1
|
Carricarte T, Xie S, Singer J, Trampel R, Huber L, Weiskopf N, Cichy RM. Layer-specific spatiotemporal dynamics of feedforward and feedback in human visual object perception. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.05.13.653501. [PMID: 40462954 PMCID: PMC12132538 DOI: 10.1101/2025.05.13.653501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Visual object perception is mediated by information flow between regions of the ventral visual stream along feedforward and feedback anatomical connections. However, feedforward and feedback signals during naturalistic vision are rapid and overlapping, complicating their identification and precise functional specification. Here we recorded human layer-specific fMRI responses to naturalistic object images in early visual cortex (EVC) and lateral occipital complex (LOC) to isolate feedforward and feedback information signals spatially by their cortical layer specific termination pattern. We combined these layer-specific fMRI responses with electroencephalography (EEG) responses for the same images to segregate feedforward and feedback signals in both time and space. Feedforward signals emerge early in the middle layers of EVC and LOC, followed by feedback signals in the superficial layer of both regions, and the deep layer of EVC. Comparing the identified dynamics in LOC to a visual deep neural network (DNN), revealed that early feedforward signals in LOC encode medium complexity features, whereas later feedback signals increase the representational format to high complexity features. Together this specifies the spatiotemporal dynamics and functional role of feedforward and feedback information flow mediating visual object perception.
Collapse
Affiliation(s)
- Tony Carricarte
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Siying Xie
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Johannes Singer
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Robert Trampel
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
| | | | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, 04103 Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Universität Leipzig, 04103 Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, WC1N 3AR London, United Kingdom
| | - Radoslaw M. Cichy
- Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany
- Einstein Center for Neurosciences Berlin, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
2
|
Wei Z, Zhang Z, Chen Q, Wang C, Fu S, Wang H, Zhang X, Liu X, Zheng H, Wu J, Li Y. Open-transmit and flexible receiver array for high resolution ultrahigh-field fMRI of the human sensorimotor cortex. Commun Biol 2025; 8:482. [PMID: 40121362 PMCID: PMC11929792 DOI: 10.1038/s42003-025-07866-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 03/01/2025] [Indexed: 03/25/2025] Open
Abstract
In this study, we developed an open-transmit and 24-channel flexible receiver head coil assembly tailored for high-resolution ultrahigh-field functional magnetic resonance imaging (fMRI) of the human somatosensory and motor cortex. Leveraging the increased signal-to-noise ratio (SNR) and spatial resolution of ultrahigh field MRI, we address the technical challenges inherent in fMRI coil design. The open-birdcage transmit coil enhances patient comfort and enables visual task implementation, demonstrating superior performance in transmit efficiency and specific absorption rate distribution compared to conventional coils. Furthermore, the 24-channel flexible receiver head coil offers enhanced SNR and image quality, facilitating sub-millimeter vascular-space-occupancy imaging for precise functional mapping. These advancements provide valuable tools for unraveling the intricacies of somatosensory and motor cortex function. By enriching human brain functional studies, they contribute significantly to our understanding of the mechanisms underlying somatosensory and motor cortex function and may have valuable clinical applications in neurology and neuroscience research.
Collapse
Affiliation(s)
- Zidong Wei
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Zhilin Zhang
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiaoyan Chen
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Cuiting Wang
- Shanghai United Imaging Healthcare, Shanghai, China
| | - Shuyue Fu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haifeng Wang
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Xiaoliang Zhang
- Department of Biomedical Engineering, University at Buffalo,the State University of New York, Buffalo, NY, USA
| | - Xin Liu
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Hairong Zheng
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China
| | - Jinglong Wu
- Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Ye Li
- Lauterbur Imaging Research Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
- Key Laboratory for Magnetic Resonance and Multimodality Imaging of Guangdong Province, Shenzhen, China.
| |
Collapse
|
3
|
MacKinnon MJ, Song S, Chao THH, Hsu LM, Albert ST, Ma Y, Shnitko TA, Wang TWW, Nonneman RJ, Freeman CD, Ozarkar SS, Emir UE, Shen MD, Philpot BD, Hantman AW, Lee SH, Chang WT, Shih YYI. SORDINO for Silent, Sensitive, Specific, and Artifact-Resisting fMRI in awake behaving mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.10.642406. [PMID: 40161795 PMCID: PMC11952411 DOI: 10.1101/2025.03.10.642406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Blood-oxygenation-level-dependent (BOLD) functional magnetic resonance imaging (fMRI) has revolutionized our understanding of the brain activity landscape, bridging circuit neuroscience in animal models with noninvasive brain mapping in humans. This immensely utilized technique, however, faces challenges such as acoustic noise, electromagnetic interference, motion artifacts, magnetic-field inhomogeneity, and limitations in sensitivity and specificity. Here, we introduce Steady-state On-the-Ramp Detection of INduction-decay with Oversampling (SORDINO), a transformative fMRI technique that addresses these challenges by maintaining a constant total gradient amplitude while acquiring data during continuously changing gradient direction. When benchmarked against conventional fMRI on a 9.4T system, SORDINO is silent, sensitive, specific, and resistant to motion and susceptibility artifacts. SORDINO offers superior compatibility with multimodal experiments and carries novel contrast mechanisms distinct from BOLD. It also enables brain-wide activity and connectivity mapping in awake, behaving mice, overcoming stress- and motion-related confounds that are among the most challenging barriers in current animal fMRI studies.
Collapse
Affiliation(s)
- Martin J. MacKinnon
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sheng Song
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Hao Harry Chao
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott T. Albert
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuncong Ma
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tatiana A. Shnitko
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tzu-Wen Winnie Wang
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Randy J. Nonneman
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Corey D. Freeman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Siddhi S. Ozarkar
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Uzay E. Emir
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Mark D. Shen
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Benjamin D. Philpot
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Adam W. Hantman
- Neuroscience Center and Department of Cell Biology & Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sung-Ho Lee
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Wei-Tang Chang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yen-Yu Ian Shih
- Center for Animal MRI, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Neurology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
4
|
Harnett NG, Fleming LL, Clancy KJ, Ressler KJ, Rosso IM. Affective Visual Circuit Dysfunction in Trauma and Stress-Related Disorders. Biol Psychiatry 2025; 97:405-416. [PMID: 38996901 PMCID: PMC11717988 DOI: 10.1016/j.biopsych.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/12/2024] [Accepted: 07/03/2024] [Indexed: 07/14/2024]
Abstract
Posttraumatic stress disorder (PTSD) is widely recognized as involving disruption of core neurocircuitry that underlies processing, regulation, and response to threat. In particular, the prefrontal cortex-hippocampal-amygdala circuit is a major contributor to posttraumatic dysfunction. However, the functioning of core threat neurocircuitry is partially dependent on sensorial inputs, and previous research has demonstrated that dense, reciprocal connections exist between threat circuits and the ventral visual stream. Furthermore, emergent evidence suggests that trauma exposure and resultant PTSD symptoms are associated with altered structure and function of the ventral visual stream. In the current review, we discuss evidence that both threat and visual circuitry together are an integral part of PTSD pathogenesis. An overview of the relevance of visual processing to PTSD is discussed in the context of both basic and translational research, highlighting the impact of stress on affective visual circuitry. This review further synthesizes emergent literature to suggest potential timing-dependent effects of traumatic stress on threat and visual circuits that may contribute to PTSD development. We conclude with recommendations for future research to move the field toward a more complete understanding of PTSD neurobiology.
Collapse
Affiliation(s)
- Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts.
| | - Leland L Fleming
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kevin J Clancy
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Isabelle M Rosso
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Hu Z, Berman AJL, Dong Z, Grissom WA, Reese TG, Wald LL, Wang F, Polimeni JR. Reduced physiology-induced temporal instability achieved with variable-flip-angle fast low-angle excitation echo-planar technique with multishot echo planar time-resolved imaging. Magn Reson Med 2025; 93:597-614. [PMID: 39323238 DOI: 10.1002/mrm.30301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE Echo planar time-resolved imaging (EPTI) is a new imaging approach that addresses the limitations of EPI by providing high-resolution, distortion- and T2/T 2 * $$ {\mathrm{T}}_2^{\ast } $$ blurring-free imaging for functional MRI (fMRI). However, as in all multishot sequences, intershot phase variations induced by physiological processes can introduce temporal instabilities to the reconstructed time-series data. This study aims to reduce these instabilities in multishot EPTI. THEORY AND METHODS In conventional multishot EPTI, the time intervals between the shots comprising each slice can introduce intershot phase variations. Here, the fast low-angle excitation echo-planar technique (FLEET), in which all shots of each slice are acquired consecutively with minimal time delays, was combined with a variable flip angle (VFA) technique to improve intershot consistency and maximize signal. A recursive Shinnar-Le Roux RF pulse design algorithm was used to generate pulses for different shots to produce consistent slice profiles and signal intensities across shots. Blipped controlled aliasing in parallel imaging simultaneous multislice was also combined with the proposed VFA-FLEET EPTI to improve temporal resolution and increase spatial coverage. RESULTS The temporal stability of VFA-FLEET EPTI was compared with conventional EPTI at 7 T. The results demonstrated that VFA-FLEET can provide spatial-specific increase of temporal stability. We performed high-resolution task-fMRI experiments at 7 T using VFA-FLEET EPTI, and reliable BOLD responses to a visual stimulus were detected. CONCLUSION The intershot phase variations induced by physiological processes in multishot EPTI can manifest as specific spatial patterns of physiological noise enhancement and lead to reduced temporal stability. The VFA-FLEET technique can substantially reduce these physiology-induced instabilities in multishot EPTI acquisitions. The proposed method provides sufficient stability and sensitivity for high-resolution fMRI studies.
Collapse
Affiliation(s)
- Zhangxuan Hu
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
- University of Ottawa Institute of Mental Health Research, Ottawa, Ontario, Canada
| | - Zijing Dong
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Department of Biomedical Engineering, School of Medicine, Case School of Engineering, Cleveland, Ohio, USA
| | - Timothy G Reese
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Lawrence L Wald
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Fuyixue Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
- Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Chang WT, Lin W, Giovanello KS. Enabling brain-wide mapping of layer-specific functional connectivity at 3T via layer-dependent fMRI with draining-vein suppression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.24.563835. [PMID: 37961360 PMCID: PMC10634801 DOI: 10.1101/2023.10.24.563835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Layer-dependent functional magnetic resonance imaging (fMRI) is a promising yet challenging approach for investigating layer-specific functional connectivity (FC). Achieving a brain-wide mapping of layer-specific FC requires several technical advancements, including sub-millimeter spatial resolution, sufficient temporal resolution, functional sensitivity, global brain coverage, and high spatial specificity. Although gradient echo (GE)-based echo planar imaging (EPI) is commonly used for rapid fMRI acquisition, it faces significant challenges due to the draining-vein contamination. In this study, we addressed these limitations by integrating velocity-nulling (VN) gradients into a GE-BOLD fMRI sequence to suppress vascular signals from the vessels with fast-flowing velocity. The extravascular contamination from pial veins was mitigated using a GE-EPI sequence at 3T rather than 7T, combined with phase regression methods. Additionally, we incorporated advanced techniques, including simultaneous multislice (SMS) acceleration and NOise Reduction with DIstribution Corrected principal component analysis (NORDIC PCA) denoising, to improve temporal resolution, spatial coverage, and signal sensitivity. This resulted in a VN fMRI sequence with 0.9-mm isotropic spatial resolution, a repetition time (TR) of 4 seconds, and brain-wide coverage. The VN gradient strength was determined based on results from a button-pressing task. Using resting-state data, we validated layer-specific FC through seed-based analyses, identifying distinct connectivity patterns in the superficial and deep layers of the primary motor cortex (M1), with significant inter-layer differences. Further analyses with a seed in the primary sensory cortex (S1) demonstrated the reliability of the method. Brain-wide layer-dependent FC analyses yielded results consistent with prior literature, reinforcing the efficacy of VN fMRI in resolving layer-specific functional connectivity. Given the widespread availability of 3T scanners, this technical advancement has the potential for significant impact across multiple domains of neuroscience research.
