1
|
Cenka K, Spaccasassi C, Petkovic S, Pezzetta R, Arcara G, Avenanti A. Temporal dynamics of implicit moral evaluation: From empathy for pain to mentalizing processes. Neuropsychologia 2024; 205:109033. [PMID: 39515579 DOI: 10.1016/j.neuropsychologia.2024.109033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/01/2024] [Accepted: 11/02/2024] [Indexed: 11/16/2024]
Abstract
To understand how we evaluate harm to others, it is crucial to consider the offender's intent and the victim's suffering. Previous research investigating event-related potentials (ERPs) during moral evaluation has been limited by small sample sizes and a priori selection of electrodes and time windows that may bias the results. To overcome these limitations, we examined ERPs in 66 healthy human adults using a data-driven analytic approach involving cluster-based permutation tests. Participants performed an implicit moral evaluation task requiring to observe scenarios depicting intentional harm (IHS), accidental harm (AHS), and neutral actions (NAS) while judging whether each scenario was set indoors or outdoors. Our results revealed two distinct clusters, peaking at ∼170 and ∼250 ms, showing differences between harm scenarios (IHS and AHS) and NAS, suggesting rapid processing of the victim's physical outcome. The difference between IHS and AHS scenarios emerged later, at ∼400 ms, potentially reflecting subsequent evaluation of the agent's intentions. Source analysis showed that brain regions associated with empathy for pain were associated with the earlier peaks at ∼170 and ∼250 ms, while the modulation of the activity of the mentalizing network was presented at ∼250 and ∼400 ms. These findings advance our understanding of the neural mechanisms underlying implicit moral evaluation. Notably, they provide electrocortical new insights for models of implicit moral evaluation, suggesting an early neural response linked to empathy for pain, with subsequent integration of empathy response with mentalizing processes, followed by later cognitive evaluations, likely reflecting the assessment of the agent's moral responsibility.
Collapse
Affiliation(s)
- Kamela Cenka
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
| | - Chiara Spaccasassi
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | - Stella Petkovic
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy; Sapienza, University of Rome and CLN2S@SAPIENZA, Istituto Italiano di Tecnologia, Rome, Italy
| | | | | | - Alessio Avenanti
- Centro Studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
2
|
Butti N, Urgesi C, Makris S, McGlone FP, Montirosso R, Cazzato V. Neurophysiological evidence of motor contribution to vicarious affective touch. Cereb Cortex 2024; 34:bhae441. [PMID: 39505571 PMCID: PMC11540462 DOI: 10.1093/cercor/bhae441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/09/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Understanding observed interpersonal touch, particularly the so-called affective touch targeting the CT fibers, is essential for social interactions. Research has documented that observing other people being touched activates the same cortical areas involved in direct tactile experiences. However, observing interpersonal touch also activates an inner simulation of the movements in the observer's motor system. Given the social and affective significance of CT-optimal touch, the present study tested the hypothesis that observing stroking touches targeting or not targeting the CT fibers system might distinctly influence motor resonance to vicarious touch. With this aim, we used single-pulse transcranial magnetic stimulation and motor-evoked potentials recording while participants observed video clips of interpersonal touch events at different stroking velocities. We found a modulation of motor system activity, particularly a decrease in corticospinal excitability, when observing CT-optimal touch as opposed to non-CT-optimal velocities, a mechanism that might aid in understanding the touchee's feelings during vicarious interpersonal touch. Moreover, participants with higher reliance on bodily cues to be emotionally aware showed greater motor suppression for CT-optimal compared to non-CT-optimal velocities. These results shed light on the complex interplay between motor and somatosensory systems in social touch perception and emphasize the importance of affective touch in human social interactions.
