1
|
Duck SA, Smith KR, Saleh MG, Jansen E, Papantoni A, Song Y, Edden RAE, Carnell S. GABA (gamma-aminobutyric acid) levels in dorsal anterior cingulate cortex are negatively associated with food motivation in a pediatric sample. Sci Rep 2024; 14:24845. [PMID: 39438541 PMCID: PMC11496509 DOI: 10.1038/s41598-024-75520-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/07/2024] [Indexed: 10/25/2024] Open
Abstract
Food motivation varies between individuals, affecting body weight and risk for eating disorders. Prior neuroimaging studies in youth and adults have revealed functional and structural alterations in the anterior cingulate cortex [ACC] in those with obesity and disordered eating but have not investigated their neurochemical underpinnings. In a sample of 37 children aged 4 to 13 years old, we used Magnetic Resonance Spectroscopy [MRS] to assess levels of γ-aminobutyric acid [GABA] - the major inhibitory neurotransmitter in the human brain - quantified relative to creatine in a 27-ml voxel including the dorsal ACC. We used the CEBQ to assess trait food motivation. In analyses adjusting for age, lower GABA+/Cr levels in the dorsal ACC were associated with higher trait enjoyment of food. Higher enjoyment of food scores were in turn associated with higher energy intake during an ad libitum test meal and during a postprandial task assessing intake in the absence of hunger, and higher body weight. Our results indicate a role for GABA function in the dorsal ACC in determining individual variation in food motivation in children.
Collapse
Affiliation(s)
- Sarah Ann Duck
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kimberly R Smith
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Muhammad G Saleh
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Jansen
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Afroditi Papantoni
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yulu Song
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Richard A E Edden
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Susan Carnell
- Division of Child and Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
2
|
Guo R, Gao S, Feng X, Liu H, Ming X, Sun J, Luan X, Liu Z, Liu W, Guo F. The GABAergic pathway from anterior cingulate cortex to lateral hypothalamus area regulates irritable bowel syndrome in mice and its underlying mechanism. J Neurochem 2024; 168:2814-2831. [PMID: 38877776 DOI: 10.1111/jnc.16150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.
Collapse
Affiliation(s)
- Ruixiao Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Shengli Gao
- Biomedical Center, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Xufei Feng
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Hua Liu
- Department of Gastroenterology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xing Ming
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Jinqiu Sun
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| | - Xinchi Luan
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Zhenyu Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Weiyi Liu
- Qingdao Medical College, Qingdao University, Qingdao, China
| | - Feifei Guo
- Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Yi X, Wang X, Fu Y, Jiang F, Zhang Z, Wang J, Han Z, Xiao Q, Chen BT. Altered resting-state functional connectivity and its association with executive function in adolescents with borderline personality disorder. Eur Child Adolesc Psychiatry 2024; 33:1721-1730. [PMID: 37555869 DOI: 10.1007/s00787-023-02277-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 08/03/2023] [Indexed: 08/10/2023]
Abstract
Adolescents with borderline personality disorder (BPD) may have impaired executive functions. There are few functional MRI (fMRI) studies in adolescents with BPD and the neuroimaging markers of this disorder are unknown. The aim of this study was to investigate the functional connectivity (FC) of BPD in adolescents, and to explore the relationship between FC changes and executive function in adolescents with BPD. 50 adolescents aged 12 to 17 years with BPD and 21 gender-and-age matched healthy controls (HC) were enrolled into the study. Brain MRI scan including a 3D-T1 weighted structural sequence and a resting-state fMRI was acquired. A seed-based FC analysis was performed. We used the Stroop color-word test (SCWT) and the trail making test (TMT) to evaluate the executive function of the participants. Correlative analysis of FC alterations with executive function and clinical symptoms was also performed. Compared to the HCs, adolescents with BPD showed increased FC in the limbic-cortical circuit, such as the FC between the left hippocampus and right parahippocampal gyrus, between the right middle occipital gyrus and the left middle temporal gyrus, and between the left medial superior frontal gyrus and the right inferior temporal gyrus. FC in the default mode network (DMN) was decreased between the left angular gyrus and the left precuneus but increased between the left angular gyrus and the right anterior cingulate cortex (voxel P < 0.001, cluster P < 0.05, FWE corrected). The BPD group demonstrated significantly lower cognitive testing scores than the HC group on the SCWT-A (P < 0.001), SCWT-B (P < 0.001), and SCWT-C (P = 0.034). The FC alterations between limbic system and cortical regions were associated with SCWT and TMT (P < 0.05). FC alterations were noted in both limbic-cortical circuit and DMN in adolescents with BPD, which were associated with impaired executive function. This study implicated the FC alterations as the neural correlates of executive functioning in adolescents with BPD.