Collapse
Affiliation(s)
- Wei-Tang Chang
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, NC, USA
| | - Weili Lin
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
- Department of Radiology, University of North Carolina at Chapel Hill, NC, USA
| | - Kelly S. Giovanello
- Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, NC, USA
- Department of Psychology & Neuroscience, University of North Carolina at Chapel Hill, NC, USA
| |
Collapse
|
7
|
Degutis JK, Chaimow D, Haenelt D, Assem M, Duncan J, Haynes JD, Weiskopf N, Lorenz R. Dynamic layer-specific processing in the prefrontal cortex during working memory. Commun Biol 2024; 7:1140. [PMID: 39277694 PMCID: PMC11401931 DOI: 10.1038/s42003-024-06780-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 08/26/2024] [Indexed: 09/17/2024] Open
Abstract
The dorsolateral prefrontal cortex (dlPFC) is reliably engaged in working memory (WM) and comprises different cytoarchitectonic layers, yet their functional role in human WM is unclear. Here, participants completed a delayed-match-to-sample task while undergoing functional magnetic resonance imaging (fMRI) at ultra-high resolution. We examine layer-specific activity to manipulations in WM load and motor response. Superficial layers exhibit a preferential response to WM load during the delay and retrieval periods of a WM task, indicating a lamina-specific activation of the frontoparietal network. Multivariate patterns encoding WM load in the superficial layer dynamically change across the three periods of the task. Last, superficial and deep layers are non-differentially involved in the motor response, challenging earlier findings of a preferential deep layer activation. Taken together, our results provide new insights into the functional laminar circuitry of the dlPFC during WM and support a dynamic account of dlPFC coding.
Collapse
Affiliation(s)
- Jonas Karolis Degutis
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Max Planck School of Cognition, Leipzig, Germany.
| | - Denis Chaimow
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Daniel Haenelt
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Moataz Assem
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - John Duncan
- MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, Cambridgeshire, UK
| | - John-Dylan Haynes
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin and Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin Berlin, corporate member of the Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Research Training Group "Extrospection" and Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Research Cluster of Excellence "Science of Intelligence", Technische Universität Berlin, Berlin, Germany
- Collaborative Research Center "Volition and Cognitive Control", Technische Universität Dresden, Dresden, Germany
| | - Nikolaus Weiskopf
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Felix Bloch Institute for Solid State Physics, Faculty of Physics and Earth Sciences, Leipzig University, Leipzig, Germany
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London, London, UK
| | - Romy Lorenz
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany.
| |
Collapse
|
8
|
Ceja IFT, Gladytz T, Starke L, Tabelow K, Niendorf T, Reimann HM. Precision fMRI and cluster-failure in the individual brain. Hum Brain Mapp 2024; 45:e26813. [PMID: 39185695 PMCID: PMC11345700 DOI: 10.1002/hbm.26813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/06/2024] [Accepted: 07/20/2024] [Indexed: 08/27/2024] Open
Abstract
Advances in neuroimaging acquisition protocols and denoising techniques, along with increasing magnetic field strengths, have dramatically improved the temporal signal-to-noise ratio (tSNR) in functional magnetic resonance imaging (fMRI). This permits spatial resolution with submillimeter voxel sizes and ultrahigh temporal resolution and opens a route toward performing precision fMRI in the brains of individuals. Yet ultrahigh spatial and temporal resolution comes at a cost: it reduces tSNR and, therefore, the sensitivity to the blood oxygen level-dependent (BOLD) effect and other functional contrasts across the brain. Here we investigate the potential of various smoothing filters to improve BOLD sensitivity while preserving the spatial accuracy of activated clusters in single-subject analysis. We introduce adaptive-weight smoothing with optimized metrics (AWSOM), which addresses this challenge extremely well. AWSOM employs a local inference approach that is as sensitive as cluster-corrected inference of data smoothed with large Gaussian kernels, but it preserves spatial details across multiple tSNR levels. This is essential for examining whole-brain fMRI data because tSNR varies across the entire brain, depending on the distance of a brain region from the receiver coil, the type of setup, acquisition protocol, preprocessing, and resolution. We found that cluster correction in single subjects results in inflated family-wise error and false positive rates. AWSOM effectively suppresses false positives while remaining sensitive even to small clusters of activated voxels. Furthermore, it preserves signal integrity, that is, the relative activation strength of significant voxels, making it a valuable asset for a wide range of fMRI applications. Here we demonstrate these features and make AWSOM freely available to the research community for download.
Collapse
Affiliation(s)
- Igor Fabian Tellez Ceja
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
- Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Gladytz
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| | - Ludger Starke
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| | - Karsten Tabelow
- Weierstrass Institute for Applied Analysis and StochasticsBerlinGermany
| | - Thoralf Niendorf
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
- Experimental and Clinical Research Center (ECRC), A Joint Cooperation between the Charité Medical Faculty and the Max‐Delbrück Center for Molecular Medicine in the Helmholtz AssociationBerlinGermany
| | - Henning Matthias Reimann
- Max‐Delbrück‐Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Ultrahigh Field Facility (B.U.F.F.)BerlinGermany
| |
Collapse
|
9
|
Chen X, Wu W, Chiew M. Motion compensated structured low-rank reconstruction for 3D multi-shot EPI. Magn Reson Med 2024; 91:2443-2458. [PMID: 38361309 DOI: 10.1002/mrm.30019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/08/2023] [Accepted: 01/05/2024] [Indexed: 02/17/2024]
Abstract
PURPOSE The 3D multi-shot EPI imaging offers several benefits including higher SNR and high isotropic resolution compared to 2D single shot EPI. However, it suffers from shot-to-shot inconsistencies arising from physiologically induced phase variations and bulk motion. This work proposed a motion compensated structured low-rank (mcSLR) reconstruction method to address both issues for 3D multi-shot EPI. METHODS Structured low-rank reconstruction has been successfully used in previous work to deal with inter-shot phase variations for 3D multi-shot EPI imaging. It circumvents the estimation of phase variations by reconstructing an individual image for each phase state which are then sum-of-squares combined, exploiting their linear interdependency encoded in structured low-rank constraints. However, structured low-rank constraints become less effective in the presence of inter-shot motion, which corrupts image magnitude consistency and invalidates the linear relationship between shots. Thus, this work jointly models inter-shot phase variations and motion corruptions by incorporating rigid motion compensation for structured low-rank reconstruction, where motion estimates are obtained in a fully data-driven way without relying on external hardware or imaging navigators. RESULTS Simulation and in vivo experiments at 7T have demonstrated that the mcSLR method can effectively reduce image artifacts and improve the robustness of 3D multi-shot EPI, outperforming existing methods which only address inter-shot phase variations or motion, but not both. CONCLUSION The proposed mcSLR reconstruction compensates for rigid motion, and thus improves the validity of structured low-rank constraints, resulting in improved robustness of 3D multi-shot EPI to both inter-shot motion and phase variations.
Collapse
Affiliation(s)
- Xi Chen
- Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, UK
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Feinberg DA, Beckett AJS, Vu AT, Stockmann J, Huber L, Ma S, Ahn S, Setsompop K, Cao X, Park S, Liu C, Wald LL, Polimeni JR, Mareyam A, Gruber B, Stirnberg R, Liao C, Yacoub E, Davids M, Bell P, Rummert E, Koehler M, Potthast A, Gonzalez-Insua I, Stocker S, Gunamony S, Dietz P. Next-generation MRI scanner designed for ultra-high-resolution human brain imaging at 7 Tesla. Nat Methods 2023; 20:2048-2057. [PMID: 38012321 PMCID: PMC10703687 DOI: 10.1038/s41592-023-02068-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 10/09/2023] [Indexed: 11/29/2023]
Abstract
To increase granularity in human neuroimaging science, we designed and built a next-generation 7 Tesla magnetic resonance imaging scanner to reach ultra-high resolution by implementing several advances in hardware. To improve spatial encoding and increase the image signal-to-noise ratio, we developed a head-only asymmetric gradient coil (200 mT m-1, 900 T m-1s-1) with an additional third layer of windings. We integrated a 128-channel receiver system with 64- and 96-channel receiver coil arrays to boost signal in the cerebral cortex while reducing g-factor noise to enable higher accelerations. A 16-channel transmit system reduced power deposition and improved image uniformity. The scanner routinely performs functional imaging studies at 0.35-0.45 mm isotropic spatial resolution to reveal cortical layer functional activity, achieves high angular resolution in diffusion imaging and reduces acquisition time for both functional and structural imaging.
Collapse
Affiliation(s)
- David A Feinberg
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA.
- Advanced MRI Technologies, Sebastopol, CA, USA.
| | - Alexander J S Beckett
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Advanced MRI Technologies, Sebastopol, CA, USA
| | - An T Vu
- Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, CA, USA
- San Francisco Veteran Affairs Health Care System, San Francisco, CA, USA
| | - Jason Stockmann
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | | | | | - Kawin Setsompop
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Suhyung Park
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Department of Computer Engineering, Chonnam National University, Gwangju, Republic of Korea
- Department of ICT Convergence System Engineering, Chonnam National University, Gwangju, Republic of Korea
| | - Chunlei Liu
- Erwin Hahn 7T MRI Laboratory, Henry H. Wheeler Brain Imaging Center, Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Lawrence L Wald
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Jonathan R Polimeni
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Azma Mareyam
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
| | - Bernhard Gruber
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- BARNLabs, Muenzkirchen, Austria
| | | | - Congyu Liao
- Radiological Sciences Laboratory, Stanford University, Stanford, CA, USA
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, USA
| | - Mathias Davids
- A. A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard-MIT Health Sciences and Technology, MIT, Cambridge, MA, USA
- Computer Assisted Clinical Medicine, Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Paul Bell
- Siemens Medical Solutions, Malvern, PA, USA
| | | | | | | | | | | | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, UK
- MR CoilTech Limited, Glasgow, UK
| | | |
Collapse
|
11
|
Báez-Yáñez MG, Siero JCW, Petridou N. A mechanistic computational framework to investigate the hemodynamic fingerprint of the blood oxygenation level-dependent signal. NMR IN BIOMEDICINE 2023; 36:e5026. [PMID: 37643645 DOI: 10.1002/nbm.5026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/18/2023] [Accepted: 07/28/2023] [Indexed: 08/31/2023]
Abstract
Blood oxygenation level-dependent (BOLD) functional magnetic resonance imaging (fMRI) is one of the most used imaging techniques to map brain activity or to obtain clinical information about human cortical vasculature, in both healthy and disease conditions. Nevertheless, BOLD fMRI is an indirect measurement of brain functioning triggered by neurovascular coupling. The origin of the BOLD signal is quite complex, and the signal formation thus depends, among other factors, on the topology of the cortical vasculature and the associated hemodynamic changes. To understand the hemodynamic evolution of the BOLD signal response in humans, it is beneficial to have a computational framework available that virtually resembles the human cortical vasculature, and simulates hemodynamic changes and corresponding MRI signal changes via interactions of intrinsic biophysical and magnetic properties of the tissues. To this end, we have developed a mechanistic computational framework that simulates the hemodynamic fingerprint of the BOLD signal based on a statistically defined, three-dimensional, vascular model that approaches the human cortical vascular architecture. The microvasculature is approximated through a Voronoi tessellation method and the macrovasculature is adapted from two-photon microscopy mice data. Using this computational framework, we simulated hemodynamic changes-cerebral blood flow, cerebral blood volume, and blood oxygen saturation-induced by virtual arterial dilation. Then we computed local magnetic field disturbances generated by the vascular topology and the corresponding blood oxygen saturation changes. This mechanistic computational framework also considers the intrinsic biophysical and magnetic properties of nearby tissue, such as water diffusion and relaxation properties, resulting in a dynamic BOLD signal response. The proposed mechanistic computational framework provides an integrated biophysical model that can offer better insights regarding the spatial and temporal properties of the BOLD signal changes.