Collapse
Affiliation(s)
- Niccolò Butti
- Scientific Institute, IRCCS E. Medea, 0-3 Center for the at-Risk Infant, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
- PhD Program in Neural and Cognitive Sciences, Department of Life Sciences, University of Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Pasian di Prato, Via Cialdini 29, 33037 Pasian di Prato (UD), Italy
- Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Via Margreth 3, 33100 Udine, Italy
| | - Stergios Makris
- Department of Psychology and Research Centre for Arts and Wellbeing, Edge Hill University, St Helens Road, Ormskirk, Lancashire L39 4QP, United Kingdom
| | - Francis P McGlone
- Faculty of Science & Engineering, School of Life Sciences, Manchester Metropolitan University, All Saints Building, Manchester M15 6BH, United Kingdom
- School of Science, Department of Neuroscience and Biomedical Engineering, Aalto University, Otakaari 24, 02150 Espoo, Finland
| | - Rosario Montirosso
- Scientific Institute, IRCCS E. Medea, 0-3 Center for the at-Risk Infant, Via Don Luigi Monza 20, 23842 Bosisio Parini (LC), Italy
| | - Valentina Cazzato
- School of Psychology, Faculty of Health, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool L3 3AF, United Kingdom
- Department of Cognitive, Psychological and Pedagogical Sciences, and Cultural Studies, University of Messina, Via Concezione 6, 98121 Messina, Italy
| |
Collapse
|
3
|
Lacey S, Matthews KL, Sathian K, Nygaard LC. PHONETIC UNDERPINNINGS OF SOUND SYMBOLISM ACROSS MULTIPLE DOMAINS OF MEANING. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.03.610970. [PMID: 39282365 PMCID: PMC11398306 DOI: 10.1101/2024.09.03.610970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Sound symbolism occurs when the sound of a word alone can convey its meaning, e.g. 'balloon' and 'spike' sound rounded and pointed, respectively. Sound-symbolic correspondences are widespread in natural languages, but it is unclear how they are instantiated across different domains of meaning. Here, participants rated auditory pseudowords on opposing scales of seven different sound-symbolic domains: shape (rounded-pointed), texture (hard-soft), weight (light-heavy), size (small-big), brightness (bright-dark), arousal (calming-exciting), and valence (good-bad). Ratings showed cross-domain relationships, some mirroring those between corresponding physical domains, e.g. size and weight ratings were associated, reflecting a physical size-weight relationship, while others involved metaphorical mappings, e.g., bright/dark mapped onto good/bad, respectively. The phonetic features of the pseudowords formed unique sets with characteristic feature weightings for each domain and tended to follow the cross-domain ratings relationships. These results suggest that sound-symbolic correspondences rely on domain-specific patterns of phonetic features, with cross-domain correspondences reflecting physical or metaphorical relationships.
Collapse
Affiliation(s)
- Simon Lacey
- Department of Neurology, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural & Behavioral Sciences, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Kaitlyn L. Matthews
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
- Present address: Department of Psychological & Brain Sciences, Washington University in St. Louis, St. Louis, MO 63130
| | - K. Sathian
- Department of Neurology, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Neural & Behavioral Sciences, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
- Department of Psychology, Milton S. Hershey Medical Center & Penn State College of Medicine, Hershey, PA 17033-0859, USA
| | - Lynne C. Nygaard
- Department of Psychology, Emory University, Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Antonioni A, Raho EM, Straudi S, Granieri E, Koch G, Fadiga L. The cerebellum and the Mirror Neuron System: A matter of inhibition? From neurophysiological evidence to neuromodulatory implications. A narrative review. Neurosci Biobehav Rev 2024; 164:105830. [PMID: 39069236 DOI: 10.1016/j.neubiorev.2024.105830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/20/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Mirror neurons show activity during both the execution (AE) and observation of actions (AO). The Mirror Neuron System (MNS) could be involved during motor imagery (MI) as well. Extensive research suggests that the cerebellum is interconnected with the MNS and may be critically involved in its activities. We gathered evidence on the cerebellum's role in MNS functions, both theoretically and experimentally. Evidence shows that the cerebellum plays a major role during AO and MI and that its lesions impair MNS functions likely because, by modulating the activity of cortical inhibitory interneurons with mirror properties, the cerebellum may contribute to visuomotor matching, which is fundamental for shaping mirror properties. Indeed, the cerebellum may strengthen sensory-motor patterns that minimise the discrepancy between predicted and actual outcome, both during AE and AO. Furthermore, through its connections with the hippocampus, the cerebellum might be involved in internal simulations of motor programs during MI. Finally, as cerebellar neuromodulation might improve its impact on MNS activity, we explored its potential neurophysiological and neurorehabilitation implications.