Collapse
Affiliation(s)
- Xiaoping Yi
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, Hunan, People's Republic of China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xueying Wang
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Yan Fu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Xiangya Hospital, Changsha, 410008, Hunan, People's Republic of China
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Furong Jiang
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | - Zhejia Zhang
- Department of General Surgery, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Jing Wang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zaide Han
- National Clinical Research Center for Geriatric Disorders (Xiangya Hospital), Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Qian Xiao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Mental Health Center of Xiangya Hospital, Central South University, No. 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China.
| | - Bihong T Chen
- Department of Diagnostic Radiology, City of Hope National Medical Center, Duarte, CA, USA
| |
Collapse
|
4
|
Tao B, Xiao Y, Li B, Yu W, Zhu F, Gao Z, Cao H, Gong Q, Gu S, Qiu C, Lui S. Linked patterns of interhemispheric functional connectivity and microstructural characteristics of the corpus callosum in antipsychotic-naive first-episode schizophrenia. Asian J Psychiatr 2023; 86:103659. [PMID: 37327564 DOI: 10.1016/j.ajp.2023.103659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/18/2023]
Abstract
OBJECTIVE Many magnetic resonance imaging (MRI) studies have showed significant structural abnormalities of the corpus callosum (CC) and dysregulated interhemispheric functional connectivity (FC) in schizophrenia. Although the hemispheres are mainly linked through CC, few studies directly examined the relationship between aberrant interhemispheric FC and the white matter deficits of the CC in schizophrenia. METHODS One hundred and sixty-nine antipsychotic-naive first-episode schizophrenia patients (AN-FES) and 214 healthy controls (HCs) were recruited. Diffusional and functional MRI data were obtained for each participant, and fractional anisotropy (FA) values of the five CC subregions and interhemispheric FC for each participant were acquired. Between-group differences in these metrics were compared using multivariate analysis of covariance (MANCOVA). Moreover, sparse canonical correlation analysis (sCCA) was conducted to explore correlations of fibers integrity of the CC subregions with dysregulated interhemispheric FC in patients. RESULTS Compared with HCs, the patients with schizophrenia showed significantly reduced FA values of the CC subregions and dysregulated connectivity between two cerebral hemispheres. The canonical correlation coefficients identified five significant sCCA modes between FA and FC (r > 0.75, p < 0.001), suggesting strong relationships between FA values of the CC subregions and interhemispheric FC in patients. CONCLUSION Our findings support a key role of CC in maintaining ongoing functional communication between two cerebral hemispheres, and suggest that microstructural changes of white matter fibers crossing different CC subregions may affect special interhemispheric FC in schizophrenia.
Collapse
Affiliation(s)
- Bo Tao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Yuan Xiao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Bin Li
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China
| | - Wei Yu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Fei Zhu
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Ziyang Gao
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Hengyi Cao
- Center for Psychiatry Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA; Division of Psychiatry Research, Zucker Hillside Hospital, Glen Oaks, NY, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| | - Shi Gu
- School of Computer Science and Engineering, University of Electronic Science and Technology of China, No. 2006 Xiyuan Avenue, West Hi-Tech Zone, 611731, Chengdu, China..
| | - Changjian Qiu
- Mental Health Center, West China Hospital of Sichuan University, 28 Dianxin Street, Chengdu, China.
