022] Open
Abstract
Visualization of complex data is commonplace in neurophysiology research. Here, we highlight specific perceptual issues related to the ongoing misuse of variations of the rainbow colour scheme, with a particular emphasis on time-frequency decompositions in electrophysiology as an illustrative example. We review the risks of biased interpretation of neurophysiological data in this context, and provide guidelines to improve the use of colour maps to visualise complex, multidimensional data in neurophysiology research.
Collapse
Affiliation(s)
- Patrick S Cooper
- Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia; Melbourne School of Psychological Sciences, University of Melbourne, Victoria 3010, Australia.
| | - Sylvain Baillet
- Montreal Neurological Institute, McGill University, Québec H3A 2B4, Canada
| | | | - Trevor T-J Chong
- Turner Institute for Brain and Mental Health, Monash University, Victoria 3800, Australia; Department of Neurology, Alfred Health, Melbourne, Victoria 3004, Australia; Department of Clinical Neurosciences, St Vincent's Hospital, Victoria 3065, Australia
| |
Collapse
|
22
|
Tendency to ruminate and anxiety are associated with altered alpha and beta oscillatory power dynamics during memory for contextual details. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 20:698-716. [PMID: 32430900 DOI: 10.3758/s13415-020-00797-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Rumination occurs when an individual becomes mentally stuck and cannot redirect attention away from an unwanted thought demonstrating cognitive inflexibility. Cognitive flexibility is important for various cognitive functions, including episodic memory. Trait rumination is a partial mediator in the relationship between depression and overgeneral episodic memory, suggesting that rumination may negatively influence memory for contextual details. Oscillations in the alpha (8-12 Hz) and beta (13-30 Hz) frequency bands are crucial for various cognitive functions (e.g., attention control and episodic memory) and may help to explain the relationship between trait rumination and memory for contextual details. Our study uses EEG recorded during a source memory task to assess how alpha and beta oscillations during memory for contextual details may change as a function of trait rumination, anxiety, and depression level (n = 43). The source memory task instructs participants to remember objects and their associated contextual details. Memory for contextual details is lessened for participants higher in trait rumination paired with higher trait anxiety. Oscillations were analyzed in posterior parietal/occipital regions. During encoding, an interaction of nonclinical depression level and rumination predicts higher alpha power for items that were later not successfully remembered. During test, depression and rumination interact and predict higher alpha power for both successful and unsuccessful memory. These results suggest that trait anxiety, depression, and rumination impact accuracy and alpha oscillatory dynamics during contextual memory via changes in attention control.
Collapse
|
23
|
Yu S, Mückschel M, Beste C. Event-related synchronization/desynchronization and functional neuroanatomical regions associated with fatigue effects on cognitive flexibility. J Neurophysiol 2021; 126:383-397. [PMID: 34191635 DOI: 10.1152/jn.00228.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cognitive flexibility is an essential prerequisite for goal-directed behavior, and daily observations already show that it deteriorates when one is engaged in a task for a (too) long time. Yet, the neural mechanisms underlying such fatigability effect in cognitive flexibility are poorly understood. We examined how theta, alpha, and beta frequency event-related synchronization and desynchronization processes during cued memory-based task switching are modulated by time-on-task effects. We put special emphasis on the examination of functional neuroanatomical regions being associated with these modulations, using EEG beamforming. We show clear declines in task switching performance (increased switch costs) with time on task. For processes occurring before rule switching or repetition processes, we show that anticipatory attentional sampling and selection mechanisms associated with fronto-parietal structures are modulated by time-on-task effects but sensory areas (occipital cortex) also show fatigability-dependent modulations. After target stimulus presentation, the allocation of processing resources for response selection as reflected by theta-related activity in parietal cortices is compromised with time on task and similarly a concomitant increase in alpha and beta band-related attentional processing or gating mechanisms in frontal and occipital regions. Yet, considering the behavioral data showing an apparent decline in performance, this probably compensatory increase is still insufficient to allow reasonable performance. The same is likely the case for processes occurring before rule switching or repetition processes. Comparative analyses show that modulations of alpha band activity are as strongly modulated by fatigability as theta band activity. Implications of these findings for theoretical concepts on fatigability are discussed.NEW & NOTEWORTHY We examine the neurophysiological and functional neuroanatomical basis of fatigability in cognitive flexibility. We show that alpha and theta modulations in fronto-parietal and primary sensory areas are central for the understanding of fatigability effects in cognitive flexibility.
Collapse
Affiliation(s)
- Shijing Yu
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Moritz Mückschel
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany.,University Neuropsychology Centre, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
24
|
McKewen M, Cooper PS, Skippen P, Wong ASW, Michie PT, Karayanidis F. Dissociable theta networks underlie the switch and mixing costs during task switching. Hum Brain Mapp 2021; 42:4643-4657. [PMID: 34184803 PMCID: PMC8410519 DOI: 10.1002/hbm.25573] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/28/2021] [Accepted: 06/18/2021] [Indexed: 01/04/2023] Open
Abstract
During task‐switching paradigms, both event‐related potentials and time‐frequency analyses show switch and mixing effects at frontal and parietal sites. Switch and mixing effects are associated with increased power in broad frontoparietal networks, typically stronger in the theta band (~4–8 Hz). However, it is not yet known whether mixing and switch costs rely upon common or distinct networks. In this study, we examine proactive and reactive control networks linked to task switching and mixing effects, and whether strength of connectivity in these networks is associated with behavioural outcomes. Participants (n = 197) completed a cued‐trials task‐switching paradigm with concurrent electroencephalography, after substantial task practice to establish strong cue‐stimulus–response representations. We used inter‐site phase clustering, a measure of functional connectivity across electrode sites, to establish cross‐site connectivity from a frontal and a parietal seed. Distinct theta networks were activated during proactive and reactive control periods. During the preparation interval, mixing effects were associated with connectivity from the frontal seed to parietal sites, and switch effects with connectivity from the parietal seed to occipital sites. Lateralised occipital connectivity was common to both switch and mixing effects. After target onset, frontal and parietal seeds showed a similar pattern of connectivity across trial types. These findings are consistent with distinct and common proactive control networks and common reactive networks in highly practised task‐switching performers.
