1
|
Bardon AG, Ballesteros JJ, Brincat SL, Roy JE, Mahnke MK, Ishizawa Y, Brown EN, Miller EK. Convergent effects of different anesthetics on changes in phase alignment of cortical oscillations. Cell Rep 2025; 44:115685. [PMID: 40349347 DOI: 10.1016/j.celrep.2025.115685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 03/15/2025] [Accepted: 04/18/2025] [Indexed: 05/14/2025] Open
Abstract
Many anesthetics cause loss of consciousness despite having diverse underlying molecular and circuit actions. To explore the convergent effects of these drugs, we examine how anesthetic doses of ketamine and dexmedetomidine affect bilateral oscillations in the prefrontal cortex of nonhuman primates. Both anesthetics increase phase locking in the ventrolateral and dorsolateral prefrontal cortex, within and across hemispheres. However, the nature of the phase locking varies. Neighboring prefrontal subregions within a hemisphere show decreased phase alignment with both drugs. Local analyses within a region suggest that this finding could be explained by broad cortical distance-based effects, such as large traveling waves. In contrast, homologous areas across hemispheres become more aligned in phase. Our results suggest that both anesthetics induce strong patterns of cortical phase alignment that are markedly different from those during waking and that these patterns may be a common feature driving loss of responsiveness from different anesthetic drugs.
Collapse
Affiliation(s)
- Alexandra G Bardon
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jesus J Ballesteros
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Psychology, Ruhr-Universität-Bochum, 44801 Bochum, Germany
| | - Scott L Brincat
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jefferson E Roy
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Meredith K Mahnke
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yumiko Ishizawa
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Emery N Brown
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02139, USA
| | - Earl K Miller
- The Picower Institute for Learning and Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
2
|
Van Maldegem M, Vohryzek J, Atasoy S, Alnagger N, Cardone P, Bonhomme V, Vanhaudenhuyse A, Demertzi A, Jaquet O, Bahri MA, Nunez P, Kringelbach ML, Stamatakis EA, Luppi AI. Connectome harmonic decomposition tracks the presence of disconnected consciousness during ketamine-induced unresponsiveness. Br J Anaesth 2025; 134:1088-1104. [PMID: 39933965 PMCID: PMC11947573 DOI: 10.1016/j.bja.2024.12.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/22/2024] [Accepted: 12/07/2024] [Indexed: 02/13/2025] Open
Abstract
BACKGROUND Ketamine, in doses suitable to induce anaesthesia in humans, gives rise to a unique state of unresponsiveness accompanied by vivid experiences and sensations, making it possible to disentangle the correlated but distinct concepts of conscious awareness and behavioural responsiveness. This distinction is often overlooked in the study of consciousness. METHODS The mathematical framework of connectome harmonic decomposition (CHD) was used to view functional magnetic resonance imaging (fMRI) signals during ketamine-induced unresponsiveness as distributed patterns across spatial scales. The connectome harmonic signature of this particular state was mapped onto signatures of other states of consciousness for comparison. RESULTS An increased prevalence of fine-grained connectome harmonics was found in fMRI signals obtained during ketamine-induced unresponsiveness, indicating higher granularity. After statistical assessment, the ketamine sedation harmonic signature showed alignment with signatures of LSD-induced (fixed effect =0.0113 [0.0099, 0.0127], P<0.001) or ketamine-induced (fixed effect =0.0087 [0.0071, 0.0103], P<0.001) psychedelic states, and misalignment with signatures seen in unconscious individuals owing to propofol sedation (fixed effect =-0.0213 [-0.0245, -0.0181], P<0.001) or brain injury (fixed effect =-0.0205 [-0.0234, -0.0178], P<0.001). CONCLUSIONS The CHD framework, which only requires resting-state fMRI data and can be applied retrospectively, has the ability to track alterations in conscious awareness in the absence of behavioural responsiveness on a group level. This is possible because of ketamine's unique property of decoupling these two facets, and is important for consciousness and anaesthesia research.
Collapse
Affiliation(s)
- Milan Van Maldegem
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK.
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Selen Atasoy
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience, GIGA-Consciousness, University of Liege, Liege, Belgium; Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | - Audrey Vanhaudenhuyse
- Conscious Care Lab, GIGA-Consciousness, University of Liege, Liege, Belgium; Algology Interdisciplinary Centre, University Hospital of Liege, Liege, Belgium
| | - Athena Demertzi
- Physiology of Cognition Lab, GIGA-CRC Human Imaging Unit, University of Liege, Liege, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liege, Liege, Belgium
| | - Oceane Jaquet
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liege, Liege, Belgium
| | | | - Pablo Nunez
- Coma Science Group, GIGA-Consciousness, University of Liege, Liege, Belgium; Centre du Cerveau, University Hospital of Liege, Liege, Belgium
| | - Morten L Kringelbach
- Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Centre for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Emmanuel A Stamatakis
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK
| | - Andrea I Luppi
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK; Division of Anaesthesia, University of Cambridge, Cambridge, UK; Centre for Eudaimonia and Human Flourishing, Department of Psychiatry, University of Oxford, Oxford, UK; Division of Information Engineering, University of Cambridge, Cambridge, UK; St John's College, University of Cambridge, Cambridge, UK
| |
Collapse
|
3
|
Liu Z, Si L, Shi S, Li J, Zhu J, Lee WH, Lo SL, Yan X, Chen B, Fu F, Zheng Y, Wang G. Classification of Three Anesthesia Stages Based on Near-Infrared Spectroscopy Signals. IEEE J Biomed Health Inform 2024; 28:5270-5279. [PMID: 38833406 DOI: 10.1109/jbhi.2024.3409163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the feasibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.
Collapse
|
4
|
黄 永, 吴 佳, 许 敏, 何 江, 明 东. [Current progress on characteristics of intracranial electrophysiology related to prolonged disorders of consciousness]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2024; 41:826-832. [PMID: 39218610 PMCID: PMC11366456 DOI: 10.7507/1001-5515.202403023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/09/2024] [Indexed: 09/04/2024]
Abstract
Prolonged disorders of consciousness (pDOC) are pathological conditions of alterations in consciousness caused by various severe brain injuries, profoundly affecting patients' life ability and leading to a huge burden for both the family and society. Exploring the mechanisms underlying pDOC and accurately assessing the level of consciousness in the patients with pDOC provide the basis of developing therapeutic strategies. Research of non-invasive functional neuroimaging technologies, such as functional magnetic resonance (fMRI) and scalp electroencephalography (EEG), have demonstrated that the generation, maintenance and disorders of consciousness involve functions of multiple cortical and subcortical brain regions, and their networks. Invasive intracranial neuroelectrophysiological technique can directly record the electrical activity of subcortical or cortical neurons with high signal-to-noise ratio and spatial resolution, which has unique advantages and important significance for further revealing the brain function and disease mechanism of pDOC. Here we reviewed the current progress of pDOC research based on two intracranial electrophysiological signals, spikes reflecting single-unit activity and field potential reflecting multi-unit activities, and then discussed the current challenges and gave an outlook on future development, hoping to promote the study of pathophysiological mechanisms related to pDOC and provide guides for the future clinical diagnosis and therapy of pDOC.
Collapse
Affiliation(s)
- 永志 黄
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 佳柔 吴
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 敏鹏 许
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| | - 江弘 何
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
| | - 东 明
- 天津大学 医学工程与转化医学研究院(天津 300072)Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, P. R. China
- 天津大学 精密仪器与光电子工程学院(天津 300072)School of Precision Instrument and Optoelectronics Engineering, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Bardella G, Giuffrida V, Giarrocco F, Brunamonti E, Pani P, Ferraina S. Response inhibition in premotor cortex corresponds to a complex reshuffle of the mesoscopic information network. Netw Neurosci 2024; 8:597-622. [PMID: 38952814 PMCID: PMC11168728 DOI: 10.1162/netn_a_00365] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/18/2024] [Indexed: 07/03/2024] Open
Abstract
Recent studies have explored functional and effective neural networks in animal models; however, the dynamics of information propagation among functional modules under cognitive control remain largely unknown. Here, we addressed the issue using transfer entropy and graph theory methods on mesoscopic neural activities recorded in the dorsal premotor cortex of rhesus monkeys. We focused our study on the decision time of a Stop-signal task, looking for patterns in the network configuration that could influence motor plan maturation when the Stop signal is provided. When comparing trials with successful inhibition to those with generated movement, the nodes of the network resulted organized into four clusters, hierarchically arranged, and distinctly involved in information transfer. Interestingly, the hierarchies and the strength of information transmission between clusters varied throughout the task, distinguishing between generated movements and canceled ones and corresponding to measurable levels of network complexity. Our results suggest a putative mechanism for motor inhibition in premotor cortex: a topological reshuffle of the information exchanged among ensembles of neurons.
Collapse
Affiliation(s)
- Giampiero Bardella
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Valentina Giuffrida
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Franco Giarrocco
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Emiliano Brunamonti
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Pierpaolo Pani
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Stefano Ferraina
- Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
6
|
Ensel S, Uhrig L, Ozkirli A, Hoffner G, Tasserie J, Dehaene S, Van De Ville D, Jarraya B, Pirondini E. Transient brain activity dynamics discriminate levels of consciousness during anesthesia. Commun Biol 2024; 7:716. [PMID: 38858589 PMCID: PMC11164921 DOI: 10.1038/s42003-024-06335-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/15/2024] [Indexed: 06/12/2024] Open
Abstract
The awake mammalian brain is functionally organized in terms of large-scale distributed networks that are constantly interacting. Loss of consciousness might disrupt this temporal organization leaving patients unresponsive. We hypothesize that characterizing brain activity in terms of transient events may provide a signature of consciousness. For this, we analyze temporal dynamics of spatiotemporally overlapping functional networks obtained from fMRI transient activity across different anesthetics and levels of anesthesia. We first show a striking homology in spatial organization of networks between monkeys and humans, indicating cross-species similarities in resting-state fMRI structure. We then track how network organization shifts under different anesthesia conditions in macaque monkeys. While the spatial aspect of the networks is preserved, their temporal dynamics are highly affected by anesthesia. Networks express for longer durations and co-activate in an anesthetic-specific configuration. Additionally, hierarchical brain organization is disrupted with a consciousness-level-signature role of the default mode network. In conclusion, large-scale brain network temporal dynamics capture differences in anesthetic-specific consciousness-level, paving the way towards a clinical translation of these cortical signature.
Collapse
Affiliation(s)
- Scott Ensel
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Lynn Uhrig
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Department of Anesthesiology and Critical Care, Necker Hospital, AP-HP, Université Paris Cité, Paris, France
| | - Ayberk Ozkirli
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
| | - Guylaine Hoffner
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
| | - Jordy Tasserie
- Harvard Medical School, Boston, MA, USA
- Center for Brain Circuit Therapeutics Department of Neurology Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Stanislas Dehaene
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Collège de France, Paris, France
| | - Dimitri Van De Ville
- Neuro-X Institute, Ecole Polytechnique Fédérale de Lausanne, Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Béchir Jarraya
- NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif/Yvette, France
- Cognitive Neuroimaging Unit, INSERM, U992, Gif/Yvette, France
- Université Paris-Saclay (UVSQ), Saclay, France
- Neuroscience Pole, Foch Hospital, Suresnes, France
| | - Elvira Pirondini
- Rehab and Neural Engineering Labs, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland.
- Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
7
|
Mashour GA, Lee U, Pal D, Li D. Consciousness and the Dying Brain. Anesthesiology 2024; 140:1221-1231. [PMID: 38603803 PMCID: PMC11096058 DOI: 10.1097/aln.0000000000004970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/26/2024] [Indexed: 04/13/2024]
Abstract
The near-death experience has been reported since antiquity and is often characterized by the perception of light, interactions with other entities, and life recall. Near-death experiences can occur in a variety of situations, but they have been studied systematically after in-hospital cardiac arrest, with an incidence of 10 to 20%. Long attributed to metaphysical or supernatural causes, there have been recent advances in understanding the neurophysiologic basis of this unique category of conscious experience. This article reviews the epidemiology and neurobiology of near-death experiences, with a focus on clinical and laboratory evidence for a surge of neurophysiologic gamma oscillations and cortical connectivity after cardiac and respiratory arrest.