Collapse
Affiliation(s)
- Mario Gilberto Báez-Yáñez
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeroen C W Siero
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Spinoza Centre for Neuroimaging Amsterdam, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Natalia Petridou
- Department of Radiology, Centre for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
12
|
Dresbach S, Huber LR, Gulban OF, Goebel R. Layer-fMRI VASO with short stimuli and event-related designs at 7 T. Neuroimage 2023; 279:120293. [PMID: 37562717 DOI: 10.1016/j.neuroimage.2023.120293] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 08/12/2023] Open
Abstract
Layers and columns are the dominant processing units in the human (neo)cortex at the mesoscopic scale. While the blood oxygenation dependent (BOLD) signal has a high detection sensitivity, it is biased towards unwanted signals from large draining veins at the cortical surface. The additional fMRI contrast of vascular space occupancy (VASO) has the potential to augment the neuroscientific interpretability of layer-fMRI results by means of capturing complementary information of locally specific changes in cerebral blood volume (CBV). Specifically, VASO is not subject to unwanted sensitivity amplifications of large draining veins. Because of constrained sampling efficiency, it has been mainly applied in combination with efficient block task designs and long trial durations. However, to study cognitive processes in neuroscientific contexts, or probe vascular reactivity, short stimulation periods are often necessary. Here, we developed a VASO acquisition procedure with a short acquisition period and sub-millimeter resolution. During visual event-related stimulation, we show reliable responses in visual cortices within a reasonable number of trials (∼20). Furthermore, the short TR and high spatial specificity of our VASO implementation enabled us to show differences in laminar reactivity and onset times. Finally, we explore the generalizability to a different stimulus modality (somatosensation). With this, we showed that CBV-sensitive VASO provides the means to capture layer-specific haemodynamic responses with high spatio-temporal resolution and is able to be used with event-related paradigms.
Collapse
Affiliation(s)
- Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands.
| | - Laurentius Renzo Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; National Institute of Health, Bethesda, DC, USA
| | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands; Brain Innovation, Maastricht, Netherlands
| |
Collapse
|
13
|
Koiso K, Müller AK, Akamatsu K, Dresbach S, Wiggins CJ, Gulban OF, Goebel R, Miyawaki Y, Poser BA, Huber L. Acquisition and processing methods of whole-brain layer-fMRI VASO and BOLD: The Kenshu dataset. APERTURE NEURO 2023; 3:10.52294/001c.87961. [PMID: 40206493 PMCID: PMC11981596 DOI: 10.52294/001c.87961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Cortical depth-dependent functional magnetic resonance image (fMRI), also known as layer-fMRI, has the potential to capture directional neural information flow of brain computations within and across large-scale cortical brain networks. E.g., layer-fMRI can differentiate feedforward and feedback cortical input in hierarchically organized brain networks. Recent advancements in 3D-EPI sampling approaches and MR contrast generation strategies have allowed proof-of-principle studies showing that layer-fMRI can provide sufficient data quality for capturing laminar changes in functional connectivity. These studies have however not shown how reliable the signal is and how repeatable the respective results are. It is especially unclear whether whole-brain layer-fMRI functional connectivity protocols are widely applicable across common neuroscience-driven analysis approaches. Moreover, there are no established preprocessing fMRI methods that are optimized to work for whole-brain layer-fMRI datasets. In this work, we aimed to serve the field of layer-fMRI and build tools for future routine whole-brain layer-fMRI in application-based neuroscience research. We have developed publicly available sequences, acquisition protocols, and processing pipelines for whole-brain layer-fMRI. These protocols are validated across 60 hours of scanning in nine participants. Specifically, we identified and exploited methodological advancements for maximizing tSNR efficiency and test-retest reliability. We are sharing an extensive multi-modal whole-brain layer-fMRI dataset (20 scan hours of movie-watching in a single participant) for the purpose of benchmarking future method developments: The Kenshu dataset. With this dataset, we are also exemplifying the usefulness of whole brain layer-fMRI for commonly applied analysis approaches in modern cognitive neuroscience fMRI studies. This includes connectivity analyses, representational similarity matrix estimations, general linear model analyses, principal component analysis clustering, etc. We believe that this work paves the road for future routine measurements of directional functional connectivity across the entire brain.
Collapse
Affiliation(s)
- Kenshu Koiso
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Anna K Müller
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | - Kazuaki Akamatsu
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Sebastian Dresbach
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | | | - Omer Faruk Gulban
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Brain Innovation, Maastricht, NL
| | - Rainer Goebel
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
- Brain Innovation, Maastricht, NL
| | - Yoichi Miyawaki
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Tokyo, Japan
- Center for Neuroscience and Biomedical Engineering, The University of Electro-Communications, Tokyo, Japan
| | - Benedikt A Poser
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| | - Laurentius Huber
- Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, NL
| |
Collapse
|
14
|
Poplawsky AJ, Cover C, Reddy S, Chishti HB, Vazquez A, Fukuda M. Odor-evoked layer-specific fMRI activities in the awake mouse olfactory bulb. Neuroimage 2023; 274:120121. [PMID: 37080347 PMCID: PMC10240534 DOI: 10.1016/j.neuroimage.2023.120121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 03/22/2023] [Accepted: 04/17/2023] [Indexed: 04/22/2023] Open
Abstract
Awake rodent fMRI is increasingly common over the use of anesthesia since it permits behavioral paradigms and does not confound normal brain function or neurovascular coupling. It is well established that adequate acclimation to the loud fMRI environment and head fixation reduces stress in the rodents and allows for whole brain imaging with little contamination from motion. However, it is unknown whether high-resolution fMRI with increased susceptibility to motion and lower sensitivity can measure small, but spatially discrete, activations in awake mice. To examine this, we used contrast-enhanced cerebral blood volume-weighted (CBVw) fMRI in the mouse olfactory bulb for its enhanced sensitivity and neural specificity. We determined that activation patterns in the glomerular layer to four different odors were spatially distinct and were consistent with previously established histological patterns. In addition, odor-evoked laminar activations were greatest in superficial layers that decreased with laminar depth, similar to previous observations. Interestingly, the fMRI response strengths in the granule cell layer were greater in awake mice than our previous anesthetized rat studies, suggesting that feedback neural activities were intact with wakefulness. We finally determined that fMRI signal changes to repeated odor exposure (i.e., olfactory adaptation) attenuated relatively more in the feedback granule cell layer compared to the input glomerular layer, which is consistent with prior observations. We, therefore, conclude that high-resolution CBVw fMRI can measure odor-specific activation patterns and distinguish changes in laminar activity of head and body restrained awake mice.
Collapse
Affiliation(s)
- Alexander John Poplawsky
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States.
| | - Christopher Cover
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Sujatha Reddy
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| | - Harris B Chishti
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alberto Vazquez
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Mitsuhiro Fukuda
- Department of Radiology, University of Pittsburgh, McGowan Institute for Regenerative Medicine Building, 3025 E. Carson St., rm. 159, Pittsburgh, PA, 15203, United States
| |
Collapse
|
15
|
Pizzuti A, Huber L(R, Gulban OF, Benitez-Andonegui A, Peters J, Goebel R. Imaging the columnar functional organization of human area MT+ to axis-of-motion stimuli using VASO at 7 Tesla. Cereb Cortex 2023; 33:8693-8711. [PMID: 37254796 PMCID: PMC10321107 DOI: 10.1093/cercor/bhad151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/15/2023] [Accepted: 04/16/2023] [Indexed: 06/01/2023] Open
Abstract
Cortical columns of direction-selective neurons in the motion sensitive area (MT) have been successfully established as a microscopic feature of the neocortex in animals. The same property has been investigated at mesoscale (<1 mm) in the homologous brain area (hMT+, V5) in living humans by using ultra-high field functional magnetic resonance imaging (fMRI). Despite the reproducibility of the selective response to axis-of-motion stimuli, clear quantitative evidence for the columnar organization of hMT+ is still lacking. Using cerebral blood volume (CBV)-sensitive fMRI at 7 Tesla with submillimeter resolution and high spatial specificity to microvasculature, we investigate the columnar functional organization of hMT+ in 5 participants perceiving axis-of-motion stimuli for both blood oxygenation level dependent (BOLD) and vascular space occupancy (VASO) contrast mechanisms provided by the used slice-selective slab-inversion (SS-SI)-VASO sequence. With the development of a new searchlight algorithm for column detection, we provide the first quantitative columnarity map that characterizes the entire 3D hMT+ volume. Using voxel-wise measures of sensitivity and specificity, we demonstrate the advantage of using CBV-sensitive fMRI to detect mesoscopic cortical features by revealing higher specificity of axis-of-motion cortical columns for VASO as compared to BOLD contrast. These voxel-wise metrics also provide further insights on how to mitigate the highly debated draining veins effect. We conclude that using CBV-VASO fMRI together with voxel-wise measurements of sensitivity, specificity and columnarity offers a promising avenue to quantify the mesoscopic organization of hMT+ with respect to axis-of-motion stimuli. Furthermore, our approach and methodological developments are generalizable and applicable to other human brain areas where similar mesoscopic research questions are addressed.
Collapse
Affiliation(s)
- Alessandra Pizzuti
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
- Brain Innovation, Maastricht, The Netherlands
| | - Laurentius (Renzo) Huber
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
- Brain Innovation, Maastricht, The Netherlands
| | | | - Judith Peters
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, The Netherlands
- Brain Innovation, Maastricht, The Netherlands
| |
Collapse
|
16
|
Kwon D. Brain imaging: fMRI advances make scans sharper and faster. Nature 2023; 617:640-642. [PMID: 37188760 DOI: 10.1038/d41586-023-01616-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
|
17
|
Zhang K, Chen L, Li Y, Paez AG, Miao X, Cao D, Gu C, Pekar JJ, van Zijl PCM, Hua J, Bakker A. Differential Laminar Activation Dissociates Encoding and Retrieval in the Human Medial and Lateral Entorhinal Cortex. J Neurosci 2023; 43:2874-2884. [PMID: 36948584 PMCID: PMC10124959 DOI: 10.1523/jneurosci.1488-22.2023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 02/28/2023] [Accepted: 03/12/2023] [Indexed: 03/24/2023] Open
Abstract
The hierarchically organized structures of the medial temporal lobe are critically important for episodic memory function. Accumulating evidence suggests dissociable information processing pathways are maintained throughout these structures including in the medial and lateral entorhinal cortex. Cortical layers provide an additional dimension of dissociation as the primary input to the hippocampus derives from layer 2 neurons in the entorhinal cortex, whereas the deeper layers primarily receive output from the hippocampus. Here, novel high-resolution T2-prepared functional MRI methods were successfully used to mitigate susceptibility artifacts typically affecting MRI signals in this region providing uniform sensitivity across the medial and lateral entorhinal cortex. During the performance of a memory task, healthy human subjects (age 25-33 years, mean age 28.2 ± 3.3 years, 4 female) showed differential functional activation in the superficial and deep layers of the entorhinal cortex associated with task-related encoding and retrieval conditions, respectively. The methods provided here offer an approach to probe layer-specific activation in normal cognition and conditions contributing to memory impairment.SIGNIFICANCE STATEMENT This study provides new evidence for differential neuronal activation in the superficial versus deep layers of the entorhinal cortex associated with encoding and retrieval memory processes, respectively, in cognitively normal adults. The study further shows that this dissociation can be observed in both the medial and the lateral entorhinal cortex. The study was achieved by using a novel functional MRI method allowing us to measure robust functional MRI signals in both the medial and lateral entorhinal cortex that was not possible in previous studies. The methodology established here in healthy human subjects lays a solid foundation for subsequent studies investigating layer-specific and region-specific changes in the entorhinal cortex associated with memory impairment in various conditions such as Alzheimer's disease.
Collapse
Affiliation(s)
- Kaihua Zhang
- School of Psychology, Shandong Normal University, Jinan 250014, China
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Liuyi Chen
- Departments of Psychiatry and Behavioral Sciences
| | - Yinghao Li
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Adrian G Paez
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Xinyuan Miao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Di Cao
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - Chunming Gu
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
- Biomedical Engineering
| | - James J Pekar
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Peter C M van Zijl
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Jun Hua
- F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland 21205
- Neurosection, Division of MRI Research, Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287
| | - Arnold Bakker
- Departments of Psychiatry and Behavioral Sciences
- Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
18
|
Bates S, Dumoulin SO, Folkers PJM, Formisano E, Goebel R, Haghnejad A, Helmich RC, Klomp D, van der Kolk AG, Li Y, Nederveen A, Norris DG, Petridou N, Roell S, Scheenen TWJ, Schoonheim MM, Voogt I, Webb A. A vision of 14 T MR for fundamental and clinical science. MAGMA (NEW YORK, N.Y.) 2023; 36:211-225. [PMID: 37036574 PMCID: PMC10088620 DOI: 10.1007/s10334-023-01081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.