Collapse
Affiliation(s)
- Annibale Antonioni
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy; Doctoral Program in Translational Neurosciences and Neurotechnologies, University of Ferrara, Ferrara 44121, Italy.
| | - Emanuela Maria Raho
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Sofia Straudi
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Department of Neuroscience, Ferrara University Hospital, Ferrara 44124, Italy
| | - Enrico Granieri
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy
| | - Giacomo Koch
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy; Non Invasive Brain Stimulation Unit, Istituto di Ricovero e Cura a Carattere Scientifico Santa Lucia, Rome 00179, Italy
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara 44121, Italy; Center for Translational Neurophysiology of Speech and Communication (CTNSC), Italian Institute of Technology (IIT), Ferrara 44121 , Italy
| |
Collapse
|
5
|
Tanaka M, Battaglia S, Giménez-Llort L, Chen C, Hepsomali P, Avenanti A, Vécsei L. Innovation at the Intersection: Emerging Translational Research in Neurology and Psychiatry. Cells 2024; 13:790. [PMID: 38786014 PMCID: PMC11120114 DOI: 10.3390/cells13100790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 04/28/2024] [Indexed: 05/25/2024] Open
Abstract
Translational research in neurological and psychiatric diseases is a rapidly advancing field that promises to redefine our approach to these complex conditions [...].
Collapse
Affiliation(s)
- Masaru Tanaka
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
| | - Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Lydia Giménez-Llort
- Institut de Neurociències, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain;
- Department of Psychiatry & Forensic Medicine, Faculty of Medicine, Campus Bellaterra, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Chong Chen
- Division of Neuropsychiatry, Department of Neuroscience, Yamaguchi University Graduate School of Medicine, Yamaguchi 755-8505, Japan;
| | - Piril Hepsomali
- School of Psychology and Clinical Language Sciences, University of Reading, Reading RG6 6ET, UK;
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy;
- Neuropsychology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| | - László Vécsei
- HUN-REN-SZTE Neuroscience Research Group, Hungarian Research Network, University of Szeged (HUN-REN-SZTE), Danube Neuroscience Research Laboratory, Tisza Lajos krt. 113, H-6725 Szeged, Hungary;
- Department of Neurology, Albert Szent-Györgyi Medical School, University of Szeged, Semmelweis u. 6, H-6725 Szeged, Hungary
| |
Collapse
|
6
|
Chiappini E, Turrini S, Zanon M, Marangon M, Borgomaneri S, Avenanti A. Driving Hebbian plasticity over ventral premotor-motor projections transiently enhances motor resonance. Brain Stimul 2024; 17:211-220. [PMID: 38387557 DOI: 10.1016/j.brs.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/23/2023] [Accepted: 02/16/2024] [Indexed: 02/24/2024] Open
Abstract
BACKGROUND Making sense of others' actions relies on the activation of an action observation network (AON), which maps visual information about observed actions onto the observer's motor system. This motor resonance process manifests in the primary motor cortex (M1) as increased corticospinal excitability finely tuned to the muscles engaged in the observed action. Motor resonance in M1 is facilitated by projections from higher-order AON regions. However, whether manipulating the strength of AON-to-M1 connectivity affects motor resonance remains unclear. METHODS We used transcranial magnetic stimulation (TMS) in 48 healthy humans. Cortico-cortical paired associative stimulation (ccPAS) was administered over M1 and the ventral premotor cortex (PMv), a key AON node, to induce spike-timing-dependent plasticity (STDP) in the pathway connecting them. Single-pulse TMS assessed motor resonance during action observation. RESULTS Before ccPAS, action observation increased corticospinal excitability in the muscles corresponding to the observed movements, reflecting motor resonance in M1. Notably, ccPAS aimed at strengthening projections from PMv to M1 (PMv→M1) induced short-term enhancement of motor resonance. The enhancement specifically occurred with the ccPAS configuration consistent with forward PMv→M1 projections and dissipated 20 min post-stimulation; ccPAS administered in the reverse order (M1→PMv) and sham stimulation did not affect motor resonance. CONCLUSIONS These findings provide the first evidence that inducing STDP to strengthen PMv input to M1 neurons causally enhances muscle-specific motor resonance in M1. Our study sheds light on the plastic mechanisms that shape AON functionality and demonstrates that exogenous manipulation of AON connectivity can influence basic mirror mechanisms that underlie social perception.
Collapse
Affiliation(s)
- Emilio Chiappini
- Department of Clinical and Health Psychology, University of Vienna, 1010, Vienna, Austria; Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), 44139, Dortmund, Germany.
| | - Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA, 02114, United States
| | - Marco Zanon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Neuroscience Area, International School for Advanced Studies (SISSA), 34136, Trieste, Italy
| | - Mattia Marangon
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Dipartimento di Neuroscienze, Biomedicina e Scienze del Movimento, Sezione di Fisiologia e Psicologia, Università di Verona, 37124, Verona, Italy
| | - Sara Borgomaneri
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, 47521, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, 346000, Talca, Chile.