Collapse
Affiliation(s)
- George A. Mashour
- Department of Anesthesiology, Center for Consciousness Science, Neuroscience Graduate Program, Department of Pharmacology, University of Michigan Medical School, Ann Arbor, Michigan
| | - UnCheol Lee
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| | - Dinesh Pal
- Department of Anesthesiology, Center for Consciousness Science and Neuroscience Graduate Program, Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Duan Li
- Department of Anesthesiology, Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, Michigan
| |
Collapse
|
8
|
Mashour GA. Anesthesia and the neurobiology of consciousness. Neuron 2024; 112:1553-1567. [PMID: 38579714 PMCID: PMC11098701 DOI: 10.1016/j.neuron.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/07/2024]
Abstract
In the 19th century, the discovery of general anesthesia revolutionized medical care. In the 21st century, anesthetics have become indispensable tools to study consciousness. Here, I review key aspects of the relationship between anesthesia and the neurobiology of consciousness, including interfaces of sleep and anesthetic mechanisms, anesthesia and primary sensory processing, the effects of anesthetics on large-scale functional brain networks, and mechanisms of arousal from anesthesia. I discuss the implications of the data derived from the anesthetized state for the science of consciousness and then conclude with outstanding questions, reflections, and future directions.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Department of Anesthesiology, Department of Pharmacology, Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
| |
Collapse
|
9
|
Zhou L, Duan J. The role of NMDARs in the anesthetic and antidepressant effects of ketamine. CNS Neurosci Ther 2024; 30:e14464. [PMID: 37680076 PMCID: PMC11017467 DOI: 10.1111/cns.14464] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND As a phencyclidine (PCP) analog, ketamine can generate rapid-onset and substantial anesthetic effects. Contrary to traditional anesthetics, ketamine is a dissociative anesthetic and can induce loss of consciousness in patients. Recently, the subanaesthetic dose of ketamine was found to produce rapid-onset and lasting antidepressant effects. AIM However, how different concentrations of ketamine can induce diverse actions remains unclear. Furthermore, the molecular mechanisms underlying the NMDAR-mediated anesthetic and antidepressant effects of ketamine are not fully understood. METHOD In this review, we have introduced ketamine and its metabolism, summarized recent advances in the molecular mechanisms underlying NMDAR inhibition in the anesthetic and antidepressant effects of ketamine, explored the possible functions of NMDAR subunits in the effects of ketamine, and discussed the future directions of ketamine-based anesthetic and antidepressant drugs. RESULT Both the anesthetic and antidepressant effects of ketamine were thought to be mediated by N-methyl-D-aspartate receptor (NMDAR) inhibition. CONCLUSION The roles of NMDARs have been extensively studied in the anaesthetic effects of ketamine. However, the roles of NMDARs in antidepressant effects of ketamine are complicated and controversial.
Collapse
Affiliation(s)
- Liang Zhou
- Department of Pharmacology, College of Pharmaceutical SciencesSoochow UniversitySuzhouChina
| | - Jingjing Duan
- Department of Anatomy and Neurobiology, Zhongshan School of MedicineSunYat‐sen UniversityGuangzhouChina
| |
Collapse
|
10
|
Hu Y, Du W, Qi J, Luo H, Zhang Z, Luo M, Wang Y. Comparative brain-wide mapping of ketamine- and isoflurane-activated nuclei and functional networks in the mouse brain. eLife 2024; 12:RP88420. [PMID: 38512722 PMCID: PMC10957177 DOI: 10.7554/elife.88420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024] Open
Abstract
Ketamine (KET) and isoflurane (ISO) are two widely used general anesthetics, yet their distinct and shared neurophysiological mechanisms remain elusive. In this study, we conducted a comparative analysis of the effects of KET and ISO on c-Fos expression across the mouse brain, utilizing hierarchical clustering and c-Fos-based functional network analysis to evaluate the responses of individual brain regions to each anesthetic. Our findings reveal that KET activates a wide range of brain regions, notably in the cortical and subcortical nuclei involved in sensory, motor, emotional, and reward processing, with the temporal association areas (TEa) as a strong hub, suggesting a top-down mechanism affecting consciousness by primarily targeting higher order cortical networks. In contrast, ISO predominantly influences brain regions in the hypothalamus, impacting neuroendocrine control, autonomic function, and homeostasis, with the locus coeruleus (LC) as a connector hub, indicating a bottom-up mechanism in anesthetic-induced unconsciousness. KET and ISO both activate brain areas involved in sensory processing, memory and cognition, reward and motivation, as well as autonomic and homeostatic control, highlighting their shared effects on various neural pathways. In conclusion, our results highlight the distinct but overlapping effects of KET and ISO, enriching our understanding of the mechanisms underlying general anesthesia.
Collapse
Affiliation(s)
- Yue Hu
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Wenjie Du
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Jiangtao Qi
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Huoqing Luo
- School of Life Science and Technology, ShanghaiTech UniversityShanghaiChina
| | - Zhao Zhang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Mengqiang Luo
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| | - Yingwei Wang
- Department of Anesthesiology, Huashan Hospital, Fudan UniversityShanghaiChina
| |
Collapse
|
11
|
Toker D, Müller E, Miyamoto H, Riga MS, Lladó-Pelfort L, Yamakawa K, Artigas F, Shine JM, Hudson AE, Pouratian N, Monti MM. Criticality supports cross-frequency cortical-thalamic information transfer during conscious states. eLife 2024; 13:e86547. [PMID: 38180472 PMCID: PMC10805384 DOI: 10.7554/elife.86547] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
Consciousness is thought to be regulated by bidirectional information transfer between the cortex and thalamus, but the nature of this bidirectional communication - and its possible disruption in unconsciousness - remains poorly understood. Here, we present two main findings elucidating mechanisms of corticothalamic information transfer during conscious states. First, we identify a highly preserved spectral channel of cortical-thalamic communication that is present during conscious states, but which is diminished during the loss of consciousness and enhanced during psychedelic states. Specifically, we show that in humans, mice, and rats, information sent from either the cortex or thalamus via δ/θ/α waves (∼1-13 Hz) is consistently encoded by the other brain region by high γ waves (52-104 Hz); moreover, unconsciousness induced by propofol anesthesia or generalized spike-and-wave seizures diminishes this cross-frequency communication, whereas the psychedelic 5-methoxy-N,N-dimethyltryptamine (5-MeO-DMT) enhances this low-to-high frequency interregional communication. Second, we leverage numerical simulations and neural electrophysiology recordings from the thalamus and cortex of human patients, rats, and mice to show that these changes in cross-frequency cortical-thalamic information transfer may be mediated by excursions of low-frequency thalamocortical electrodynamics toward/away from edge-of-chaos criticality, or the phase transition from stability to chaos. Overall, our findings link thalamic-cortical communication to consciousness, and further offer a novel, mathematically well-defined framework to explain the disruption to thalamic-cortical information transfer during unconscious states.
Collapse
Affiliation(s)
- Daniel Toker
- Department of Neurology, University of California, Los AngelesLos AngelesUnited States
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
| | - Eli Müller
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Hiroyuki Miyamoto
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- PRESTO, Japan Science and Technology AgencySaitamaJapan
- International Research Center for Neurointelligence, University of TokyoNagoyaJapan
| | - Maurizio S Riga
- Andalusian Center for Molecular Biology and Regenerative MedicineSevilleSpain
| | - Laia Lladó-Pelfort
- Departament de Ciències Bàsiques, Universitat de Vic-Universitat Central de CatalunyaBarcelonaSpain
| | - Kazuhiro Yamakawa
- Laboratory for Neurogenetics, RIKEN Center for Brain ScienceSaitamaJapan
- Department of Neurodevelopmental Disorder Genetics, Institute of Brain Science, Nagoya City University Graduate School of Medical ScienceNagoyaJapan
| | - Francesc Artigas
- Departament de Neurociències i Terapèutica Experimental, CSIC-Institut d’Investigacions Biomèdiques de BarcelonaBarcelonaSpain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos IIIMadridSpain
| | - James M Shine
- Brain and Mind Centre, University of SydneySydneyAustralia
| | - Andrew E Hudson
- Department of Anesthesiology, Veterans Affairs Greater Los Angeles Healthcare SystemLos AngelesUnited States
- Department of Anesthesiology and Perioperative Medicine, University of California, Los AngelesLos AngelesUnited States
| | - Nader Pouratian
- Department of Neurological Surgery, UT Southwestern Medical CenterDallasUnited States
| | - Martin M Monti
- Department of Psychology, University of California, Los AngelesLos AngelesUnited States
- Department of Neurosurgery, University of California, Los AngelesLos AngelesUnited States
| |
Collapse
|
12
|
Sun W, Dong X, Yu G, Yang Y, He B, Wei Y, Li S, Feng Z, Ma C. Behavioral assessment scale of consciousness for nonhuman primates: A Delphi study. Sci Prog 2023; 106:368504231200995. [PMID: 37731354 PMCID: PMC10515545 DOI: 10.1177/00368504231200995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
OBJECTIVE Nonhuman primates (NHPs) are suitable for being model animals in the study of consciousness and loss of consciousness (LoC) with a similar brain structure and function to humans. However, there is no effective consciousness assessment scale for them. This study aimed to develop a behavioral assessment scale of consciousness for NHPs. METHODS We constructed an initial indicator framework based on the clinical consciousness disorder assessment scales and the physiological characteristics, consciousness, and arousal behavior of NHPs. A two-round online Delphi method was conducted by a multidisciplinary expert panel to construct a behavioral assessment scale of consciousness for NHPs. The indicators and descriptions were revised according to the experts' feedback and then sent out for repeated consultations along with a summary of the results of the previous round of consultations. The accepted competencies of indicators were established with mean scores in two scoring criteria (importance and feasibility) ≥4.0, agreement rate with a rating of importance or essential ≥70.0%, and a coefficient of variation ≤0.25, as well as discussions of the research group. RESULTS Consensus was achieved after the second round of consultations, which was completed by 28 experts who specialized in rehabilitation, neuroscience, psychology, neurosurgery, and neurology. A new behavioral assessment scale of consciousness for NHPs, including 37 items organized hierarchically within seven dimensions including visual function, auditory function, motor function, orofacial movements, arousal, brainstem reflexes, and respiration, was developed in this study. CONCLUSIONS This study has successfully developed a behavioral assessment scale for measuring the conscious state of NHPs or NHP models with LoC. This tool is expected to facilitate future research into the underlying mechanisms of consciousness by providing a detailed and comprehensive means of measurement.
Collapse
Affiliation(s)
- Weiming Sun
- School of Life Science, Nanchang University, Nanchang, China
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Xiangli Dong
- Department of Psychosomatic Medicine, Hospital of Nanchang University, Nanchang, China
| | - Guohua Yu
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
| | - Yang Yang
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Binjun He
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Yingming Wei
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Shijin Li
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| | - Zhen Feng
- Department of Rehabilitation Medicine, Hospital of Nanchang University, Nanchang, China
| | - Chaolin Ma
- School of Life Science, Nanchang University, Nanchang, China
- Institute of Life Science, Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Patel PR, Welle EJ, Letner JG, Shen H, Bullard AJ, Caldwell CM, Vega-Medina A, Richie JM, Thayer HE, Patil PG, Cai D, Chestek CA. Utah array characterization and histological analysis of a multi-year implant in non-human primate motor and sensory cortices. J Neural Eng 2023; 20:10.1088/1741-2552/acab86. [PMID: 36595323 PMCID: PMC9954796 DOI: 10.1088/1741-2552/acab86] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/14/2022] [Indexed: 12/15/2022]
Abstract
Objective.The Utah array is widely used in both clinical studies and neuroscience. It has a strong track record of safety. However, it is also known that implanted electrodes promote the formation of scar tissue in the immediate vicinity of the electrodes, which may negatively impact the ability to record neural waveforms. This scarring response has been primarily studied in rodents, which may have a very different response than primate brain.Approach.Here, we present a rare nonhuman primate histological dataset (n= 1 rhesus macaque) obtained 848 and 590 d after implantation in two brain hemispheres. For 2 of 4 arrays that remained within the cortex, NeuN was used to stain for neuron somata at three different depths along the shanks. Images were filtered and denoised, with neurons then counted in the vicinity of the arrays as well as a nearby section of control tissue. Additionally, 3 of 4 arrays were imaged with a scanning electrode microscope to evaluate any materials damage that might be present.Main results.Overall, we found a 63% percent reduction in the number of neurons surrounding the electrode shanks compared to control areas. In terms of materials, the arrays remained largely intact with metal and Parylene C present, though tip breakage and cracks were observed on many electrodes.Significance.Overall, these results suggest that the tissue response in the nonhuman primate brain shows similar neuron loss to previous studies using rodents. Electrode improvements, for example using smaller or softer probes, may therefore substantially improve the tissue response and potentially improve the neuronal recording yield in primate cortex.