Collapse
Affiliation(s)
- Steve Bates
- Tesla Engineering Ltd., Water Lane, Storrington, West Sussex, RH20 3EA, UK
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dennis Klomp
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yi Li
- Independent Researcher, Magdeburg, Germany
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging UNESCO World Cultural Heritage Zollverein, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- Department of Clinical Neurophysiology (CNPH), Faculty Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Natalia Petridou
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Roell
- Neoscan Solutions GmbH, Joseph-von-Fraunhofer-Str. 6, 39106, Magdeburg, Germany
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ingmar Voogt
- Wavetronica, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter MRI Centre, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
19
|
Knudsen L, Bailey CJ, Blicher JU, Yang Y, Zhang P, Lund TE. Improved sensitivity and microvascular weighting of 3T laminar fMRI with GE-BOLD using NORDIC and phase regression. Neuroimage 2023; 271:120011. [PMID: 36914107 DOI: 10.1016/j.neuroimage.2023.120011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 03/03/2023] [Accepted: 03/09/2023] [Indexed: 03/15/2023] Open
Abstract
INTRODUCTION Functional MRI with spatial resolution in the submillimeter domain enables measurements of activation across cortical layers in humans. This is valuable as different types of cortical computations, e.g., feedforward versus feedback related activity, take place in different cortical layers. Laminar fMRI studies have almost exclusively employed 7T scanners to overcome the reduced signal stability associated with small voxels. However, such systems are relatively rare and only a subset of those are clinically approved. In the present study, we examined if the feasibility of laminar fMRI at 3T could be improved by use of NORDIC denoising and phase regression. METHODS 5 healthy subjects were scanned on a Siemens MAGNETOM Prisma 3T scanner. To assess across-session reliability, each subject was scanned in 3-8 sessions on 3-4 consecutive days. A 3D gradient echo EPI (GE-EPI) sequence was used for BOLD acquisitions (voxel size 0.82 mm isotopic, TR = 2.2 s) using a block design finger tapping paradigm. NORDIC denoising was applied to the magnitude and phase time series to overcome limitations in temporal signal-to-noise ratio (tSNR) and the denoised phase time series were subsequently used to correct for large vein contamination through phase regression. RESULTS AND CONCLUSION NORDIC denoising resulted in tSNR values comparable to or higher than commonly observed at 7T. Layer-dependent activation profiles could thus be extracted robustly, within and across sessions, from regions of interest located in the hand knob of the primary motor cortex (M1). Phase regression led to substantially reduced superficial bias in obtained layer profiles, although residual macrovascular contribution remained. We believe the present results support an improved feasibility of laminar fMRI at 3T.
Collapse
Affiliation(s)
- Lasse Knudsen
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China.
| | - Christopher J Bailey
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China
| | - Jakob U Blicher
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark; Department of Neurology, Aalborg University Hospital, Aalborg, Denmark
| | - Yan Yang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Peng Zhang
- Sino-Danish Center for Education and Research (SDC), University of Chinese Academy of Sciences, 380 Huaibeizhuang, Huairou District, Beijing 101400, PR China; Institute of Biophysics, Chinese Academy of Sciences, Beijing, PR China
| | - Torben E Lund
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience (CFIN), Aarhus University, Universitetsbyen 3, Aarhus C 8000, Denmark
| |
Collapse
|
20
|
Chen X, Wu W, Chiew M. Improving robustness of 3D multi-shot EPI by structured low-rank reconstruction of segmented CAIPI sampling for fMRI at 7T. Neuroimage 2023; 267:119827. [PMID: 36572131 PMCID: PMC10933751 DOI: 10.1016/j.neuroimage.2022.119827] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Three-dimensional (3D) encoding methods are increasingly being explored as alternatives to two-dimensional (2D) multi-slice acquisitions in fMRI, particularly in cases where high isotropic resolution is needed. 3D multi-shot EPI acquisition, as the workhorse of 3D fMRI imaging, is susceptible to physiological fluctuations which can induce inter-shot phase variations, and thus reducing the achievable tSNR, negating some of the benefit of 3D encoding. This issue can be particularly problematic at ultra-high fields like 7T, which have more severe off-resonance effects. In this work, we aim to improve the temporal stability of 3D multi-shot EPI at 7T by improving its robustness to inter-shot phase variations. We presented a 3D segmented CAIPI sampling trajectory ("seg-CAIPI") and an improved reconstruction method based on Hankel structured low-rank matrix recovery. Simulation and in-vivo results demonstrate that the combination of the seg-CAIPI sampling scheme and the proposed structured low-rank reconstruction is a promising way to effectively reduce the unwanted temporal variance induced by inter-shot physiological fluctuations, and thus improve the robustness of 3D multi-shot EPI for fMRI.
Collapse
Affiliation(s)
- Xi Chen
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.
| | - Wenchuan Wu
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Mark Chiew
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Physical Sciences, Sunnybrook Research Institute, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| |
Collapse
|
21
|
Faes LK, De Martino F, Huber L(R. Cerebral blood volume sensitive layer-fMRI in the human auditory cortex at 7T: Challenges and capabilities. PLoS One 2023; 18:e0280855. [PMID: 36758009 PMCID: PMC9910709 DOI: 10.1371/journal.pone.0280855] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 01/09/2023] [Indexed: 02/10/2023] Open
Abstract
The development of ultra high field fMRI signal readout strategies and contrasts has led to the possibility of imaging the human brain in vivo and non-invasively at increasingly higher spatial resolutions of cortical layers and columns. One emergent layer-fMRI acquisition method with increasing popularity is the cerebral blood volume sensitive sequence named vascular space occupancy (VASO). This approach has been shown to be mostly sensitive to locally-specific changes of laminar microvasculature, without unwanted biases of trans-laminar draining veins. Until now, however, VASO has not been applied in the technically challenging cortical area of the auditory cortex. Here, we describe the main challenges we encountered when developing a VASO protocol for auditory neuroscientific applications and the solutions we have adopted. With the resulting protocol, we present preliminary results of laminar responses to sounds and as a proof of concept for future investigations, we map the topographic representation of frequency preference (tonotopy) in the auditory cortex.
Collapse
Affiliation(s)
- Lonike K. Faes
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- * E-mail:
| | - Federico De Martino
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Laurentius (Renzo) Huber
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
22
|
Oishi H, Takemura H, Amano K. Macromolecular tissue volume mapping of lateral geniculate nucleus subdivisions in living human brains. Neuroimage 2023; 265:119777. [PMID: 36462730 DOI: 10.1016/j.neuroimage.2022.119777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The lateral geniculate nucleus (LGN) is a key thalamic nucleus in the visual system, which has an important function in relaying retinal visual input to the visual cortex. The human LGN is composed mainly of magnocellular (M) and parvocellular (P) subdivisions, each of which has different stimulus selectivity in neural response properties. Previous studies have discussed the potential relationship between LGN subdivisions and visual disorders based on psychophysical data on specific types of visual stimuli. However, these relationships remain speculative because non-invasive measurements of these subdivisions are difficult due to the small size of the LGN. Here we propose a method to identify these subdivisions by combining two structural MR measures: high-resolution proton-density weighted images and macromolecular tissue volume (MTV) maps. We defined the M and P subdivisions based on MTV fraction data and tested the validity of the definition by (1) comparing the data with that from human histological studies, (2) comparing the data with functional magnetic resonance imaging measurements on stimulus selectivity, and (3) analyzing the test-retest reliability. The findings demonstrated that the spatial organization of the M and P subdivisions was consistent across subjects and in line with LGN subdivisions observed in human histological data. Moreover, the difference in stimulus selectivity between the subdivisions identified using MTV was consistent with previous physiology literature. The definition of the subdivisions based on MTV was shown to be robust over measurements taken on different days. These results suggest that MTV mapping is a promising approach for evaluating the tissue properties of LGN subdivisions in living humans. This method potentially will enable neuroscientific and clinical hypotheses about the human LGN subdivisions to be tested.
Collapse
Affiliation(s)
- Hiroki Oishi
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Department of Psychology, University of California, Berkeley, Berkeley, CA 94704, United States.
| | - Hiromasa Takemura
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Division of Sensory and Cognitive Brain Mapping, Department of System Neuroscience, National Institute for Physiological Sciences, Okazaki 444-8585, Japan; Department of Physiological Sciences, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama 240-0193, Japan.
| | - Kaoru Amano
- Center for Information and Neural Networks (CiNet), Advanced ICT Research Institute, National Institute of Information and Communications Technology, Suita 565-0871, Japan; Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan; Graduate School of Information Science and Technology, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
23
|
Pfaffenrot V, Koopmans PJ. Magnetization transfer weighted laminar fMRI with multi-echo FLASH. Neuroimage 2022; 264:119725. [PMID: 36328273 DOI: 10.1016/j.neuroimage.2022.119725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/13/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Laminar functional magnetic resonance imaging (fMRI) using the gradient echo (GRE) blood oxygenation level dependent (BOLD) contrast is prone to signal changes arising from large unspecific venous vessels. Alternatives based on changes of cerebral blood volume (CBV) become more popular since it is expected that this hemodynamic response is dominant in microvasculature. One approach to sensitize the signal toward changes in CBV, and to simultaneously reduce unwanted extravascular (EV) BOLD blurring, is to selectively reduce gray matter (GM) signal via magnetization transfer (MT). In this work, we use off-resonant MT-pulses with a 3D FLASH readout to perform MT-prepared (MT-prep) laminar fMRI of the primary visual cortex (V1) at multiple echo times at 7 T. With a GRE-BOLD contrast without additional MT-weighting as reference, we investigated the influence of the MT-preparation on the shape and the echo time dependency of laminar profiles. Through numerical simulations, we optimized the sequence parameters to increase the sensitivity toward signal changes induced by changes in arterial CBV and to delineate the contributions of different compartments to the signal. We show that at 7 T, GM signals can be reduced by 30 %. Our laminar fMRI responses exhibit an increased signal change in the parenchyma at very short TE compared to a BOLD-only reference as a result of reduced EV signal intensity. By varying echo times, we could show that MT-prep results in less sensitivity toward unwanted signal changes based on changes in T2*. We conclude that when accounting for nuclear overhauser enhancement effects in blood, off-resonant MT-prep combined with efficient short TE readouts can become a promising method to reduce unwanted EV venous contributions in GRE-BOLD and/or to allow scanning at much shorter echo times without incurring a sensitivity penalty in laminar fMRI.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany; Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, the Netherlands
| |
Collapse
|
24
|
Demirayak P, Deshpande G, Visscher K. Laminar functional magnetic resonance imaging in vision research. Front Neurosci 2022; 16:910443. [PMID: 36267240 PMCID: PMC9577024 DOI: 10.3389/fnins.2022.910443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
Magnetic resonance imaging (MRI) scanners at ultra-high magnetic fields have become available to use in humans, thus enabling researchers to investigate the human brain in detail. By increasing the spatial resolution, ultra-high field MR allows both structural and functional characterization of cortical layers. Techniques that can differentiate cortical layers, such as histological studies and electrode-based measurements have made critical contributions to the understanding of brain function, but these techniques are invasive and thus mainly available in animal models. There are likely to be differences in the organization of circuits between humans and even our closest evolutionary neighbors. Thus research on the human brain is essential. Ultra-high field MRI can observe differences between cortical layers, but is non-invasive and can be used in humans. Extensive previous literature has shown that neuronal connections between brain areas that transmit feedback and feedforward information terminate in different layers of the cortex. Layer-specific functional MRI (fMRI) allows the identification of layer-specific hemodynamic responses, distinguishing feedback and feedforward pathways. This capability has been particularly important for understanding visual processing, as it has allowed researchers to test hypotheses concerning feedback and feedforward information in visual cortical areas. In this review, we provide a general overview of successful ultra-high field MRI applications in vision research as examples of future research.