Collapse
Affiliation(s)
- Montana McKewen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patrick S Cooper
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Victoria, Australia
| | - Patrick Skippen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Centre for Pain IMPACT, Neuroscience Research Australia (NeuRA), Randwick, New South Wales, Australia
| | - Aaron S W Wong
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| | - Patricia T Michie
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Brain and Mental Health, University of Newcastle, Callaghan, New South Wales, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, New South Wales, Australia
| |
Collapse
|
25
|
Quantitative EEG measures in profoundly deaf and normal hearing individuals while performing a vibrotactile temporal discrimination task. Int J Psychophysiol 2021; 166:71-82. [PMID: 34023377 DOI: 10.1016/j.ijpsycho.2021.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 11/22/2022]
Abstract
Challenges in early oral language acquisition in profoundly deaf individuals have an impact on cognitive neurodevelopment. This has led to the exploration of alternative sound perception methods involving training of vibrotactile discrimination of sounds within the language spectrum. In particular, stimulus duration plays an important role in linguistic categorical perception. We comparatively evaluated vibrotactile temporal discrimination of sound and how specific training can modify the underlying electrical brain activity. Fifteen profoundly deaf (PD) and 15 normal-hearing (NH) subjects performed a vibrotactile oddball task with simultaneous EEG recording, before and after a short training period (5 one-hour sessions; in 2.5-3 weeks). The stimuli consisted of 700 Hz pure-tones with different duration (target: long 500 ms; non-target: short 250 ms). The sound-wave stimuli were delivered by a small device worn on the right index finger. A similar behavioral training effect was observed in both groups showing significant improvement in sound-duration discrimination. However, quantitative EEG measurements reveal distinct neurophysiological patterns characterized by higher and more diffuse delta band magnitudes in the PD group, together with a generalized decrement in absolute power in both groups that might reflect a facilitating process associated to learning. Furthermore, training-related changes were found in the beta-band in NH. Findings suggest PD have different cognitive adaptive mechanisms which are not a mere amplification effect due to greater cortical excitability.
Collapse
|
26
|
Nguyen TV, Balachandran P, Muggleton NG, Liang WK, Juan CH. Dynamical EEG Indices of Progressive Motor Inhibition and Error-Monitoring. Brain Sci 2021; 11:brainsci11040478. [PMID: 33918711 PMCID: PMC8070019 DOI: 10.3390/brainsci11040478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/01/2021] [Accepted: 04/06/2021] [Indexed: 12/03/2022] Open
Abstract
Response inhibition has been widely explored using the stop signal paradigm in the laboratory setting. However, the mechanism that demarcates attentional capture from the motor inhibition process is still unclear. Error monitoring is also involved in the stop signal task. Error responses that do not complete, i.e., partial errors, may require different error monitoring mechanisms relative to an overt error. Thus, in this study, we included a “continue go” (Cont_Go) condition to the stop signal task to investigate the inhibitory control process. To establish the finer difference in error processing (partial vs. full unsuccessful stop (USST)), a grip-force device was used in tandem with electroencephalographic (EEG), and the time-frequency characteristics were computed with Hilbert–Huang transform (HHT). Relative to Cont_Go, HHT results reveal (1) an increased beta and low gamma power for successful stop trials, indicating an electrophysiological index of inhibitory control, (2) an enhanced theta and alpha power for full USST trials that may mirror error processing. Additionally, the higher theta and alpha power observed in partial over full USST trials around 100 ms before the response onset, indicating the early detection of error and the corresponding correction process. Together, this study extends our understanding of the finer motor inhibition control and its dynamic electrophysiological mechanisms.
Collapse
Affiliation(s)
- Trung Van Nguyen
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
| | - Prasad Balachandran
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Cheng Kung University and Academia Sinica, Taipei 11529, Taiwan
| | - Neil G. Muggleton
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Wei-Kuang Liang
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
| | - Chi-Hung Juan
- Institute of Cognitive Neuroscience, National Central University, Taoyuan City 32001, Taiwan; (T.V.N.); (P.B.); (N.G.M.); (W.-K.L.)
- Cognitive Intelligence and Precision Healthcare Center, National Central University, Taoyuan City 32001, Taiwan
- Department of Psychology, Kaohsiung Medical University, Kaohsiung City 80708, Taiwan
- Correspondence: ; Tel.: +88-(63)-427-4738; Fax: +88-(63)-426-3502
| |
Collapse
|
27
|
Harper J, Liu M, Malone SM, McGue M, Iacono WG, Vrieze SI. Using multivariate endophenotypes to identify psychophysiological mechanisms associated with polygenic scores for substance use, schizophrenia, and education attainment. Psychol Med 2021; 52:1-11. [PMID: 33731234 PMCID: PMC8448784 DOI: 10.1017/s0033291721000763] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND To better characterize brain-based mechanisms of polygenic liability for psychopathology and psychological traits, we extended our previous report (Liu et al. Psychophysiological endophenotypes to characterize mechanisms of known schizophrenia genetic loci. Psychological Medicine, 2017), focused solely on schizophrenia, to test the association between multivariate psychophysiological candidate endophenotypes (including novel measures of θ/δ oscillatory activity) and a range of polygenic scores (PGSs), namely alcohol/cannabis/nicotine use, an updated schizophrenia PGS (containing 52 more genome-wide significant loci than the PGS used in our previous report) and educational attainment. METHOD A large community-based twin/family sample (N = 4893) was genome-wide genotyped and imputed. PGSs were constructed for alcohol use, regular smoking initiation, lifetime cannabis use, schizophrenia, and educational attainment. Eleven endophenotypes were assessed: visual oddball task event-related electroencephalogram (EEG) measures (target-related parietal P3 amplitude, frontal θ, and parietal δ energy/inter-trial phase clustering), band-limited resting-state EEG power, antisaccade error rate. Principal component analysis exploited covariation among endophenotypes to extract a smaller number of meaningful dimensions/components for statistical analysis. RESULTS Endophenotypes were heritable. PGSs showed expected intercorrelations (e.g. schizophrenia PGS correlated positively with alcohol/nicotine/cannabis PGSs). Schizophrenia PGS was negatively associated with an event-related P3/δ component [β = -0.032, nonparametric bootstrap 95% confidence interval (CI) -0.059 to -0.003]. A prefrontal control component (event-related θ/antisaccade errors) was negatively associated with alcohol (β = -0.034, 95% CI -0.063 to -0.006) and regular smoking PGSs (β = -0.032, 95% CI -0.061 to -0.005) and positively associated with educational attainment PGS (β = 0.031, 95% CI 0.003-0.058). CONCLUSIONS Evidence suggests that multivariate endophenotypes of decision-making (P3/δ) and cognitive/attentional control (θ/antisaccade error) relate to alcohol/nicotine, schizophrenia, and educational attainment PGSs and represent promising targets for future research.
