1
|
Sundaram S, Shao X, Chung RS, Martin Del Campo Vera R, Cavaleri J, Parra M, Zhang S, Swarup A, Kammen A, Heck C, Liu CY, Kellis SS, Lee B. Beta-band power modulation in the human amygdala during a delayed reach task. J Clin Neurosci 2025; 135:111151. [PMID: 40020562 DOI: 10.1016/j.jocn.2025.111151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/19/2025] [Accepted: 02/21/2025] [Indexed: 03/03/2025]
Abstract
INTRODUCTION The amygdala is mostly known for its roles in emotional processing and social behavior. In recent years, it has been implicated in voluntary motor control due to its structural and functional connectivity with the motor cortex. By investigating whether the amygdala modulates during movement preparation, we can further examine its contributions to motor processing. OBJECTIVE We utilized a delayed reach task to measure beta-band (13-30 Hz) modulation in the amygdala during movement preparation. We hypothesized that we would see decreases in beta-band power during the Delay and Response phases of this task. METHODS Eleven subjects diagnosed with drug-resistant epilepsy (DRE), who were implanted with stereoelectroencephalographic (SEEG) electrodes, were recruited to this study. The beta-band power was recorded through a delayed reach task. We calculated the beta-band Power Spectral Density (PSD) using multi-taper spectral analysis and compared the trial-averaged PSD using a cluster-based permutation test to determine the significance of beta-band power differences between task phases. RESULTS 100 % of participants and 44.8 % of gray matter contacts in the amygdala (n = 58) exhibited significantly decreased beta-band power during the Delay phase. During the Response phase, 90.9 % of participants and 58.6 % of gray matter contacts (n = 58) showed significantly decreased beta-band power. We also found a difference in the proportion of amygdala contacts showing beta-band modulation between those implanted in gray vs. white matter (p = 0.0035) but found no difference between contralateral vs. ipsilateral contacts (p = 0.17) and male vs. female participants (p = 0.34). CONCLUSION This study is the first to demonstrate beta-band power decreases in the amygdala during the Delay and Response phases of a delayed reach task. These findings demonstrate that the amygdala undergoes neural modulation prior to movement initiation and during movement execution.
Collapse
Affiliation(s)
- Shivani Sundaram
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Xiecheng Shao
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Ryan S Chung
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States.
| | - Roberto Martin Del Campo Vera
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Jonathon Cavaleri
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Miguel Parra
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Selena Zhang
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Adith Swarup
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States
| | - Alexandra Kammen
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Christi Heck
- USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Charles Y Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Spencer S Kellis
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States; Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, United States; USC Neurorestoration Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
2
|
Son JJ, Erker TD, Ward TW, Arif Y, Huang PJ, John JA, McDonald KM, Petro NM, Garrison GM, Okelberry HJ, Kress KA, Picci G, Heinrichs-Graham E, Wilson TW. The polarity of high-definition transcranial direct current stimulation affects the planning and execution of movement sequences. Neuroimage 2025; 306:121018. [PMID: 39800171 PMCID: PMC11829609 DOI: 10.1016/j.neuroimage.2025.121018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 12/09/2024] [Accepted: 01/09/2025] [Indexed: 01/15/2025] Open
Abstract
Noninvasive brain stimulation of the primary motor cortex has been shown to alter therapeutic outcomes in stroke and other neurological conditions, but the precise mechanisms remain poorly understood. Determining the impact of such neurostimulation on the neural processing supporting motor control is a critical step toward further harnessing its therapeutic potential in multiple neurological conditions affecting the motor system. Herein, we leverage the excellent spatio-temporal precision of magnetoencephalographic (MEG) imaging to identify the spectral, spatial, and temporal effects of high-definition transcranial direct current stimulation (HD-tDCS) on the neural responses supporting motor control. Participants (N = 67) completed three HD-tDCS visits (anode, cathode, sham), with each involving 20 min of left primary motor cortex stimulation and performance of a simple/complex motor sequencing task during MEG. Whole-brain statistical analyses of beta oscillatory responses revealed stimulation-by-task interaction effects in the left primary motor cortex, right occipitotemporal, and the right dorsolateral prefrontal cortices. Broadly, anodal stimulation induced significantly stronger beta oscillatory responses in these regions during simple movement sequences, while neural responses to complex sequences were not affected by stimulation. En masse, these data suggest that the beta oscillations serving motor planning (i.e., pre-movement) are particularly sensitive to the polarity of noninvasive stimulation and that the impact varies based on the difficulty of the movement sequence.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Tara D Erker
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Thomas W Ward
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Peihan J Huang
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Jason A John
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kellen M McDonald
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Nathan M Petro
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Grant M Garrison
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Kennedy A Kress
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Giorgia Picci
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Elizabeth Heinrichs-Graham
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA; College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA.
| |
Collapse
|
3
|
Son JJ, Arif Y, Okelberry HJ, Johnson HJ, Willett MP, Wiesman AI, Wilson TW. Aging modulates the impact of cognitive interference subtypes on dynamic connectivity across a distributed motor network. NPJ AGING 2024; 10:54. [PMID: 39580466 PMCID: PMC11585575 DOI: 10.1038/s41514-024-00182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 11/09/2024] [Indexed: 11/25/2024]
Abstract
Research has shown age-related declines in cognitive control in the context of interference, but these studies have focused on frontoparietal networks and less is known about impacts on motor response-related dynamics in the face of distractors. Thus, we examined whether healthy aging affected connectivity between attention networks and motor circuitry using a multisource interference task and magnetoencephalography in 72 healthy-aging participants (28-63 years-old). Our results indicated stronger beta connectivity with increasing age between bilateral primary motor (M1) and occipital cortices, as well as stronger gamma fronto-motor connectivity during flanker-type interference. Regarding Simon-type interference, stronger beta interactions were observed between left M1 and right temporal and right M1 and left parietal with increasing age. Finally, the superadditivity effect (flanker + Simon presented simultaneously) indicated weaker beta connectivity between right M1 and left premotor with increasing age. These findings suggest exhaustion of age-related compensatory adaptations in the fronto-parieto-motor network with greater interference.
Collapse
Affiliation(s)
- Jake J Son
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- College of Medicine, University of Nebraska Medical Center (UNMC), Omaha, NE, USA
| | - Yasra Arif
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA.
| | - Hannah J Okelberry
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Hallie J Johnson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Madelyn P Willett
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
| | - Alex I Wiesman
- Montreal Neurological Institute, McGill University, Montreal, QC, Canada
- Department of Biomedical Physiology & Kinesiology, Simon Fraser University, Burnaby, BC, Canada
| | - Tony W Wilson
- Institute for Human Neuroscience, Boys Town National Research Hospital, Boys Town, NE, USA
- Department of Pharmacology & Neuroscience, Creighton University, Omaha, NE, USA
| |
Collapse
|
4
|
Ottenhoff MC, Verwoert M, Goulis S, Wagner L, van Dijk JP, Kubben PL, Herff C. Global motor dynamics - Invariant neural representations of motor behavior in distributed brain-wide recordings. J Neural Eng 2024; 21:056034. [PMID: 39383883 DOI: 10.1088/1741-2552/ad851c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/09/2024] [Indexed: 10/11/2024]
Abstract
Objective.Motor-related neural activity is more widespread than previously thought, as pervasive brain-wide neural correlates of motor behavior have been reported in various animal species. Brain-wide movement-related neural activity have been observed in individual brain areas in humans as well, but it is unknown to what extent global patterns exist.Approach.Here, we use a decoding approach to capture and characterize brain-wide neural correlates of movement. We recorded invasive electrophysiological data from stereotactic electroencephalographic electrodes implanted in eight epilepsy patients who performed both an executed and imagined grasping task. Combined, these electrodes cover the whole brain, including deeper structures such as the hippocampus, insula and basal ganglia. We extract a low-dimensional representation and classify movement from rest trials using a Riemannian decoder.Main results.We reveal global neural dynamics that are predictive across tasks and participants. Using an ablation analysis, we demonstrate that these dynamics remain remarkably stable under loss of information. Similarly, the dynamics remain stable across participants, as we were able to predict movement across participants using transfer learning.Significance.Our results show that decodable global motor-related neural dynamics exist within a low-dimensional space. The dynamics are predictive of movement, nearly brain-wide and present in all our participants. The results broaden the scope to brain-wide investigations, and may allow combining datasets of multiple participants with varying electrode locations or calibrationless neural decoder.