| |
Collapse
|
7
|
Rizzo G, Martino D, Avanzino L, Avenanti A, Vicario CM. Social cognition in hyperkinetic movement disorders: a systematic review. Soc Neurosci 2023; 18:331-354. [PMID: 37580305 DOI: 10.1080/17470919.2023.2248687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 07/10/2023] [Accepted: 08/09/2023] [Indexed: 08/16/2023]
Abstract
Numerous lines of research indicate that our social brain involves a network of cortical and subcortical brain regions that are responsible for sensing and controlling body movements. However, it remains unclear whether movement disorders have a systematic impact on social cognition. To address this question, we conducted a systematic review examining the influence of hyperkinetic movement disorders (including Huntington disease, Tourette syndrome, dystonia, and essential tremor) on social cognition. Following the PRISMA guidelines and registering the protocol in the PROSPERO database (CRD42022327459), we analyzed 50 published studies focusing on theory of mind (ToM), social perception, and empathy. The results from these studies provide evidence of impairments in ToM and social perception in all hyperkinetic movement disorders, particularly during the recognition of negative emotions. Additionally, individuals with Huntington's Disease and Tourette syndrome exhibit empathy disorders. These findings support the functional role of subcortical structures (such as the basal ganglia and cerebellum), which are primarily responsible for movement disorders, in deficits related to social cognition.
Collapse
Affiliation(s)
- Gaetano Rizzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| | - Davide Martino
- Department of Clinical Neurosciences, Hotchkiss Brain Institute, Alberta Children's Hospital Research Institute, University of Calgary, Calgary, Alberta, Canada
| | - Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology, University of Genoa, Genoa, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Campus di Cesena, Alma Mater Studiorum Università di Bologna, Cesena, Italy
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Carmelo Mario Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Università di Messina, Messina, Italy
| |
Collapse
|
8
|
Borgomaneri S, Zanon M, Di Luzio P, Cataneo A, Arcara G, Romei V, Tamietto M, Avenanti A. Increasing associative plasticity in temporo-occipital back-projections improves visual perception of emotions. Nat Commun 2023; 14:5720. [PMID: 37737239 PMCID: PMC10517146 DOI: 10.1038/s41467-023-41058-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
The posterior superior temporal sulcus (pSTS) is a critical node in a network specialized for perceiving emotional facial expressions that is reciprocally connected with early visual cortices (V1/V2). Current models of perceptual decision-making increasingly assign relevance to recursive processing for visual recognition. However, it is unknown whether inducing plasticity into reentrant connections from pSTS to V1/V2 impacts emotion perception. Using a combination of electrophysiological and neurostimulation methods, we demonstrate that strengthening the connectivity from pSTS to V1/V2 selectively increases the ability to perceive facial expressions associated with emotions. This behavior is associated with increased electrophysiological activity in both these brain regions, particularly in V1/V2, and depends on specific temporal parameters of stimulation that follow Hebbian principles. Therefore, we provide evidence that pSTS-to-V1/V2 back-projections are instrumental to perception of emotion from facial stimuli and functionally malleable via manipulation of associative plasticity.
Collapse
Affiliation(s)
- Sara Borgomaneri
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
| | - Marco Zanon
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Neuroscience Area, International School for Advanced Studies (SISSA), Trieste, Italy
| | - Paolo Di Luzio
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | - Antonio Cataneo
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
| | | | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy
- Facultad de Lenguas y Educación, Universidad Antonio de Nebrija, Madrid, 28015, Spain
| | - Marco Tamietto
- Dipartimento di Psicologia, Università degli Studi di Torino, Torino, Italy.
- Department of Medical and Clinical Psychology, Tilburg University, Tilburg, The Netherlands.
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena, Italy.
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
9
|
Cristiano A, Finisguerra A, Urgesi C, Avenanti A, Tidoni E. Functional role of the theory of mind network in integrating mentalistic prior information with action kinematics during action observation. Cortex 2023; 166:107-120. [PMID: 37354870 DOI: 10.1016/j.cortex.2023.05.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 02/27/2023] [Accepted: 05/15/2023] [Indexed: 06/26/2023]
Abstract
Inferring intentions from verbal and nonverbal human behaviour is critical for everyday social life. Here, we combined Transcranial Magnetic Stimulation (TMS) with a behavioural priming paradigm to test whether key nodes of the Theory of Mind network (ToMn) contribute to understanding others' intentions by integrating prior knowledge about an agent with the observed action kinematics. We used a modified version of the Faked-Action Discrimination Task (FAD), a forced-choice paradigm in which participants watch videos of actors lifting a cube and judge whether the actors are trying to deceive them concerning the weight of the cube. Videos could be preceded or not by verbal description (prior) about the agent's truthful or deceitful intent. We applied single pulse TMS over three key nodes of the ToMn, namely dorsomedial prefrontal cortex (dmPFC), right posterior superior temporal sulcus (pSTS) and right temporo-parietal junction (rTPJ). Sham-TMS served as a control (baseline) condition. Following sham or rTPJ stimulation, we observed no consistent influence of priors on FAD performance. In contrast, following dmPFC stimulation, and to a lesser extent pSTS stimulation, truthful and deceitful actions were perceived as more deceptive only when the prior suggested a dishonest intention. These findings highlight a functional role of dmPFC and pSTS in coupling prior knowledge about deceptive intents with observed action kinematics in order to judge faked actions. Our study provides causal evidence that fronto-temporal nodes of the ToMn are functionally relevant to mental state inference during action observation.