Collapse
Affiliation(s)
- Jeremy Harper
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Twin Cities, MN, USA
| | - Mengzhen Liu
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Stephen M. Malone
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Matt McGue
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - William G. Iacono
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| | - Scott I. Vrieze
- Department of Psychology, University of Minnesota, Twin Cities, MN, USA
| |
Collapse
|
28
|
Clements GM, Bowie DC, Gyurkovics M, Low KA, Fabiani M, Gratton G. Spontaneous Alpha and Theta Oscillations Are Related to Complementary Aspects of Cognitive Control in Younger and Older Adults. Front Hum Neurosci 2021; 15:621620. [PMID: 33841114 PMCID: PMC8025241 DOI: 10.3389/fnhum.2021.621620] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/15/2021] [Indexed: 12/18/2022] Open
Abstract
The resting-state human electroencephalogram (EEG) power spectrum is dominated by alpha (8-12 Hz) and theta (4-8 Hz) oscillations, and also includes non-oscillatory broadband activity inversely related to frequency (1/f activity). Gratton proposed that alpha and theta oscillations are both related to cognitive control function, though in a complementary manner. Alpha activity is hypothesized to facilitate the maintenance of representations, such as task sets in preparation for expected task conditions. In contrast, theta activity would facilitate changes in representations, such as the updating of task sets in response to unpredicted task demands. Therefore, theta should be related to reactive control (which may prompt changes in task representations), while alpha may be more relevant to proactive control (which implies the maintenance of current task representations). Less is known about the possible relationship between 1/f activity and cognitive control, which was analyzed here in an exploratory fashion. To investigate these hypothesized relationships, we recorded eyes-open and eyes-closed resting-state EEG from younger and older adults and subsequently tested their performance on a cued flanker task, expected to elicit both proactive and reactive control processes. Results showed that alpha power and 1/f offset were smaller in older than younger adults, whereas theta power did not show age-related reductions. Resting alpha power and 1/f offset were associated with proactive control processes, whereas theta power was related to reactive control as measured by the cued flanker task. All associations were present over and above the effect of age, suggesting that these resting-state EEG correlates could be indicative of trait-like individual differences in cognitive control performance, which may be already evident in younger adults, and are still similarly present in healthy older adults.
Collapse
Affiliation(s)
- Grace M Clements
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Psychology Department, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Daniel C Bowie
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Psychology Department, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Mate Gyurkovics
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Kathy A Low
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Monica Fabiani
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Psychology Department, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Gabriele Gratton
- Beckman Institute, The University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Psychology Department, The University of Illinois at Urbana-Champaign, Champaign, IL, United States
| |
Collapse
|
29
|
Laera G, Arcara G, Gajewski PD, Kliegel M, Hering A. Age-related modulation of EEG time-frequency responses in prospective memory retrieval. Neuropsychologia 2021; 155:107818. [PMID: 33675856 DOI: 10.1016/j.neuropsychologia.2021.107818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/29/2021] [Accepted: 02/28/2021] [Indexed: 11/18/2022]
Abstract
BACKGROUND Prospective memory involves remembering to execute an intention at the appropriate moment (prospective component) as well as retrieving the intended action (retrospective component). Several electrophysiological studies showed that neural activity associated with the prospective and the retrospective component differed between older and younger adults. However, these studies mainly reported event-related potentials (ERP), without considering other oscillatory parameters of age-related neural modulations that might be associated with the two components. OBJECTIVE In the present study, we analysed electrophysiological data to describe the age-related patterns of brain oscillations associated with the prospective and the retrospective components of prospective memory. METHODS The prospective and the retrospective components were manipulated in two experiments. In experiment 1, the prospective component was manipulated by varying the cue distinctiveness (i.e., how easy it was to detect the cue based on colour). In experiment 2, the retrospective component was manipulated by varying the number of intentions to be remembered (i.e., one or two intentions). We used time-frequency analysis to characterise the EEG oscillatory activity in younger and older adults. RESULTS The prospective component was associated with age differences in alpha and beta frequency bands. Compared to younger adults, older adults showed a decrease of parietal alpha activity when they detected distinct prospective memory cues, and a decrease of parietal beta when they detected less distinct cues. Moreover, older adults showed less beta activity compared to the younger adults across experimental manipulations. No age differences emerged with respect to the retrospective component. CONCLUSIONS The specific pattern of oscillatory activity associated with the prospective component in older adults could underlie the dynamic deployment of different attentional resources supporting cue detection. Moreover, beta activity in both experiments might support an attempt exerted by older adults to enhance task coordination processes. Overall, cluster-based permutation analyses provided a first description of the changes of the EEG time-frequency responses related to intention retrieval in older adults.
Collapse
Affiliation(s)
- Gianvito Laera
- Faculty of Psychology and Educational Sciences, Université de Genève, Geneva, Switzerland; Center for the Interdisciplinary Study of Gerontology and Vulnerability, Université de Genève, Geneva, Switzerland; Swiss National Centre of Competence in Research: LIVES - Overcoming Vulnerability: Life Course Perspectives', Lausanne and Geneva, Switzerland.
| | | | - Patrick D Gajewski
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), Dortmund, Germany
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, Université de Genève, Geneva, Switzerland; Center for the Interdisciplinary Study of Gerontology and Vulnerability, Université de Genève, Geneva, Switzerland; Swiss National Centre of Competence in Research: LIVES - Overcoming Vulnerability: Life Course Perspectives', Lausanne and Geneva, Switzerland
| | - Alexandra Hering
- Faculty of Psychology and Educational Sciences, Université de Genève, Geneva, Switzerland; Center for the Interdisciplinary Study of Gerontology and Vulnerability, Université de Genève, Geneva, Switzerland; Department of Developmental Psychology, Tilburg University, Tilburg, the Netherlands
| |
Collapse
|
30
|
Motor Interference, But Not Sensory Interference, Increases Midfrontal Theta Activity and Brain Synchronization during Reactive Control. J Neurosci 2021; 41:1788-1801. [PMID: 33441433 DOI: 10.1523/jneurosci.1682-20.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/17/2020] [Accepted: 12/17/2020] [Indexed: 11/21/2022] Open
Abstract
Cognitive control helps us to overcome task interference in challenging situations. Resolving conflicts because of interfering influences is believed to rely on midfrontal theta oscillations. However, different sources of interference necessitate different types of control. Attentional control is needed to suppress salient distractors. Motor control is needed to suppress goal-incompatible action impulses. While previous studies mostly studied the additive effects of attentional and motor conflicts, we independently manipulated the need for attentional control (via visual distractors) and motor control (via unexpected response deviations) in an EEG study with male and female humans. We sought to find out whether these different types of control rely on the same midfrontal oscillatory mechanisms. Motor conflicts, but not attentional conflicts, elicited increases in midfrontal theta power during conflict resolution. Independent of the type of conflict, theta power was predictive of motor slowing. Connectivity analysis via phase-based synchronization indicated a widespread increase interbrain connectivity for motor conflicts, but a midfrontal-to-posterior decrease in connectivity for attentional conflicts. For each condition, we found stronger midfrontal connectivity with the parietal region contralateral to, rather than ipsilateral to, the acting hand. Parietal lateralization in connectivity was strongest for motor conflicts. Previous studies suggested that midfrontal theta oscillations might represent a general control mechanism, which aids conflict resolution independent of the conflict domain. In contrast, our results show that oscillatory theta dynamics during reactive control mostly reflect motor-related adjustments.SIGNIFICANCE STATEMENT Humans need to exercise self-control over both their attention (to avoid distraction) and their motor activity (to suppress inappropriate action impulses). Midfrontal theta oscillations have been assumed to indicate a general control mechanism, which help to exert top-down control during both motor and sensory interference. We are using a novel approach for the independent manipulation of attentional and motor control to show that increases in midfrontal theta power and brainwide connectivity are linked to the top-down adjustments of motor responses, not sensory interference. These findings clarify the function of midfrontal theta dynamics as a key aspect of neural top-down control and help to dissociate domain-general from motor-specific aspects of self-control.