Collapse
Affiliation(s)
- Maarten C Ottenhoff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Maxime Verwoert
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Sophocles Goulis
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| | - Louis Wagner
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
| | - Johannes P van Dijk
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Heeze, The Netherlands
- Department of Orthodontics, Ulm University, Ulm, Germany
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Pieter L Kubben
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
- Academic Center of Epileptology Kempenhaeghe/Maastricht University Medical Center, Maastricht, The Netherlands
| | - Christian Herff
- Department of Neurosurgery, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
5
|
Lee N, Guo LL, Nestor A, Niemeier M. Computation on Demand: Action-Specific Representations of Visual Task Features Arise during Distinct Movement Phases. J Neurosci 2024; 44:e2100232024. [PMID: 38789263 PMCID: PMC11255428 DOI: 10.1523/jneurosci.2100-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
The intention to act influences the computations of various task-relevant features. However, little is known about the time course of these computations. Furthermore, it is commonly held that these computations are governed by conjunctive neural representations of the features. But, support for this view comes from paradigms arbitrarily combining task features and affordances, thus requiring representations in working memory. Therefore, the present study used electroencephalography and a well-rehearsed task with features that afford minimal working memory representations to investigate the temporal evolution of feature representations and their potential integration in the brain. Female and male human participants grasped objects or touched them with a knuckle. Objects had different shapes and were made of heavy or light materials with shape and weight being relevant for grasping, not for "knuckling." Using multivariate analysis showed that representations of object shape were similar for grasping and knuckling. However, only for grasping did early shape representations reactivate at later phases of grasp planning, suggesting that sensorimotor control signals feed back to the early visual cortex. Grasp-specific representations of material/weight only arose during grasp execution after object contact during the load phase. A trend for integrated representations of shape and material also became grasp-specific but only briefly during the movement onset. These results suggest that the brain generates action-specific representations of relevant features as required for the different subcomponents of its action computations. Our results argue against the view that goal-directed actions inevitably join all features of a task into a sustained and unified neural representation.
Collapse
Affiliation(s)
- Nina Lee
- Department of Psychology at Scarborough, University of Toronto, Scarborough, Ontario M1C1A4, Canada
| | - Lin Lawrence Guo
- Department of Psychology at Scarborough, University of Toronto, Scarborough, Ontario M1C1A4, Canada
| | - Adrian Nestor
- Department of Psychology at Scarborough, University of Toronto, Scarborough, Ontario M1C1A4, Canada
| | - Matthias Niemeier
- Department of Psychology at Scarborough, University of Toronto, Scarborough, Ontario M1C1A4, Canada
- Centre for Vision Research, York University, Toronto, Ontario M4N3M6, Canada
| |
Collapse
|
6
|
Bailey KM, Sami S, Smith FW. Decoding familiar visual object categories in the mu rhythm oscillatory response. Neuropsychologia 2024; 199:108900. [PMID: 38697558 DOI: 10.1016/j.neuropsychologia.2024.108900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 04/22/2024] [Accepted: 04/29/2024] [Indexed: 05/05/2024]
Abstract
Whilst previous research has linked attenuation of the mu rhythm to the observation of specific visual categories, and even to a potential role in action observation via a putative mirror neuron system, much of this work has not considered what specific type of information might be coded in this oscillatory response when triggered via vision. Here, we sought to determine whether the mu rhythm contains content-specific information about the identity of familiar (and also unfamiliar) graspable objects. In the present study, right-handed participants (N = 27) viewed images of both familiar (apple, wine glass) and unfamiliar (cubie, smoothie) graspable objects, whilst performing an orthogonal task at fixation. Multivariate pattern analysis (MVPA) revealed significant decoding of familiar, but not unfamiliar, visual object categories in the mu rhythm response. Thus, simply viewing familiar graspable objects may automatically trigger activation of associated tactile and/or motor properties in sensorimotor areas, reflected in the mu rhythm. In addition, we report significant attenuation in the central beta band for both familiar and unfamiliar visual objects, but not in the mu rhythm. Our findings highlight how analysing two different aspects of the oscillatory response - either attenuation or the representation of information content - provide complementary views on the role of the mu rhythm in response to viewing graspable object categories.
Collapse
Affiliation(s)
| | - Saber Sami
- Norwich Medical School, University of East Anglia, UK
| | | |
Collapse
|
7
|
Wang P, Limanowski J. Phasic modulation of beta power at movement-related frequencies during visuomotor conflict. J Neurophysiol 2023; 130:1367-1372. [PMID: 37877188 DOI: 10.1152/jn.00338.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/02/2023] [Accepted: 10/17/2023] [Indexed: 10/26/2023] Open
Abstract
Rhythmic cortical activity is thought to underlie many cognitive functions including the flexible weighting of sensory information depending on the current behavioral context. Here, we tested for potential oscillatory alignment and power modulation at behaviorally relevant frequencies in magnetoencephalography (MEG) data acquired during a virtual reality-based, rhythmic hand-target phase matching task. The task contained conditions differing in terms of visuomotor incongruence and whether or not behavior (grasping movements) had to be adapted to keep vision aligned with the target. We tested for potential oscillatory alignment with movement frequencies and cross-frequency coupling with oscillations in the alpha, beta, and gamma bands. Our results revealed local peaks at 1 Hz power, corresponding to the frequency at which hand movements alternated between open and close; thus, potentially indicating an "entrainment" of neural oscillations at key movement frequencies. We found 1 Hz power was selectively enhanced when participants needed to align incongruent vision with the target. Moreover, the phase of the "movement-entrained" 1 Hz oscillations coupled significantly with the momentary amplitude of beta band oscillations-again, this coupling was selectively enhanced when incongruent vision was task relevant. We propose that this reflected a top-down mechanism, most likely related to selective attention and rhythmic sensory sampling. Thus, phasic low-frequency (beta) power suppression likely indicated a variable (attentional) sampling of visual movement feedback; i.e., related to increased sensitivity for visually matching alternating hand movements to a phasic target at ecologically important time points, rather than continually during the grasping cycle.NEW & NOTEWORTHY Our results reveal an increased spectral power at movement frequencies in a rhythmic hand-target phase matching task under visuomotor conflict; this effect was strongest when incongruent visual movement feedback was required to guide action. Moreover, the phase of these slow frequencies coupled with the momentary power beta oscillations; again, this coupling was selectively strengthened when incongruent vision was task relevant.
Collapse
Affiliation(s)
- Peng Wang
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| | - Jakub Limanowski
- Institute of Psychology, University of Greifswald, Greifswald, Germany
| |
Collapse
|
8
|
Köster M, Meyer M. Down and up! Does the mu rhythm index a gating mechanism in the developing motor system? Dev Cogn Neurosci 2023; 60:101239. [PMID: 37030147 PMCID: PMC10113759 DOI: 10.1016/j.dcn.2023.101239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 03/20/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023] Open
Abstract
Developmental research on action processing in the motor cortex relies on a key neural marker - a decrease in 6-12 Hz activity (coined mu suppression). However, recent evidence points towards an increase in mu power, specific for the observation of others' actions. Complementing the findings on mu suppression, this raises the critical question for the functional role of the mu rhythm in the developing motor system. We here discuss a potential solution to this seeming controversy by suggesting a gating function of the mu rhythm: A decrease in mu power may index the facilitation, while an increase may index the inhibition of motor processes, which are critical during action observation. This account may advance our conception of action understanding in early brain development and points towards critical directions for future research.
Collapse
Affiliation(s)
- Moritz Köster
- University of Regensburg, Institute of Psychology, Sedanstraße 1, 93055 Regensburg, Germany.
| | - Marlene Meyer
- Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, the Netherlands; Department of Psychology, University of Chicago, USA.
| |
Collapse
|
9
|
Tool use acquisition induces a multifunctional interference effect during object processing: evidence from the sensorimotor mu rhythm. Exp Brain Res 2023; 241:1145-1157. [PMID: 36920527 DOI: 10.1007/s00221-023-06595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/27/2023] [Indexed: 03/16/2023]
Abstract
A fundamental characteristic of human development is acquiring and accumulating tool use knowledge through observation and sensorimotor experience. Recent studies showed that, in children and adults, different action possibilities to grasp-to-move and grasp-to-use objects generate a conflict that extinguishes neural motor resonance phenomena during visual object processing. In this study, a training protocol coupled with EEG recordings was administered in virtual reality to healthy adults to evaluate whether a similar conflict occurs between novel tool use knowledge. Participants perceived and manipulated two novel 3D tools trained beforehand with either single or double-usage. A weaker reduction of mu-band (10-13 Hz) power, accompanied by a reduced inter-trial phase coherence, was recorded during the perception of the tool associated with the double-usage. These effects started within the first 200 ms of visual object processing and were predominantly recorded over the left motor system. Furthermore, interacting with the double usage tool delayed grasp-to-reach movements. The results highlight a multifunctional interference effect, such as tool use acquisition reduces the neural motor resonance phenomenon and inhibits the activation of the motor system during subsequent object recognition. These results imply that learned tool use information guides sensorimotor processes of objects.