Collapse
Affiliation(s)
- Azzurra Cristiano
- Department of Psychology, Sapienza University of Rome and CLN(2)S@Sapienza, Italian Institute of Technology, Rome, Italy; IRCCS Santa Lucia Foundation, Rome, Italy.
| | | | - Cosimo Urgesi
- Scientific Institute, IRCCS E. Medea, Neuropsychiatry and Neurorehabilitation Unit, Bosisio Parini, Lecco, Italy; Laboratory of Cognitive Neuroscience, Department of Languages and Literatures, Communication, Education and Society, University of Udine, Udine, Italy
| | - Alessio Avenanti
- Department of Psychology, Centro Studi e Ricerche in Neuroscienze Cognitive, Alma Mater Studiorum - University of Bologna, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca, Chile.
| | - Emmanuele Tidoni
- Human Technology Laboratory, School of Psychology and Social Work, University of Hull, Hull, UK; School of Psychology, University of Leeds, Leeds, UK.
| |
Collapse
|
10
|
Tortora F, Hadipour AL, Battaglia S, Falzone A, Avenanti A, Vicario CM. The Role of Serotonin in Fear Learning and Memory: A Systematic Review of Human Studies. Brain Sci 2023; 13:1197. [PMID: 37626553 PMCID: PMC10452575 DOI: 10.3390/brainsci13081197] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Fear is characterized by distinct behavioral and physiological responses that are essential for the survival of the human species. Fear conditioning (FC) serves as a valuable model for studying the acquisition, extinction, and expression of fear. The serotonin (5-hydroxytryptamine, 5-HT) system is known to play a significant role in emotional and motivational aspects of human behavior, including fear learning and expression. Accumulating evidence from both animal and human studies suggests that brain regions involved in FC, such as the amygdala, hippocampus, and prefrontal cortex, possess a high density of 5-HT receptors, implicating the crucial involvement of serotonin in aversive learning. Additionally, studies exploring serotonin gene polymorphisms have indicated their potential influence on FC. Therefore, the objective of this work was to review the existing evidence linking 5-HT with fear learning and memory in humans. Through a comprehensive screening of the PubMed and Web of Science databases, 29 relevant studies were included in the final review. These studies investigated the relationship between serotonin and fear learning using drug manipulations or by studying 5-HT-related gene polymorphisms. The results suggest that elevated levels of 5-HT enhance aversive learning, indicating that the modulation of serotonin 5-HT2A receptors regulates the expression of fear responses in humans. Understanding the role of this neurochemical messenger in associative aversive learning can provide insights into psychiatric disorders such as anxiety and post-traumatic stress disorder (PTSD), among others.
Collapse
Affiliation(s)
- Francesco Tortora
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Abed L. Hadipour
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Simone Battaglia
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
| | - Alessandra Falzone
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia “Renzo Canestrari”, Campus di Cesena, Alma Mater Studiorum Università di Bologna, Viale Rasi e Spinelli 176, 47521 Cesena, Italy;
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica Del Maule, Talca 3460000, Chile
| | - Carmelo M. Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università Degli Studi di Messina, Via Concezione 6, 98121 Messina, Italy; (F.T.); (A.F.)