Collapse
Affiliation(s)
- Paras R. Patel
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Elissa J. Welle
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Joseph G. Letner
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hao Shen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Autumn J. Bullard
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Ciara M. Caldwell
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Julianna M. Richie
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Hope E. Thayer
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
| | - Parag G. Patil
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Neurology, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
| | - Dawen Cai
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, United States of America
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48019, United States of America
| | - Cynthia A. Chestek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States of America
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, MI 48109, United States of America
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI 48109, United States of America
- Robotics Program, University of Michigan, Ann Arbor, MI 48109, United States of America
| |
Collapse
|
14
|
Bundy DT, Barbay S, Hudson HM, Frost SB, Nudo RJ, Guggenmos DJ. Stimulation-Evoked Effective Connectivity (SEEC): An in-vivo approach for defining mesoscale corticocortical connectivity. J Neurosci Methods 2023; 384:109767. [PMID: 36493978 DOI: 10.1016/j.jneumeth.2022.109767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/07/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cortical electrical stimulation is a versatile technique for examining the structure and function of cortical regions and for implementing novel therapies. While electrical stimulation has been used to examine the local spread of neural activity, it may also enable longitudinal examination of mesoscale interregional connectivity. NEW METHOD Here, we sought to use intracortical microstimulation (ICMS) in conjunction with recordings of multi-unit action potentials to assess the mesoscale effective connectivity within sensorimotor cortex. Neural recordings were made from multielectrode arrays placed into sensory, motor, and premotor regions during surgical experiments in three squirrel monkeys. During each recording, single-pulse ICMS was repeatably delivered to a single region. Mesoscale effective connectivity was calculated from ICMS-evoked changes in multi-unit firing. RESULTS Multi-unit action potentials were able to be detected on the order of 1 ms after each ICMS pulse. Across sensorimotor regions, short-latency (< 2.5 ms) ICMS-evoked neural activity strongly correlated with known anatomical connections. Additionally, ICMS-evoked responses remained stable across the experimental period, despite small changes in electrode locations and anesthetic state. COMPARISON WITH EXISTING METHODS Previous imaging studies investigating cross-regional responses to stimulation are limited to utilizing indirect hemodynamic responses and thus lack the temporal specificity of ICMS-evoked responses. CONCLUSIONS These results show that monitoring ICMS-evoked neural activity, in a technique we refer to as Stimulation-Evoked Effective Connectivity (SEEC), is a viable way to longitudinally assess effective connectivity, enabling studies comparing the time course of connectivity changes with the time course of changes in behavioral function.
Collapse
Affiliation(s)
- David T Bundy
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Scott Barbay
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Heather M Hudson
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Shawn B Frost
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| | - Randolph J Nudo
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA; Landon Center on Aging, University of Kansas Medical Center, Kansas City, KS, USA.
| | - David J Guggenmos
- Departiment of Physical Medicine and Rehabilitation, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
15
|
Bieber M, Schwerin S, Kreuzer M, Klug C, Henzler M, Schneider G, Haseneder R, Kratzer S. s-ketamine enhances thalamocortical and corticocortical synaptic transmission in acute murine brain slices via increased AMPA-receptor-mediated pathways. Front Syst Neurosci 2022; 16:1044536. [PMID: 36618009 PMCID: PMC9814968 DOI: 10.3389/fnsys.2022.1044536] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
Despite ongoing research efforts and routine clinical use, the neuronal mechanisms underlying the anesthesia-induced loss of consciousness are still under debate. Unlike most anesthetics, ketamine increases thalamic and cortical activity. Ketamine is considered to act via a NMDA-receptor antagonism-mediated reduction of inhibition, i.e., disinhibition. Intact interactions between the thalamus and cortex constitute a prerequisite for the maintenance of consciousness and are thus a promising target for anesthetics to induce loss of consciousness. In this study, we aim to characterize the influence of s-ketamine on the thalamocortical network using acute brain-slice preparation. We performed whole-cell patch-clamp recordings from pyramidal neurons in cortical lamina IV and thalamocortical relay neurons in acute brain slices from CB57BL/6N mice. Excitatory postsynaptic potentials (EPSPs) were obtained via electrical stimulation of the cortex with a bipolar electrode that was positioned to lamina II/III (electrically induced EPSPs, eEPSPs) or via optogenetic activation of thalamocortical relay neurons (optogenetically induced EPSPs, oEPSPs). Intrinsic neuronal properties (like resting membrane potential, membrane threshold for action potential generation, input resistance, and tonic action potential frequency), as well as NMDA-receptor-dependent and independent spontaneous GABAA-receptor-mediated inhibitory postsynaptic currents (sIPSCs) were evaluated. Wilcoxon signed-rank test (level of significance < 0.05) served as a statistical test and Cohen's U3_1 was used to determine the actual effect size. Within 20 min, s-ketamine (5 μM) significantly increased both intracortical eEPSPs as well as thalamocortical oEPSPs. NMDA-receptor-mediated intracortical eEPSPs were significantly reduced. Intrinsic neuronal properties of cortical pyramidal neurons from lamina IV and thalamocortical relay neurons in the ventrobasal thalamic complex were not substantially affected. Neither a significant effect on NMDA-receptor-dependent GABAA sIPSCs (thought to underly a disinhibitory effect) nor a reduction of NMDA-receptor independent GABAA sIPSCs was observed. Both thalamocortical and intracortical AMPA-receptor-mediated EPSPs were significantly increased.In conclusion, our findings show no evidence for a NMDA-receptor antagonism-based disinhibition, but rather suggest an enhanced thalamocortical and intracortical synaptic transmission, which appears to be driven via increased AMPA-receptor-mediated transmission.
Collapse
|
16
|
Chen Y, Li S, Liang X, Zhang J. Differential Alterations to the Metabolic Connectivity of the Cortical and Subcortical Regions in Rat Brain During Ketamine-Induced Unconsciousness. Anesth Analg 2022; 135:1106-1114. [PMID: 35007212 DOI: 10.1213/ane.0000000000005869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND Ketamine anesthesia increased glucose metabolism in most brain regions compared to another intravenous anesthetic propofol. However, whether the changes in cerebral metabolic networks induced by ketamine share the same mechanism with propofol remains to be explored. The purpose of the present study was to identify specific features of metabolic network in rat brains during ketamine-induced subanesthesia state and anesthesia state compared to awake state. METHODS We acquired fluorodeoxyglucose positron emission tomography (FDG-PET) images in 20 healthy adult Sprague-Dawley rats that were intravenously administrated saline and ketamine to achieve different conscious states: awake (normal saline), subanesthesia (30 mg kg -1 h -1 ), and anesthesia (160 mg kg -1 h -1 ). Based on the FDG-PET data, the alterations in cerebral glucose metabolism and metabolic topography were investigated by graph-theory analysis. RESULTS The baseline metabolism in rat brains was found significantly increased during ketamine-induced subanesthesia and anesthesia. The graph-theory analysis manifested a reduction in metabolism connectivity and network global/local efficiency across cortical regions and an increase across subcortical regions during ketamine-induced anesthesia (nonparametric permutation test: global efficiency between awake and anesthesia, cortex: P = .016, subcortex: P = .015; global efficiency between subanesthesia and anesthesia, subcortex: P = .012). CONCLUSIONS Ketamine broadly increased brain metabolism alongside decreased metabolic connectivity and network efficiency of cortex network. Modulation of these cortical metabolic networks may be a candidate mechanism underlying general anesthesia-induced loss of consciousness.
Collapse
Affiliation(s)
- Yali Chen
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Siyang Li
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Xia Liang
- School of Life Science and Technology.,Institute of Space Environment and Materiel Science, Harbin Institute of Technology, Harbin, China
| | - Jun Zhang
- From the Department of Anesthesiology, Shanghai Cancer Center, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Wang H, Zhang Y, Cheng H, Yan F, Song D, Wang Q, Cai S, Wang Y, Huang L. Selective corticocortical connectivity suppression during propofol-induced anesthesia in healthy volunteers. Cogn Neurodyn 2022; 16:1029-1043. [PMID: 36237410 PMCID: PMC9508318 DOI: 10.1007/s11571-021-09775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/17/2021] [Accepted: 12/13/2021] [Indexed: 11/03/2022] Open
Abstract
We comprehensively studied directional feedback and feedforward connectivity to explore potential connectivity changes that underlie propofol-induced deep sedation. We further investigated the corticocortical connectivity patterns within and between hemispheres. Sixty-channel electroencephalographic data were collected from 19 healthy volunteers in a resting wakefulness state and propofol-induced deep unconsciousness state defined by a bispectral index value of 40. A source analysis was employed to locate cortical activity. The Desikan-Killiany atlas was used to partition cortices, and directional functional connectivity was assessed by normalized symbolic transfer entropy between higher-order (prefrontal and frontal) and lower-order (auditory, sensorimotor and visual) cortices and between hot-spot frontal and parietal cortices. We found that propofol significantly suppressed feedforward connectivity from the left parietal to right frontal cortex and bidirectional connectivity between the left frontal and left parietal cortex, between the frontal and auditory cortex, and between the frontal and sensorimotor cortex. However, there were no significant changes in either feedforward or feedback connectivity between the prefrontal and all the lower-order cortices and between the frontal and visual cortices or in feedback connectivity from the frontal to parietal cortex. Propofol anesthetic selectively decreased the unidirectional interaction between higher-order frontoparietal cortices and bidirectional interactions between the higher-order frontal cortex and lower-order auditory and sensorimotor cortices, which indicated that both feedback and feedforward connectivity were suppressed under propofol-induced deep sedation. Our findings provide critical insights into the connectivity changes underlying the top-down mechanism of propofol anesthesia at deep sedation. Supplementary Information The online version contains supplementary material available at 10.1007/s11571-021-09775-x.
Collapse
Affiliation(s)
- Haidong Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Huanhuan Cheng
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Fei Yan
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Dawei Song
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Qiang Wang
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi’an Jiaotong University, No. 277 West Yanta Road, Xi’an, 710061 China
| | - Suping Cai
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, No. 2 South Taibai Road, Xi’an, 710071 China
| |
Collapse
|
18
|
Dynamic alpha-gamma phase-amplitude coupling signatures during sevoflurane-induced loss and recovery of consciousness. Neurosci Res 2022; 185:20-28. [PMID: 36084701 DOI: 10.1016/j.neures.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 11/20/2022]
Abstract
Phase-amplitude coupling (PAC) plays an important role in anesthetic-induced unconsciousness. The delta-alpha PAC signature during anesthetic-induced unconsciousness is gradually becoming known; however, the frequency dependence and spatial characteristics of PAC are still unclear. Multi-channel electroencephalography (EEG) was performed during the loss and recovery phases of consciousness in patients undergoing general anesthesia using sevoflurane. First, a spectral analysis was used to investigate the power change of the different frequency bands in the EEG signals. Second, PAC comodulogram analysis was performed to confirm the frequencies of the PAC phase drivers. Finally, to investigate the spatial characteristics of PAC, a novel PAC network was constructed using within- and cross-lead PAC, and a K-means clustering algorithm was used to identify PAC network patterns. Our results show that, in addition to the delta-alpha PAC, unconsciousness induced by sevoflurane was accompanied by spatial non-uniform alpha-gamma PAC in the cortical network, and dynamic PAC patterns between the anterior and posterior brain were observed during the unconscious phase. The dynamic transition of PAC network patterns indicates that brain states under sevoflurane-induced unconsciousness emerge from the regulation of functional integration and segregation instantiated by delta-alpha and alpha-gamma PAC.