| | - Su Lui
- Huaxi MR Research Center (HMRRC), Department of Radiology, West China Hospital of Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
5
|
Bavato F, Esposito F, Dornbierer DA, Zölch N, Quednow BB, Staempfli P, Landolt HP, Seifritz E, Bosch OG. Subacute changes in brain functional network connectivity after nocturnal sodium oxybate intake are associated with anterior cingulate GABA. Cereb Cortex 2023:7086058. [DOI: 10.1093/cercor/bhad097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
AbstractSodium oxybate (γ-hydroxybutyrate, GHB) is an endogenous GHB/GABAB receptor agonist, clinically used to promote slow-wave sleep and reduce next-day sleepiness in disorders such as narcolepsy and fibromyalgia. The neurobiological signature of these unique therapeutic effects remains elusive. Promising current neuropsychopharmacological approaches to understand the neural underpinnings of specific drug effects address cerebral resting-state functional connectivity (rsFC) patterns and neurometabolic alterations. Hence, we performed a placebo-controlled, double-blind, randomized, cross-over pharmacological magnetic resonance imaging study with a nocturnal administration of GHB, combined with magnetic resonance spectroscopy of GABA and glutamate in the anterior cingulate cortex (ACC). In sum, 16 healthy male volunteers received 50 mg/kg GHB p.o. or placebo at 02:30 a.m. to maximize deep sleep enhancement and multi-modal brain imaging was performed at 09:00 a.m. of the following morning. Independent component analysis of whole-brain rsFC revealed a significant increase of rsFC between the salience network (SN) and the right central executive network (rCEN) after GHB intake compared with placebo. This SN-rCEN coupling was significantly associated with changes in GABA levels in the ACC (pall < 0.05). The observed neural pattern is compatible with a functional switch to a more extrinsic brain state, which may serve as a neurobiological signature of the wake-promoting effects of GHB.
Collapse
|
6
|
Li N, Ma W, Ren F, Li X, Li F, Zong W, Wu L, Dai Z, Hui SCN, Edden RAE, Li M, Gao F. Neurochemical and functional reorganization of the cognitive-ear link underlies cognitive impairment in presbycusis. Neuroimage 2023; 268:119861. [PMID: 36610677 PMCID: PMC10026366 DOI: 10.1016/j.neuroimage.2023.119861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/11/2022] [Accepted: 01/03/2023] [Indexed: 01/06/2023] Open
Abstract
Recent studies suggest that the interaction between presbycusis and cognitive impairment may be partially explained by the cognitive-ear link. However, the underlying neurophysiological mechanisms remain largely unknown. In this study, we combined magnetic resonance spectroscopy (MRS) and resting-state functional magnetic resonance imaging (fMRI) to investigate auditory gamma-aminobutyric acid (GABA) and glutamate (Glu) levels, intra- and inter-network functional connectivity, and their relationships with auditory and cognitive function in 51 presbycusis patients and 51 well-matched healthy controls. Our results confirmed reorganization of the cognitive-ear link in presbycusis, including decreased auditory GABA and Glu levels and aberrant functional connectivity involving auditory networks (AN) and cognitive-related networks, which were associated with reduced speech perception or cognitive impairment. Moreover, mediation analyses revealed that decreased auditory GABA levels and dysconnectivity between the AN and default mode network (DMN) mediated the association between hearing loss and impaired information processing speed in presbycusis. These findings highlight the importance of AN-DMN dysconnectivity in cognitive-ear link reorganization leading to cognitive impairment, and hearing loss may drive reorganization via decreased auditory GABA levels. Modulation of GABA neurotransmission may lead to new treatment strategies for cognitive impairment in presbycusis patients.
Collapse
Affiliation(s)
- Ning Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Wen Ma
- Department of Otolaryngology, the Central Hospital of Jinan City, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuxin Ren
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiao Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Fuyan Li
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Wei Zong
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China; Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lili Wu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China
| | - Zongrui Dai
- Westa College, Southwest University, Chongqing, China
| | - Steve C N Hui
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, USA; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Muwei Li
- Vanderbilt University Institute of Imaging Science, Nashville, TN, USA
| | - Fei Gao
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China.