| |
Collapse
|
11
|
Jung C, Kim J, Park K. Cognitive and affective interaction with somatosensory afference in acupuncture-a specific brain response to compound stimulus. Front Hum Neurosci 2023; 17:1105703. [PMID: 37415858 PMCID: PMC10321409 DOI: 10.3389/fnhum.2023.1105703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 06/05/2023] [Indexed: 07/08/2023] Open
Abstract
Introduction Acupuncture is a clinical intervention consisting of multiple stimulus components, including somatosensory stimulation and manipulation of therapeutic context. Existing findings in neuroscience consolidated cognitive modulation to somatosensory afferent process, which could differ from placebo mechanism in brain. Here, we aimed to identify intrinsic process of brain interactions induced by compound stimulus of acupuncture treatment. Methods To separately and comprehensively investigate somatosensory afferent and cognitive/affective processes in brain, we implemented a novel experimental protocol of contextual manipulation with somatosensory stimulation (real acupuncture: REAL) and only contextual manipulation (phantom acupuncture: PHNT) for fMRI scan, and conducted independent component (IC)-wise assessment with the concatenated fMRI data. Results By our double (experimentally and analytically) dissociation, two ICs (CA1: executive control, CA2: goal-directed sensory process) for cognitive/affective modulation (associated with both REAL and PHNT) and other two ICs (SA1: interoceptive attention and motor-reaction, SA2: somatosensory representation) for somatosensory afference (associated with only REAL) were identified. Moreover, coupling between SA1 and SA2 was associated with a decreased heart rate during stimulation, whereas CA1 was associated with a delayed heart rate decrease post-stimulation. Furthermore, partial correlation network for these components demonstrated a bi-directional interaction between CA1 and SA1/SA2, suggesting the cognitive modulation to somatosensory process. The expectation for the treatment negatively affected CA1 but positively affected SA1 in REAL, whereas the expectation positively affected CA1 in PHNT. Discussion These specific cognitive-somatosensory interaction in REAL were differed from vicarious sensation mechanism in PHNT; and might be associated with a characteristic of acupuncture, which induces voluntary attention for interoception. Our findings on brain interactions in acupuncture treatment elucidated the underlying brain mechanisms for compound stimulus of somatosensory afferent and therapeutic contextual manipulation, which might be a specific response to acupuncture.
Collapse
Affiliation(s)
- Changjin Jung
- Department of Electronics and Information Convergence Engineering, Kyung Hee University, Yongin, Republic of Korea
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Jieun Kim
- Division of KM Science Research, Korea Institute of Oriental Medicine, Daejeon, Republic of Korea
| | - Kyungmo Park
- Department of Biomedical Engineering, Kyung Hee University, Yongin, Republic of Korea
| |
Collapse
|
12
|
Turrini S, Fiori F, Chiappini E, Lucero B, Santarnecchi E, Avenanti A. Cortico-cortical paired associative stimulation (ccPAS) over premotor-motor areas affects local circuitries in the human motor cortex via Hebbian plasticity. Neuroimage 2023; 271:120027. [PMID: 36925088 DOI: 10.1016/j.neuroimage.2023.120027] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 03/09/2023] [Accepted: 03/13/2023] [Indexed: 03/17/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) studies have shown that cortico-cortical paired associative stimulation (ccPAS) can strengthen connectivity between the ventral premotor cortex (PMv) and the primary motor cortex (M1) by modulating convergent input over M1 via Hebbian spike-timing-dependent plasticity (STDP). However, whether ccPAS locally affects M1 activity remains unclear. We tested 60 right-handed young healthy humans in two studies, using a combination of dual coil TMS and ccPAS over the left PMv and M1 to probe and manipulate PMv-to-M1 connectivity, and single- and paired-pulse TMS to assess neural activity within M1. We provide convergent evidence that ccPAS, relying on repeated activations of excitatory PMv-to-M1 connections, acts locally over M1. During ccPAS, motor-evoked potentials (MEPs) induced by paired PMv-M1 stimulation gradually increased. Following ccPAS, the threshold for inducing MEPs of different amplitudes decreased, and the input-output curve (IO) slope increased, highlighting increased M1 corticospinal excitability. Moreover, ccPAS reduced the magnitude of short-interval intracortical inhibition (SICI), reflecting suppression of GABA-ergic interneuronal mechanisms within M1, without affecting intracortical facilitation (ICF). These changes were specific to ccPAS Hebbian strengthening of PMv-to-M1 connectivity, as no modulations were observed when reversing the order of the PMv-M1 stimulation during a control ccPAS protocol. These findings expand prior ccPAS research that focused on the malleability of cortico-cortical connectivity at the network-level, and highlight local changes in the area of convergent activation (i.e., M1) during plasticity induction. These findings provide new mechanistic insights into the physiological basis of ccPAS that are relevant for protocol optimization.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States.