Collapse
|
19
|
Wade BSC, Loureiro J, Sahib A, Kubicki A, Joshi SH, Hellemann G, Espinoza RT, Woods RP, Congdon E, Narr KL. Anterior default mode network and posterior insular connectivity is predictive of depressive symptom reduction following serial ketamine infusion. Psychol Med 2022; 52:2376-2386. [PMID: 35578581 PMCID: PMC9527672 DOI: 10.1017/s0033291722001313] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2021] [Accepted: 04/19/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Ketamine is a rapidly-acting antidepressant treatment with robust response rates. Previous studies have reported that serial ketamine therapy modulates resting state functional connectivity in several large-scale networks, though it remains unknown whether variations in brain structure, function, and connectivity impact subsequent treatment success. We used a data-driven approach to determine whether pretreatment multimodal neuroimaging measures predict changes along symptom dimensions of depression following serial ketamine infusion. METHODS Patients with depression (n = 60) received structural, resting state functional, and diffusion MRI scans before treatment. Depressive symptoms were assessed using the 17-item Hamilton Depression Rating Scale (HDRS-17), the Inventory of Depressive Symptomatology (IDS-C), and the Rumination Response Scale (RRS) before and 24 h after patients received four (0.5 mg/kg) infusions of racemic ketamine over 2 weeks. Nineteen unaffected controls were assessed at similar timepoints. Random forest regression models predicted symptom changes using pretreatment multimodal neuroimaging and demographic measures. RESULTS Two HDRS-17 subscales, the HDRS-6 and core mood and anhedonia (CMA) symptoms, and the RRS: reflection (RRSR) scale were predicted significantly with 19, 27, and 1% variance explained, respectively. Increased right medial prefrontal cortex/anterior cingulate and posterior insula (PoI) and lower kurtosis of the superior longitudinal fasciculus predicted reduced HDRS-6 and CMA symptoms following treatment. RRSR change was predicted by global connectivity of the left posterior cingulate, left insula, and right superior parietal lobule. CONCLUSIONS Our findings support that connectivity of the anterior default mode network and PoI may serve as potential biomarkers of antidepressant outcomes for core depressive symptoms.
Collapse
Affiliation(s)
- Benjamin S. C. Wade
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Joana Loureiro
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Ashish Sahib
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Antoni Kubicki
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Shantanu H. Joshi
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
| | - Gerhard Hellemann
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Randall T. Espinoza
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Roger P. Woods
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Eliza Congdon
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| | - Katherine L. Narr
- Ahmanson-Lovelace Brain Mapping Center, Department of Neurology, University of California, Los Angeles, CA, USA
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute, UCLA, Los Angeles, USA
| |
Collapse
|
20
|
Dong K, Zhang D, Wei Q, Wang G, Huang F, Chen X, Muhammad KG, Sun Y, Liu J. Intrinsic phase-amplitude coupling on multiple spatial scales during the loss and recovery of consciousness. Comput Biol Med 2022; 147:105687. [PMID: 35687924 DOI: 10.1016/j.compbiomed.2022.105687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 05/13/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Recent studies have demonstrated that changes in brain information processing during anesthetic-induced loss of consciousness (LOC) might be influenced by phase-amplitude coupling (PAC) in electroencephalogram (EEG). However, most anesthesia research on PAC typically focuses on delta and alpha oscillations. Studies of spatial-frequency characteristics by PAC for EEG may yield additional insights into understanding the impaired information processing under anesthesia unconsciousness and provide potential improvements in anesthesia monitoring. OBJECTIVE Considering different frequency bands of EEG represent neural activities on different spatial scales, we hypothesized that functional coupling simultaneously appears in multiple frequency bands and specific brain regions during anesthesia unconsciousness. In this paper, PAC analysis on whole-brain EEG besides delta and alpha oscillations was investigated to understand the influence of multiple cross-frequency coordination coupling on information processing during the loss and recovery of consciousness. METHOD EEG data from fifteen patients without cognitive diseases (7 males/8 females, aged 43.8 ± 13.4 years, weighing 63.3 ± 14.9 kilograms) undergoing lower limb surgery and sevoflurane anesthesia was recorded. To investigate the spatial-frequency characteristics of EEG source signals during loss and recovery of consciousness, the time-resolved PAC (tPAC) was calculated to reflect cross-frequency coordination in different frequency bands (delta, theta, alpha, beta, gamma) and different functional regions (Visual, Limbic, Dorsal attention, Ventral attention, Default, Somatomotor, Control, Salience networks). Furthermore, different patterns (peak-max and trough-max) of PAC were examined by constructing phase-amplitude histograms using phase bins to investigate the different information processing during LOC. The multivariate analysis of variance (MANOVA) and trend analysis were used for statistical analysis. RESULTS Theta-alpha and alpha-beta PAC were observed during sevoflurane-induced LOC, which significantly changed during loss and recovery of consciousness (F4,70 = 16.553, p < 0.001 for theta-alpha PAC and F4,70 = 12.446, p < 0.001 for alpha-beta PAC, MANOVA test). Simultaneously, PAC was distributed in specific functional regions, i.e., Visual, Limbic, Default, Somatomotor, etc. Furthermore, peak-max patterns of theta-alpha PAC were observed while alpha-beta PAC showed trough-max patterns and vice versa. CONCLUSION Theta-alpha and alpha-beta PAC observed in specific brain regions represent information processing on multiple spatial scales, and the opposite patterns of PAC indicate opposite information processing on multiple spatial scales during LOC. Our study demonstrates the regulation of local-global information processing during sevoflurane-induced LOC. It suggests the utility of evaluating the balance of functional integration and segregation in monitoring anesthetized states.
Collapse
Affiliation(s)
- Kangli Dong
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Delin Zhang
- The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, China
| | - Qishun Wei
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Guozheng Wang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Fan Huang
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Xing Chen
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Kanhar G Muhammad
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Yu Sun
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China
| | - Jun Liu
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
21
|
Affiliation(s)
- George A. Mashour
- From the Departments of Anesthesiology and Pharmacology, Center for Consciousness Science, Michigan Neuroscience Institute, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
22
|
Bharioke A, Munz M, Brignall A, Kosche G, Eizinger MF, Ledergerber N, Hillier D, Gross-Scherf B, Conzelmann KK, Macé E, Roska B. General anesthesia globally synchronizes activity selectively in layer 5 cortical pyramidal neurons. Neuron 2022; 110:2024-2040.e10. [PMID: 35452606 PMCID: PMC9235854 DOI: 10.1016/j.neuron.2022.03.032] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 10/30/2021] [Accepted: 03/28/2022] [Indexed: 12/27/2022]
Abstract
General anesthetics induce loss of consciousness, a global change in behavior. However, a corresponding global change in activity in the context of defined cortical cell types has not been identified. Here, we show that spontaneous activity of mouse layer 5 pyramidal neurons, but of no other cortical cell type, becomes consistently synchronized in vivo by different general anesthetics. This heightened neuronal synchrony is aperiodic, present across large distances, and absent in cortical neurons presynaptic to layer 5 pyramidal neurons. During the transition to and from anesthesia, changes in synchrony in layer 5 coincide with the loss and recovery of consciousness. Activity within both apical and basal dendrites is synchronous, but only basal dendrites’ activity is temporally locked to somatic activity. Given that layer 5 is a major cortical output, our results suggest that brain-wide synchrony in layer 5 pyramidal neurons may contribute to the loss of consciousness during general anesthesia. Activity of layer 5 PNs synchronizes globally in different anesthetics Other mouse cortical cell types show no consistent increase in synchrony Changes in layer 5 synchrony coincide with the loss and recovery of consciousness Basal, but not apical, layer 5 dendrites are in synchrony with somas
Collapse
Affiliation(s)
- Arjun Bharioke
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Martin Munz
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Alexandra Brignall
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland
| | - Georg Kosche
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Max Ferdinand Eizinger
- Max von Pettenkofer-Institute, Virology, Medical Faculty and Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Nicole Ledergerber
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Daniel Hillier
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland; Institute of Cognitive Neuroscience and Psychology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Brigitte Gross-Scherf
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland
| | - Karl-Klaus Conzelmann
- Max von Pettenkofer-Institute, Virology, Medical Faculty and Gene Center, Ludwig Maximilians University, Munich, Germany
| | - Emilie Macé
- Brain-Wide Circuits for Behavior Research Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Botond Roska
- Institute of Molecular and Clinical Ophthalmology Basel, Basel, Switzerland; Department of Ophthalmology, University of Basel, Basel, Switzerland; Friedrich Miescher Institute for Biomedical Research, Basel, Switzerland.
| |
Collapse
|
23
|
Giacometti C, Dureux A, Autran-Clavagnier D, Wilson CRE, Sallet J, Dirheimer M, Procyk E, Hadj-Bouziane F, Amiez C. Frontal Cortical Functional Connectivity Is Impacted by Anaesthesia in Macaques. Cereb Cortex 2021; 32:4050-4067. [PMID: 34974618 DOI: 10.1093/cercor/bhab465] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 10/19/2021] [Accepted: 11/09/2021] [Indexed: 01/02/2023] Open
Abstract
A critical aspect of neuroscience is to establish whether and how brain networks evolved across primates. To date, most comparative studies have used resting-state functional magnetic resonance imaging (rs-fMRI) in anaesthetized nonhuman primates and in awake humans. However, anaesthesia strongly affects rs-fMRI signals. The present study investigated the impact of the awareness state (anaesthesia vs. awake) within the same group of macaque monkeys on the rs-fMRI functional connectivity organization of a well-characterized network in the human brain, the cingulo-frontal lateral network. Results in awake macaques show that rostral seeds in the cingulate sulcus exhibited stronger correlation strength with rostral compared to caudal lateral frontal cortical areas, while more caudal seeds displayed stronger correlation strength with caudal compared to anterior lateral frontal cortical areas. Critically, this inverse rostro-caudal functional gradient was abolished under anaesthesia. This study demonstrated a similar functional connectivity (FC) organization of the cingulo-frontal cortical network in awake macaque to that previously uncovered in the human brain pointing toward a preserved FC organization from macaque to human. However, it can only be observed in awake state suggesting that this network is sensitive to anaesthesia and warranting significant caution when comparing FC patterns across species under different states.
Collapse
Affiliation(s)
- Camille Giacometti
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Audrey Dureux
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Delphine Autran-Clavagnier
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France.,Inovarion, 75005 Paris, France
| | - Charles R E Wilson
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Jérôme Sallet
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Manon Dirheimer
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Emmanuel Procyk
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| | - Fadila Hadj-Bouziane
- Integrative Multisensory Perception Action & Cognition Team (ImpAct), INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France, University of Lyon 1, Lyon, France
| | - Céline Amiez
- Univ Lyon, Université Claude Bernard Lyon 1, Institut National de la Santé Et de la Recherche Médicale, Stem Cell and Brain Research Institute U1208, Bron, France
| |
Collapse
|
24
|
Sparse Coding in Temporal Association Cortex Improves Complex Sound Discriminability. J Neurosci 2021; 41:7048-7064. [PMID: 34244361 DOI: 10.1523/jneurosci.3167-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 06/05/2021] [Accepted: 06/18/2021] [Indexed: 11/21/2022] Open
Abstract
The mouse auditory cortex is comprised of several auditory fields spanning the dorsoventral axis of the temporal lobe. The ventral most auditory field is the temporal association cortex (TeA), which remains largely unstudied. Using Neuropixels probes, we simultaneously recorded from primary auditory cortex (AUDp), secondary auditory cortex (AUDv), and TeA, characterizing neuronal responses to pure tones and frequency modulated (FM) sweeps in awake head-restrained female mice. As compared with AUDp and AUDv, single-unit (SU) responses to pure tones in TeA were sparser, delayed, and prolonged. Responses to FMs were also sparser. Population analysis showed that the sparser responses in TeA render it less sensitive to pure tones, yet more sensitive to FMs. When characterizing responses to pure tones under anesthesia, the distinct signature of TeA was changed considerably as compared with that in awake mice, implying that responses in TeA are strongly modulated by non-feedforward connections. Together, these findings provide a basic electrophysiological description of TeA as an integral part of sound processing along the cortical hierarchy.SIGNIFICANCE STATEMENT This is the first comprehensive characterization of the auditory responses in the awake mouse auditory temporal association cortex (TeA). The study provides the foundations for further investigation of TeA and its involvement in auditory learning, plasticity, auditory driven behaviors etc. The study was conducted using state of the art data collection tools, allowing for simultaneous recording from multiple cortical regions and numerous neurons.