Collapse
|
31
|
Bowers ME, Morales S, Buzzell GA, Fox NA. The influence of monetary reward on proactive and reactive control in adolescent males. Dev Cogn Neurosci 2021; 48:100934. [PMID: 33592521 PMCID: PMC7896138 DOI: 10.1016/j.dcn.2021.100934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/21/2022] Open
Abstract
Reward reduced RT interference during reactive control, but increased RT interference during proactive control in male adolescents. Increased reward-related cue-locked theta power was associated with increased RT interference on proactive trials. Increased reward-related stimulus-locked theta inter-channel phase synchrony was related to facilitated performance on proactive trials.
Adolescence is marked by increased reward-seeking, which can alter cognitive control abilities. Previous research found that rewards actually improve cognitive control in children, adolescents, and adults, but these studies only investigated reactive control. The goal of the current study was to elucidate reward’s influence on both proactive and reactive control during adolescence. To this end, 68 (Mean age = 13.61, SD = 2.52) male adolescents completed a rewarded cued flanker paradigm while electroencephalogram (EEG) was collected. Theta power and inter-channel phase synchrony, both implicated in cognitive control, were quantified after cues and stimuli to understand their role during reward-cognitive control interactions. The data suggest that reward reduced interference during reactive control; however, reward increased interference during proactive control in this sample of adolescent males. Reward-related increases in cue-locked theta power predicted more reward-related RT interference on proactive trials. In contrast, increases in stimulus-locked theta ICPS were associated with better performance on rewarded proactive trials. The pattern of results show that reward differentially impacted proactive and reactive control in adolescence, which may have implications for the increased risk-taking behaviors observed during adolescence.
Collapse
Affiliation(s)
- Maureen E Bowers
- Neuroscience & Cognitive Science Program, University of Maryland, College Park, United States; Department of Human Development & Quantitative Methodology, University of Maryland, College Park, United States.
| | - Santiago Morales
- Department of Human Development & Quantitative Methodology, University of Maryland, College Park, United States
| | - George A Buzzell
- Department of Psychology and Center for Children and Families, Florida International University, Miami, United States
| | - Nathan A Fox
- Neuroscience & Cognitive Science Program, University of Maryland, College Park, United States; Department of Human Development & Quantitative Methodology, University of Maryland, College Park, United States
| |
Collapse
|
32
|
Conley AC, Key AP, Taylor WD, Albert KM, Boyd BD, Vega JN, Newhouse PA. EEG as a Functional Marker of Nicotine Activity: Evidence From a Pilot Study of Adults With Late-Life Depression. Front Psychiatry 2021; 12:721874. [PMID: 35002791 PMCID: PMC8732868 DOI: 10.3389/fpsyt.2021.721874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/15/2021] [Indexed: 11/13/2022] Open
Abstract
Late-life depression (LLD) is a debilitating condition that is associated with poor response to antidepressant medications and deficits in cognitive performance. Nicotinic cholinergic stimulation has emerged as a potentially effective candidate to improve cognitive performance in patients with cognitive impairment. Previous studies of nicotinic stimulation in animal models and human populations with cognitive impairment led to examining potential cognitive and mood effects of nicotinic stimulation in older adults with LLD. We report results from a pilot study of transdermal nicotine in LLD testing whether nicotine treatment would enhance cognitive performance and mood. The study used electroencephalography (EEG) recordings as a tool to test for potential mechanisms underlying the effect of nicotine. Eight non-smoking participants with LLD completed EEG recordings at baseline and after 12 weeks of transdermal nicotine treatment (NCT02816138). Nicotine augmentation treatment was associated with improved performance on an auditory oddball task. Analysis of event-related oscillations showed that nicotine treatment was associated with reduced beta desynchronization at week 12 for both standard and target trials. The change in beta power on standard trials was also correlated with improvement in mood symptoms. This pilot study provides preliminary evidence for the impact of nicotine in modulating cortical activity and improving mood in depressed older adults and shows the utility of using EEG as a marker of functional engagement in nicotinic interventions in clinical geriatric patients.
Collapse
Affiliation(s)
- Alexander C Conley
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Alexandra P Key
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Vanderbilt Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Warren D Taylor
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| | - Kimberly M Albert
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Brian D Boyd
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Jennifer N Vega
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Paul A Newhouse
- Department of Psychiatry, Center for Cognitive Medicine, Vanderbilt University Medical Center, Nashville, TN, United States.,Department of Veterans Affairs Medical Center, Geriatric Research, Education and Clinical Center, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
33
|
Karayanidis F, McKewen M. More than “just a test”—Task-switching paradigms offer an early warning system for cognitive decline. PSYCHOLOGY OF LEARNING AND MOTIVATION 2021. [DOI: 10.1016/bs.plm.2021.02.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
DeLaRosa BL, Spence JS, Motes MA, To W, Vanneste S, Kraut MA, Hart J. Identification of selection and inhibition components in a Go/NoGo task from EEG spectra using a machine learning classifier. Brain Behav 2020; 10:e01902. [PMID: 33078586 PMCID: PMC7749513 DOI: 10.1002/brb3.1902] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 09/09/2020] [Accepted: 09/28/2020] [Indexed: 02/05/2023] Open
Abstract
INTRODUCTION Prior Go/NoGo studies have localized specific regions and EEG spectra for which traditional approaches have distinguished between Go and NoGo conditions. A more detailed characterization of the spatial distribution and timing of the synchronization of frequency bands would contribute substantially to the clarification of neural mechanisms that underlie performance of the Go/NoGo task. METHODS The present study used a machine learning approach to learn the features that distinguish between ERSPs involved in selection and inhibition in a Go/NoGo task. A single-layer neural network classifier was used to predict task conditions for each subject to characterize ERSPs associated with Go versus NoGo trials. RESULTS The final classifier accurately identified individual task conditions at an overall rate of 92%, estimated by fivefold cross-validation. The detailed accounting of EEG time-frequency patterns localized to brain regions (i.e., thalamus, pre-SMA, orbitofrontal cortex, and superior parietal cortex) corroborates and also elaborates upon previous findings from fMRI and EEG studies, and expands the information about EEG power changes in multiple frequency bands (i.e., primarily theta power increase, alpha decreases, and beta increases and decreases) within these regions underlying the selection and inhibition processes engaged in the Go and NoGo trials. CONCLUSION This time-frequency-based classifier extends previous spatiotemporal findings and provides information about neural mechanisms underlying selection and inhibition processes engaged in Go and NoGo trials, respectively. This neural network classifier can be used to assess time-frequency patterns from an individual subject and thus may offer insight into therapeutic uses of neuromodulation in neural dysfunction.