Collapse
|
10
|
Fujio K, Obata H, Takeda K, Kawashima N. Cortical oscillations and interareal synchronization as a preparatory activity for postural response. Eur J Neurosci 2023; 57:1516-1528. [PMID: 36878880 DOI: 10.1111/ejn.15956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/14/2023] [Accepted: 02/27/2023] [Indexed: 03/08/2023]
Abstract
Neural mechanisms of human standing are expected to be elucidated for preventing fallings. Postural response evoked by sudden external perturbation originates from various areas in the central nervous system. Recent studies have revealed that the corticospinal pathway is one of the key nodes for an appropriate postural response. The corticospinal pathway that mediates the early part of the electromyographic response is modulated with prediction before a perturbation occurs. Temporal prediction explicitly exhibiting an onset timing contributes to enhancing corticospinal excitability. However, how the cortical activities in the sensorimotor area with temporal prediction are processed before the corticospinal pathway enhancement remains unclear. In this study, using electroencephalography, we investigated how temporal prediction affects both neural oscillations and synchronization between sensorimotor and distal areas. Our results revealed that desynchronization of cortical oscillation at α- and β-bands was observed in the sensorimotor and parietooccipital areas (Cz, CPz, Pz and POz), and those are nested in the phase at θ-band frequency. Furthermore, a reduction in the interareal phase synchrony in the α-band was induced after the timing cue for the perturbation onset. The phase synchrony at the low frequency can relay the temporal prediction among the distant areas and initiate the modulation of the local cortical activities. Such modulations contribute to the preparation for sensory processing and motor execution that are necessary for optimal responses.
Collapse
Affiliation(s)
- Kimiya Fujio
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Hiroki Obata
- Department of Humanities and Social Science Laboratory, Institute of Liberal Arts, Kyushu Institute of Technology, Fukuoka, Japan
| | - Kenta Takeda
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| | - Noritaka Kawashima
- Department of Rehabilitation for Movement Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Saitama, Japan
| |
Collapse
|
11
|
Theta but not beta activity is modulated by freedom of choice during action selection. Sci Rep 2022; 12:9115. [PMID: 35650241 PMCID: PMC9160249 DOI: 10.1038/s41598-022-13318-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/16/2022] [Indexed: 11/08/2022] Open
Abstract
Large-scale neurophysiological markers of action competition have been almost exclusively investigated in the context of instructed choices, hence it remains unclear whether these markers also apply to free choices. This study aimed to compare the specific brain dynamics underlying instructed and free decisions. Electroencephalography (EEG) was recorded while 31 participants performed a target selection task; the choice relied either on stimulus-response mappings (instructed) or on participants' preferences (free). Choice difficulty was increased by introducing distractors in the informative stimulus in instructed choices, and by presenting targets with similar motor costs in free choices. Results revealed that increased decision difficulty was associated with higher reaction times (RTs) in instructed choices and greater choice uncertainty in free choices. Midfrontal EEG theta (4-8 Hz) power increased with difficulty in instructed choices, but not in free choices. Although sensorimotor beta (15-30 Hz) power was correlated with RTs, it was not significantly influenced by choice context or difficulty. These results suggest that midfrontal theta power may specifically increase with difficulty in externally-driven choices, whereas sensorimotor beta power may be predictive of RTs in both externally- and internally-driven choices.
Collapse
|
12
|
Li G, Jiang S, Meng J, Chai G, Wu Z, Fan Z, Hu J, Sheng X, Zhang D, Chen L, Zhu X. Assessing differential representation of hand movements in multiple domains using stereo-electroencephalographic recordings. Neuroimage 2022; 250:118969. [DOI: 10.1016/j.neuroimage.2022.118969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/28/2022] [Accepted: 02/02/2022] [Indexed: 01/03/2023] Open
|
13
|
Ariani G, Pruszynski JA, Diedrichsen J. Motor planning brings human primary somatosensory cortex into action-specific preparatory states. eLife 2022; 11:69517. [PMID: 35018886 PMCID: PMC8786310 DOI: 10.7554/elife.69517] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022] Open
Abstract
Motor planning plays a critical role in producing fast and accurate movement. Yet, the neural processes that occur in human primary motor and somatosensory cortex during planning, and how they relate to those during movement execution, remain poorly understood. Here, we used 7T functional magnetic resonance imaging and a delayed movement paradigm to study single finger movement planning and execution. The inclusion of no-go trials and variable delays allowed us to separate what are typically overlapping planning and execution brain responses. Although our univariate results show widespread deactivation during finger planning, multivariate pattern analysis revealed finger-specific activity patterns in contralateral primary somatosensory cortex (S1), which predicted the planned finger action. Surprisingly, these activity patterns were as informative as those found in contralateral primary motor cortex (M1). Control analyses ruled out the possibility that the detected information was an artifact of subthreshold movements during the preparatory delay. Furthermore, we observed that finger-specific activity patterns during planning were highly correlated to those during execution. These findings reveal that motor planning activates the specific S1 and M1 circuits that are engaged during the execution of a finger press, while activity in both regions is overall suppressed. We propose that preparatory states in S1 may improve movement control through changes in sensory processing or via direct influence of spinal motor neurons.
Collapse
Affiliation(s)
- Giacomo Ariani
- The Brain and Mind Institute, Western University, London, Canada
| | - J Andrew Pruszynski
- Department of Physiology and Pharmacology, Western University, London, Canada
| | - Jörn Diedrichsen
- The Brain and Mind Institute, Western University, London, Canada
| |
Collapse
|
14
|
Guo LL, Oghli YS, Frost A, Niemeier M. Multivariate Analysis of Electrophysiological Signals Reveals the Time Course of Precision Grasps Programs: Evidence for Nonhierarchical Evolution of Grasp Control. J Neurosci 2021; 41:9210-9222. [PMID: 34551938 PMCID: PMC8570828 DOI: 10.1523/jneurosci.0992-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 09/13/2021] [Accepted: 09/16/2021] [Indexed: 11/21/2022] Open
Abstract
Current understanding of the neural processes underlying human grasping suggests that grasp computations involve gradients of higher to lower level representations and, relatedly, visual to motor processes. However, it is unclear whether these processes evolve in a strictly canonical manner from higher to intermediate and to lower levels given that this knowledge importantly relies on functional imaging, which lacks temporal resolution. To examine grasping in fine temporal detail here we used multivariate EEG analysis. We asked participants to grasp objects while controlling the time at which crucial elements of grasp programs were specified. We first specified the orientation with which participants should grasp objects, and only after a delay we instructed participants about which effector to use to grasp, either the right or the left hand. We also asked participants to grasp with both hands because bimanual and left-hand grasping share intermediate-level grasp representations. We observed that grasp programs evolved in a canonical manner from visual representations, which were independent of effectors to motor representations that distinguished between effectors. However, we found that intermediate representations of effectors that partially distinguished between effectors arose after representations that distinguished among all effector types. Our results show that grasp computations do not proceed in a strictly hierarchically canonical fashion, highlighting the importance of the fine temporal resolution of EEG for a comprehensive understanding of human grasp control.SIGNIFICANCE STATEMENT A long-standing assumption of the grasp computations is that grasp representations progress from higher to lower level control in a regular, or canonical, fashion. Here, we combined EEG and multivariate pattern analysis to characterize the temporal dynamics of grasp representations while participants viewed objects and were subsequently cued to execute an unimanual or bimanual grasp. Interrogation of the temporal dynamics revealed that lower level effector representations emerged before intermediate levels of grasp representations, thereby suggesting a partially noncanonical progression from higher to lower and then to intermediate level grasp control.