Collapse
|
25
|
Garwood IC, Chakravarty S, Donoghue J, Mahnke M, Kahali P, Chamadia S, Akeju O, Miller EK, Brown EN. A hidden Markov model reliably characterizes ketamine-induced spectral dynamics in macaque local field potentials and human electroencephalograms. PLoS Comput Biol 2021; 17:e1009280. [PMID: 34407069 PMCID: PMC8405019 DOI: 10.1371/journal.pcbi.1009280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 08/30/2021] [Accepted: 07/15/2021] [Indexed: 11/18/2022] Open
Abstract
Ketamine is an NMDA receptor antagonist commonly used to maintain general anesthesia. At anesthetic doses, ketamine causes high power gamma (25-50 Hz) oscillations alternating with slow-delta (0.1-4 Hz) oscillations. These dynamics are readily observed in local field potentials (LFPs) of non-human primates (NHPs) and electroencephalogram (EEG) recordings from human subjects. However, a detailed statistical analysis of these dynamics has not been reported. We characterize ketamine's neural dynamics using a hidden Markov model (HMM). The HMM observations are sequences of spectral power in seven canonical frequency bands between 0 to 50 Hz, where power is averaged within each band and scaled between 0 and 1. We model the observations as realizations of multivariate beta probability distributions that depend on a discrete-valued latent state process whose state transitions obey Markov dynamics. Using an expectation-maximization algorithm, we fit this beta-HMM to LFP recordings from 2 NHPs, and separately, to EEG recordings from 9 human subjects who received anesthetic doses of ketamine. Our beta-HMM framework provides a useful tool for experimental data analysis. Together, the estimated beta-HMM parameters and optimal state trajectory revealed an alternating pattern of states characterized primarily by gamma and slow-delta activities. The mean duration of the gamma activity was 2.2s([1.7,2.8]s) and 1.2s([0.9,1.5]s) for the two NHPs, and 2.5s([1.7,3.6]s) for the human subjects. The mean duration of the slow-delta activity was 1.6s([1.2,2.0]s) and 1.0s([0.8,1.2]s) for the two NHPs, and 1.8s([1.3,2.4]s) for the human subjects. Our characterizations of the alternating gamma slow-delta activities revealed five sub-states that show regular sequential transitions. These quantitative insights can inform the development of rhythm-generating neuronal circuit models that give mechanistic insights into this phenomenon and how ketamine produces altered states of arousal.
Collapse
Affiliation(s)
- Indie C. Garwood
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Sourish Chakravarty
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jacob Donoghue
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Meredith Mahnke
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Pegah Kahali
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Shubham Chamadia
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Earl K. Miller
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Emery N. Brown
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
26
|
Neural Dynamics in Primate Cortex during Exposure to Subanesthetic Concentrations of Nitrous Oxide. eNeuro 2021; 8:ENEURO.0479-20.2021. [PMID: 34135005 PMCID: PMC8281265 DOI: 10.1523/eneuro.0479-20.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 05/07/2021] [Accepted: 05/31/2021] [Indexed: 11/21/2022] Open
Abstract
Nitrous oxide (N2O) is a hypnotic gas with antidepressant and psychedelic properties at subanesthetic concentrations. Despite long-standing clinical use, there is insufficient understanding of its effect on neural dynamics and cortical processing, which is important for mechanistic understanding of its therapeutic effects. We administered subanesthetic (70%), inhaled N2O and studied the dynamic changes of spiking rate, spectral content, and somatosensory information representation in primary motor cortex (M1) in two male rhesus macaques implanted with Utah microelectrode arrays in the hand area of M1. The average sorted multiunit spiking rate in M1 increased from 8.1 ± 0.99 to 10.6 ± 1.3 Hz in Monkey W (p < 0.001) and from 5.6 ± 0.87 to 7.0 ± 1.1 Hz in Monkey N (p = 0.003). Power spectral densities increased in beta- and gamma-band power. To evaluate somatosensory content in M1 as a surrogate of information transfer, fingers were lightly brushed and classified using a naive Bayes classifier. In both monkeys, the proportion of correctly classified fingers dropped from 0.50 ± 0.06 before N2O inhalation to 0.34 ± 0.03 during N2O inhalation (p = 0.018), although some fingers continued to be correctly classified (p = 0.005). The decrease in correct classifications corresponded to decreased modulation depth for the population (p = 0.005) and fewer modulated units (p = 0.046). However, the increased single-unit firing rate was not correlated with its modulation depth (R2 < 0.001, p = 0.93). These data suggest that N2O degrades information transfer, although no clear relationship was found between neuronal tuning and N2O-induced changes in firing rate.
Collapse
|
27
|
Varley TF, Denny V, Sporns O, Patania A. Topological analysis of differential effects of ketamine and propofol anaesthesia on brain dynamics. ROYAL SOCIETY OPEN SCIENCE 2021; 8:201971. [PMID: 34168888 PMCID: PMC8220281 DOI: 10.1098/rsos.201971] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/21/2021] [Indexed: 05/07/2023]
Abstract
Research has found that the vividness of conscious experience is related to brain dynamics. Despite both being anaesthetics, propofol and ketamine produce different subjective states: we explore the different effects of these two anaesthetics on the structure of dynamic attractors reconstructed from electrophysiological activity recorded from cerebral cortex of two macaques. We used two methods: the first embeds the recordings in a continuous high-dimensional manifold on which we use topological data analysis to infer the presence of higher-order dynamics. The second reconstruction, an ordinal partition network embedding, allows us to create a discrete state-transition network, which is amenable to information-theoretic analysis and contains rich information about state-transition dynamics. We find that the awake condition generally had the 'richest' structure, visiting the most states, the presence of pronounced higher-order structures, and the least deterministic dynamics. By contrast, the propofol condition had the most dissimilar dynamics, transitioning to a more impoverished, constrained, low-structure regime. The ketamine condition, interestingly, seemed to combine aspects of both: while it was generally less complex than the awake condition, it remained well above propofol in almost all measures. These results provide deeper and more comprehensive insights than what is typically gained by using point-measures of complexity.
Collapse
Affiliation(s)
- Thomas F. Varley
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
- School of Informatics, Computing and Engineering, Indiana University, Bloomington, IN 47401, USA
| | - Vanessa Denny
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
| | - Olaf Sporns
- Psychological & Brain Sciences, Indiana University, Bloomington, IN 47401, USA
- Indiana University Network Sciences Institute (IUNI), Bloomington, IN 47401, USA
| | - Alice Patania
- Indiana University Network Sciences Institute (IUNI), Bloomington, IN 47401, USA
| |
Collapse
|
28
|
Anterior insula regulates brain network transitions that gate conscious access. Cell Rep 2021; 35:109081. [PMID: 33951427 PMCID: PMC8157795 DOI: 10.1016/j.celrep.2021.109081] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/19/2021] [Accepted: 04/13/2021] [Indexed: 12/20/2022] Open
Abstract
Conscious access to sensory information is likely gated at an intermediate site between primary sensory and transmodal association cortices, but the structure responsible remains unknown. We perform functional neuroimaging to determine the neural correlates of conscious access using a volitional mental imagery task, a report paradigm not confounded by motor behavior. Titrating propofol to loss of behavioral responsiveness in healthy volunteers creates dysfunction of the anterior insular cortex (AIC) in association with an impairment of dynamic transitions of default-mode and dorsal attention networks. Candidate subcortical regions mediating sensory gating or arousal (thalamus, basal forebrain) fail to show this association. The gating role of the AIC is consistent with findings in awake participants, whose conscious access is predicted by pre-stimulus AIC activity near perceptual threshold. These data support the hypothesis that AIC, situated at an intermediate position of the cortical hierarchy, regulates brain network transitions that gate conscious access. In a human neuroimaging study, Huang et al. manipulate the level and content of consciousness using independent experimental protocols to demonstrate that the anterior insula, situated between unimodal and transmodal cortical areas along the brain’s functional hierarchy, serves as a gate for conscious access of sensory information.
Collapse
|
29
|
Leung LS, Chu L, Prado MAM, Prado VF. Forebrain Acetylcholine Modulates Isoflurane and Ketamine Anesthesia in Adult Mice. Anesthesiology 2021; 134:588-606. [PMID: 33635947 DOI: 10.1097/aln.0000000000003713] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Cholinergic drugs are known to modulate general anesthesia, but anesthesia responses in acetylcholine-deficient mice have not been studied. It was hypothesized that mice with genetic deficiency of forebrain acetylcholine show increased anesthetic sensitivity to isoflurane and ketamine and decreased gamma-frequency brain activity. METHODS Male adult mice with heterozygous knockdown of vesicular acetylcholine transporter in the brain or homozygous knockout of the transporter in the basal forebrain were compared with wild-type mice. Hippocampal and frontal cortical electrographic activity and righting reflex were studied in response to isoflurane and ketamine doses. RESULTS The loss-of-righting-reflex dose for isoflurane was lower in knockout (mean ± SD, 0.76 ± 0.08%, n = 18, P = 0.005) but not knockdown (0.78 ± 0.07%, n = 24, P = 0.021), as compared to wild-type mice (0.83 ± 0.07%, n = 23), using a significance criterion of P = 0.017 for three planned comparisons. Loss-of-righting-reflex dose for ketamine was lower in knockout (144 ± 39 mg/kg, n = 14, P = 0.006) but not knockdown (162 ± 32 mg/kg, n = 20, P = 0.602) as compared to wild-type mice (168 ± 24 mg/kg, n = 21). Hippocampal high-gamma (63 to 100 Hz) power after isoflurane was significantly lower in knockout and knockdown mice compared to wild-type mice (isoflurane-dose and mouse-group interaction effect, F[8,56] = 2.87, P = 0.010; n = 5 to 6 mice per group). Hippocampal high-gamma power after ketamine was significantly lower in both knockout and knockdown mice when compared to wild-type mice (interaction effect F[2,13] = 6.06, P = 0.014). The change in frontal cortical gamma power with isoflurane or ketamine was not statistically different among knockout, knockdown, and wild-type mice. CONCLUSIONS These findings suggest that forebrain cholinergic neurons modulate behavioral sensitivity and hippocampal gamma activity during isoflurane and ketamine anesthesia. EDITOR’S PERSPECTIVE
Collapse
|
30
|
Kohtala S. Ketamine-50 years in use: from anesthesia to rapid antidepressant effects and neurobiological mechanisms. Pharmacol Rep 2021; 73:323-345. [PMID: 33609274 PMCID: PMC7994242 DOI: 10.1007/s43440-021-00232-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 02/03/2021] [Accepted: 02/06/2021] [Indexed: 12/11/2022]
Abstract
Over the past 50 years, ketamine has solidified its position in both human and veterinary medicine as an important anesthetic with many uses. More recently, ketamine has been studied and used for several new indications, ranging from chronic pain to drug addiction and post-traumatic stress disorder. The discovery of the rapid-acting antidepressant effects of ketamine has resulted in a surge of interest towards understanding the precise mechanisms driving its effects. Indeed, ketamine may have had the largest impact for advancements in the research and treatment of psychiatric disorders in the past few decades. While intense research efforts have been aimed towards uncovering the molecular targets underlying ketamine's effects in treating depression, the underlying neurobiological mechanisms remain elusive. These efforts are made more difficult by ketamine's complex dose-dependent effects on molecular mechanisms, multiple pharmacologically active metabolites, and a mechanism of action associated with the facilitation of synaptic plasticity. This review aims to provide a brief overview of the different uses of ketamine, with an emphasis on examining ketamine's rapid antidepressant effects spanning molecular, cellular, and network levels. Another focus of the review is to offer a perspective on studies related to the different doses of ketamine used in antidepressant research. Finally, the review discusses some of the latest hypotheses concerning ketamine's action.