Collapse
Affiliation(s)
- Pinar Demirayak
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
- *Correspondence: Pinar Demirayak,
| | - Gopikrishna Deshpande
- Department of Electrical and Computer Engineering, AU MRI Research Center, Auburn University, Auburn, AL, United States
- Department of Psychological Sciences, Auburn University, Auburn, AL, United States
- Alabama Advanced Imaging Consortium, Birmingham, AL, United States
- Center for Neuroscience, Auburn University, Auburn, AL, United States
- School of Psychology, Capital Normal University, Beijing, China
- Key Laboratory of Learning and Cognition, Capital Normal University, Beijing, China
- Department of Psychiatry, National Institute of Mental Health and Neurosciences, Bangalore, India
- Centre for Brain Research, Indian Institute of Science, Bangalore, India
| | - Kristina Visscher
- Civitan International Research Center, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurobiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
25
|
Akbari A, Bollmann S, Ali TS, Barth M. Modelling the depth-dependent VASO and BOLD responses in human primary visual cortex. Hum Brain Mapp 2022; 44:710-726. [PMID: 36189837 PMCID: PMC9842911 DOI: 10.1002/hbm.26094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 01/25/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using a blood-oxygenation-level-dependent (BOLD) contrast is a common method for studying human brain function noninvasively. Gradient-echo (GRE) BOLD is highly sensitive to the blood oxygenation change in blood vessels; however, the spatial signal specificity can be degraded due to signal leakage from activated lower layers to superficial layers in depth-dependent (also called laminar or layer-specific) fMRI. Alternatively, physiological variables such as cerebral blood volume using the VAscular-Space-Occupancy (VASO) contrast have shown higher spatial specificity compared to BOLD. To better understand the physiological mechanisms such as blood volume and oxygenation changes and to interpret the measured depth-dependent responses, models are needed which reflect vascular properties at this scale. For this purpose, we extended and modified the "cortical vascular model" previously developed to predict layer-specific BOLD signal changes in human primary visual cortex to also predict a layer-specific VASO response. To evaluate the model, we compared the predictions with experimental results of simultaneous VASO and BOLD measurements in a group of healthy participants. Fitting the model to our experimental data provided an estimate of CBV change in different vascular compartments upon neural activity. We found that stimulus-evoked CBV change mainly occurs in small arterioles, capillaries, and intracortical arteries and that the contribution from venules and ICVs is smaller. Our results confirm that VASO is less susceptible to large vessel effects compared to BOLD, as blood volume changes in intracortical arteries did not substantially affect the resulting depth-dependent VASO profiles, whereas depth-dependent BOLD profiles showed a bias towards signal contributions from intracortical veins.
Collapse
Affiliation(s)
- Atena Akbari
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Saskia Bollmann
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Tonima S. Ali
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia
| | - Markus Barth
- Centre for Advanced ImagingUniversity of QueenslandBrisbaneAustralia,ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandBrisbaneAustralia,School of Information Technology and Electrical EngineeringThe University of QueenslandBrisbaneQueenslandAustralia
| |
Collapse
|
26
|
Miletić S, Keuken MC, Mulder M, Trampel R, de Hollander G, Forstmann BU. 7T functional MRI finds no evidence for distinct functional subregions in the subthalamic nucleus during a speeded decision-making task. Cortex 2022; 155:162-188. [DOI: 10.1016/j.cortex.2022.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 03/18/2022] [Accepted: 06/07/2022] [Indexed: 11/03/2022]
|
27
|
Nugent AC, Benitez Andonegui A, Holroyd T, Robinson SE. On-scalp magnetocorticography with optically pumped magnetometers: Simulated performance in resolving simultaneous sources. NEUROIMAGE. REPORTS 2022; 2:100093. [PMID: 35692456 PMCID: PMC9186482 DOI: 10.1016/j.ynirp.2022.100093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Currently, the gold standard for high-resolution mapping of cortical electrophysiological activity is invasive electrocorticography (ECoG), a procedure that carries with it the risk of serious morbidity and mortality. Due to these risks, the use of ECoG is largely limited to pre-surgical mapping in intractable epilepsy. Nevertheless, many seminal studies in neuroscience have utilized ECoG to explore domains such as visual perception, attention, auditory processing, and sensorimotor behavior. Studies such as these, occurring in patients with epilepsy rather than healthy controls, may lack generalizability, and are limited by the placement of the electrode arrays over the presumed seizure focus. This manuscript explores the use of optically pumped magnetometers (OPMs) to create a non-invasive alternative to ECoG, which we refer to as magnetocorticography. Because prior ECoG studies reveal that most cognitive processes are driven by multiple, simultaneous independent neuronal assemblies, we characterize the ability of a theoretical 56-channel dense OPM array to resolve simultaneous independent sources, and compare it to currently available SQUID devices, as well as OPM arrays with inter-sensor spacings more typical of other systems in development. Our evaluation of this theoretical system assesses many potential sources of error, including errors of sensor calibration and position. In addition, we investigate the influence of geometrical and anatomical factors on array performance. Our simulations reveal the potential of high-density, on-scalp OPM MEG devices to localize electrophysiological brain responses at unprecedented resolution for a non-invasive device.
Collapse
|
28
|
Heo YJ, Baek HJ, Skare S, Lee HJ, Kim DH, Kim J, Yoon S. Automated Brain Volumetry in Patients With Memory Impairment: Comparison of Conventional and Ultrafast 3D T1-Weighted MRI Sequences Using Two Software Packages. AJR Am J Roentgenol 2022; 218:1062-1073. [PMID: 34985311 DOI: 10.2214/ajr.21.27043] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
BACKGROUND. Isotropic 3D T1-weighted imaging has long acquisition times, potentially leading to motion artifact and altered brain volume measurements. Acquisition times may be greatly shortened using an isotropic ultrafast 3D echo-planar imaging (EPI) T1-weighted sequence. OBJECTIVE. The purpose of this article was to compare automated brain volume measurements between conventional 3D T1-weighted imaging and ultrafast 3D EPI T1-weighted imaging. METHODS. This retrospective study included 36 patients (25 women, 11 men; mean age, 68.4 years) with memory impairment who underwent 3-T brain MRI. Examinations included both conventional 3D T1-weighted imaging using inversion recovery gradient-recalled echo sequence (section thickness, 1.0 mm; acquisition time, 3 minutes 4 seconds) and, in patients exhibiting motion, an isotropic ultrafast 3D EPI T1-weighted sequence (section thickness, 1.2 mm; acquisition time, 30 seconds). The 36-patient sample excluded five patients in whom severe motion artifact rendered the conventional sequence of insufficient quality for volume measurements. Automated brain volumetry was performed using NeuroQuant (version 3.0, CorTechs Laboratories) and FreeSurfer (version 7.1.1, Harvard University) software. Volume measurements were compared between sequences for nine regions in each hemisphere. RESULTS. Volumes showed substantial to almost perfect agreement between the two sequences for most regions bilaterally. However, most regions showed significant mean differences between sequences, and Bland-Altman analyses showed consistent systematic biases and wide limits of agreement (LOA). For example, for the left hemisphere using NeuroQuant, volume was significantly greater for the ultrafast sequence in four regions and significantly greater for the conventional sequence in three regions, whereas standardized effect size between sequences was moderate for four regions and large for one region. Using NeuroQuant, mean bias (ultrafast minus conventional) and 95% LOA were greatest in cortical gray matter bilaterally (-50.61 cm3 [-56.27 cm3, -44.94 cm3] for the left hemisphere; -50.02 cm3 [-54.88 cm3, -45.16 cm3] for the right hemisphere). The variation between the two sequences was observed in subset analyses of 16 patients with and 20 patients without Alzheimer disease. CONCLUSION. Brain volume measurements show significant differences and systematic biases between the conventional and ultrafast sequences. CLINICAL IMPACT. In patients in whom severe motion artifact precludes use of the conventional sequence, the ultrafast sequence may be useful to enable brain volume-try. However, the current conventional 3D T1-weighted sequence remains preferred in patients who can tolerate the standard examination.
Collapse
Affiliation(s)
- Young Jin Heo
- Department of Radiology, Busan Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Hye Jin Baek
- Department of Radiology, Gyeongsang National University School of Medicine and Gyeongsang National University Changwon Hospital, 11 Samjeongja-ro, Seongsan-gu, Changwon 51472, Republic of Korea
- Department of Radiology, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Republic of Korea
| | - Stefan Skare
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Ho-Joon Lee
- Department of Radiology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Dong-Hyun Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Junho Kim
- Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea
| | - Seokho Yoon
- Department of Nuclear Medicine and Molecular Imaging, Gyeongsang National University School of Medicine and Gyeongsang National University, Changwon, Republic of Korea
| |
Collapse
|
29
|
Okada T, Fujimoto K, Fushimi Y, Akasaka T, Thuy DHD, Shima A, Sawamoto N, Oishi N, Zhang Z, Funaki T, Nakamoto Y, Murai T, Miyamoto S, Takahashi R, Isa T. Neuroimaging at 7 Tesla: a pictorial narrative review. Quant Imaging Med Surg 2022; 12:3406-3435. [PMID: 35655840 PMCID: PMC9131333 DOI: 10.21037/qims-21-969] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/05/2022] [Indexed: 01/26/2024]
Abstract
Neuroimaging using the 7-Tesla (7T) human magnetic resonance (MR) system is rapidly gaining popularity after being approved for clinical use in the European Union and the USA. This trend is the same for functional MR imaging (MRI). The primary advantages of 7T over lower magnetic fields are its higher signal-to-noise and contrast-to-noise ratios, which provide high-resolution acquisitions and better contrast, making it easier to detect lesions and structural changes in brain disorders. Another advantage is the capability to measure a greater number of neurochemicals by virtue of the increased spectral resolution. Many structural and functional studies using 7T have been conducted to visualize details in the white matter and layers of the cortex and hippocampus, the subnucleus or regions of the putamen, the globus pallidus, thalamus and substantia nigra, and in small structures, such as the subthalamic nucleus, habenula, perforating arteries, and the perivascular space, that are difficult to observe at lower magnetic field strengths. The target disorders for 7T neuroimaging range from tumoral diseases to vascular, neurodegenerative, and psychiatric disorders, including Alzheimer's disease, Parkinson's disease, multiple sclerosis, epilepsy, major depressive disorder, and schizophrenia. MR spectroscopy has also been used for research because of its increased chemical shift that separates overlapping peaks and resolves neurochemicals more effectively at 7T than a lower magnetic field. This paper presents a narrative review of these topics and an illustrative presentation of images obtained at 7T. We expect 7T neuroimaging to provide a new imaging biomarker of various brain disorders.