Collapse
Affiliation(s)
- Lin Lawrence Guo
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Yazan Shamli Oghli
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Adam Frost
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
| | - Matthias Niemeier
- Department of Psychology, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Centre for Vision Research, York University, Toronto, Ontario M4N 3M6, Canada
- Vision: Science to Applications, York University, Toronto, Ontario M3J 1P3, Canada
| |
Collapse
|
15
|
Lega C, Chelazzi L, Cattaneo L. Two Distinct Systems Represent Contralateral and Ipsilateral Sensorimotor Processes in the Human Premotor Cortex: A Dense TMS Mapping Study. Cereb Cortex 2021; 30:2250-2266. [PMID: 31828296 DOI: 10.1093/cercor/bhz237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/19/2019] [Accepted: 09/13/2019] [Indexed: 11/12/2022] Open
Abstract
Animal brains contain behaviorally committed representations of the surrounding world, which integrate sensory and motor information. In primates, sensorimotor mechanisms reside in part in the premotor cortex (PM), where sensorimotor neurons are topographically clustered according to functional specialization. Detailed functional cartography of the human PM is still under investigation. We explored the topographic distribution of spatially dependent sensorimotor functions in healthy volunteers performing left or right, hand or foot, responses to visual cues presented in the left or right hemispace, thus combining independently stimulus side, effector side, and effector type. Event-related transcranial magnetic stimulation was applied to single spots of a dense grid of 10 points on the participants' left hemiscalp, covering the whole PM. Results showed: (1) spatially segregated hand and foot representations, (2) focal representations of contralateral cues and movements in the dorsal PM, and (3) distributed representations of ipsilateral cues and movements in the ventral and dorso-medial PM. The present novel causal information indicates that (1) the human PM is somatotopically organized and (2) the left PM contains sensory-motor representations of both hemispaces and of both hemibodies, but the hemispace and hemibody contralateral to the PM are mapped on a distinct, nonoverlapping cortical region compared to the ipsilateral ones.
Collapse
Affiliation(s)
- Carlotta Lega
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Leonardo Chelazzi
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| | - Luigi Cattaneo
- Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy.,Italian Institute of Neuroscience, Section of Verona, Verona, Italy
| |
Collapse
|
16
|
Malfatti G, Turella L. Neural encoding and functional interactions underlying pantomimed movements. Brain Struct Funct 2021; 226:2321-2337. [PMID: 34247268 PMCID: PMC8354930 DOI: 10.1007/s00429-021-02332-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 06/21/2021] [Indexed: 01/23/2023]
Abstract
Pantomimes are a unique movement category which can convey complex information about our intentions in the absence of any interaction with real objects. Indeed, we can pretend to use the same tool to perform different actions or to achieve the same goal adopting different tools. Nevertheless, how our brain implements pantomimed movements is still poorly understood. In our study, we explored the neural encoding and functional interactions underlying pantomimes adopting multivariate pattern analysis (MVPA) and connectivity analysis of fMRI data. Participants performed pantomimed movements, either grasp-to-move or grasp-to-use, as if they were interacting with two different tools (scissors or axe). These tools share the possibility to achieve the same goal. We adopted MVPA to investigate two levels of representation during the planning and execution of pantomimes: (1) distinguishing different actions performed with the same tool, (2) representing the same final goal irrespective of the adopted tool. We described widespread encoding of action information within regions of the so-called “tool” network. Several nodes of the network—comprising regions within the ventral and the dorsal stream—also represented goal information. The spatial distribution of goal information changed from planning—comprising posterior regions (i.e. parietal and temporal)—to execution—including also anterior regions (i.e. premotor cortex). Moreover, connectivity analysis provided evidence for task-specific bidirectional coupling between the ventral stream and parieto-frontal motor networks. Overall, we showed that pantomimes were characterized by specific patterns of action and goal encoding and by task-dependent cortical interactions.
Collapse
Affiliation(s)
- Giulia Malfatti
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy
| | - Luca Turella
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Corso Bettini 31, 38068, Rovereto, Italy.
| |
Collapse
|
17
|
Zickerick B, Kobald SO, Thönes S, Küper K, Wascher E, Schneider D. Don't stop me now: Hampered retrieval of action plans following interruptions. Psychophysiology 2020; 58:e13725. [PMID: 33226663 DOI: 10.1111/psyp.13725] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 10/09/2020] [Accepted: 10/29/2020] [Indexed: 11/27/2022]
Abstract
How can we retrieve action plans in working memory (WM) after being distracted or interrupted? The present EEG study investigated this question using a WM task in which a random sequence of single numbers (1-4 and 6-9) was presented. In a given trial, participants had to decide whether the number presented in the preceding trial was odd or even. Additionally, interfering stimuli were randomly presented in 25% of all trials, requiring the participants to either ignore a colored number (distraction) or respond to it (interruption) while maintaining the previously formed action plan in WM. Our results revealed a detrimental impact of interruptions on WM performance in trials after interrupting stimuli compared to trials without a preceding interference. This was reflected in decreased task accuracy and reduced stimulus- and response-locked P3b amplitudes potentially indicating a hampered reactivation of stimulus-response links. Moreover, decreased contralateral mu suppression prior to a given response highlighted an impaired response preparation following interruptions. Distractions, on the other hand, did not negatively affect task performance but were followed by faster responses in subsequent trials compared to trials without prior interference. This result pattern was supported by stronger contralateral mu suppression indicating a facilitated response preparation. Overall, these results suggest that action representations in WM are resistant to distractions but do suffer from interruptions that disrupt or interfere with their implementation. We thus propose that the possibility of adequately preparing for an upcoming response is essential for behavioral guidance in the presence of external interference.
Collapse
Affiliation(s)
- Bianca Zickerick
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - S Oliver Kobald
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Sven Thönes
- Experimental Psychology, Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kristina Küper
- Bundeswehr Institute for Preventive Medicine, Koblenz, Germany
| | - Edmund Wascher
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Daniel Schneider
- Department of Ergonomics, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
18
|
Gallivan JP, Chapman CS, Gale DJ, Flanagan JR, Culham JC. Selective Modulation of Early Visual Cortical Activity by Movement Intention. Cereb Cortex 2020; 29:4662-4678. [PMID: 30668674 DOI: 10.1093/cercor/bhy345] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/21/2018] [Accepted: 12/22/2018] [Indexed: 12/22/2022] Open
Abstract
The primate visual system contains myriad feedback projections from higher- to lower-order cortical areas, an architecture that has been implicated in the top-down modulation of early visual areas during working memory and attention. Here we tested the hypothesis that these feedback projections also modulate early visual cortical activity during the planning of visually guided actions. We show, across three separate human functional magnetic resonance imaging (fMRI) studies involving object-directed movements, that information related to the motor effector to be used (i.e., limb, eye) and action goal to be performed (i.e., grasp, reach) can be selectively decoded-prior to movement-from the retinotopic representation of the target object(s) in early visual cortex. We also find that during the planning of sequential actions involving objects in two different spatial locations, that motor-related information can be decoded from both locations in retinotopic cortex. Together, these findings indicate that movement planning selectively modulates early visual cortical activity patterns in an effector-specific, target-centric, and task-dependent manner. These findings offer a neural account of how motor-relevant target features are enhanced during action planning and suggest a possible role for early visual cortex in instituting a sensorimotor estimate of the visual consequences of movement.
Collapse
Affiliation(s)
- Jason P Gallivan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Craig S Chapman
- Faculty of Physical Education and Recreation, University of Alberta, Alberta, Canada
| | - Daniel J Gale
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - J Randall Flanagan
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.,Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada
| | - Jody C Culham
- Department of Psychology, University of Western Ontario, London, Ontario, Canada.,Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
19
|
Foerster FR, Borghi AM, Goslin J. Labels strengthen motor learning of new tools. Cortex 2020; 129:1-10. [DOI: 10.1016/j.cortex.2020.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/30/2020] [Accepted: 04/07/2020] [Indexed: 01/29/2023]
|
20
|
The Topography of Visually Guided Grasping in the Premotor Cortex: A Dense-Transcranial Magnetic Stimulation (TMS) Mapping Study. J Neurosci 2020; 40:6790-6800. [PMID: 32709693 DOI: 10.1523/jneurosci.0560-20.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/30/2020] [Accepted: 07/03/2020] [Indexed: 11/21/2022] Open
Abstract
Visuomotor transformations at the cortical level occur along a network where posterior parietal regions are connected to homologous premotor regions. Grasping-related activity is represented in a diffuse, ventral and dorsal system in the posterior parietal regions, but no systematic causal description of a premotor counterpart of a similar diffuse grasping representation is available. To fill this gap, we measured the kinematics of right finger movements in 17 male and female human participants during grasping of three objects of different sizes. Single-pulse transcranial magnetic stimulation was applied 100 ms after visual presentation of the object over a regular grid of 8 spots covering the left premotor cortex (PMC) and 2 Sham stimulations. Maximum finger aperture during reach was used as the feature to classify object size in different types of classifiers. Classification accuracy was taken as a measure of the efficiency of visuomotor transformations for grasping. Results showed that transcranial magnetic stimulation reduced classification accuracy compared with Sham stimulation when it was applied to 2 spots in the ventral PMC and 1 spot in the medial PMC, corresponding approximately to the ventral PMC and the dorsal portion of the supplementary motor area. Our results indicate a multifocal representation of object geometry for grasping in the PMC that matches the known multifocal parietal maps of grasping representations. Additionally, we confirm that, by applying a uniform spatial sampling procedure, transcranial magnetic stimulation can produce cortical functional maps independent of a priori spatial assumptions.SIGNIFICANCE STATEMENT Visually guided actions activate a large frontoparietal network. Here, we used a dense grid of transcranial magnetic stimulation spots covering the whole premotor cortex (PMC), to identify with accurate spatial mapping the functional specialization of the human PMC during grasping movement. Results corroborate previous findings about the role of the ventral PMC in preshaping the fingers according to the size of the target. Crucially, we found that the medial part of PMC, putatively covering the supplementary motor area, plays a direct role in object grasping. In concert with findings in nonhuman primates, these results indicate a multifocal representation of object geometry for grasping in the PMC and expand our understanding of how our brain integrates visual and motor information to perform visually guided actions.