Collapse
Affiliation(s)
- Samuel Kohtala
- Laboratory of Neurotherapeutics, Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P. O. Box 56, 00014, Helsinki, Finland.
- SleepWell Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Feil Family Brain and Mind Research Institute, Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
31
|
Shorten DP, Spinney RE, Lizier JT. Estimating Transfer Entropy in Continuous Time Between Neural Spike Trains or Other Event-Based Data. PLoS Comput Biol 2021; 17:e1008054. [PMID: 33872296 PMCID: PMC8084348 DOI: 10.1371/journal.pcbi.1008054] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 04/29/2021] [Accepted: 02/19/2021] [Indexed: 11/24/2022] Open
Abstract
Transfer entropy (TE) is a widely used measure of directed information flows in a number of domains including neuroscience. Many real-world time series for which we are interested in information flows come in the form of (near) instantaneous events occurring over time. Examples include the spiking of biological neurons, trades on stock markets and posts to social media, amongst myriad other systems involving events in continuous time throughout the natural and social sciences. However, there exist severe limitations to the current approach to TE estimation on such event-based data via discretising the time series into time bins: it is not consistent, has high bias, converges slowly and cannot simultaneously capture relationships that occur with very fine time precision as well as those that occur over long time intervals. Building on recent work which derived a theoretical framework for TE in continuous time, we present an estimation framework for TE on event-based data and develop a k-nearest-neighbours estimator within this framework. This estimator is provably consistent, has favourable bias properties and converges orders of magnitude more quickly than the current state-of-the-art in discrete-time estimation on synthetic examples. We demonstrate failures of the traditionally-used source-time-shift method for null surrogate generation. In order to overcome these failures, we develop a local permutation scheme for generating surrogate time series conforming to the appropriate null hypothesis in order to test for the statistical significance of the TE and, as such, test for the conditional independence between the history of one point process and the updates of another. Our approach is shown to be capable of correctly rejecting or accepting the null hypothesis of conditional independence even in the presence of strong pairwise time-directed correlations. This capacity to accurately test for conditional independence is further demonstrated on models of a spiking neural circuit inspired by the pyloric circuit of the crustacean stomatogastric ganglion, succeeding where previous related estimators have failed.
Collapse
Affiliation(s)
- David P. Shorten
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Richard E. Spinney
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
- School of Physics and EMBL Australia Node Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Joseph T. Lizier
- Complex Systems Research Group and Centre for Complex Systems, Faculty of Engineering, The University of Sydney, Sydney, Australia
| |
Collapse
|
32
|
Zhao X, Wang Y, Zhang Y, Wang H, Ren J, Yan F, Song D, Du R, Wang Q, Huang L. Propofol-Induced Anesthesia Alters Corticocortical Functional Connectivity in the Human Brain: An EEG Source Space Analysis. Neurosci Bull 2021; 37:563-568. [PMID: 33687648 DOI: 10.1007/s12264-021-00633-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Xue Zhao
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yubo Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Yun Zhang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Haidong Wang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Junchan Ren
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China
| | - Fei Yan
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dawei Song
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ruini Du
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qiang Wang
- Department of Anesthesiology and Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi'an, 710071, China.
| |
Collapse
|
33
|
Areshenkoff CN, Nashed JY, Hutchison RM, Hutchison M, Levy R, Cook DJ, Menon RS, Everling S, Gallivan JP. Muting, not fragmentation, of functional brain networks under general anesthesia. Neuroimage 2021; 231:117830. [PMID: 33549746 DOI: 10.1016/j.neuroimage.2021.117830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/21/2021] [Accepted: 01/30/2021] [Indexed: 12/01/2022] Open
Abstract
Changes in resting-state functional connectivity (rs-FC) under general anesthesia have been widely studied with the goal of identifying neural signatures of consciousness. This work has commonly revealed an apparent fragmentation of whole-brain network structure during unconsciousness, which has been interpreted as reflecting a break-down in connectivity and a disruption of the brain's ability to integrate information. Here we show, by studying rs-FC under varying depths of isoflurane-induced anesthesia in nonhuman primates, that this apparent fragmentation, rather than reflecting an actual change in network structure, can be simply explained as the result of a global reduction in FC. Specifically, by comparing the actual FC data to surrogate data sets that we derived to test competing hypotheses of how FC changes as a function of dose, we found that increases in whole-brain modularity and the number of network communities - considered hallmarks of fragmentation - are artifacts of constructing FC networks by thresholding based on correlation magnitude. Taken together, our findings suggest that deepening levels of unconsciousness are instead associated with the increasingly muted expression of functional networks, an observation that constrains current interpretations as to how anesthesia-induced FC changes map onto existing neurobiological theories of consciousness.
Collapse
Affiliation(s)
- Corson N Areshenkoff
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Psychology, Queens University, Kingston, ON, Canada.
| | - Joseph Y Nashed
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada
| | | | | | - Ron Levy
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Surgery, Queens University, Kingston, ON, Canada
| | - Douglas J Cook
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Surgery, Queens University, Kingston, ON, Canada
| | - Ravi S Menon
- Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Stefan Everling
- Robarts Research Institute, University of Western Ontario, London, ON, Canada; Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| | - Jason P Gallivan
- Centre for Neuroscience Studies, Queens University, Kingston, ON, Canada; Department of Psychology, Queens University, Kingston, ON, Canada
| |
Collapse
|
34
|
Signorelli CM, Uhrig L, Kringelbach M, Jarraya B, Deco G. Hierarchical disruption in the cortex of anesthetized monkeys as a new signature of consciousness loss. Neuroimage 2020; 227:117618. [PMID: 33307225 DOI: 10.1016/j.neuroimage.2020.117618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 11/14/2020] [Accepted: 12/01/2020] [Indexed: 11/30/2022] Open
Abstract
Anesthesia induces a reconfiguration of the repertoire of functional brain states leading to a high function-structure similarity. However, it is unclear how these functional changes lead to loss of consciousness. Here we suggest that the mechanism of conscious access is related to a general dynamical rearrangement of the intrinsic hierarchical organization of the cortex. To measure cortical hierarchy, we applied the Intrinsic Ignition analysis to resting-state fMRI data acquired in awake and anesthetized macaques. Our results reveal the existence of spatial and temporal hierarchical differences of neural activity within the macaque cortex, with a strong modulation by the depth of anesthesia and the employed anesthetic agent. Higher values of Intrinsic Ignition correspond to rich and flexible brain dynamics whereas lower values correspond to poor and rigid, structurally driven brain dynamics. Moreover, spatial and temporal hierarchical dimensions are disrupted in a different manner, involving different hierarchical brain networks. All together suggest that disruption of brain hierarchy is a new signature of consciousness loss.
Collapse
Affiliation(s)
- Camilo Miguel Signorelli
- Department of Computer Science, University of Oxford, UK; Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain.
| | - Lynn Uhrig
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Department of Anesthesiology and Critical Care, Necker Hospital, University Paris Descartes, France; Department of Anesthesiology and Critical Care, Sainte-Anne Hospital, University Paris Descartes, France
| | - Morten Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Denmark; Centre for Eudaimonia and Human Flourishing, University of Oxford, UK; Department of Psychiatry, University of Oxford, UK
| | - Bechir Jarraya
- Cognitive Neuroimaging Unit, Institut National de la Santé et de la Recherche Médicale U992, France; Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction de la Recherche Fondamentale, NeuroSpin Center, France; Neurosurgery Department, Foch Hospital, Suresnes, France; University of Versailles Saint-Quentin-en-Yvelines, Université Paris-Saclay, France.
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Spain; Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Germany; Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia.
| |
Collapse
|
35
|
Disruption of Conscious Access in Psychosis Is Associated with Altered Structural Brain Connectivity. J Neurosci 2020; 41:513-523. [PMID: 33229501 DOI: 10.1523/jneurosci.0945-20.2020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/10/2020] [Accepted: 09/20/2020] [Indexed: 11/21/2022] Open
Abstract
According to global neuronal workspace (GNW) theory, conscious access relies on long-distance cerebral connectivity to allow a global neuronal ignition coding for conscious content. In patients with schizophrenia and bipolar disorder, both alterations in cerebral connectivity and an increased threshold for conscious perception have been reported. The implications of abnormal structural connectivity for disrupted conscious access and the relationship between these two deficits and psychopathology remain unclear. The aim of this study was to determine the extent to which structural connectivity is correlated with consciousness threshold, particularly in psychosis. We used a visual masking paradigm to measure consciousness threshold, and diffusion MRI tractography to assess structural connectivity in 97 humans of either sex with varying degrees of psychosis: healthy control subjects (n = 46), schizophrenia patients (n = 25), and bipolar disorder patients with (n = 17) and without (n = 9) a history of psychosis. Patients with psychosis (schizophrenia and bipolar disorder with psychotic features) had an elevated masking threshold compared with control subjects and bipolar disorder patients without psychotic features. Masking threshold correlated negatively with the mean general fractional anisotropy of white matter tracts exclusively within the GNW network (inferior frontal-occipital fasciculus, cingulum, and corpus callosum). Mediation analysis demonstrated that alterations in long-distance connectivity were associated with an increased masking threshold, which in turn was linked to psychotic symptoms. Our findings support the hypothesis that long-distance structural connectivity within the GNW plays a crucial role in conscious access, and that conscious access may mediate the association between impaired structural connectivity and psychosis.
Collapse
|
36
|
McMillan R, Muthukumaraswamy SD. The neurophysiology of ketamine: an integrative review. Rev Neurosci 2020; 31:457-503. [DOI: 10.1515/revneuro-2019-0090] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/26/2020] [Indexed: 12/13/2022]
Abstract
AbstractThe drug ketamine has been extensively studied due to its use in anaesthesia, as a model of psychosis and, most recently, its antidepressant properties. Understanding the physiology of ketamine is complex due to its rich pharmacology with multiple potential sites at clinically relevant doses. In this review of the neurophysiology of ketamine, we focus on the acute effects of ketamine in the resting brain. We ascend through spatial scales starting with a complete review of the pharmacology of ketamine and then cover its effects on in vitro and in vivo electrophysiology. We then summarise and critically evaluate studies using EEG/MEG and neuroimaging measures (MRI and PET), integrating across scales where possible. While a complicated and, at times, confusing picture of ketamine’s effects are revealed, we stress that much of this might be caused by use of different species, doses, and analytical methodologies and suggest strategies that future work could use to answer these problems.