| |
Collapse
|
7
|
Rosu A, Tót K, Godó G, Kéri S, Nagy A, Eördegh G. Visually guided equivalence learning in borderline personality disorder. Heliyon 2022; 8:e10823. [PMID: 36203892 PMCID: PMC9530487 DOI: 10.1016/j.heliyon.2022.e10823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 12/10/2021] [Accepted: 09/23/2022] [Indexed: 11/30/2022] Open
Abstract
The hallmark symptoms of borderline personality disorder are maladaptive behavior and impulsive emotional reactions. However, the condition is occasionally associated with cognitive alterations. Recently, it has been found that the function of the basal ganglia and the hippocampi might also be affected. Hence, deterioration in learning and memory processes associated with these structures is expected. Thus, we sought to investigate visually guided associative learning, a type of conditioning associated with the basal ganglia and the hippocampi, in patients suffering from borderline personality disorder. In this study, the modified Rutgers Acquired Equivalence Test was used to assess associative learning in 23 patients and age-, sex-, and educational level-matched controls. The acquisition phase of the test, which is associated primarily with the frontostriatal loops, was altered in patients with borderline personality disorder: the patients exhibited poor performance in terms of building associations. However, the retrieval and generalization functions, which are primarily associated with the hippocampi and the medial temporal lobes, were not affected. These results corroborate that the basal ganglia are affected in borderline personality disorder. However, maintained retrieval and generalization do not support the assumption that the hippocampi are affected too.
Collapse
Affiliation(s)
- Anett Rosu
- Psychiatric Outpatient Care, Hospital of Orosháza, Orosháza, Hungary
| | - Kálmán Tót
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - György Godó
- Psychiatric Outpatient Care, Hospital of Hódmezővásárhely, Hódmezővásárhely, Hungary
| | - Szabolcs Kéri
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Attila Nagy
- Department of Physiology, Faculty of Medicine, University of Szeged, Szeged, Hungary
- Corresponding author.
| | - Gabriella Eördegh
- Faculty of Health Sciences and Social Studies, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Chan KL, Hock A, Edden RAE, MacMillan EL, Henning A. Improved prospective frequency correction for macromolecule-suppressed GABA editing with metabolite cycling at 3T. Magn Reson Med 2021; 86:2945-2956. [PMID: 34431549 DOI: 10.1002/mrm.28950] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/08/2022]
Abstract
PURPOSE To combine metabolite cycling with J-difference editing (MC MEGA) to allow for prospective frequency correction at each transient without additional acquisitions and compare it to water-suppressed MEGA-PRESS (WS MEGA) editing with intermittent prospective frequency correction. METHODS Macromolecule-suppressed gamma aminobutyric acid (GABA)-edited experiments were performed in a phantom and in the occipital lobe (OCC) (n = 12) and medial prefrontal cortex (mPFC) (n = 8) of the human brain. Water frequency consistency and average offset over acquisition time were compared. GABA multiplet patterns, signal intensities, and choline subtraction artifacts were evaluated. In vivo GABA concentrations were compared and related to frequency offset in the OCC. RESULTS MC MEGA was more stable with 21% and 32% smaller water frequency SDs in the OCC and mPFC, respectively. MC MEGA also had 39% and 40% smaller average frequency offsets in the OCC and mPFC, respectively. Phantom GABA multiplet patterns and signal intensities were similar. In vivo GABA concentrations were smaller in MC MEGA than in WS MEGA, with median (interquartile range) of 2.52 (0.27) and 2.29 (0.19) institutional units (i.u.), respectively in the OCC scans without prior DTI, and 0.99 (0.3) and 1.72 (0.5), respectively in the mPFC. OCC WS MEGA GABA concentrations, but not MC MEGA GABA concentrations were moderately correlated with frequency offset. mPFC WS MEGA spectra contained significantly more subtraction artifacts than MC MEGA spectra. CONCLUSION MC MEGA is feasible and allows for prospective frequency correction at every transient. MC MEGA GABA concentrations were not biased by frequency offsets and contained less subtraction artifacts compared to WS MEGA.