Collapse
Affiliation(s)
- Tomohisa Okada
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Koji Fujimoto
- Department of Real World Data Research and Development, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yasutaka Fushimi
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Thai Akasaka
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Dinh H. D. Thuy
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Atsushi Shima
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Nobukatsu Sawamoto
- Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Naoya Oishi
- Medial Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Zhilin Zhang
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Takeshi Funaki
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuji Nakamoto
- Department of Diagnostic Imaging and Nuclear Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Toshiya Murai
- Department of Psychiatry, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Susumu Miyamoto
- Department of Neurosurgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Ryosuke Takahashi
- Department of Neurology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tadashi Isa
- Human Brain Research Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
30
|
Cho S, Roy A, Liu CJ, Idiyatullin D, Zhu W, Zhang Y, Zhu XH, O'Herron P, Leikvoll A, Chen W, Kara P, Uğurbil K. Cortical layer-specific differences in stimulus selectivity revealed with high-field fMRI and single-vessel resolution optical imaging of the primary visual cortex. Neuroimage 2022; 251:118978. [PMID: 35143974 PMCID: PMC9048976 DOI: 10.1016/j.neuroimage.2022.118978] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 01/26/2022] [Accepted: 02/05/2022] [Indexed: 11/23/2022] Open
Abstract
The mammalian neocortex exhibits a stereotypical laminar organization, with feedforward inputs arriving primarily into layer 4, local computations shaping response selectivity in layers 2/3, and outputs to other brain areas emanating via layers 2/3, 5 and 6. It cannot be assumed a priori that these signatures of laminar differences in neuronal circuitry are reflected in hemodynamic signals that form the basis of functional magnetic resonance imaging (fMRI). Indeed, optical imaging of single-vessel functional responses has highlighted the potential limits of using vascular signals as surrogates for mapping the selectivity of neural responses. Therefore, before fMRI can be employed as an effective tool for studying critical aspects of laminar processing, validation with single-vessel resolution is needed. The primary visual cortex (V1) in cats, with its precise neuronal functional micro-architecture, offers an ideal model system to examine laminar differences in stimulus selectivity across imaging modalities. Here we used cerebral blood volume weighted (wCBV) fMRI to examine if layer-specific orientation-selective responses could be detected in cat V1. We found orientation preference maps organized tangential to the cortical surface that typically extended across depth in a columnar fashion. We then examined arterial dilation and blood velocity responses to identical visual stimuli by using two- and three- photon optical imaging at single-vessel resolution-which provides a measure of the hemodynamic signals with the highest spatial resolution. Both fMRI and optical imaging revealed a consistent laminar response pattern in which orientation selectivity in cortical layer 4 was significantly lower compared to layer 2/3. This systematic change in selectivity across cortical layers has a clear underpinning in neural circuitry, particularly when comparing layer 4 to other cortical layers.
Collapse
Affiliation(s)
- Shinho Cho
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Arani Roy
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Neuroscience, University of Minnesota, MN 55455, United States
| | - Chao J Liu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Neuroscience, University of Minnesota, MN 55455, United States
| | - Djaudat Idiyatullin
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Wei Zhu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Yi Zhang
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Xiao-Hong Zhu
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Phillip O'Herron
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, United States
| | - Austin Leikvoll
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Neuroscience, University of Minnesota, MN 55455, United States
| | - Wei Chen
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States
| | - Prakash Kara
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Neuroscience, University of Minnesota, MN 55455, United States; Department of Neuroscience, Medical University of South Carolina, Charleston, SC 29425, United States.
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, MN 55455, United States; Department of Radiology, University of Minnesota, MN 55455, United States.
| |
Collapse
|
31
|
Oliveira ÍAF, Cai Y, Hofstetter S, Siero JCW, van der Zwaag W, Dumoulin SO. Comparing BOLD and VASO-CBV population receptive field estimates in human visual cortex. Neuroimage 2021; 248:118868. [PMID: 34974115 DOI: 10.1016/j.neuroimage.2021.118868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/20/2021] [Accepted: 12/29/2021] [Indexed: 10/19/2022] Open
Abstract
Vascular Space Occupancy (VASO) is an alternative fMRI approach based on changes in Cerebral Blood Volume (CBV). VASO-CBV fMRI can provide higher spatial specificity than the blood oxygenation level-dependent (BOLD) method because the CBV response is thought to be limited to smaller vessels. To investigate how this technique compares to BOLD fMRI for cognitive neuroscience applications, we compared population receptive field (pRF) mapping estimates between BOLD and VASO-CBV. We hypothesized that VASO-CBV would elicit distinct pRF properties compared to BOLD. Specifically, since pRF size estimates also depend on vascular sources, we hypothesized that reduced vascular blurring might yield narrower pRFs for VASO-CBV measurements. We used a VASO sequence with a double readout 3D EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the visual cortex while participants viewed conventional pRF mapping stimuli. Both VASO-CBV and BOLD images show similar eccentricity and polar angle maps across all participants. Compared to BOLD-based measurements, VASO-CBV yielded lower tSNR and variance explained. The pRF size changed with eccentricity similarly for VASO-CBV and BOLD, and the pRF size estimates were similar for VASO-CBV and BOLD, even when we equate variance explained between VASO-CBV and BOLD. This result suggests that the vascular component of the pRF size is not dominating in either VASO-CBV or BOLD.
Collapse
Affiliation(s)
- Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland.
| | - Yuxuan Cai
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland
| | - Shir Hofstetter
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherland
| | | | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Meibergdreef 75, Amsterdam 1105 BK, the Netherland; Experimental and Applied Psychology, VU University, Amsterdam, the Netherland; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherland
| |
Collapse
|
32
|
Moerel M, Yacoub E, Gulban OF, Lage-Castellanos A, De Martino F. Using high spatial resolution fMRI to understand representation in the auditory network. Prog Neurobiol 2021; 207:101887. [PMID: 32745500 PMCID: PMC7854960 DOI: 10.1016/j.pneurobio.2020.101887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 05/27/2020] [Accepted: 07/15/2020] [Indexed: 12/23/2022]
Abstract
Following rapid methodological advances, ultra-high field (UHF) functional and anatomical magnetic resonance imaging (MRI) has been repeatedly and successfully used for the investigation of the human auditory system in recent years. Here, we review this work and argue that UHF MRI is uniquely suited to shed light on how sounds are represented throughout the network of auditory brain regions. That is, the provided gain in spatial resolution at UHF can be used to study the functional role of the small subcortical auditory processing stages and details of cortical processing. Further, by combining high spatial resolution with the versatility of MRI contrasts, UHF MRI has the potential to localize the primary auditory cortex in individual hemispheres. This is a prerequisite to study how sound representation in higher-level auditory cortex evolves from that in early (primary) auditory cortex. Finally, the access to independent signals across auditory cortical depths, as afforded by UHF, may reveal the computations that underlie the emergence of an abstract, categorical sound representation based on low-level acoustic feature processing. Efforts on these research topics are underway. Here we discuss promises as well as challenges that come with studying these research questions using UHF MRI, and provide a future outlook.
Collapse
Affiliation(s)
- Michelle Moerel
- Maastricht Centre for Systems Biology, Maastricht University, Maastricht, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands.
| | - Essa Yacoub
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| | - Omer Faruk Gulban
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA; Brain Innovation B.V., Maastricht, the Netherlands.
| | - Agustin Lage-Castellanos
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Department of NeuroInformatics, Cuban Center for Neuroscience, Cuba.
| | - Federico De Martino
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht, the Netherlands; Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, USA.
| |
Collapse
|
33
|
Advances in spiral fMRI: A high-resolution study with single-shot acquisition. Neuroimage 2021; 246:118738. [PMID: 34800666 DOI: 10.1016/j.neuroimage.2021.118738] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 10/23/2021] [Accepted: 11/15/2021] [Indexed: 01/15/2023] Open
Abstract
Spiral fMRI has been put forward as a viable alternative to rectilinear echo-planar imaging, in particular due to its enhanced average k-space speed and thus high acquisition efficiency. This renders spirals attractive for contemporary fMRI applications that require high spatiotemporal resolution, such as laminar or columnar fMRI. However, in practice, spiral fMRI is typically hampered by its reduced robustness and ensuing blurring artifacts, which arise from imperfections in both static and dynamic magnetic fields. Recently, these limitations have been overcome by the concerted application of an expanded signal model that accounts for such field imperfections, and its inversion by iterative image reconstruction. In the challenging ultra-high field environment of 7 Tesla, where field inhomogeneity effects are aggravated, both multi-shot and single-shot 2D spiral imaging at sub-millimeter resolution was demonstrated with high depiction quality and anatomical congruency. In this work, we further these advances towards a time series application of spiral readouts, namely, single-shot spiral BOLD fMRI at 0.8 mm in-plane resolution. We demonstrate that high-resolution spiral fMRI at 7 T is not only feasible, but delivers both excellent image quality, BOLD sensitivity, and spatial specificity of the activation maps, with little artifactual blurring. Furthermore, we show the versatility of the approach with a combined in/out spiral readout at a more typical resolution (1.5 mm), where the high acquisition efficiency allows to acquire two images per shot for improved sensitivity by echo combination.
Collapse
|
34
|
Zoraghi M, Scherf N, Jaeger C, Sack I, Hirsch S, Hetzer S, Weiskopf N. Simulating Local Deformations in the Human Cortex Due to Blood Flow-Induced Changes in Mechanical Tissue Properties: Impact on Functional Magnetic Resonance Imaging. Front Neurosci 2021; 15:722366. [PMID: 34621151 PMCID: PMC8490675 DOI: 10.3389/fnins.2021.722366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/23/2021] [Indexed: 01/06/2023] Open
Abstract
Investigating human brain tissue is challenging due to the complexity and the manifold interactions between structures across different scales. Increasing evidence suggests that brain function and microstructural features including biomechanical features are related. More importantly, the relationship between tissue mechanics and its influence on brain imaging results remains poorly understood. As an important example, the study of the brain tissue response to blood flow could have important theoretical and experimental consequences for functional magnetic resonance imaging (fMRI) at high spatial resolutions. Computational simulations, using realistic mechanical models can predict and characterize the brain tissue behavior and give us insights into the consequent potential biases or limitations of in vivo, high-resolution fMRI. In this manuscript, we used a two dimensional biomechanical simulation of an exemplary human gyrus to investigate the relationship between mechanical tissue properties and the respective changes induced by focal blood flow changes. The model is based on the changes in the brain’s stiffness and volume due to the vasodilation evoked by neural activity. Modeling an exemplary gyrus from a brain atlas we assessed the influence of different potential mechanisms: (i) a local increase in tissue stiffness (at the level of a single anatomical layer), (ii) an increase in local volume, and (iii) a combination of both effects. Our simulation results showed considerable tissue displacement because of these temporary changes in mechanical properties. We found that the local volume increase causes more deformation and consequently higher displacement of the gyrus. These displacements introduced considerable artifacts in our simulated fMRI measurements. Our results underline the necessity to consider and characterize the tissue displacement which could be responsible for fMRI artifacts.
Collapse
Affiliation(s)
- Mahsa Zoraghi
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Nico Scherf
- Methods and Development Group Neural Data Science and Statistical Computing, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Institute for Medical Informatics and Biometry, Carl Gustav Carus Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Carsten Jaeger
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Sebastian Hirsch
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Computational Neuroscience, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, Berlin, Germany.,Berlin Center for Computational Neuroscience, Berlin, Germany
| | - Nikolaus Weiskopf
- Department of Neurophysics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.,Faculty of Physics and Earth Sciences, Felix Bloch Institute for Solid State Physics, Leipzig University, Leipzig, Germany
| |
Collapse
|
35
|
|
36
|
Yang J, Huber L, Yu Y, Bandettini PA. Linking cortical circuit models to human cognition with laminar fMRI. Neurosci Biobehav Rev 2021; 128:467-478. [PMID: 34245758 DOI: 10.1016/j.neubiorev.2021.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 06/29/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
Laboratory animal research has provided significant knowledge into the function of cortical circuits at the laminar level, which has yet to be fully leveraged towards insights about human brain function on a similar spatiotemporal scale. The use of functional magnetic resonance imaging (fMRI) in conjunction with neural models provides new opportunities to gain important insights from current knowledge. During the last five years, human studies have demonstrated the value of high-resolution fMRI to study laminar-specific activity in the human brain. This is mostly performed at ultra-high-field strengths (≥ 7 T) and is known as laminar fMRI. Advancements in laminar fMRI are beginning to open new possibilities for studying questions in basic cognitive neuroscience. In this paper, we first review recent methodological advances in laminar fMRI and describe recent human laminar fMRI studies. Then, we discuss how the use of laminar fMRI can help bridge the gap between cortical circuit models and human cognition.