Collapse
|
21
|
Schneider D, Zickerick B, Thönes S, Wascher E. Encoding, storage, and response preparation-Distinct EEG correlates of stimulus and action representations in working memory. Psychophysiology 2020; 57:e13577. [PMID: 32259293 DOI: 10.1111/psyp.13577] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 03/08/2020] [Accepted: 03/10/2020] [Indexed: 01/02/2023]
Abstract
Working memory (WM) allows for the active storage of stimulus- and higher level representations, such as action plans. This electroencephalography (EEG) study investigated the specific electrophysiological correlates dissociating action-related from stimulus-related representations in WM using three different experimental conditions based on the same stimulus material. In the experiment, a random sequence of single numbers (from 1 to 6) was presented and participants had to indicate whether the current number (N0 condition), the preceding number (N-1 condition), or the sum of the current and the preceding number (S-1 condition) was odd or even. Accordingly, participants had to store a stimulus representation in S-1 and an action representation in N-1 until the onset of the next stimulus. In the EEG, the storage of stimulus representations (S-1) was reflected by a fronto-central slow wave indicating the rehearsal of information that was required for the response in the following trial. In contrast, the storage of action representations (N-1) went along with a posterior positive slow wave, suggesting that the action plan was actively stored in WM until the presentation of the next stimulus. Crucially, preparing for the next response in N-1 was associated with increased contralateral mu/beta suppression, predicting the response time in the given trial. Our findings, thus, show that the WM processes for stimulus- and action representations can be clearly dissociated from each other with a distinct sequence of EEG correlates for encoding, storage, and response preparation.
Collapse
Affiliation(s)
- Daniel Schneider
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Bianca Zickerick
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Sven Thönes
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Experimental Psychology, Department of Psychology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Edmund Wascher
- IfADo-Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| |
Collapse
|
22
|
Decoding across sensory modalities reveals common supramodal signatures of conscious perception. Proc Natl Acad Sci U S A 2020; 117:7437-7446. [PMID: 32184331 PMCID: PMC7132110 DOI: 10.1073/pnas.1912584117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An increasing number of studies highlight common brain regions and processes in mediating conscious sensory experience. While most studies have been performed in the visual modality, it is implicitly assumed that similar processes are involved in other sensory modalities. However, the existence of supramodal neural processes related to conscious perception has not been convincingly shown so far. Here, we aim to directly address this issue by investigating whether neural correlates of conscious perception in one modality can predict conscious perception in a different modality. In two separate experiments, we presented participants with successive blocks of near-threshold tasks involving subjective reports of tactile, visual, or auditory stimuli during the same magnetoencephalography (MEG) acquisition. Using decoding analysis in the poststimulus period between sensory modalities, our first experiment uncovered supramodal spatiotemporal neural activity patterns predicting conscious perception of the feeble stimulation. Strikingly, these supramodal patterns included activity in primary sensory regions not directly relevant to the task (e.g., neural activity in visual cortex predicting conscious perception of auditory near-threshold stimulation). We carefully replicate our results in a control experiment that furthermore show that the relevant patterns are independent of the type of report (i.e., whether conscious perception was reported by pressing or withholding a button press). Using standard paradigms for probing neural correlates of conscious perception, our findings reveal a common signature of conscious access across sensory modalities and illustrate the temporally late and widespread broadcasting of neural representations, even into task-unrelated primary sensory processing regions.
Collapse
|
23
|
Turella L, Rumiati R, Lingnau A. Hierarchical Action Encoding Within the Human Brain. Cereb Cortex 2020; 30:2924-2938. [DOI: 10.1093/cercor/bhz284] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 10/22/2019] [Accepted: 10/25/2019] [Indexed: 11/14/2022] Open
Abstract
Abstract
Humans are able to interact with objects with extreme flexibility. To achieve this ability, the brain does not only control specific muscular patterns, but it also needs to represent the abstract goal of an action, irrespective of its implementation. It is debated, however, how abstract action goals are implemented in the brain. To address this question, we used multivariate pattern analysis of functional magnetic resonance imaging data. Human participants performed grasping actions (precision grip, whole hand grip) with two different wrist orientations (canonical, rotated), using either the left or right hand. This design permitted to investigate a hierarchical organization consisting of three levels of abstraction: 1) “concrete action” encoding; 2) “effector-dependent goal” encoding (invariant to wrist orientation); and 3) “effector-independent goal” encoding (invariant to effector and wrist orientation). We found that motor cortices hosted joint encoding of concrete actions and of effector-dependent goals, while the parietal lobe housed a convergence of all three representations, comprising action goals within and across effectors. The left lateral occipito-temporal cortex showed effector-independent goal encoding, but no convergence across the three levels of representation. Our results support a hierarchical organization of action encoding, shedding light on the neural substrates supporting the extraordinary flexibility of human hand behavior.
Collapse
Affiliation(s)
- Luca Turella
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
| | - Raffaella Rumiati
- Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste 34136, Italy
| | - Angelika Lingnau
- Center for Mind/Brain Sciences—CIMeC, University of Trento, Rovereto 38068, Italy
- Department of Cognitive Sciences, University of Trento, Rovereto 38068, Italy
- Institute of Psychology, University of Regensburg, Regensburg 93053, Germany
| |
Collapse
|
24
|
Rapid Cortical Plasticity Supports Long-Term Memory Formation. Trends Cogn Sci 2019; 23:989-1002. [DOI: 10.1016/j.tics.2019.09.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/04/2019] [Accepted: 09/18/2019] [Indexed: 12/31/2022]
|
25
|
Multivariate Analysis of Electrophysiological Signals Reveals the Temporal Properties of Visuomotor Computations for Precision Grips. J Neurosci 2019; 39:9585-9597. [PMID: 31628180 DOI: 10.1523/jneurosci.0914-19.2019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 11/21/2022] Open
Abstract
The frontoparietal networks underlying grasping movements have been extensively studied, especially using fMRI. Accordingly, whereas much is known about their cortical locus much less is known about the temporal dynamics of visuomotor transformations. Here, we show that multivariate EEG analysis allows for detailed insights into the time course of visual and visuomotor computations of precision grasps. Male and female human participants first previewed one of several objects and, upon its reappearance, reached to grasp it with the thumb and index finger along one of its two symmetry axes. Object shape classifiers reached transient accuracies of 70% at ∼105 ms, especially based on scalp sites over visual cortex, dropping to lower levels thereafter. Grasp orientation classifiers relied on a system of occipital-to-frontal electrodes. Their accuracy rose concurrently with shape classification but ramped up more gradually, and the slope of the classification curve predicted individual reaction times. Further, cross-temporal generalization revealed that dynamic shape representation involved early and late neural generators that reactivated one another. In contrast, grasp computations involved a chain of generators attaining a sustained state about 100 ms before movement onset. Our results reveal the progression of visual and visuomotor representations over the course of planning and executing grasp movements.SIGNIFICANCE STATEMENT Grasping an object requires the brain to perform visual-to-motor transformations of the object's properties. Although much of the neuroanatomic basis of visuomotor transformations has been uncovered, little is known about its time course. Here, we orthogonally manipulated object visual characteristics and grasp orientation, and used multivariate EEG analysis to reveal that visual and visuomotor computations follow similar time courses but display different properties and dynamics.