Collapse
Affiliation(s)
- Kimberly L Chan
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Andreas Hock
- MR Clinical Science, Philips Health Systems, Horgen, Switzerland
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA.,F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Erin L MacMillan
- UBC MRI Research Centre, University of British Columbia, Vancouver, British Columbia, Canada.,SFU ImageTech Lab, Simon Fraser University, Surrey, British Columbia, Canada.,MR Clinical Science, Philips Healthcare, Markham, Ontario, Canada
| | - Anke Henning
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| |
Collapse
|
9
|
Rideaux R, Mikkelsen M, Edden RAE. Comparison of methods for spectral alignment and signal modelling of GABA-edited MR spectroscopy data. Neuroimage 2021; 232:117900. [PMID: 33652146 PMCID: PMC8245134 DOI: 10.1016/j.neuroimage.2021.117900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/10/2021] [Accepted: 02/17/2021] [Indexed: 01/25/2023] Open
Abstract
Many methods exist for aligning and quantifying magnetic resonance spectroscopy (MRS) data to measure in vivo γ-aminobutyric acid (GABA). Research comparing the performance of these methods is scarce partly due to the lack of ground-truth measurements. The concentration of GABA is approximately two times higher in grey matter than in white matter. Here we use the proportion of grey matter within the MRS voxel as a proxy for ground-truth GABA concentration to compare the performance of four spectral alignment methods (i.e., retrospective frequency and phase drift correction) and six GABA signal modelling methods. We analyse a diverse dataset of 432 MEGA-PRESS scans targeting multiple brain regions and find that alignment to the creatine (Cr) signal produces GABA+ estimates that account for approximately twice as much of the variance in grey matter as the next best performing alignment method. Further, Cr alignment was the most robust, producing the fewest outliers. By contrast, all signal modelling methods, except for the single-Lorentzian model, performed similarly well. Our results suggest that variability in performance is primarily caused by differences in the zero-order phase estimated by each alignment method, rather than frequency, resulting from first-order phase offsets within subspectra. These results provide support for Cr alignment as the optimal method of processing MEGA-PRESS to quantify GABA. However, more broadly, they demonstrate a method of benchmarking quantification of in vivo metabolite concentration from other MRS sequences.
Collapse
Affiliation(s)
- Reuben Rideaux
- Department of Psychology, Downing Street, University of Cambridge, UK.
| | - Mark Mikkelsen
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| | - Richard A E Edden
- Russell H. Morgan Department of Radiology and Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
| |
Collapse
|
10
|
Duan X, Fang Z, Tao L, Chen H, Zhang X, Li Y, Wang H, Li A, Zhang X, Pang Y, Gu M, Wu J, Lv F, Luo T, Cheng O, Luo J, Xiao Z, Fang W. Altered local and matrix functional connectivity in depressed essential tremor patients. BMC Neurol 2021; 21:68. [PMID: 33573615 PMCID: PMC7879612 DOI: 10.1186/s12883-021-02100-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 02/02/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Depression in essential tremor (ET) has been constantly studied and reported, while the associated brain activity changes remain unclear. Recently, regional homogeneity (ReHo), a voxel-wise local functional connectivity (FC) analysis of resting-state functional magnetic resonance imaging, has provided a promising way to observe spontaneous brain activity. METHODS Local FC analyses were performed in forty-one depressed ET patients, 49 non-depressed ET patients and 43 healthy controls (HCs), and then matrix FC and clinical depression severity correlation analyses were further performed to reveal spontaneous neural activity changes in depressed ET patients. RESULTS Compared with the non-depressed ET patients, the depressed ET patients showed decreased ReHo in the bilateral cerebellum lobules IX, and increased ReHo in the bilateral anterior cingulate cortices and middle prefrontal cortices. Twenty-five significant changes of ReHo clusters were observed in the depressed ET patients compared with the HCs, and matrix FC analysis further revealed that inter-ROI FC differences were also observed in the frontal-cerebellar-anterior cingulate cortex pathway. Correlation analyses showed that clinical depression severity was positively correlated with the inter-ROI FC values between the anterior cingulate cortex and bilateral middle prefrontal cortices and was negatively correlated with the inter-ROI FC values of the anterior cingulate cortex and bilateral cerebellum lobules IX. CONCLUSION Our findings revealed local and inter-ROI FC differences in frontal-cerebellar-anterior cingulate cortex circuits in depressed ET patients, and among these regions, the cerebellum lobules IX, middle prefrontal cortices and anterior cingulate cortices could function as pathogenic structures underlying depression in ET patients.