Collapse
Affiliation(s)
- Bambi L DeLaRosa
- School of Brain and Behavioral Sciences, The University of Texas at Dallas, Dallas, TX, USA
| | - Jeffrey S Spence
- Center for BrainHealth, The University of Texas at Dallas, Dallas, TX, USA
| | - Michael A Motes
- Callier Center - Dallas, The University of Texas at Dallas, TX, USA
| | - Wing To
- Callier Center - Dallas, The University of Texas at Dallas, TX, USA
| | - Sven Vanneste
- Callier Center - Dallas, The University of Texas at Dallas, TX, USA
| | - Michael A Kraut
- Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John Hart
- Callier Center - Dallas, The University of Texas at Dallas, TX, USA
| |
Collapse
|
35
|
Brydges CR, Barceló F, Nguyen AT, Fox AM. Fast fronto-parietal cortical dynamics of conflict detection and context updating in a flanker task. Cogn Neurodyn 2020; 14:795-814. [PMID: 33101532 DOI: 10.1007/s11571-020-09628-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 08/04/2020] [Accepted: 08/16/2020] [Indexed: 11/25/2022] Open
Abstract
Recent research has found that the traditional target P3 consists of a family of P3-like positivities that can be functionally and topographically dissociated from one another. The current study examined target N2 and P3-like subcomponents indexing conflict detection and context updating at low- and high-order levels in the neural hierarchy during cognitive control. Electroencephalographic signals were recorded from 45 young adults while they completed a hybrid go/nogo flanker task, and Residue Iteration Decomposition (RIDE) was applied to functionally dissociate these peaks. Analyses showed a stimulus-locked frontal N2 revealing early detection and fast perceptual categorization of nogo, congruent and incongruent trials, resulting in frontal P3-like activity elicited by nogo trials in the latency-variable RIDE cluster, and by incongruent trials in the response-locked cluster. The congruent trials did not elicit frontal P3-like activity. These findings suggest that behavioral incongruency effects are related to intermediate and later stages of motor response re-programming.
Collapse
Affiliation(s)
- Christopher R Brydges
- School of Psychological Science (M304), University of Western Australia, 35 Stirling Highway, Perth, WA 6009 Australia.,Department of Human Development and Family Studies, Colorado State University, Fort Collins, USA
| | - Francisco Barceló
- Laboratory of Neuropsychology, University of the Balearic Islands, Majorca, Spain
| | - An T Nguyen
- School of Psychological Science (M304), University of Western Australia, 35 Stirling Highway, Perth, WA 6009 Australia.,Neurocognitive Development Unit, School of Psychological Science, University of Western Australia, Perth, Australia
| | - Allison M Fox
- School of Psychological Science (M304), University of Western Australia, 35 Stirling Highway, Perth, WA 6009 Australia.,Neurocognitive Development Unit, School of Psychological Science, University of Western Australia, Perth, Australia
| |
Collapse
|
36
|
Murphy J, Devue C, Corballis PM, Grimshaw GM. Proactive Control of Emotional Distraction: Evidence From EEG Alpha Suppression. Front Hum Neurosci 2020; 14:318. [PMID: 33013338 PMCID: PMC7461792 DOI: 10.3389/fnhum.2020.00318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 07/17/2020] [Indexed: 11/13/2022] Open
Abstract
Biased attention towards emotional stimuli is adaptive, as it facilitates responses to important threats and rewards. An unfortunate consequence is that emotional stimuli can become potent distractors when they are irrelevant to current goals. How can this distraction be overcome despite the bias to attend to emotional stimuli? Recent studies show that distraction by irrelevant flankers is reduced when distractor frequency is high, even if they are emotional. A parsimonious explanation is that the expectation of frequent distractors promotes the use of proactive control, whereby attentional control settings can be altered to minimize distraction before it occurs. It is difficult, however, to infer proactive control on the basis of behavioral data alone. We therefore measured neural indices of proactive control while participants performed a target-detection task in which irrelevant peripheral distractors (either emotional or neutral) could appear either frequently (on 75% of trials) or rarely (on 25% of trials). We measured alpha power during the pre-stimulus period to assess proactive control and during the post-stimulus period to determine the consequences of control for subsequent processing. Pre-stimulus alpha power was tonically suppressed in the high, compared to low, distractor frequency condition, regardless of expected distractor valence, indicating sustained use of proactive control. In contrast, post-stimulus alpha suppression was reduced in the high-frequency condition, suggesting that proactive control reduced the need for post-stimulus adjustments. Our findings indicate that a sustained proactive control strategy accounts for the reduction in both emotional and non-emotional distraction when distractors are expected to appear frequently.
Collapse
Affiliation(s)
- Justin Murphy
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Christel Devue
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| | - Paul M. Corballis
- School of Psychology and Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Gina M. Grimshaw
- School of Psychology, Victoria University of Wellington, Wellington, New Zealand
| |
Collapse
|
37
|
McKewen M, Cooper PS, Wong ASW, Michie PT, Sauseng P, Karayanidis F. Task‐switching costs have distinct phase‐locked and nonphase‐locked EEG power effects. Psychophysiology 2020; 57:e13533. [DOI: 10.1111/psyp.13533] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/06/2020] [Accepted: 01/09/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Montana McKewen
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Callaghan NSW Australia
| | - Patrick S. Cooper
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Stroke and Brain Injury University of Newcastle Callaghan NSW Australia
- School of Psychological Sciences Turner Institute for Brain and Mental Health Monash University Melbourne VIC Australia
| | - Aaron S. W. Wong
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Stroke and Brain Injury University of Newcastle Callaghan NSW Australia
| | - Patricia T. Michie
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Callaghan NSW Australia
| | - Paul Sauseng
- Department of Psychology Ludwig‐Maximilians‐University Munich Munich Germany
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory School of Psychology University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Brain and Mental Health University of Newcastle Callaghan NSW Australia
- Priority Research Centre for Stroke and Brain Injury University of Newcastle Callaghan NSW Australia
| |
Collapse
|
38
|
Peng S, Xuan B, Li P. Fearful faces modulate cognitive control under varying levels of uncertainty: An event-related potential study. Brain Cogn 2020; 141:105550. [PMID: 32087426 DOI: 10.1016/j.bandc.2020.105550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 01/05/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Cognitive control can reduce uncertainty, but few studies have investigated temporal dynamics of the flexible allocation of resources under varying levels of uncertainty. We used a revised majority function task with emotional faces and event-related potentials to investigate this process. The task incorporated different ratios of face orientation to quantify uncertainty. Participants performed slower in high uncertainty than in other levels. Under low uncertainty, participants showed greater amplitudes of frontal N200 and late frontal wave to neutral faces than fearful faces. Parietal P300 amplitudes decreased from low uncertainty to high uncertainty, and fearful faces elicited greater P300 amplitudes than neutral faces under all levels of uncertainty. These results suggest that emotion and uncertainty interacted in the frontal cortex during both early and late stages, while no interaction existed in the parietal cortex during the late stage. The interference of fearful faces is lessened by increasing cognitive control under high uncertainty in the frontal cortex, suggesting that humans possess the ability to flexibly allocate mental resources in the temporal domain. Our findings provide evidence to support the fronto-parietal network hypothesis of cognitive control in a novel perspective of uncertainty.