Collapse
Affiliation(s)
- Rebecca McMillan
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Suresh D. Muthukumaraswamy
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
37
|
Reimann HM, Niendorf T. The (Un)Conscious Mouse as a Model for Human Brain Functions: Key Principles of Anesthesia and Their Impact on Translational Neuroimaging. Front Syst Neurosci 2020; 14:8. [PMID: 32508601 PMCID: PMC7248373 DOI: 10.3389/fnsys.2020.00008] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
In recent years, technical and procedural advances have brought functional magnetic resonance imaging (fMRI) to the field of murine neuroscience. Due to its unique capacity to measure functional activity non-invasively, across the entire brain, fMRI allows for the direct comparison of large-scale murine and human brain functions. This opens an avenue for bidirectional translational strategies to address fundamental questions ranging from neurological disorders to the nature of consciousness. The key challenges of murine fMRI are: (1) to generate and maintain functional brain states that approximate those of calm and relaxed human volunteers, while (2) preserving neurovascular coupling and physiological baseline conditions. Low-dose anesthetic protocols are commonly applied in murine functional brain studies to prevent stress and facilitate a calm and relaxed condition among animals. Yet, current mono-anesthesia has been shown to impair neural transmission and hemodynamic integrity. By linking the current state of murine electrophysiology, Ca2+ imaging and fMRI of anesthetic effects to findings from human studies, this systematic review proposes general principles to design, apply and monitor anesthetic protocols in a more sophisticated way. The further development of balanced multimodal anesthesia, combining two or more drugs with complementary modes of action helps to shape and maintain specific brain states and relevant aspects of murine physiology. Functional connectivity and its dynamic repertoire as assessed by fMRI can be used to make inferences about cortical states and provide additional information about whole-brain functional dynamics. Based on this, a simple and comprehensive functional neurosignature pattern can be determined for use in defining brain states and anesthetic depth in rest and in response to stimuli. Such a signature can be evaluated and shared between labs to indicate the brain state of a mouse during experiments, an important step toward translating findings across species.
Collapse
Affiliation(s)
- Henning M. Reimann
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max-Delbrück Center for Molecular Medicine, Helmholtz Association of German Research Centers (HZ), Berlin, Germany
- Experimental and Clinical Research Center, A Joint Cooperation Between the Charité Medical Faculty and the Max-Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
38
|
Dynamics of Ketamine-induced Loss and Return of Consciousness across Primate Neocortex. Anesthesiology 2020; 132:750-762. [DOI: 10.1097/aln.0000000000003159] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Abstract
Background
Ketamine is a noncompetitive N-methyl-d-aspartate antagonist and is known for unique electrophysiologic profiles in electroencephalography. However, the mechanisms of ketamine-induced unconsciousness are not clearly understood. The authors have investigated neuronal dynamics of ketamine-induced loss and return of consciousness and how multisensory processing is modified in the primate neocortex.
Methods
The authors performed intracortical recordings of local field potentials and single unit activity during ketamine-induced altered states of consciousness in a somatosensory and ventral premotor network. The animals were trained to perform a button holding task to indicate alertness. Air puff to face or sound was randomly delivered in each trial regardless of their behavioral response. Ketamine was infused for 60 min.
Results
Ketamine-induced loss of consciousness was identified during a gradual evolution of the high beta-gamma oscillations. The slow oscillations appeared to develop at a later stage of ketamine anesthesia. Return of consciousness and return of preanesthetic performance level (performance return) were observed during a gradual drift of the gamma oscillations toward the beta frequency. Ketamine-induced loss of consciousness, return of consciousness, and performance return are all identified during a gradual change of the dynamics, distinctive from the abrupt neural changes at propofol-induced loss of consciousness and return of consciousness. Multisensory responses indicate that puff evoked potentials and single-unit firing responses to puff were both preserved during ketamine anesthesia, but sound responses were selectively diminished. Units with suppressed responses and those with bimodal responses appeared to be inhibited under ketamine and delayed in recovery.
Conclusions
Ketamine generates unique intracortical dynamics during its altered states of consciousness, suggesting fundamentally different neuronal processes from propofol. The gradually shifting dynamics suggest a continuously conscious or dreaming state while unresponsive under ketamine until its deeper stage with the slow-delta oscillations. Somatosensory processing is preserved during ketamine anesthesia, but multisensory processing appears to be diminished under ketamine and through recovery.
Editor’s Perspective
What We Already Know about This Topic
What This Article Tells Us That Is New
Collapse
|
39
|
Mashour GA, Roelfsema P, Changeux JP, Dehaene S. Conscious Processing and the Global Neuronal Workspace Hypothesis. Neuron 2020; 105:776-798. [PMID: 32135090 PMCID: PMC8770991 DOI: 10.1016/j.neuron.2020.01.026] [Citation(s) in RCA: 462] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/31/2019] [Accepted: 01/22/2020] [Indexed: 10/24/2022]
Abstract
We review the central tenets and neuroanatomical basis of the global neuronal workspace (GNW) hypothesis, which attempts to account for the main scientific observations regarding the elementary mechanisms of conscious processing in the human brain. The GNW hypothesis proposes that, in the conscious state, a non-linear network ignition associated with recurrent processing amplifies and sustains a neural representation, allowing the corresponding information to be globally accessed by local processors. We examine this hypothesis in light of recent data that contrast brain activity evoked by either conscious or non-conscious contents, as well as during conscious or non-conscious states, particularly general anesthesia. We also discuss the relationship between the intertwined concepts of conscious processing, attention, and working memory.
Collapse
Affiliation(s)
- George A Mashour
- Center for Consciousness Science, Neuroscience Graduate Program, and Department of Anesthesiology, University of Michigan, Ann Arbor, MI, USA
| | - Pieter Roelfsema
- Department of Vision & Cognition, Netherlands Institute for Neuroscience, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University, Amsterdam, the Netherlands; Department of Psychiatry, Academic Medical Center, Amsterdam, the Netherlands
| | - Jean-Pierre Changeux
- CNRS UMR 3571, Institut Pasteur, 75724 Paris, France; Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Kavli Institute for Brain & Mind, University of California, San Diego, La Jolla, CA, USA.
| | - Stanislas Dehaene
- Collège de France, 11 Place Marcelin Berthelot, 75005 Paris, France; Cognitive Neuroimaging Unit, CEA, INSERM, Université Paris-Sud, Université Paris-Saclay, NeuroSpin Center, 91191 Gif/Yvette, France.
| |
Collapse
|
40
|
Level of Consciousness Is Dissociable from Electroencephalographic Measures of Cortical Connectivity, Slow Oscillations, and Complexity. J Neurosci 2019; 40:605-618. [PMID: 31776211 PMCID: PMC6961988 DOI: 10.1523/jneurosci.1910-19.2019] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/05/2019] [Accepted: 11/22/2019] [Indexed: 12/19/2022] Open
Abstract
Leading neuroscientific theories posit a central role for the functional integration of cortical areas in conscious states. Considerable evidence supporting this hypothesis is based on network changes during anesthesia, but it is unclear whether these changes represent state-related (conscious vs unconscious) or drug-related (anesthetic vs no anesthetic) effects. We recently demonstrated that carbachol delivery to prefrontal cortex (PFC) restored wakefulness despite continuous administration of the general anesthetic sevoflurane. By contrast, carbachol delivery to parietal cortex, or noradrenaline delivery to either prefrontal or parietal cortices, failed to restore wakefulness. Thus, carbachol-induced reversal of sevoflurane anesthesia represents a unique state that combines wakefulness with clinically relevant anesthetic concentrations in the brain. To differentiate the state-related and drug-related associations of cortical connectivity and dynamics, we analyzed the electroencephalographic data gathered from adult male Sprague Dawley rats during the aforementioned experiments for changes in functional cortical gamma connectivity (25–155 Hz), slow oscillations (0.5–1 Hz), and complexity (<175 Hz). We show that higher gamma (85–155 Hz) connectivity is decreased (p ≤ 0.02) during sevoflurane anesthesia, an expected finding, but was not restored during wakefulness induced by carbachol delivery to PFC. Conversely, for rats in which wakefulness was not restored, the functional gamma connectivity remained reduced, but there was a significant decrease (p < 0.001) in the power of slow oscillations and increase (p < 0.001) in cortical complexity, which was similar to that observed during wakefulness induced after carbachol delivery to PFC. We conclude that the level of consciousness can be dissociated from cortical connectivity, oscillations, and dynamics. SIGNIFICANCE STATEMENT Numerous theories of consciousness suggest that functional connectivity across the cortex is characteristic of the conscious state and is reduced during anesthesia. However, it is unknown whether the observed changes are state-related (conscious vs unconscious) or drug-related (drug vs no drug). We used a novel rat model in which cholinergic stimulation of PFC produced wakefulness despite continuous exposure to a general anesthetic. We demonstrate that, as expected, general anesthesia reduces connectivity. Surprisingly, the connectivity remains suppressed despite pharmacologically induced wakefulness in the presence of anesthetic, with restoration occurring only after the anesthetic is discontinued. Thus, whether an animal exhibits wakefulness or not can be dissociated from cortical connectivity, prompting a reevaluation of the role of connectivity in level of consciousness.
Collapse
|
41
|
Noel JP, Ishizawa Y, Patel SR, Eskandar EN, Wallace MT. Leveraging Nonhuman Primate Multisensory Neurons and Circuits in Assessing Consciousness Theory. J Neurosci 2019; 39:7485-7500. [PMID: 31358654 PMCID: PMC6750944 DOI: 10.1523/jneurosci.0934-19.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/27/2019] [Accepted: 07/19/2019] [Indexed: 01/03/2023] Open
Abstract
Both the global neuronal workspace (GNW) and integrated information theory (IIT) posit that highly complex and interconnected networks engender perceptual awareness. GNW specifies that activity recruiting frontoparietal networks will elicit a subjective experience, whereas IIT is more concerned with the functional architecture of networks than with activity within it. Here, we argue that according to IIT mathematics, circuits converging on integrative versus convergent yet non-integrative neurons should support a greater degree of consciousness. We test this hypothesis by analyzing a dataset of neuronal responses collected simultaneously from primary somatosensory cortex (S1) and ventral premotor cortex (vPM) in nonhuman primates presented with auditory, tactile, and audio-tactile stimuli as they are progressively anesthetized with propofol. We first describe the multisensory (audio-tactile) characteristics of S1 and vPM neurons (mean and dispersion tendencies, as well as noise-correlations), and functionally label these neurons as convergent or integrative according to their spiking responses. Then, we characterize how these different pools of neurons behave as a function of consciousness. At odds with the IIT mathematics, results suggest that convergent neurons more readily exhibit properties of consciousness (neural complexity and noise correlation) and are more impacted during the loss of consciousness than integrative neurons. Last, we provide support for the GNW by showing that neural ignition (i.e., same trial coactivation of S1 and vPM) was more frequent in conscious than unconscious states. Overall, we contrast GNW and IIT within the same single-unit activity dataset, and support the GNW.SIGNIFICANCE STATEMENT A number of prominent theories of consciousness exist, and a number of these share strong commonalities, such as the central role they ascribe to integration. Despite the important and far reaching consequences developing a better understanding of consciousness promises to bring, for instance in diagnosing disorders of consciousness (e.g., coma, vegetative-state, locked-in syndrome), these theories are seldom tested via invasive techniques (with high signal-to-noise ratios), and never directly confronted within a single dataset. Here, we first derive concrete and testable predictions from the global neuronal workspace and integrated information theory of consciousness. Then, we put these to the test by functionally labeling specific neurons as either convergent or integrative nodes, and examining the response of these neurons during anesthetic-induced loss of consciousness.