Collapse
|
26
|
Andersson P, Ragni F, Lingnau A. Visual imagery during real-time fMRI neurofeedback from occipital and superior parietal cortex. Neuroimage 2019; 200:332-343. [DOI: 10.1016/j.neuroimage.2019.06.057] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 06/11/2019] [Accepted: 06/24/2019] [Indexed: 01/15/2023] Open
|
27
|
Ibáñez‐Marcelo E, Campioni L, Manzoni D, Santarcangelo EL, Petri G. Spectral and topological analyses of the cortical representation of the head position: Does hypnotizability matter? Brain Behav 2019; 9:e01277. [PMID: 31001933 PMCID: PMC6576149 DOI: 10.1002/brb3.1277] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION The aim of this exploratory study was to assess the EEG correlates of head positions (which have never been studied in humans) in participants with different psychophysiological characteristics, as encoded by their hypnotizability scores. This choice is motivated by earlier studies suggesting different processing of vestibular/neck proprioceptive information in subjects with high (highs) and low (lows) hypnotizability scores maintaining their head rotated toward one side (RH). METHODS We analyzed EEG signals recorded in 20 highs and 19 lows in basal conditions (head forward) and during RH using spectral analysis, which captures changes localized to specific recording sites, and topological data analysis (TDA), which instead describes large-scale differences in processing and representing sensorimotor information. RESULTS Spectral analysis revealed significant differences related to head position for alpha 1, beta 2, beta 3, and gamma bands, but not to hypnotizability. TDA instead revealed global hypnotizability-related differences in the strengths of the correlations among recording sites during RH. Significant changes were observed in lows on the left parieto-occipital side and in highs in right frontoparietal region. Significant differences between the two groups were found in the occipital region, where changes were larger in lows than in highs. CONCLUSIONS This study reports finding of the EEG correlates of changes in the head posture for the first time, indicating that hypnotizability is related to the head posture representation/processing on large-scale networks and that spectral and topological data analyses provide complementary results.
Collapse
Affiliation(s)
| | - Lisa Campioni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Diego Manzoni
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Enrica L. Santarcangelo
- Department of Translational Research and New Technologies in Medicine and SurgeryUniversity of PisaPisaItaly
| | - Giovanni Petri
- ISI FoundationTurinItaly
- ISI Global Science FoundationNew YorkNYUSA
| |
Collapse
|
28
|
Marini F, Breeding KA, Snow JC. Distinct visuo-motor brain dynamics for real-world objects versus planar images. Neuroimage 2019; 195:232-242. [PMID: 30776529 DOI: 10.1016/j.neuroimage.2019.02.026] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/26/2019] [Accepted: 02/09/2019] [Indexed: 10/27/2022] Open
Abstract
Ultimately, we aim to generalize and translate scientific knowledge to the real world, yet current understanding of human visual perception is based predominantly on studies of two-dimensional (2-D) images. Recent cognitive-behavioral evidence shows that real objects are processed differently to images, although the neural processes that underlie these differences are unknown. Because real objects (unlike images) afford actions, they may trigger stronger or more prolonged activation in neural populations for visuo-motor action planning. Here, we recorded electroencephalography (EEG) when human observers viewed real-world three-dimensional (3-D) objects or closely matched 2-D images of the same items. Although responses to real objects and images were similar overall, there were critical differences. Compared to images, viewing real objects triggered stronger and more sustained event-related desynchronization (ERD) in the μ frequency band (8-13 Hz) - a neural signature of automatic motor preparation. Event-related potentials (ERPs) revealed a transient, early occipital negativity for real objects (versus images), likely reflecting 3-D stereoscopic differences, and a late sustained parietal amplitude modulation consistent with an 'old-new' memory advantage for real objects over images. Together, these findings demonstrate that real-world objects trigger stronger and more sustained action-related brain responses than images do. The results highlight important similarities and differences between brain responses to images and richer, more ecologically relevant, real-world objects.
Collapse
Affiliation(s)
- Francesco Marini
- Department of Psychology, University of Nevada, 1664 N Virginia St, Reno, NV, 89557-0296, USA; Swartz Center for Computational Neuroscience, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0559, USA.
| | - Katherine A Breeding
- Department of Psychology, University of Nevada, 1664 N Virginia St, Reno, NV, 89557-0296, USA
| | - Jacqueline C Snow
- Department of Psychology, University of Nevada, 1664 N Virginia St, Reno, NV, 89557-0296, USA.
| |
Collapse
|
29
|
Shared right-hemispheric representations of sensorimotor goals in dynamic task environments. Exp Brain Res 2019; 237:977-987. [PMID: 30694342 DOI: 10.1007/s00221-019-05478-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 01/14/2019] [Indexed: 10/27/2022]
Abstract
Functional behaviour affords that we form goals to integrate sensory information about the world around us with suitable motor actions, such as when we plan to grab an object with a hand. However, much research has tested grasping in static scenarios where goals are pursued with repetitive movements, whereas dynamic contexts require goals to be pursued even when changes in the environment require a change in the actions to attain them. To study grasp goals in dynamic environments here, we employed a task where the goal remained the same but the execution of the movement changed; we primed participants to grasp objects either with their right or left hand, and occasionally they had to switch to grasping with both. Switch costs should be minimal if grasp goal representations were used continuously, for example, within the left dominant hemisphere. But remapped or re-computed goal representations should delay movements. We found that switching from right-hand grasping to bimanual grasping delayed reaction times but switching from left-hand grasping to bimanual grasping did not. Further, control experiments showed that the lateralized switch costs were not caused by asymmetric inhibition between hemispheres or switches between usual and unusual tasks. Our results show that the left hemisphere does not serve a general role of sensorimotor grasp goal representation. Instead, sensorimotor grasp goals appear to be represented at intermediate levels of abstraction, downstream from cognitive task representations, yet upstream from the control of the grasping effectors.
Collapse
|
30
|
Nan W, Wang C, Sun Y, Wang H, Fu S, Li Q, Liu X. Temporal and spectral profiles of conflict processing among multiple frames of reference. Psychophysiology 2018; 56:e13313. [PMID: 30561786 DOI: 10.1111/psyp.13313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 09/12/2018] [Accepted: 10/29/2018] [Indexed: 11/28/2022]
Abstract
Individuals rely on various frames of reference (FORs), such as an egocentric FOR (EFOR) and intrinsic FOR (IFOR), to represent spatial information. Previous behavioral studies have shown different IFOR-IFOR (II) and EFOR-IFOR (EI) conflict effects and an effect of their interaction. However, the neural mechanism of conflict processing between two FOR-based conflicts is unclear. In the current ERP study, two FOR-based conflicts were manipulated using a two-cannon task to elucidate common and distinct brain mechanisms that underlie FOR-based conflict processing. The behavioral results showed that both conflicts exhibited longer reaction times and larger error rates in the II (180° cannon angle) and EI (target cannon pointed down) incongruent conditions than in the II (0° cannon angle) and EI (target cannon pointed up) congruent conditions and that an interaction existed between the two conflicts. The ERP results indicated that, for both conflicts, more negative N2 amplitudes and less positive P3 amplitudes occurred in the incongruent conditions than in the congruent conditions, and the interactions between the two conflicts during later P3 amplitudes were significant. Time-frequency analysis further indicated that, in the early time window, the II conflict and the EI conflict specifically modulated power in the theta bands and beta bands, respectively. In contrast, in the later time window, both conflicts modulated power in the alpha and beta bands. In summary, our findings provide insights into the potential existence of two specific early conflict monitoring systems and a general late executive control system for FOR-based conflicts.
Collapse
Affiliation(s)
- Weizhi Nan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.,Center for Biomedical Informatics, Texas A&M University Health Science Center, Houston, Texas.,Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China
| | - Chunsheng Wang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China
| | - Yanlong Sun
- Center for Biomedical Informatics, Texas A&M University Health Science Center, Houston, Texas
| | - Hongbin Wang
- Center for Biomedical Informatics, Texas A&M University Health Science Center, Houston, Texas
| | - Shimin Fu
- Department of Psychology and Center for Brain and Cognitive Sciences, School of Education, Guangzhou University, Guangzhou, China
| | - Qi Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Xun Liu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
31
|
Santandrea E, Breveglieri R, Bosco A, Galletti C, Fattori P. Preparatory activity for purposeful arm movements in the dorsomedial parietal area V6A: Beyond the online guidance of movement. Sci Rep 2018; 8:6926. [PMID: 29720690 PMCID: PMC5931970 DOI: 10.1038/s41598-018-25117-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Over the years, electrophysiological recordings in macaque monkeys performing visuomotor tasks brought about accumulating evidence for the expression of neuronal properties (e.g., selectivity in the visuospatial and somatosensory domains, encoding of visual affordances and motor cues) in the posterior parietal area V6A that characterize it as an ideal neural substrate for online control of prehension. Interestingly, neuroimaging studies suggested a role of putative human V6A also in action preparation; moreover, pre-movement population activity in monkey V6A has been recently shown to convey grip-related information for upcoming grasping. Here we directly test whether macaque V6A neurons encode preparatory signals that effectively differentiate between dissimilar actions before movement. We recorded the activity of single V6A neurons during execution of two visuomotor tasks requiring either reach-to-press or reach-to-grasp movements in different background conditions, and described the nature and temporal dynamics of V6A activity preceding movement execution. We found striking consistency in neural discharges measured during pre-movement and movement epochs, suggesting that the former is a preparatory activity exquisitely linked to the subsequent execution of particular motor actions. These findings strongly support a role of V6A beyond the online guidance of movement, with preparatory activity implementing suitable motor programs that subsequently support action execution.