Collapse
Affiliation(s)
- Jiajia Yang
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA.
| | - Laurentius Huber
- MR-Methods Group, Faculty of Psychology and Neuroscience, University of Maastricht, Maastricht, the Netherlands
| | - Yinghua Yu
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, Japan; Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA
| | - Peter A Bandettini
- Section on Functional Imaging Methods, National Institute of Mental Health, Bethesda, MD, USA; Functional MRI Core Facility, National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Zimmerman B, Rypma B, Gratton G, Fabiani M. Age-related changes in cerebrovascular health and their effects on neural function and cognition: A comprehensive review. Psychophysiology 2021; 58:e13796. [PMID: 33728712 PMCID: PMC8244108 DOI: 10.1111/psyp.13796] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/11/2022]
Abstract
The process of aging includes changes in cellular biology that affect local interactions between cells and their environments and eventually propagate to systemic levels. In the brain, where neurons critically depend on an efficient and dynamic supply of oxygen and glucose, age-related changes in the complex interaction between the brain parenchyma and the cerebrovasculature have effects on health and functioning that negatively impact cognition and play a role in pathology. Thus, cerebrovascular health is considered one of the main mechanisms by which a healthy lifestyle, such as habitual cardiorespiratory exercise and a healthful diet, could lead to improved cognitive outcomes with aging. This review aims at detailing how the physiology of the cerebral vascular system changes with age and how these changes lead to differential trajectories of cognitive maintenance or decline. This provides a framework for generating specific mechanistic hypotheses about the efficacy of proposed interventions and lifestyle covariates that contribute to enhanced cognitive well-being. Finally, we discuss the methodological implications of age-related changes in the cerebral vasculature for human cognitive neuroscience research and propose directions for future experiments aimed at investigating age-related changes in the relationship between physiology and cognitive mechanisms.
Collapse
Affiliation(s)
- Benjamin Zimmerman
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bart Rypma
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Gabriele Gratton
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| | - Monica Fabiani
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Psychology, University of Illinois at Urbana-Champaign, Champaign, IL, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Champaign, IL, USA
| |
Collapse
|
38
|
Abstract
Functional magnetic resonance imaging (fMRI) has become one of the most powerful tools for investigating the human brain. Ultrahigh magnetic field (UHF) of 7 Tesla has played a critical role in enabling higher resolution and more accurate (relative to the neuronal activity) functional maps. However, even with these gains, the fMRI approach is challenged relative to the spatial scale over which brain function is organized. Therefore, going forward, significant advances in fMRI are still needed. Such advances will predominantly come from magnetic fields significantly higher than 7 Tesla, which is the most commonly used UHF platform today, and additional technologies that will include developments in pulse sequences, image reconstruction, noise suppression, and image analysis in order to further enhance and augment the gains than can be realized by going to higher magnetic fields.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, 2021 6 Street SE, Minneapolis, MN 55456
| |
Collapse
|
39
|
Versteeg E, van der Velden TA, van Leeuwen CC, Borgo M, Huijing ER, Hendriks AD, Hendrikse J, Klomp DWJ, Siero JCW. A plug-and-play, lightweight, single-axis gradient insert design for increasing spatiotemporal resolution in echo planar imaging-based brain imaging. NMR IN BIOMEDICINE 2021; 34:e4499. [PMID: 33619838 PMCID: PMC8244051 DOI: 10.1002/nbm.4499] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 05/25/2023]
Abstract
The goal of this study was to introduce and evaluate the performance of a lightweight, high-performance, single-axis (z-axis) gradient insert design primarily intended for high-resolution functional magnetic resonance imaging, and aimed at providing both ease of use and a boost in spatiotemporal resolution. The optimal winding positions of the coil were obtained using a genetic algorithm with a cost function that balanced gradient performance (minimum 0.30 mT/m/A) and field linearity (≥16 cm linear region). These parameters were verified using field distribution measurements by B0 -mapping. The correction of geometrical distortions was performed using theoretical field distribution of the coil. Simulations and measurements were performed to investigate the echo planar imaging echo-spacing reduction due to the improved gradient performance. The resulting coil featured a 16-cm linear region, a weight of 45 kg, an installation time of 15 min, and a maximum gradient strength and slew rate of 200 mT/m and 1300 T/m/s, respectively, when paired with a commercially available gradient amplifier (940 V/630 A). The field distribution measurements matched the theoretically expected field. By utilizing the theoretical field distribution, geometrical distortions were corrected to within 6% of the whole-body gradient reference image in the target region. Compared with a whole-body gradient set, a maximum reduction in echo-spacing of a factor of 2.3 was found, translating to a 344 μs echo-spacing, for a field of view of 192 mm, a receiver bandwidth of 920 kHz and a gradient amplitude of 112 mT/m. We present a lightweight, single-axis gradient insert design that can provide high gradient performance and an increase in spatiotemporal resolution with correctable geometrical distortions while also offering a short installation time of less than 15 min and minimal system modifications.
Collapse
Affiliation(s)
- Edwin Versteeg
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | - Erik R. Huijing
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Arjan D. Hendriks
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jeroen Hendrikse
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Dennis W. J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
| | - Jeroen C. W. Siero
- Department of RadiologyUniversity Medical Center UtrechtUtrechtthe Netherlands
- Spinoza Center for NeuroimagingAmsterdamthe Netherlands
| |
Collapse
|
40
|
Pfaffenrot V, Voelker MN, Kashyap S, Koopmans PJ. Laminar fMRI using T 2-prepared multi-echo FLASH. Neuroimage 2021; 236:118163. [PMID: 34023449 DOI: 10.1016/j.neuroimage.2021.118163] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/03/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (fMRI) using blood oxygenation level dependent (BOLD) contrast at a sub-millimeter scale is a promising technique to probe neural activity at the level of cortical layers. While gradient echo (GRE) BOLD sequences exhibit the highest sensitivity, their signal is confounded by unspecific extravascular (EV) and intravascular (IV) effects of large intracortical ascending veins and pial veins leading to a downstream blurring effect of local signal changes. In contrast, spin echo (SE) fMRI promises higher specificity towards signal changes near the microvascular compartment. However, the T2-weighted signal is typically sampled with a gradient echo readout imposing additional T2'-weighting. In this work, we used a T2-prepared (T2-prep) sequence with short GRE readouts to investigate its capability to acquire laminar fMRI data during a visual task in humans at 7 T. By varying the T2-prep echo time (TEprep) and acquiring multiple gradient echoes (TEGRE) per excitation, we studied the specificity of the sequence and the influence of possible confounding contributions to the shape of laminar fMRI profiles. By fitting and extrapolating the multi-echo GRE data to a TEGRE = 0 ms condition, we show for the first time laminar profiles free of T2'-pollution, confined to gray matter. This finding is independent of TEprep, except for the shortest one (31 ms) where hints of a remaining intravascular component can be seen. For TEGRE > 0 ms a prominent peak at the pial surface is observed that increases with longer TEGRE and dominates the shape of the profiles independent of the amount of T2-weighting. Simulations show that the peak at the pial surface is a result of static EV dephasing around pial vessels in CSF visible in GM due to partial voluming. Additionally, another, weaker, static dephasing effect is observed throughout all layers of the cortex, which is particularly obvious in the data with shortest T2-prep echo time. Our simulations show that this cannot be explained by intravascular dephasing but that it is likely caused by extravascular effects of the intracortical and pial veins. We conclude that even for TEGRE as short as 2.3 ms, the T2'-weighting added to the T2-weighting is enough to dramatically affect the laminar specificity of the BOLD signal change. However, the bulk of this corruption stems from CSF partial volume effects which can in principle be addressed by increasing the spatial resolution of the acquisition.
Collapse
Affiliation(s)
- Viktor Pfaffenrot
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany.
| | - Maximilian N Voelker
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Sriranga Kashyap
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, 6229 Maastricht, Netherlands
| | - Peter J Koopmans
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University of Duisburg-Essen, 45141 Essen, Germany; High-Field and Hybrid MR Imaging, University Hospital Essen, University of Duisburg-Essen, 45147 Essen, Germany
| |
Collapse
|
41
|
Bennett MR, Farnell L, Gibson WG. Quantitative relations between BOLD responses, cortical energetics and impulse firing across cortical depth. Eur J Neurosci 2021; 54:4230-4245. [PMID: 33901325 DOI: 10.1111/ejn.15247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 04/08/2021] [Indexed: 11/28/2022]
Abstract
The blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signal arises as a consequence of changes in cerebral blood flow (CBF) and cerebral metabolic rate of oxygen ( CMR O 2 ) that in turn are modulated by changes in neural activity. Recent advances in imaging have achieved sub-millimetre resolution and allowed investigation of the BOLD response as a function of cortical depth. Here, we adapt our previous theory relating the BOLD signal to neural activity to produce a quantitative model that incorporates venous blood draining between cortical layers. The adjustable inputs to the model are the neural activity and a parameter governing this blood draining. A three-layer version for transient neural inputs and a multi-layer version for constant or tonic neural inputs are able to account for a variety of experimental results, including negative BOLD signals.
Collapse
Affiliation(s)
- Maxwell R Bennett
- Brain and Mind Research Centre, University of Sydney, Camperdown, NSW, Australia
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
| | - Leslie Farnell
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| | - William G Gibson
- Center for Mathematical Biology, University of Sydney, Sydney, NSW, Australia
- The School of Mathematics and Statistics, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
42
|
Bencivenga F, Sulpizio V, Tullo MG, Galati G. Assessing the effective connectivity of premotor areas during real vs imagined grasping: a DCM-PEB approach. Neuroimage 2021; 230:117806. [PMID: 33524574 DOI: 10.1016/j.neuroimage.2021.117806] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 01/23/2021] [Indexed: 12/16/2022] Open
Abstract
The parieto-frontal circuit underlying grasping, which requires the serial involvement of the anterior intraparietal area (aIPs) and the ventral premotor cortex (PMv), has been recently extended enlightening the role of the dorsal premotor cortex (PMd). The supplementary motor area (SMA) has been also suggested to encode grip force for grasping actions; furthermore, both PMd and SMA are known to play a crucial role in motor imagery. Here, we aimed at assessing the dynamic couplings between left aIPs, PMv, PMd, SMA and primary motor cortex (M1) by comparing executed and imagined right-hand grasping, using Dynamic Causal Modelling (DCM) and Parametrical Empirical Bayes (PEB) analyses. 24 subjects underwent an fMRI exam (3T) during which they were asked to perform or imagine a grasping movement visually cued by photographs of commonly used objects. We tested whether the two conditions a) exert a modulatory effect on both forward and feedback couplings among our areas of interest, and b) differ in terms of strength and sign of these parameters. Results of the real condition confirmed the serial involvement of aIPs, PMv and M1. PMv also exerted a positive influence on PMd and SMA, but received an inhibitory feedback only from PMd. Our results suggest that a general motor program for grasping is planned by the aIPs-PMv circuit; then, PMd and SMA encode high-level features of the movement. During imagery, the connection strength from aIPs to PMv was weaker and the information flow stopped in PMv; thus, a less complex motor program was planned. Moreover, results suggest that SMA and PMd cooperate to prevent motor execution. In conclusion, the comparison between execution and imagery reveals that during grasping premotor areas dynamically interplay in different ways, depending on task demands.
Collapse
Affiliation(s)
- Federica Bencivenga
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy.
| | - Valentina Sulpizio
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Maria Giulia Tullo
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; PhD program in Behavioral Neuroscience, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| | - Gaspare Galati
- Brain Imaging Laboratory, Department of Psychology, Sapienza University, Rome, Italy; Cognitive and Motor Rehabilitation and Neuroimaging Unit, Santa Lucia Foundation (IRCCS Fondazione Santa Lucia), Rome, Italy
| |
Collapse
|
43
|
Markuerkiaga I, Marques JP, Bains LJ, Norris DG. An in-vivo study of BOLD laminar responses as a function of echo time and static magnetic field strength. Sci Rep 2021; 11:1862. [PMID: 33479362 PMCID: PMC7820587 DOI: 10.1038/s41598-021-81249-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 12/22/2020] [Indexed: 11/18/2022] Open
Abstract
Layer specific functional MRI requires high spatial resolution data. To compensate the associated poor signal to noise ratio it is common to integrate the signal from voxels at a given cortical depth. If the region is sufficiently large then physiological noise will be the dominant noise source. In this work, activation profiles in response to the same visual stimulus are compared at 1.5 T, 3 T and 7 T using a multi-echo, gradient echo (GE) FLASH sequence, with a 0.75 mm isotropic voxel size and the cortical integration approach. The results show that after integrating over a cortical volume of 40, 60 and 100 mm3 (at 7 T, 3 T, and 1.5 T, respectively), the signal is in the physiological noise dominated regime. The activation profiles obtained are similar for equivalent echo times. BOLD-like noise is found to be the dominant source of physiological noise. Consequently, the functional contrast to noise ratio is not strongly echo-time or field-strength dependent. We conclude that laminar GE-BOLD fMRI at lower field strengths is feasible but that larger patches of cortex will need to be examined, and that the acquisition efficiency is reduced.