Collapse
Affiliation(s)
- Xiyue Duan
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Zhou Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Li Tao
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Huiyue Chen
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xiaoyu Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Yufen Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Hansheng Wang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Aotian Li
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Xueyan Zhang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Ya Pang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Min Gu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Jiahui Wu
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Fajin Lv
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Tianyou Luo
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China
| | - Oumei Cheng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jin Luo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zheng Xiao
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Weidong Fang
- Department of Radiology, The First Affiliated Hospital of Chongqing Medical University, No. 1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
11
|
Xie L, Hu Y, Yan D, McQuillan P, Liu Y, Zhu S, Zhu Z, Jiang Y, Hu Z. The relationship between exposure to general anesthetic agents and the risk of developing an impulse control disorder. Pharmacol Res 2021; 165:105440. [PMID: 33493656 DOI: 10.1016/j.phrs.2021.105440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/13/2021] [Accepted: 01/16/2021] [Indexed: 12/18/2022]
Abstract
Most studies examining the effect of extended exposure to general anesthetic agents (GAAs) have demonstrated that extended exposure induces both structural and functional changes in the central nervous system. These changes are frequently accompanied by neurobehavioral changes that include impulse control disorders that are generally characterized by deficits in behavioral inhibition and executive function. In this review, we will.
Collapse
Affiliation(s)
- Linghua Xie
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuhan Hu
- Department of Cell Biology, Yale University, New Haven, CT, USA
| | - Dandan Yan
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - P McQuillan
- Department of Anesthesiology, Penn State Hershey Medical Centre, Penn State College of Medicine, Hershey, PA, USA
| | - Yue Liu
- Department of Anesthesiology, The Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhirui Zhu
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yilei Jiang
- Department of Anesthesiology, The Children Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhiyong Hu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
12
|
Kiemes A, Davies C, Kempton MJ, Lukow PB, Bennallick C, Stone JM, Modinos G. GABA, Glutamate and Neural Activity: A Systematic Review With Meta-Analysis of Multimodal 1H-MRS-fMRI Studies. Front Psychiatry 2021; 12:644315. [PMID: 33762983 PMCID: PMC7982484 DOI: 10.3389/fpsyt.2021.644315] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/15/2021] [Indexed: 12/11/2022] Open
Abstract
Multimodal neuroimaging studies combining proton magnetic resonance spectroscopy (1H-MRS) to quantify GABA and/or glutamate concentrations and functional magnetic resonance imaging (fMRI) to measure brain activity non-invasively have advanced understanding of how neurochemistry and neurophysiology may be related at a macroscopic level. The present study aimed to perform a systematic review and meta-analysis of available studies examining the relationship between 1H-MRS glutamate and/or GABA levels and task-related fMRI signal in the healthy brain. Ovid (Medline, Embase, and PsycINFO) and Pubmed databases were systematically searched to identify articles published until December 2019. The primary outcome of interest was the association between resting levels of glutamate or GABA and task-related fMRI. Fifty-five papers were identified for inclusion in the systematic review. A further 22 studies were entered into four separate meta-analyses. These meta-analyses found evidence of significant negative associations between local GABA levels and (a) fMRI activation to visual tasks in the occipital lobe, and (b) activation to emotion processing in the medial prefrontal cortex (mPFC)/anterior cingulate cortex (ACC). However, there was no significant association between mPFC/ACC glutamate levels and fMRI activation to cognitive control tasks or to emotional processing, with the relationship to emotion processing related neural activity narrowly missing significance. Moreover, our systematic review also found converging evidence of negative associations between GABA levels and local brain activity, and positive associations between glutamate levels and distal brain activity, outside of the 1H-MRS sampling region. Albeit less consistently, additional relationships between GABA levels and distal brain activity and between glutamate levels and local brain activity were found. It remains unclear if the absence of effects for other brain regions and other cognitive-emotional domains reflects study heterogeneity or potential confounding effects of age, sex, or other unknown factors. Advances in 1H-MRS methodology as well as in the integration of 1H-MRS readouts with other imaging modalities for indexing neural activity hold great potential to reveal key aspects of the pathophysiology of mental health disorders involving aberrant interactions between neurochemistry and neurophysiology such as schizophrenia.