| | - Francesca Fiori
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; NeXT: Neurophysiology and Neuro-Engineering of Human-Technology Interaction Research Unit, Campus Bio-Medico University, Rome 00128, Italy
| | - Emilio Chiappini
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Institut für Klinische und Gesundheitspsychologie, Universität Wien, Vienna 1010, Austria
| | - Boris Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, United States
| | - Alessio Avenanti
- Centro studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Cesena Campus, Cesena 47521, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas (CINPSI Neurocog), Universidad Católica Del Maule, Talca 346000, Chile.
| |
Collapse
|
13
|
Li T, Zhu X, Wu X, Gong Y, Jones JA, Liu P, Chang Y, Yan N, Chen X, Liu H. Continuous theta burst stimulation over left and right supramarginal gyri demonstrates their involvement in auditory feedback control of vocal production. Cereb Cortex 2022; 33:11-22. [PMID: 35174862 DOI: 10.1093/cercor/bhac049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 01/25/2022] [Accepted: 01/26/2022] [Indexed: 01/06/2023] Open
Abstract
The supramarginal gyrus (SMG) has been implicated in auditory-motor integration for vocal production. However, whether the SMG is bilaterally or unilaterally involved in auditory feedback control of vocal production in a causal manner remains unclear. The present event-related potential (ERP) study investigated the causal roles of the left and right SMG to auditory-vocal integration using neuronavigated continuous theta burst stimulation (c-TBS). Twenty-four young adults produced sustained vowel phonations and heard their voice unexpectedly pitch-shifted by ±200 cents after receiving active or sham c-TBS over the left or right SMG. As compared to sham stimulation, c-TBS over the left or right SMG led to significantly smaller vocal compensations for pitch perturbations that were accompanied by smaller cortical P2 responses. Moreover, no significant differences were found in the vocal and ERP responses when comparing active c-TBS over the left vs. right SMG. These findings provide neurobehavioral evidence for a causal influence of both the left and right SMG on auditory feedback control of vocal production. Decreased vocal compensations paralleled by reduced P2 responses following c-TBS over the bilateral SMG support their roles for auditory-motor transformation in a bottom-up manner: receiving auditory feedback information and mediating vocal compensations for feedback errors.
Collapse
Affiliation(s)
- Tingni Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoxia Zhu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiuqin Wu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yulai Gong
- Department of Neurological Rehabilitation, Affiliated Sichuan Provincial Rehabilitation Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 611135, China
| | - Jeffery A Jones
- Psychology Department and Laurier Centre for Cognitive Neuroscience, Wilfrid Laurier University, Waterloo, Ontario, N2L 3C5, Canada
| | - Peng Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yichen Chang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Nan Yan
- CAS Key Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Guangdong-Hong Kong-Macao Joint Laboratory of Human-Machine Intelligence-Synergy Systems, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Xi Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Hanjun Liu
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China.,Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| |
Collapse
|
14
|
Breveglieri R, Borgomaneri S, Filippini M, Tessari A, Galletti C, Davare M, Fattori P. Complementary contribution of the medial and lateral human parietal cortex to grasping: a repetitive TMS study. Cereb Cortex 2022; 33:5122-5134. [PMID: 36245221 PMCID: PMC10152058 DOI: 10.1093/cercor/bhac404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 08/13/2022] [Accepted: 09/15/2022] [Indexed: 11/14/2022] Open
Abstract
Abstract
The dexterous control of our grasping actions relies on the cooperative activation of many brain areas. In the parietal lobe, 2 grasp-related areas collaborate to orchestrate an accurate grasping action: dorsolateral area AIP and dorsomedial area V6A. Single-cell recordings in monkeys and fMRI studies in humans have suggested that both these areas specify grip aperture and wrist orientation, but encode these grasping parameters differently, depending on the context. To elucidate the causal role of phAIP and hV6A, we stimulated these areas, while participants were performing grasping actions (unperturbed grasping). rTMS over phAIP impaired the wrist orientation process, whereas stimulation over hV6A impaired grip aperture encoding. In a small percentage of trials, an unexpected reprogramming of grip aperture or wrist orientation was required (perturbed grasping). In these cases, rTMS over hV6A or over phAIP impaired reprogramming of both grip aperture and wrist orientation. These results represent the first direct demonstration of a different encoding of grasping parameters by 2 grasp-related parietal areas.