Collapse
Affiliation(s)
- Irati Markuerkiaga
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - José P Marques
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - Lauren J Bains
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
| | - David G Norris
- Donders Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands. .,Erwin L. Hahn Institute for Magnetic Resonance Imaging, 45141, Essen, Germany.
| |
Collapse
|
44
|
Oliveira ÍAF, van der Zwaag W, Raimondo L, Dumoulin SO, Siero JCW. Comparing hand movement rate dependence of cerebral blood volume and BOLD responses at 7T. Neuroimage 2020; 226:117623. [PMID: 33301935 DOI: 10.1016/j.neuroimage.2020.117623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/06/2020] [Accepted: 11/27/2020] [Indexed: 11/17/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) based on the Blood Oxygenation Level Dependent (BOLD) contrast takes advantage of the coupling between neuronal activity and the hemodynamics to allow a non-invasive localisation of the neuronal activity. In general, fMRI experiments assume a linear relationship between neuronal activation and the observed hemodynamics. However, the relationship between BOLD responses, neuronal activity, and behaviour are often nonlinear. In addition, the nonlinearity between BOLD responses and behaviour may be related to neuronal process rather than a neurovascular uncoupling. Further, part of the nonlinearity may be driven by vascular nonlinearity effects in particular from large vessel contributions. fMRI based on cerebral blood volume (CBV), promises a higher microvascular specificity, potentially without vascular nonlinearity effects and reduced contamination of the large draining vessels compared to BOLD. In this study, we aimed to investigate differences in BOLD and VASO-CBV signal changes during a hand movement task over a broad range of movement rates. We used a double readout 3D-EPI sequence at 7T to simultaneously measure VASO-CBV and BOLD responses in the sensorimotor cortex. The measured BOLD and VASO-CBV responses increased very similarly in a nonlinear fashion, plateauing for movement rates larger than 1 Hz. Our findings show a tight relationship between BOLD and VASO-CBV responses, indicating that the overall interplay of CBV and BOLD responses are similar for the assessed range of movement rates. These results suggest that the observed nonlinearity of neuronal origin is already present in VASO-CBV measurements, and consequently shows relatively unchanged BOLD responses.
Collapse
Affiliation(s)
- Ícaro A F Oliveira
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands.
| | | | - Luisa Raimondo
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Experimental and Applied Psychology, VU University, Amsterdam, the Netherlands; Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
| | - Jeroen C W Siero
- Spinoza Centre for Neuroimaging, Amsterdam, the Netherlands; Radiology, Utrecht Center for Image Sciences, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
45
|
Weldon KB, Olman CA. Forging a path to mesoscopic imaging success with ultra-high field functional magnetic resonance imaging. Philos Trans R Soc Lond B Biol Sci 2020; 376:20200040. [PMID: 33190599 PMCID: PMC7741029 DOI: 10.1098/rstb.2020.0040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) studies with ultra-high field (UHF, 7+ Tesla) technology enable the acquisition of high-resolution images. In this work, we discuss recent achievements in UHF fMRI at the mesoscopic scale, on the order of cortical columns and layers, and examine approaches to addressing common challenges. As researchers push to smaller and smaller voxel sizes, acquisition and analysis decisions have greater potential to degrade spatial accuracy, and UHF fMRI data must be carefully interpreted. We consider the impact of acquisition decisions on the spatial specificity of the MR signal with a representative dataset with 0.8 mm isotropic resolution. We illustrate the trade-offs in contrast with noise ratio and spatial specificity of different acquisition techniques and show that acquisition blurring can increase the effective voxel size by as much as 50% in some dimensions. We further describe how different sources of degradations to spatial resolution in functional data may be characterized. Finally, we emphasize that progress in UHF fMRI depends not only on scientific discovery and technical advancement, but also on informal discussions and documentation of challenges researchers face and overcome in pursuit of their goals. This article is part of the theme issue 'Key relationships between non-invasive functional neuroimaging and the underlying neuronal activity'.
Collapse
Affiliation(s)
- Kimberly B Weldon
- Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN 55455, USA.,Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cheryl A Olman
- Center for Magnetic Resonance Imaging, University of Minnesota, Minneapolis, MN 55455, USA.,Department of Psychology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
46
|
Genetic Alzheimer’s Disease Risk Affects the Neural Mechanisms of Pattern Separation in Hippocampal Subfields. Curr Biol 2020; 30:4201-4212.e3. [DOI: 10.1016/j.cub.2020.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 01/13/2023]
|
47
|
Bollmann S, Barth M. New acquisition techniques and their prospects for the achievable resolution of fMRI. Prog Neurobiol 2020; 207:101936. [PMID: 33130229 DOI: 10.1016/j.pneurobio.2020.101936] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 09/10/2020] [Accepted: 10/18/2020] [Indexed: 01/17/2023]
Abstract
This work reviews recent advances in technologies for functional magnetic resonance imaging (fMRI) of the human brain and highlights the push for higher functional specificity based on increased spatial resolution and specific MR contrasts to reveal previously undetectable functional properties of small-scale cortical structures. We discuss how the combination of MR hardware, advanced acquisition techniques and various MR contrast mechanisms have enabled recent progress in functional neuroimaging. However, these advanced fMRI practices have only been applied to a handful of neuroscience questions to date, with the majority of the neuroscience community still using conventional imaging techniques. We thus discuss upcoming challenges and possibilities for fMRI technology development in human neuroscience. We hope that readers interested in functional brain imaging acquire an understanding of current and novel developments and potential future applications, even if they don't have a background in MR physics or engineering. We summarize the capabilities of standard fMRI acquisition schemes with pointers to relevant literature and comprehensive reviews and introduce more recent developments.
Collapse
Affiliation(s)
- Saskia Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Australia; School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Australia; ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
48
|
Stirnberg R, Stöcker T. Segmented K-space blipped-controlled aliasing in parallel imaging for high spatiotemporal resolution EPI. Magn Reson Med 2020; 85:1540-1551. [PMID: 32936488 DOI: 10.1002/mrm.28486] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/16/2022]
Abstract
PURPOSE A segmented k-space blipped-controlled aliasing in parallel imaging (skipped-CAIPI) sampling strategy for EPI is proposed, which allows for a flexible choice of EPI factor and phase encode bandwidth independent of the controlled aliasing in parallel imaging (CAIPI) sampling pattern. THEORY AND METHODS With previously proposed approaches, exactly two EPI trajectories were possible given a specific CAIPI pattern, either with slice gradient blips (blipped-CAIPI) or following a shot-selective CAIPI approach (higher resolution). Recently, interleaved multi-shot segmentation along shot-selective CAIPI trajectories has been applied for high-resolution anatomical imaging. For more flexibility and a broader range of applications, we propose segmentation along any blipped-CAIPI trajectory. Thus, all EPI factors and phase encode bandwidths available with traditional segmented EPI can be combined with controlled aliasing. RESULTS Temporal SNR maps of moderate-to-high-resolution time series acquisitions at varying undersampling factors demonstrate beneficial sampling alternatives to blipped-CAIPI or shot-selective CAIPI. Rapid high-resolution scans furthermore demonstrate SNR-efficient and motion-robust structural imaging with almost arbitrary EPI factor and minimal noise penalty. CONCLUSION Skipped-CAIPI sampling increases protocol flexibility for high spatiotemporal resolution EPI. In terms of SNR and efficiency, high-resolution functional or structural scans benefit vastly from a free choice of the CAIPI pattern. Even at moderate resolutions, the independence of sampling pattern, TE, and image matrix size is valuable for optimized functional protocol design. Although demonstrated with 3D-EPI, skipped-CAIPI is also applicable with simultaneous multislice EPI.
Collapse
Affiliation(s)
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany.,Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
49
|
Kuehn E, Pleger B. Encoding schemes in somatosensation: From micro- to meta-topography. Neuroimage 2020; 223:117255. [PMID: 32800990 DOI: 10.1016/j.neuroimage.2020.117255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 07/15/2020] [Accepted: 08/07/2020] [Indexed: 12/23/2022] Open
Abstract
Encoding schemes are systematic large-scale arrangements that convert incoming sensory information into a format required for further information processing. The increased spatial resolution of brain images obtained with ultra-high field magnetic resonance imaging at 7 T (7T-MRI) and above increases the granularity and precision of processing units that mediate the link between neuronal encoding and functional readouts. Here, these new developments are reviewed with a focus on human tactile encoding schemes derived from small-scale processing units (in the order of 0.5-5 mm) that are relevant for theoretical and practical concepts of somatosensory encoding and cortical plasticity. Precisely, we review recent approaches to characterize meso-scale maps, layer units, and cortical fields in the sensorimotor cortex of the living human brain and discuss their impact on theories of perception, motor control, topographic encoding, and cortical plasticity. Finally, we discuss concepts on the integration of small-scale processing units into functional networks that span multiple topographic maps and multiple cortical areas. Novel research areas are highlighted that may help to bridge the gap between cortical microstructure and meta-topographic models on brain anatomy and function.
Collapse
Affiliation(s)
- Esther Kuehn
- Institute for Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, 39120, Germany; Center for Behavioral Brain Sciences (CBBS) Magdeburg, Magdeburg 39120, Germany.
| | - Burkhard Pleger
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum 44789, Germany
| |
Collapse
|
50
|
Berman AJL, Grissom WA, Witzel T, Nasr S, Park DJ, Setsompop K, Polimeni JR. Ultra-high spatial resolution BOLD fMRI in humans using combined segmented-accelerated VFA-FLEET with a recursive RF pulse design. Magn Reson Med 2020; 85:120-139. [PMID: 32705723 DOI: 10.1002/mrm.28415] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 11/08/2022]
Abstract
PURPOSE To alleviate the spatial encoding limitations of single-shot echo-planar imaging (EPI) by developing multi-shot segmented EPI for ultra-high-resolution functional MRI (fMRI) with reduced ghosting artifacts from subject motion and respiration. THEORY AND METHODS Segmented EPI can reduce readout duration and reduce acceleration factors, however, the time elapsed between segment acquisitions (on the order of seconds) can result in intermittent ghosting, limiting its use for fMRI. Here, "FLEET" segment ordering, where segments are looped over before slices, was combined with a variable flip angle progression (VFA-FLEET) to improve inter-segment fidelity and maximize signal for fMRI. Scaling a sinc pulse's flip angle for each segment (VFA-FLEET-Sinc) produced inconsistent slice profiles and ghosting, therefore, a recursive Shinnar-Le Roux (SLR) radiofrequency (RF) pulse design was developed (VFA-FLEET-SLR) to generate unique pulses for every segment that together produce consistent slice profiles and signals. RESULTS The temporal stability of VFA-FLEET-SLR was compared against conventional-segmented EPI and VFA-FLEET-Sinc at 3T and 7T. VFA-FLEET-SLR showed reductions in both intermittent and stable ghosting compared to conventional-segmented and VFA-FLEET-Sinc, resulting in improved image quality with a minor trade-off in temporal SNR. Combining VFA-FLEET-SLR with acceleration, we achieved a 0.6-mm isotropic acquisition at 7T, without zoomed imaging or partial Fourier, demonstrating reliable detection of blood oxygenation level-dependent (BOLD) responses to a visual stimulus. To counteract the increased repetition time from segmentation, simultaneous multi-slice VFA-FLEET-SLR was demonstrated using RF-encoded controlled aliasing. CONCLUSIONS VFA-FLEET with a recursive RF pulse design supports acquisitions with low levels of artifact and spatial blur, enabling fMRI at previously inaccessible spatial resolutions with a "full-brain" field of view.
Collapse
Affiliation(s)
- Avery J L Berman
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Thomas Witzel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Shahin Nasr
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Park
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Kawin Setsompop
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts, USA.,Department of Radiology, Harvard Medical School, Boston, Massachusetts, USA.,Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|