Collapse
Affiliation(s)
- Elisa Santandrea
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.,Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy.
| |
Collapse
|
32
|
Hauswald A, Tucciarelli R, Lingnau A. MEG adaptation reveals action representations in posterior occipitotemporal regions. Cortex 2018; 103:266-276. [PMID: 29673783 DOI: 10.1016/j.cortex.2018.03.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 01/23/2018] [Accepted: 03/17/2018] [Indexed: 10/17/2022]
Abstract
When we observe other people's actions, a number of parietal and precentral regions known to be involved in the planning and execution of actions are recruited for example seen as power decreases in alpha and beta frequencies indicative of increased activation. It has been argued that this recruitment reflects the process of simulating the observed action, thereby providing access to the meaning of the action. Alternatively, it has been suggested that rather than providing access to the meaning of an action, parietal and precentral regions might be recruited as a consequence of action understanding. A way to distinguish between these alternatives is to examine where in the brain and at which time point it is possible to discriminate between different types of actions (e.g., pointing or grasping) irrespective of the way these are performed. To this aim, we presented participants with videos of simple hand actions performed with the left or right hand towards a target on the left or the right side while recording magnetoencephalography (MEG) data. In each trial, participants were presented with two subsequent videos (S1, S2) depicting either the same (repeat trials) or different (non-repeat trials) actions. We predicted that areas that are sensitive to the type of action should show stronger adaptation (i.e., a smaller decrease in alpha and beta power) in repeat in comparison to non-repeat trials. Indeed, we observed less alpha and beta power decreases during the presentation of S2 when the action was repeated compared to when two different actions were presented indicating adaptation of neuronal populations that are selective for the type of action. Sources were obtained exclusively in posterior occipitotemporal regions, supporting the notion that an early differentiation of actions occurs outside the motor system.
Collapse
Affiliation(s)
- Anne Hauswald
- Center for Mind/ Brain Sciences, University of Trento, Italy; Department of Psychology, University of Salzburg, Austria; Center for Cognitive Neuroscience, University of Salzburg, Austria.
| | - Raffaele Tucciarelli
- Center for Mind/ Brain Sciences, University of Trento, Italy; Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Angelika Lingnau
- Center for Mind/ Brain Sciences, University of Trento, Italy; Department of Psychology, Royal Holloway University of London, United Kingdom
| |
Collapse
|
33
|
Campioni L, Banfi T, Santarcangelo EL. Hypnotizability influences the cortical representation of visually and kinaesthetically imagined head position. Brain Cogn 2018; 123:120-125. [PMID: 29554570 DOI: 10.1016/j.bandc.2018.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/08/2018] [Accepted: 03/11/2018] [Indexed: 01/01/2023]
Abstract
The study investigates the cortical representation of the visual and kinesthetic image of a rotated position of the head in highly (highs) and low hypnotizable individuals (lows) of both gender. Participants were invited to imagine maintaining their head rotated toward one side by seeing their chin aligned with their right shoulder (V, visual imagery), and in a different condition, by feeling tension in their neck muscles (K, kinaesthetic imagery). Vividness of imagery and cognitive effort were reported after each task. Alpha and beta band absolute power was studied. Highs reported higher vividness than lows only for the kinaesthetic modality of imagery. The cortical desyncronization observed during visual and kinaesthetic imagery were different in high females (HM), low females (LF), high males (HM) and low males (LM). In fact, only HF and LM exhibited significant power changes during the kinaesthetic task, whereas visual imagery was associated with cortical desynchronization in all subgroups except HM. The study supports earlier findings of an advantage of highs in kinesthetic imagery, shows an intriguing interaction of hypnotizability and gender, and indicates topographical difference in the four subgroups of participants suggesting differences in underlying generators.
Collapse
Affiliation(s)
- Lisa Campioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy
| | | | - Enrica L Santarcangelo
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Italy.
| |
Collapse
|
34
|
Okawa H, Suefusa K, Tanaka T. Neural Entrainment to Auditory Imagery of Rhythms. Front Hum Neurosci 2017; 11:493. [PMID: 29081742 PMCID: PMC5645537 DOI: 10.3389/fnhum.2017.00493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/26/2017] [Indexed: 11/13/2022] Open
Abstract
A method of reconstructing perceived or imagined music by analyzing brain activity has not yet been established. As a first step toward developing such a method, we aimed to reconstruct the imagery of rhythm, which is one element of music. It has been reported that a periodic electroencephalogram (EEG) response is elicited while a human imagines a binary or ternary meter on a musical beat. However, it is not clear whether or not brain activity synchronizes with fully imagined beat and meter without auditory stimuli. To investigate neural entrainment to imagined rhythm during auditory imagery of beat and meter, we recorded EEG while nine participants (eight males and one female) imagined three types of rhythm without auditory stimuli but with visual timing, and then we analyzed the amplitude spectra of the EEG. We also recorded EEG while the participants only gazed at the visual timing as a control condition to confirm the visual effect. Furthermore, we derived features of the EEG using canonical correlation analysis (CCA) and conducted an experiment to individually classify the three types of imagined rhythm from the EEG. The results showed that classification accuracies exceeded the chance level in all participants. These results suggest that auditory imagery of meter elicits a periodic EEG response that changes at the imagined beat and meter frequency even in the fully imagined conditions. This study represents the first step toward the realization of a method for reconstructing the imagined music from brain activity.
Collapse
Affiliation(s)
- Haruki Okawa
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Kaori Suefusa
- Department of Electrical and Information Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Toshihisa Tanaka
- Department of Electrical and Electronic Engineering, Tokyo University of Agriculture and Technology, Tokyo, Japan.,RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
35
|
Tia B, Takemi M, Kosugi A, Castagnola E, Ansaldo A, Nakamura T, Ricci D, Ushiba J, Fadiga L, Iriki A. Cortical control of object-specific grasp relies on adjustments of both activity and effective connectivity: a common marmoset study. J Physiol 2017; 595:7203-7221. [PMID: 28791721 PMCID: PMC5709338 DOI: 10.1113/jp274629] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 07/31/2017] [Indexed: 01/22/2023] Open
Abstract
Key points The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Abstract The cortical mechanisms of grasping have been extensively studied in macaques and humans. Here, we investigated whether common marmosets could rely on similar mechanisms despite striking differences in manual dexterity. Two common marmosets were trained to grasp‐and‐pull three objects eliciting different hand configurations: whole‐hand, finger and scissor grips. The animals were then chronically implanted with 64‐channel electrocorticogram arrays positioned over the left premotor, primary motor and somatosensory cortex. Power spectra, reflecting predominantly cortical activity, and phase‐slope index, reflecting the direction of information flux, were studied in beta (16–35 Hz) and gamma (75–100 Hz) bands. Differences related to grip type, epoch (reach, grasp) and cortical area were statistically assessed. Results showed that whole‐hand and scissor grips triggered stronger beta desynchronization than finger grip. Task epochs clearly modulated gamma power, especially for finger and scissor grips. Considering effective connectivity, finger and scissor grips evoked stronger outflow from primary motor to premotor cortex, whereas whole‐hand grip displayed the opposite pattern. These findings suggest that fundamental control mechanisms, relying on adjustments of cortical activity and connectivity, are conserved across primates. Consistently, marmosets could represent a good model to investigate primate brain mechanisms. The cortical mechanisms of grasping have been extensively studied in macaques and humans; here, we investigated whether common marmosets could rely on similar mechanisms despite strong differences in hand morphology and grip diversity. We recorded electrocorticographic activity over the sensorimotor cortex of two common marmosets during the execution of different grip types, which allowed us to study cortical activity (power spectrum) and physiologically inferred connectivity (phase‐slope index). Analyses were performed in beta (16–35 Hz) and gamma (75–100 Hz) frequency bands and our results showed that beta power varied depending on grip type, whereas gamma power displayed clear epoch‐related modulation. Strength and direction of inter‐area connectivity varied depending on grip type and epoch. These findings suggest that fundamental control mechanisms are conserved across primates and, in future research, marmosets could represent an adequate model to investigate primate brain mechanisms.