Collapse
Affiliation(s)
- Suhao Peng
- School of Educational Science, Anhui Normal University, Wuhu 241000, China
| | - Bin Xuan
- School of Educational Science, Anhui Normal University, Wuhu 241000, China.
| | - Peng Li
- School of Educational Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
39
|
Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. J Clin Med 2020; 9:jcm9020481. [PMID: 32050509 PMCID: PMC7073826 DOI: 10.3390/jcm9020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol increases GABAergic signaling and decreases glutamatergic signaling in the brain. Variations in these neurotransmitter levels may modulate/predict executive functioning. Matching this, strong impairments of response inhibition are one of the most consistently reported cognitive/behavioral effects of acute alcohol intoxication. However, it has never been investigated whether baseline differences in these neurotransmitters allow to predict how much alcohol intoxication impairs response inhibition, and whether this is reflected in neurophysiological measures of cognitive control. We used MR spectroscopy to assess baseline (i.e., sober) GABA and glutamate levels in the anterior cingulate cortex (ACC) and striatum in n = 30 healthy young males, who were subsequently tested once sober and once intoxicated (1.01 permille). Inhibition was assessed with the sustained attention to response task (SART). This paradigm also allows to examine the effect of different degrees of response automatization, which is a known modulator for response inhibition, but does not seem to be substantially impaired during acute intoxication. As a neurophysiological correlate of response inhibition and control, we quantified EEG-derived theta band power and located its source using beamforming analyses. We found that alcohol-induced response inhibition deficits only occurred in the case of response automatization. This was reflected by decreased theta band activity in the left supplementary motor area (SMA), which may reflect modulations in the encoding of a surprise signal in response to inhibition cues. However, we did not find that differences in baseline (i.e., sober) GABA or glutamate levels significantly modulated differences in the size of alcohol-induced inhibition deficits.
Collapse
|
40
|
Numbers in action during cognitive flexibility – A neurophysiological approach on numerical operations underlying task switching. Cortex 2019; 120:101-115. [DOI: 10.1016/j.cortex.2019.03.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 12/14/2018] [Accepted: 03/21/2019] [Indexed: 01/14/2023]
|
41
|
Kaiser J, Simon NA, Sauseng P, Schütz-Bosbach S. Midfrontal neural dynamics distinguish between general control and inhibition-specific processes in the stopping of motor actions. Sci Rep 2019; 9:13054. [PMID: 31506505 PMCID: PMC6737083 DOI: 10.1038/s41598-019-49476-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 08/22/2019] [Indexed: 01/05/2023] Open
Abstract
Action inhibition, the suppression of action impulses, is crucial for goal-directed behaviour. In order to dissociate neural mechanisms specific to motor stopping from general control processes which are also relevant for other types of conflict adjustments, we compared midfrontal oscillatory activity in human volunteers via EEG between action inhibition and two other types of motor conflicts, unexpected action activation and unexpected action change. Error rates indicated that action activation was significantly easier than the other two equally demanding tasks. Midfrontal brain oscillations were significantly stronger for inhibition than for both other conflict types. This was driven by increases in the delta range (2-3 Hz), which were higher for inhibition than activation and action change. Increases in the theta range (4-7 Hz) were equally high for inhibition and change, but lower for action activation. These findings suggest that inhibition is facilitated by neural mechanisms specific to motor-stopping, with midfrontal delta being a potentially selective marker of motor inhibition.
Collapse
Affiliation(s)
- Jakob Kaiser
- Ludwig-Maximilian-University, D-80802, Munich, Germany.
| | | | - Paul Sauseng
- Ludwig-Maximilian-University, D-80802, Munich, Germany
| | | |
Collapse
|
42
|
Harper J, Malone SM, Iacono WG. Target-related parietal P3 and medial frontal theta index the genetic risk for problematic substance use. Psychophysiology 2019; 56:e13383. [PMID: 31012496 PMCID: PMC6697141 DOI: 10.1111/psyp.13383] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/05/2019] [Accepted: 04/05/2019] [Indexed: 12/22/2022]
Abstract
Theoretical and empirical work suggests that problematic substance use (PSU) is associated with individual differences in prefrontal cortex activity. While research has strongly linked parietal P3 amplitude reduction (P3AR) to genetic risk for problematic substance use, few studies have tested whether prefrontal EEG measures are sensitive to this genetic liability. In addition to P3, oddball target detection tasks elicit medial frontal theta power, reflecting attentional allocation, and parietal delta, indexing decision making or stimulus-response link updating. Midfrontal theta and parietal delta may index neurocognitive processes relevant to PSU beyond P3AR. The present investigation examined the etiological relationship between PSU and P3, frontal theta, and parietal delta in a large twin sample (N = 754). EEG was recorded during a visual oddball task. Greater PSU was associated with reduced target P3 amplitude and midfrontal theta/parietal delta power, and increased mean reaction time and reaction time variability (RTV; indexing attentional fluctuations). P3, theta, and RTV, but not delta or mean RT, explained unique variance in PSU (R2 = 0.04). Twin biometric modeling indicated a genetic relationship between PSU and P3, theta, and RTV. Theta accounted for distinct genetic variance in PSU beyond P3 and RTV. Together, 23% of the total additive genetic variance in PSU was explained by the three endophenotypes. Results replicate P3AR as an endophenotype and provide support for additional behavioral (RTV) and neurophysiological (midfrontal theta) endophenotypes of PSU. Reduced theta and greater RTV may reflect variations in a prefrontal attentional network that confers genetic risk for substance use problems.
Collapse
Affiliation(s)
- Jeremy Harper
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - Stephen M Malone
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| | - William G Iacono
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota
| |
Collapse
|
43
|
Supervised piecewise network connectivity analysis for enhanced confidence of auditory oddball tasks. Biomed Signal Process Control 2019. [DOI: 10.1016/j.bspc.2019.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Bensmann W, Zink N, Arning L, Beste C, Stock AK. The Presynaptic Regulation of Dopamine and Norepinephrine Synthesis Has Dissociable Effects on Different Kinds of Cognitive Conflicts. Mol Neurobiol 2019; 56:8087-8100. [PMID: 31183808 DOI: 10.1007/s12035-019-01664-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
Goal-directed behavior requires the ability to resolve subliminally or consciously induced response conflicts, both of which may benefit from catecholamine-induced increases in gain control. We investigated the effects of presynaptic differences in dopamine and norepinephrine synthesis with the help of the tyrosine hydroxylase (TH) rs10770141 and the dopamine-β-hydroxylase (DBH) rs1611115, rs6271, and rs1611122 polymorphisms. Conscious and subliminal response conflicts were induced with flanker and prime distractors in (n = 207) healthy young participants while neurophysiological data (EEG) was recorded. The results demonstrated that the increased presynaptic catecholamine synthesis associated with the TH rs10770141 TT genotype improves cognitive control in case of consciously perceived (flanker) conflicts, but not in case of subliminally processed (prime) conflicts. Only norepinephrine seemed to also modulate subliminal conflict processing, as evidenced by better performance of the DBH rs1611122 CC genotype in case of high subliminal conflict load. Better performance was linked to larger conflict-induced modulations in post-response alpha band power arising from parietal and inferior frontal regions, which likely helps to suppress the processing of distracting information. In summary, presynaptic catecholamine synthesis benefits consciously perceived conflicts by improving the suppression of distracting information following a conflict. Subliminal conflicts were modulated via the same mechanism, but only by norepinephrine.