Collapse
Affiliation(s)
- Amanda Kiemes
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Cathy Davies
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Paulina B Lukow
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Carly Bennallick
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - James M Stone
- Brighton and Sussex Medical School, University of Sussex & University of Brighton, Brighton, United Kingdom
| | - Gemma Modinos
- Psychosis Studies Department, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom.,Medical Research Centre Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
13
|
Acute Alcohol Effects on Response Inhibition Depend on Response Automatization, but not on GABA or Glutamate Levels in the ACC and Striatum. J Clin Med 2020; 9:jcm9020481. [PMID: 32050509 PMCID: PMC7073826 DOI: 10.3390/jcm9020481] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 02/06/2023] Open
Abstract
Alcohol increases GABAergic signaling and decreases glutamatergic signaling in the brain. Variations in these neurotransmitter levels may modulate/predict executive functioning. Matching this, strong impairments of response inhibition are one of the most consistently reported cognitive/behavioral effects of acute alcohol intoxication. However, it has never been investigated whether baseline differences in these neurotransmitters allow to predict how much alcohol intoxication impairs response inhibition, and whether this is reflected in neurophysiological measures of cognitive control. We used MR spectroscopy to assess baseline (i.e., sober) GABA and glutamate levels in the anterior cingulate cortex (ACC) and striatum in n = 30 healthy young males, who were subsequently tested once sober and once intoxicated (1.01 permille). Inhibition was assessed with the sustained attention to response task (SART). This paradigm also allows to examine the effect of different degrees of response automatization, which is a known modulator for response inhibition, but does not seem to be substantially impaired during acute intoxication. As a neurophysiological correlate of response inhibition and control, we quantified EEG-derived theta band power and located its source using beamforming analyses. We found that alcohol-induced response inhibition deficits only occurred in the case of response automatization. This was reflected by decreased theta band activity in the left supplementary motor area (SMA), which may reflect modulations in the encoding of a surprise signal in response to inhibition cues. However, we did not find that differences in baseline (i.e., sober) GABA or glutamate levels significantly modulated differences in the size of alcohol-induced inhibition deficits.
Collapse
|
14
|
Wu M, Shu J. Multimodal Molecular Imaging: Current Status and Future Directions. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:1382183. [PMID: 29967571 PMCID: PMC6008764 DOI: 10.1155/2018/1382183] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 04/11/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022]
Abstract
Molecular imaging has emerged at the end of the last century as an interdisciplinary method involving in vivo imaging and molecular biology aiming at identifying living biological processes at a cellular and molecular level in a noninvasive manner. It has a profound role in determining disease changes and facilitating drug research and development, thus creating new medical modalities to monitor human health. At present, a variety of different molecular imaging techniques have their advantages, disadvantages, and limitations. In order to overcome these shortcomings, researchers combine two or more detection techniques to create a new imaging mode, such as multimodal molecular imaging, to obtain a better result and more information regarding monitoring, diagnosis, and treatment. In this review, we first describe the classic molecular imaging technology and its key advantages, and then, we offer some of the latest multimodal molecular imaging modes. Finally, we summarize the great challenges, the future development, and the great potential in this field.
Collapse
Affiliation(s)
- Min Wu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
15
|
Wagner G, Krause-Utz A, de la Cruz F, Schumann A, Schmahl C, Bär KJ. Resting-state functional connectivity of neurotransmitter producing sites in female patients with borderline personality disorder. Prog Neuropsychopharmacol Biol Psychiatry 2018; 83:118-126. [PMID: 29355588 DOI: 10.1016/j.pnpbp.2018.01.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 12/13/2022]
Abstract
Impulsive behavior, difficulties in controlling anger and suicidal behavior are typical patterns of affective/behavioral dysregulation in patients with borderline personality disorder (BPD). Previous functional MRI studies in the resting state condition demonstrated altered functional connectivity (FC) between the anterior cingulate cortex (ACC) and the frontoparietal executive control network (ECN), which was significantly associated with impulsivity in BPD. Impulsivity is often defined as a function of inhibitory control, strongly relying on the proper functioning of the fronto-cingulo-striatal network. Noradrenergic, dopaminergic and serotonergic neurotransmitter systems are assumed to be involved in different forms of impulsive behavior and inhibitory control. In our previous study, we investigated the FC of the main monoamine-producing nuclei within the midbrain and brainstem, which were functionally integrated in specific resting-state networks. In the present study we investigated the resting-state FC of midbrain/brainstem nuclei in 33 unmedicated female patients with BPD and 33 matched healthy controls. We further related altered functional connectivity of these nuclei to the patient's degree of impulsivity. The main finding was that BPD patients showed stronger FC from the noradrenergic locus coeruleus (LC) to the ACC. Functional connectivity between the LC and ACC was positively associated with the degree of motor impulsivity in the total group. Controlling for aggression, a stronger FC was also found between serotonergic nucleus centralis superior (NCS) and the frontopolar cortex (FPC) in patients compared to controls. Furthermore, patients showed a weaker "anti-correlation" from the substantia nigra (SNc) to the left dorsolateral prefrontal cortex (DLPFC). The observed enhanced LC-ACC FC in BPD and its association with the motor impulsivity might be indicative of a noradrenergic dysfunction in the neural inhibitory control network, whereas the significant relationship between NCS-FPC FC and aggression points toward serotonergic contribution to prefrontal control of aggressive reactions.