Collapse
Affiliation(s)
- Banty Tia
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Mitsuaki Takemi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan.,Danish Research Centre for Magnetic Resonance, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Akito Kosugi
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Elisa Castagnola
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Alberto Ansaldo
- Graphene Labs, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Takafumi Nakamura
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan.,Graduate School of Science and Technology, Keio University, Kanagawa, Japan
| | - Davide Ricci
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Junichi Ushiba
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.,Keio Institute of Pure and Applied Sciences (KiPAS), Keio University, Kanagawa, Japan
| | - Luciano Fadiga
- Center for Translational Neurophysiology of Speech and Communication, Istituto Italiano di Tecnologia, Ferrara, Italy
| | - Atsushi Iriki
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|
36
|
Coll MP, Press C, Hobson H, Catmur C, Bird G. Crossmodal Classification of Mu Rhythm Activity during Action Observation and Execution Suggests Specificity to Somatosensory Features of Actions. J Neurosci 2017; 37:5936-5947. [PMID: 28559380 PMCID: PMC6596509 DOI: 10.1523/jneurosci.3393-16.2017] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 05/05/2017] [Accepted: 05/11/2017] [Indexed: 11/21/2022] Open
Abstract
The alpha mu rhythm (8-13 Hz) has been considered to reflect mirror neuron activity because it is attenuated by both action observation and action execution. The putative link between mirror neuron system activity and the mu rhythm has been used to study the involvement of the mirror system in a wide range of socio-cognitive processes and clinical disorders. However, previous research has failed to convincingly demonstrate the specificity of the mu rhythm, meaning that it is unclear whether the mu rhythm reflects mirror neuron activity. It also remains unclear whether mu rhythm suppression during action observation reflects the processing of motor or tactile information. In an attempt to assess the validity of the mu rhythm as a measure of mirror neuron activity, we used crossmodal pattern classification to assess the specificity of EEG mu rhythm response to action varying in terms of action type (whole-hand or precision grip), concurrent tactile stimulation (stimulation or no stimulation), or object use (transitive or intransitive actions) in 20 human participants. The main results reveal that above-chance crossmodal classification of mu rhythm activity was obtained in the central channels for tactile stimulation and action transitivity but not for action type. Furthermore, traditional univariate analyses applied to the same data were insensitive to differences between conditions. By calling into question the relationship between mirror system activity and the mu rhythm, these results have important implications for the use and interpretation of mu rhythm activity.SIGNIFICANCE STATEMENT The central alpha mu rhythm oscillation is a widely used measure of the human mirror neuron system that has been used to make important claims concerning cognitive functioning in health and in disease. Here, we used a novel multivariate analytical approach to show that crossmodal EEG mu rhythm responses primarily index the somatosensory features of actions, suggesting that the mu rhythm is not a valid measure of mirror neuron activity. Results may lead to the revision of the conclusions of many previous studies using this measure, and to the transition toward a theory of mu rhythm function that is more consistent with current models of sensory processing in the self and in others.
Collapse
Affiliation(s)
- Michel-Pierre Coll
- Department of Experimental Psychology, University of Oxford, Oxford SE5 8AF, United Kingdom,
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London SE5 8AF, United Kingdom
| | - Clare Press
- Department of Psychological Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom, and
| | - Hannah Hobson
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London SE5 8AF, United Kingdom
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London SE5 8AF, United Kingdom
| | - Geoffrey Bird
- Department of Experimental Psychology, University of Oxford, Oxford SE5 8AF, United Kingdom
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, University of London, London SE5 8AF, United Kingdom
| |
Collapse
|
37
|
Alavash M, Daube C, Wöstmann M, Brandmeyer A, Obleser J. Large-scale network dynamics of beta-band oscillations underlie auditory perceptual decision-making. Netw Neurosci 2017; 1:166-191. [PMID: 29911668 PMCID: PMC5988391 DOI: 10.1162/netn_a_00009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
Perceptual decisions vary in the speed at which we make them. Evidence suggests that translating sensory information into perceptual decisions relies on distributed interacting neural populations, with decision speed hinging on power modulations of the neural oscillations. Yet the dependence of perceptual decisions on the large-scale network organization of coupled neural oscillations has remained elusive. We measured magnetoencephalographic signals in human listeners who judged acoustic stimuli composed of carefully titrated clouds of tone sweeps. These stimuli were used in two task contexts, in which the participants judged the overall pitch or direction of the tone sweeps. We traced the large-scale network dynamics of the source-projected neural oscillations on a trial-by-trial basis using power-envelope correlations and graph-theoretical network discovery. In both tasks, faster decisions were predicted by higher segregation and lower integration of coupled beta-band (∼16-28 Hz) oscillations. We also uncovered the brain network states that promoted faster decisions in either lower-order auditory or higher-order control brain areas. Specifically, decision speed in judging the tone sweep direction critically relied on the nodal network configurations of anterior temporal, cingulate, and middle frontal cortices. Our findings suggest that global network communication during perceptual decision-making is implemented in the human brain by large-scale couplings between beta-band neural oscillations.
Collapse
Affiliation(s)
- Mohsen Alavash
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Christoph Daube
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Malte Wöstmann
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Alex Brandmeyer
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jonas Obleser
- Department of Psychology, University of Lübeck, Germany
- Max Planck Research Group “Auditory Cognition,” Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
38
|
Bernier PM, Whittingstall K, Grafton ST. Differential Recruitment of Parietal Cortex during Spatial and Non-spatial Reach Planning. Front Hum Neurosci 2017; 11:249. [PMID: 28536517 PMCID: PMC5423362 DOI: 10.3389/fnhum.2017.00249] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/26/2017] [Indexed: 12/04/2022] Open
Abstract
The planning of goal-directed arm reaching movements is associated with activity in the dorsal parieto-frontal cortex, within which multiple regions subserve the integration of arm- and target-related sensory signals to encode a motor goal. Surprisingly, many of these regions show sustained activity during reach preparation even when target location is not specified, i.e., when a motor goal cannot be unambiguously formed. The functional role of these non-spatial preparatory signals remains unresolved. Here this process was investigated in humans by comparing reach preparatory activity in the presence or absence of information regarding upcoming target location. In order to isolate the processes specific to reaching and to control for visuospatial attentional factors, the reaching task was contrasted to a finger movement task. Functional MRI and electroencephalography (EEG) were used to characterize the spatio-temporal pattern of reach-related activity in the parieto-frontal cortex. Reach planning with advance knowledge of target location induced robust blood oxygenated level dependent and EEG responses across parietal and premotor regions contralateral to the reaching arm. In contrast, reach preparation without knowledge of target location was associated with a significant BOLD response bilaterally in the parietal cortex. Furthermore, EEG alpha- and beta-band activity was restricted to parietal scalp sites, the magnitude of the latter being correlated with reach reaction times. These results suggest an intermediate stage of sensorimotor transformations in bilateral parietal cortex when target location is not specified.
Collapse
Affiliation(s)
| | - Kevin Whittingstall
- Département de Radiologie Diagnostique, Université de Sherbrooke, SherbrookeQC, Canada
| | - Scott T Grafton
- Brain Imaging Center, Department of Psychological and Brain Sciences, University of California, Santa Barbara, Santa BarbaraCA, USA
| |
Collapse
|
39
|
Babikian S, Kanso E, Kutch JJ. Cortical activity predicts good variation in human motor output. Exp Brain Res 2017; 235:1139-1147. [PMID: 28161821 DOI: 10.1007/s00221-017-4876-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/04/2017] [Indexed: 10/20/2022]
Abstract
Human movement patterns have been shown to be particularly variable if many combinations of activity in different muscles all achieve the same task goal (i.e., are goal-equivalent). The nervous system appears to automatically vary its output among goal-equivalent combinations of muscle activity to minimize muscle fatigue or distribute tissue loading, but the neural mechanism of this "good" variation is unknown. Here we use a bimanual finger task, electroencephalography (EEG), and machine learning to determine if cortical signals can predict goal-equivalent variation in finger force output. 18 healthy participants applied left and right index finger forces to repeatedly perform a task that involved matching a total (sum of right and left) finger force. As in previous studies, we observed significantly more variability in goal-equivalent muscle activity across task repetitions compared to variability in muscle activity that would not achieve the goal: participants achieved the task in some repetitions with more right finger force and less left finger force (right > left) and in other repetitions with less right finger force and more left finger force (left > right). We found that EEG signals from the 500 milliseconds (ms) prior to each task repetition could make a significant prediction of which repetitions would have right > left and which would have left > right. We also found that cortical maps of sites contributing to the prediction contain both motor and pre-motor representation in the appropriate hemisphere. Thus, goal-equivalent variation in motor output may be implemented at a cortical level.
Collapse
Affiliation(s)
- Sarine Babikian
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Eva Kanso
- Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, 1540 E. Alcazar Street, CHP 155, Los Angeles, CA, 90033, USA.
| |
Collapse
|