Collapse
Affiliation(s)
- Wiebke Bensmann
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Nicolas Zink
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Larissa Arning
- Department of Human Genetics, Faculty of Medicine, Ruhr-Universität Bochum, Bochum, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany
| | - Ann-Kathrin Stock
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine Carl Gustav Carus, TU Dresden, Fetscherstrasse 74, 01307, Dresden, Germany.
| |
Collapse
|
45
|
Cooper PS, Karayanidis F, McKewen M, McLellan-Hall S, Wong ASW, Skippen P, Cavanagh JF. Frontal theta predicts specific cognitive control-induced behavioural changes beyond general reaction time slowing. Neuroimage 2019; 189:130-140. [PMID: 30639331 DOI: 10.1016/j.neuroimage.2019.01.022] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/19/2018] [Accepted: 01/09/2019] [Indexed: 01/08/2023] Open
Abstract
Investigations into the neurophysiological underpinnings of control suggest that frontal theta activity is increased with the need for control. However, these studies typically show this link by reporting associations between increased theta and RT slowing - a process that is contemporaneous with cognitive control but does not strictly reflect the specific use of control. In this study, we assessed frontal theta responses that underpinned the switch cost in task switching - a specific index of cognitive control that does not rely exclusively on RT slowing. Here, we utilised a single-trial regression approach to assess 1) how cognitive control demands beyond simple RT slowing were linked to midfrontal theta and 2) whether midfrontal theta effects remained stable over time. In a large cohort that included a longitudinal subsample, we found that midfrontal theta was modulated by switch costs, with enhanced theta power when preparing to switch vs. repeating a task. These effects were reliable after a two-year interval (Cronbach's α.39-0.74). In contrast, we found that trial-by-trial modulations of midfrontal theta power predicted the size of the switch cost - so that switch trials with increased theta produced smaller switch costs. Interestingly, these relationships between theta and behaviour were less stable over time (Cronbach's α 0-0.61), with participants first using both delta and theta bands to influence behaviour whereas after two years only theta associations with behaviour remained. Together, these findings suggest midfrontal theta supports the need for control beyond simple RT slowing and reveal that midfrontal theta effects remain relatively stable over time.
Collapse
Affiliation(s)
- Patrick S Cooper
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia; Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Australia; Priority Research Centre for Brain and Mental Health, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia.
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia; Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Montana McKewen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia; Priority Research Centre for Brain and Mental Health, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Samuel McLellan-Hall
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia
| | - Aaron S W Wong
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia; Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | - Patrick Skippen
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Australia; Priority Research Centre for Brain and Mental Health, University of Newcastle, Australia; Hunter Medical Research Institute, Newcastle, Australia
| | | |
Collapse
|
46
|
Immediate versus delayed control demands elicit distinct mechanisms for instantiating proactive control. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2019; 19:910-926. [PMID: 30607833 DOI: 10.3758/s13415-018-00684-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Cognitive control is critical for dynamically guiding goal-directed behavior, particularly when applying preparatory, or proactive, control processes. However, it is unknown how proactive control is modulated by timing demands. This study investigated how timing demands may instantiate distinct neural processes and contribute to the use of different types of proactive control. In two experiments, healthy young adults performed the AX-Continuous Performance Task (AX-CPT) or Dot Pattern Expectancy (DPX) task. The delay between informative cue and test probe was manipulated by block to be short (1s) or long (~3s). We hypothesized that short cue-probe delays would rely more on a rapid goal updating process (akin to task-switching), whereas long cue-probe delays would utilize more of an active maintenance process (akin to working memory). Short delay lengths were associated with specific impairments in rare probe accuracy. EEG responses to control-demanding cues revealed delay-specific neural signatures, which replicated across studies. In the short delay condition, EEG activities associated with task-switching were specifically enhanced, including increased early anterior positivity ERP amplitude (accompanying greater mid-frontal theta power) and a larger late differential switch positivity. In the long delay condition, we observed study-specific sustained increases in ERP amplitude following control-demanding cues, which may be suggestive of active maintenance. Collectively, these findings suggest that timing demands may instantiate distinct proactive control processes. These findings suggest a reevaluation of AX-CPT and DPX as pure assessments of working memory and highlight the need to understand how presumably benign task parameters, such as cue-probe delay length, significantly alter cognitive control.
Collapse
|
47
|
The strength of alpha and gamma oscillations predicts behavioral switch costs. Neuroimage 2018; 188:274-281. [PMID: 30543844 DOI: 10.1016/j.neuroimage.2018.12.016] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 11/23/2022] Open
Abstract
Cognitive flexibility is often examined using task-switch paradigms, whereby individuals either switch between tasks or repeat the same task on successive trials. The behavioral costs of switching in terms of accuracy and reaction time are well-known, but the oscillatory dynamics underlying such costs are poorly understood. Herein, we examined 25 healthy adults who performed a task-switching paradigm during magnetoencephalography (MEG). All MEG data were transformed into the time-frequency domain and significant oscillatory responses were imaged separately per condition (i.e., switch, repeat) using a beamformer. To determine the impact of task-switching on the neural dynamics, the resulting images were examined using paired-samples t-tests. Whole-brain correlations were also computed using the switch-related difference images (switch - repeat) and the switch-related behavioral data (i.e., switch costs). Our key results indicated stronger decreases in alpha and beta activity, and greater increases in gamma activity in nodes of the cingulo-opercular and fronto-parietal networks during switch relative to repeat trials. In addition, behavioral switch costs were positively correlated with switch-related differences in right frontal and inferior parietal alpha activity, and negatively correlated with switch effects in anterior cingulate and right temporoparietal gamma activity. In other words, participants who had a greater decrease in alpha or increase in gamma in these respective regions had smaller behavioral switch costs, which suggests that these oscillations are critical to supporting cognitive flexibility. In sum, we provide novel data linking switch effects and gamma oscillations, and employed a whole-brain approach to directly link switch-related oscillatory differences with switch-related performance differences.