Collapse
Affiliation(s)
- Jean-Paul Noel
- Center for Neural Science, New York University, New York, New York 10003,
| | | | - Shaun R Patel
- Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114
| | - Emad N Eskandar
- Leo M. Davidoff Department of Neurological Surgery, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Mark T Wallace
- Department of Hearing and Speech, Vanderbilt University Medical School, Nashville, Tennessee 37235
- Department of Psychology, Vanderbilt University, Nashville, Tennessee 37235, and
- Department of Psychiatry and Behavioral Sciences, Vanderbilt Medical School, Nashville, Tennessee 37235
| |
Collapse
|
42
|
Abstract
WHAT WE ALREADY KNOW ABOUT THIS TOPIC WHAT THIS ARTICLE TELLS US THAT IS NEW: BACKGROUND:: The mechanism by which anesthetics induce a loss of consciousness remains a puzzling problem. We hypothesized that a cortical signature of anesthesia could be found in an increase in similarity between the matrix of resting-state functional correlations and the anatomical connectivity matrix of the brain, resulting in an increased function-structure similarity. METHODS We acquired resting-state functional magnetic resonance images in macaque monkeys during wakefulness (n = 3) or anesthesia with propofol (n = 3), ketamine (n = 3), or sevoflurane (n = 3). We used the k-means algorithm to cluster dynamic resting-state data into independent functional brain states. For each condition, we performed a regression analysis to quantify function-structure similarity and the repertoire of functional brain states. RESULTS Seven functional brain states were clustered and ranked according to their similarity to structural connectivity, with higher ranks corresponding to higher function-structure similarity and lower ranks corresponding to lower correlation between brain function and brain anatomy. Anesthesia shifted the brain state composition from a low rank (rounded rank [mean ± SD]) in the awake condition (awake rank = 4 [3.58 ± 1.03]) to high ranks in the different anesthetic conditions (ketamine rank = 6 [6.10 ± 0.32]; moderate propofol rank = 6 [6.15 ± 0.76]; deep propofol rank = 6 [6.16 ± 0.46]; moderate sevoflurane rank = 5 [5.10 ± 0.81]; deep sevoflurane rank = 6 [5.81 ± 1.11]; P < 0.0001). CONCLUSIONS Whatever the molecular mechanism, anesthesia led to a massive reconfiguration of the repertoire of functional brain states that became predominantly shaped by brain anatomy (high function-structure similarity), giving rise to a well-defined cortical signature of anesthesia-induced loss of consciousness.
Collapse
|
43
|
Voss LJ, García PS, Hentschke H, Banks MI. Understanding the Effects of General Anesthetics on Cortical Network Activity Using Ex Vivo Preparations. Anesthesiology 2019; 130:1049-1063. [PMID: 30694851 PMCID: PMC6520142 DOI: 10.1097/aln.0000000000002554] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
General anesthetics have been used to ablate consciousness during surgery for more than 150 yr. Despite significant advances in our understanding of their molecular-level pharmacologic effects, comparatively little is known about how anesthetics alter brain dynamics to cause unconsciousness. Consequently, while anesthesia practice is now routine and safe, there are many vagaries that remain unexplained. In this paper, the authors review the evidence that cortical network activity is particularly sensitive to general anesthetics, and suggest that disruption to communication in, and/or among, cortical brain regions is a common mechanism of anesthesia that ultimately produces loss of consciousness. The authors review data from acute brain slices and organotypic cultures showing that anesthetics with differing molecular mechanisms of action share in common the ability to impair neurophysiologic communication. While many questions remain, together, ex vivo and in vivo investigations suggest that a unified understanding of both clinical anesthesia and the neural basis of consciousness is attainable.
Collapse
Affiliation(s)
- Logan J Voss
- From the Department of Anaesthesia, Waikato District Health Board, Hamilton, New Zealand (L.J.V.) the Department of Anesthesiology, Emory University School of Medicine, Atlanta, Georgia (P.S.G) Anesthesiology and Research Divisions, Atlanta Veterans Administration Medical Center, Atlanta, Georgia (P.S.G.) the Experimental Anesthesiology Section, Department of Anesthesiology, University Hospital of Tübingen, Tübingen, Germany (H.H.) rthe Department of Anesthesiology, University of Wisconsin, Madison, Wisconsin (M.I.B.)
| | | | | | | |
Collapse
|
44
|
Wenzel M, Han S, Smith EH, Hoel E, Greger B, House PA, Yuste R. Reduced Repertoire of Cortical Microstates and Neuronal Ensembles in Medically Induced Loss of Consciousness. Cell Syst 2019; 8:467-474.e4. [PMID: 31054810 DOI: 10.1016/j.cels.2019.03.007] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 10/20/2018] [Accepted: 03/14/2019] [Indexed: 12/14/2022]
Abstract
Medically induced loss of consciousness (mLOC) during anesthesia is associated with a macroscale breakdown of brain connectivity, yet the neural microcircuit correlates of mLOC remain unknown. To explore this, we applied different analytical approaches (t-SNE/watershed segmentation, affinity propagation clustering, PCA, and LZW complexity) to two-photon calcium imaging of neocortical and hippocampal microcircuit activity and local field potential (LFP) measurements across different anesthetic depths in mice, and to micro-electrode array recordings in human subjects. We find that in both cases, mLOC disrupts population activity patterns by generating (1) fewer discriminable network microstates and (2) fewer neuronal ensembles. Our results indicate that local neuronal ensemble dynamics could causally contribute to the emergence of conscious states.
Collapse
Affiliation(s)
- Michael Wenzel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA.
| | - Shuting Han
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Elliot H Smith
- Department of Neurological Surgery, Columbia University Medical Center, New York, NY 10032, USA
| | - Erik Hoel
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| | - Bradley Greger
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, USA
| | - Paul A House
- Department of Neurosurgery, University of Utah, Salt Lake City, UT 84132, USA
| | - Rafael Yuste
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; NeuroTechnology Center, Columbia University, New York, NY 10027, USA
| |
Collapse
|
45
|
Li D, Mashour GA. Cortical dynamics during psychedelic and anesthetized states induced by ketamine. Neuroimage 2019; 196:32-40. [PMID: 30959192 PMCID: PMC6559852 DOI: 10.1016/j.neuroimage.2019.03.076] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/30/2019] [Indexed: 12/02/2022] Open
Abstract
Ketamine is a unique drug that has psychedelic and anesthetic properties in a dose-dependent manner. Recent studies have shown that ketamine anesthesia appears to maintain the spatiotemporal complexity of cortical activation evoked by transcranial magnetic stimulation, while a psychedelic dose of ketamine is associated with increased spontaneous magnetoencephalographic signal diversity. However, a systematic investigation of the dose-dependent effects of ketamine on cortical complexity using the same modality is required. Furthermore, it is unknown whether the complexity level stabilizes or fluctuates over time for the duration of ketamine exposure. Here we investigated the spatiotemporal complexity of spontaneous high-density scalp electroencephalography (EEG) signals in healthy volunteers during alterations of consciousness induced by both subanesthetic and anesthetic doses of ketamine. Given the fast transient spectral dynamics, especially during the gamma-burst pattern after loss of consciousness, we employed a method based on Hidden Markov modeling to classify the EEG signals into a discrete set of brain states that correlated with different behavioral states. We characterized the spatiotemporal complexity specific for each brain state as measured through the Lempel-Ziv complexity algorithm. After controlling for signal diversity due to spectral changes, we found that the subanesthetic dose of ketamine is associated with an elevated complexity level relative to baseline, while the brain activity following an anesthetic dose of ketamine is characterized by alternating low and high complexity levels until stabilizing at a high level comparable to that during baseline. Thus, spatiotemporal complexity associated with ketamine-induced state transitions has features of general anesthesia, normal consciousness, and altered states of consciousness. These results improve our understanding of the complex pharmacological, neurophysiological, and phenomenological properties of ketamine.
Collapse
Affiliation(s)
- Duan Li
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, United States.
| | - George A Mashour
- Center for Consciousness Science, University of Michigan Medical School, Ann Arbor, United States; Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, United States; Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, United States
| |
Collapse
|
46
|
Affiliation(s)
- George A Mashour
- From the Center for Consciousness Science, Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
47
|
Xu L, Hu Y, Huang L, Liu Y, Wang B, Xie L, Hu Z. The association between attention deficit hyperactivity disorder and general anaesthesia - a narrative review. Anaesthesia 2018; 74:57-63. [PMID: 30511754 DOI: 10.1111/anae.14496] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/06/2018] [Indexed: 11/30/2022]
Affiliation(s)
- L. Xu
- Department of Anesthesiology; Women's Hospital; Zhejiang University School of Medicine; Hangzhou China
| | - Y. Hu
- Department of Cell Biology; Yale University; New Haven CT USA
| | - L. Huang
- Department of Anesthesiology; The Children's Hospital; Zhejiang University School of Medicine; Hangzhou China
| | - Y. Liu
- Department of Anesthesiology; The Children's Hospital; Zhejiang University School of Medicine; Hangzhou China
| | - B. Wang
- Department of Anesthesiology; The Children's Hospital; Zhejiang University School of Medicine; Hangzhou China
| | - L. Xie
- Department of Anesthesiology; The Children's Hospital; Zhejiang University School of Medicine; Hangzhou China
| | - Z. Hu
- Department of Anesthesiology; The Children's Hospital; Zhejiang University School of Medicine; Hangzhou China
| |
Collapse
|
48
|
Abstract
The heterogeneity of molecular mechanisms, target neural circuits, and neurophysiologic effects of general anesthetics makes it difficult to develop a reliable and drug-invariant index of general anesthesia. No single brain region or mechanism has been identified as the neural correlate of consciousness, suggesting that consciousness might emerge through complex interactions of spatially and temporally distributed brain functions. The goal of this review article is to introduce the basic concepts of networks and explain why the application of network science to general anesthesia could be a pathway to discover a fundamental mechanism of anesthetic-induced unconsciousness. This article reviews data suggesting that reduced network efficiency, constrained network repertoires, and changes in cortical dynamics create inhospitable conditions for information processing and transfer, which lead to unconsciousness. This review proposes that network science is not just a useful tool but a necessary theoretical framework and method to uncover common principles of anesthetic-induced unconsciousness.
Collapse
Affiliation(s)
- UnCheol Lee
- From the Center for Consciousness Science, Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan
| | | |
Collapse
|
49
|
Michelson NJ, Kozai TDY. Isoflurane and ketamine differentially influence spontaneous and evoked laminar electrophysiology in mouse V1. J Neurophysiol 2018; 120:2232-2245. [PMID: 30067128 PMCID: PMC6295540 DOI: 10.1152/jn.00299.2018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 07/23/2018] [Accepted: 07/25/2018] [Indexed: 12/20/2022] Open
Abstract
General anesthesia is ubiquitous in research and medicine, yet although the molecular mechanisms of anesthetics are well characterized, their ultimate influence on cortical electrophysiology remains unclear. Moreover, the influence that different anesthetics have on sensory cortexes at neuronal and ensemble scales is mostly unknown and represents an important gap in knowledge that has widespread relevance for neural sciences. To address this knowledge gap, this work explored the effects of isoflurane and ketamine/xylazine, two widely used anesthetic paradigms, on electrophysiological behavior in mouse primary visual cortex. First, multiunit activity and local field potentials were examined to understand how each anesthetic influences spontaneous activity. Then, the interlaminar relationships between populations of neurons at different cortical depths were studied to assess whether anesthetics influenced resting-state functional connectivity. Lastly, the spatiotemporal dynamics of visually evoked multiunit and local field potentials were examined to determine how each anesthetic alters communication of visual information. We found that isoflurane enhanced the rhythmicity of spontaneous ensemble activity at 10-40 Hz, which coincided with large increases in coherence between layer IV with superficial and deep layers. Ketamine preferentially increased local field potential power from 2 to 4 Hz, and the largest increases in coherence were observed between superficial and deep layers. Visually evoked responses across layers were diminished under isoflurane, and enhanced under ketamine anesthesia. These findings demonstrate that isoflurane and ketamine anesthesia differentially impact sensory processing in V1. NEW & NOTEWORTHY We directly compared electrophysiological responses in awake and anesthetized (isoflurane or ketamine) mice. We also proposed a method for quantifying and visualizing highly variable, evoked multiunit activity. Lastly, we observed distinct oscillatory responses to stimulus onset and offset in awake and isoflurane-anesthetized mice.
Collapse
Affiliation(s)
- Nicholas J Michelson
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Takashi D Y Kozai
- Department of Bioengineering, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for the Neural Basis of Cognition, University of Pittsburgh , Pittsburgh, Pennsylvania
- Center for Neuroscience, University of Pittsburgh , Pittsburgh, Pennsylvania
- McGowan Institute of Regenerative Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
- NeuroTech Center, University of Pittsburgh Brain Institute , Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Eagleman SL, MacIver MB. Can you hear me now? Information processing in primary auditory cortex at loss of consciousness. Br J Anaesth 2018; 121:526-529. [PMID: 30115247 DOI: 10.1016/j.bja.2018.06.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/16/2022] Open
Affiliation(s)
- S L Eagleman
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA
| | - M B MacIver
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|