Collapse
Affiliation(s)
- Gerd Wagner
- Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, Jena 07743, Germany
| | - Annegret Krause-Utz
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health (CIMH), Mannheim, Germany; Institute of Clinical Psychology, Leiden University, Leiden, Netherlands; Leiden Institute for Brain and Cognition, Leiden University, Leiden, Netherlands
| | - Feliberto de la Cruz
- Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, Jena 07743, Germany
| | - Andy Schumann
- Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, Jena 07743, Germany
| | - Christian Schmahl
- Department of Psychosomatic Medicine and Psychotherapy, Central Institute of Mental Health (CIMH), Mannheim, Germany
| | - Karl-Jürgen Bär
- Psychiatric Brain and Body Research Group Jena, Department of Psychiatry and Psychotherapy, University Hospital Jena, Philosophenweg 3, Jena 07743, Germany.
| |
Collapse
|
16
|
Friedman SD, Poliakov AV, Budech C, Shaw DWW, Breiger D, Jinguji T, Krabak B, Coppel D, Lewis TM, Browd S, Ojemann JG. GABA alterations in pediatric sport concussion. Neurology 2017; 89:2151-2156. [PMID: 29030453 DOI: 10.1212/wnl.0000000000004666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 09/06/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To evaluate whether frontal-lobe magnetic resonance spectroscopy measures of γ-aminobutyric acid (GABA) would be altered in a sample of adolescents scanned after sport concussion because mild traumatic brain injury is often associated with working memory problems. METHODS Eleven adolescents (age 14-17 years) who had sustained a first-time sport concussion were studied with MRI/magnetic resonance spectroscopy within 23 to 44 days after injury (mean 30.4 ± 6.1 days). Age- and sex-matched healthy controls, being seen for sports-related injuries not involving the head and with no history of concussion, were also examined. GABA/creatine + phosphocreatine (Cre) was measured in left-sided frontal lobe and central posterior cingulate regions. The frontal voxel was positioned to overlap with patient-specific activation on a 1-back working memory task. RESULTS Increased GABA/Cre was shown in the frontal lobe for the concussed group. A decreased relationship was observed in the parietal region. High correlations between GABA/Cre and task activation were observed for the control group in the frontal lobe, a relationship not shown in the concussed participants. CONCLUSIONS GABA/Cre appears increased in a region colocalized with working memory task activation after sport concussion. Further work extending these results in larger samples and at time points across the injury episode will aid in refining the clinical significance of these observations.
Collapse
Affiliation(s)
- Seth D Friedman
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Andrew V Poliakov
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Christopher Budech
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Dennis W W Shaw
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - David Breiger
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Thomas Jinguji
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Brian Krabak
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - David Coppel
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Tressa Mattioli Lewis
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Samuel Browd
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle
| | - Jeffrey G Ojemann
- From the Seattle Children's Hospital and Research Institute (S.D.F., A.V.P., C.B., D.W.W.S., D.B., T.J., B.K., D.C, T.M.L., S.B., J.G.O.) and University of Washington (D.W.W.S., D.B., T.J., B.K., D.C., S.B., J.G.O.), Seattle.
| |
Collapse
|