Collapse
|
48
|
Barlow SE, Medrano P, Seichepine DR, Ross RS. Investigation of the changes in oscillatory power during task switching after mild traumatic brain injury. Eur J Neurosci 2018; 48:3498-3513. [PMID: 30383314 DOI: 10.1111/ejn.14231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 09/15/2018] [Accepted: 10/23/2018] [Indexed: 11/27/2022]
Abstract
Mild traumatic brain injury (mTBI) can cause persistent cognitive changes. These cognitive changes may be due to changes in neural communication. Task-switching is a cognitive control operation that may be susceptible to mTBI and is associated with oscillations in theta (4-7 Hz), alpha (8-13 Hz), and beta (14-30 Hz) ranges. This study aimed to investigate oscillatory power in response to cues indicating a task-switch after mTBI. Electroencephalogram and behavioral data were collected from 21 participants with a history of two or more concussions (mTBI) and 21 age- and gender-matched controls as they performed a task-switching paradigm. Participants differentiated whether visual stimuli were red or green, or circles or squares, depending on a cue. The cue changed every few trials with the first trial after a rule change being termed a switch trial. The mTBI group showed significantly less overall accuracy during the task. Over a posterior parietal region, the mTBI group showed more theta desynchronization than the control group from ~300 to ~600 ms post-cue during switch trials and from ~300 to 400 ms during maintain trials, along with less alpha and beta desynchronization than the control group from ~2,000 to ~2,200 ms post-cue. In a right parietal region, the mTBI group showed less alpha and beta desynchronization from ~525 to ~775 ms post-cue. However, there was no condition × group interaction in the behavior or oscillatory results. These oscillatory differences suggest a change in neural communication is present after mTBI that may relate to global changes in task performance.
Collapse
Affiliation(s)
- Stephanie E Barlow
- Psychology Department, University of New Hampshire, Durham, New Hampshire.,Neuroscience and Behavior Program, University of New Hampshire, Durham, New Hampshire
| | - Paolo Medrano
- Psychology Department, University of New Hampshire, Durham, New Hampshire
| | - Daniel R Seichepine
- Neuropsychology Program, University of New Hampshire at Manchester, Manchester, New Hampshire
| | - Robert S Ross
- Psychology Department, University of New Hampshire, Durham, New Hampshire.,Neuroscience and Behavior Program, University of New Hampshire, Durham, New Hampshire
| |
Collapse
|
49
|
Ryman SG, Cavanagh JF, Wertz CJ, Shaff NA, Dodd AB, Stevens B, Ling J, Yeo RA, Hanlon FM, Bustillo J, Stromberg SF, Lin DS, Abrams S, Mayer AR. Impaired Midline Theta Power and Connectivity During Proactive Cognitive Control in Schizophrenia. Biol Psychiatry 2018; 84:675-683. [PMID: 29921417 PMCID: PMC7654098 DOI: 10.1016/j.biopsych.2018.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/17/2018] [Accepted: 04/17/2018] [Indexed: 12/20/2022]
Abstract
BACKGROUND Disrupted proactive cognitive control, a form of early selection and active goal maintenance, is hypothesized to underlie the broad cognitive deficits observed in patients with schizophrenia (SPs). Current research suggests that the disrupted activation within and connectivity between regions of the cognitive control network contribute to disrupted proactive cognitive control; however, no study has examined these mechanisms using an AX Continuous Performance Test task in schizophrenia. METHODS Twenty-six SPs (17 male subjects; mean age 34.46 ± 8.77 years) and 28 healthy control participants (HCs; 16 male subjects; mean age 31.43 ± 7.23 years) underwent an electroencephalogram while performing the AX Continuous Performance Test. To examine the extent of activation and level of connectivity within the cognitive control network, power, intertrial phase clustering, and intersite phase clustering metrics were calculated and analyzed. RESULTS SPs exhibited expected general decrements in behavioral performance relative to HCs and a more selective deficit in conditions requiring proactive cognitive control. Additionally, SPs exhibited deficits in midline theta power and connectivity during proactive cognitive control trials. Specifically, HCs exhibited significantly greater theta power for B cues relative to A cues, whereas SPs exhibited no significant differences between A- and B-cue theta power. Additionally, differential theta connectivity patterns were observed in SPs and HCs. Behavioral measures of proactive cognitive control predicted functional outcomes in SPs. CONCLUSIONS This study suggests that low-frequency midline theta activity is selectively disrupted during proactive cognitive control in SPs. The disrupted midline theta activity may reflect a failure of SPs to proactively recruit cognitive control processes.
Collapse
|
50
|
López ME, Pusil S, Pereda E, Maestú F, Barceló F. Dynamic low frequency EEG phase synchronization patterns during proactive control of task switching. Neuroimage 2018; 186:70-82. [PMID: 30394328 DOI: 10.1016/j.neuroimage.2018.10.068] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/04/2018] [Accepted: 10/26/2018] [Indexed: 10/28/2022] Open
Abstract
Cognitive flexibility is critical for humans living in complex societies with ever-growing multitasking demands. Yet the low-frequency neural dynamics of distinct task-specific and domain-general mechanisms sub-serving mental flexibility are still ill-defined. Here we estimated phase electroencephalogram synchronization by using inter-trial phase coherence (ITPC) at the source space while twenty six young participants were intermittently cued to switch or repeat their perceptual categorization rule of Gabor gratings varying in color and thickness (switch task). Therefore, the aim of this study was to examine whether a proactive control is associated with connectivity only in the frontoparietal theta network, or also involves distinct neural connectivity within the delta band, as distinct neural signatures while preparing to switch or repeat a task set, respectively. To this end, we focused the analysis on late-latencies (from 500 to 800 msec post-cue onset), since they are known to be associated with top-down cognitive control processes. We confirmed that proactive control during a task switch was associated with frontoparietal theta connectivity. But importantly, we also found a distinct role of delta band oscillatory synchronization in proactive control, engaging more posterior frontotemporal regions as opposed to frontoparietal theta connectivity. Additionally, we built a regression model by using the ITPC results in delta and theta bands as predictors, and the behavioral accuracy in the switch task as the criterion, obtaining significant results for both frequency bands. All these findings support the existence of distinct proactive cognitive control processes related to functionally distinct though highly complementary theta and delta frontoparietal and temporoparietal oscillatory networks at late-latency temporal scales.
Collapse
Affiliation(s)
- María Eugenia López
- Department of Experimental Psychology, Psychological Processes and Speech Therapy, Universidad Complutense of Madrid, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain.
| | - Sandra Pusil
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Laboratory of Neuropsychology, University of the Balearic Islands, Spain
| | - Ernesto Pereda
- Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Electrical Engineering and Bioengineering Group, Department of Industrial Engineering & IUNE, Universidad de La Laguna, Tenerife, Spain
| | - Fernando Maestú
- Department of Experimental Psychology, Psychological Processes and Speech Therapy, Universidad Complutense of Madrid, Spain; Laboratory of Cognitive and Computational Neuroscience (UCM-UPM), Centre for Biomedical Technology (CTB), Madrid, Spain; Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid, Spain
| | - Francisco Barceló
- Laboratory of Neuropsychology, University of the Balearic Islands, Spain.
| |
Collapse
|