Collapse
Affiliation(s)
- Rossella Breveglieri
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Sara Borgomaneri
- University of Bologna Center for studies and research in Cognitive Neuroscience, , 47521 Cesena , Italy
- IRCCS Santa Lucia Foundation , 00179 Rome , Italy
| | - Matteo Filippini
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Alessia Tessari
- University of Bologna Department of Psychology, , 40127 Bologna , Italy
| | - Claudio Galletti
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
| | - Marco Davare
- Faculty of Life Sciences and Medicine, King's College London, SE1 1UL London, United Kingdom
| | - Patrizia Fattori
- University of Bologna Department of Biomedical and Neuromotor Sciences, , 40126 Bologna , Italy
- University of Bologna Alma Mater Research Institute For Human-Centered Artificial Intelligence (Alma Human AI), , Bologna , Italy
| |
Collapse
|
15
|
Turrini S, Fiori F, Chiappini E, Santarnecchi E, Romei V, Avenanti A. Gradual enhancement of corticomotor excitability during cortico-cortical paired associative stimulation. Sci Rep 2022; 12:14670. [PMID: 36038605 PMCID: PMC9424198 DOI: 10.1038/s41598-022-18774-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 08/18/2022] [Indexed: 12/03/2022] Open
Abstract
Cortico-cortical paired associative stimulation (ccPAS) is an effective transcranial magnetic stimulation (TMS) method for inducing associative plasticity between interconnected brain areas in humans. Prior ccPAS studies have focused on protocol’s aftereffects. Here, we investigated physiological changes induced “online” during ccPAS administration. We tested 109 participants receiving ccPAS over left ventral premotor cortex (PMv) and primary motor cortex (M1) using a standard procedure (90 paired-pulses with 8-ms interstimulus interval, repeated at 0.1 Hz frequency). On each paired-pulse, we recorded a motor-evoked potential (MEP) to continuously trace the emergence of corticomotor changes. Participant receiving forward-ccPAS (on each pair, a first TMS pulse was administered over PMv, second over M1, i.e., PMv-to-M1) showed a gradual and linear increase in MEP size that did not reach a plateau at the end of the protocol and was greater in participants with low motor threshold. Participants receiving reverse-ccPAS (i.e., M1-to-PMv) showed a trend toward inhibition. Our study highlights the facilitatory and inhibitory modulations that occur during ccPAS administration and suggest that online MEP monitoring could provide insights into the malleability of the motor system and protocol’s effectiveness. Our findings open interesting prospects about ccPAS potential optimization in experimental and clinical settings.
Collapse
Affiliation(s)
- Sonia Turrini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Francesca Fiori
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,NeXT: Unità di ricerca di Neurofisiologia e Neuroingegneria dell'Interazione Uomo-Tecnologia, Università Campus Bio-Medico, Rome, Italy
| | - Emilio Chiappini
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,Institut für Klinische und Gesundheitspsychologie, Universität Wien, Wien, Austria
| | - Emiliano Santarnecchi
- Precision Neuroscience and Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Vincenzo Romei
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Alessio Avenanti
- Centro Studi e Ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Alma Mater Studiorum - Università di Bologna, Campus di Cesena. Via Rasi Spinelli 176, 47521, Cesena, Italy. .,Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile.
| |
Collapse
|
16
|
Spaccasassi C, Zanon M, Borgomaneri S, Avenanti A. Mu rhythm and corticospinal excitability capture two different frames of motor resonance: A TMS/EEG co-registration study. Cortex 2022; 154:197-211. [DOI: 10.1016/j.cortex.2022.04.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/28/2022] [Accepted: 04/18/2022] [Indexed: 11/03/2022]
|
17
|
Kislinger L. Photographs of Actions: What Makes Them Special Cues to Social Perception. Brain Sci 2021; 11:brainsci11111382. [PMID: 34827381 PMCID: PMC8615998 DOI: 10.3390/brainsci11111382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 11/16/2022] Open
Abstract
I have reviewed studies on neural responses to pictured actions in the action observation network (AON) and the cognitive functions of these responses. Based on this review, I have analyzed the specific representational characteristics of action photographs. There has been consensus that AON responses provide viewers with knowledge of observed or pictured actions, but there has been controversy about the properties of this knowledge. Is this knowledge causally provided by AON activities or is it dependent on conceptual processing? What elements of actions does it refer to, and how generalized or specific is it? The answers to these questions have come from studies that used transcranial magnetic stimulation (TMS) to stimulate motor or somatosensory cortices. In conjunction with electromyography (EMG), TMS allows researchers to examine changes of the excitability in the corticospinal tract and muscles of people viewing pictured actions. The timing of these changes and muscle specificity enable inferences to be drawn about the cognitive products of processing pictured actions in the AON. Based on a review of studies using TMS and other neuroscience methods, I have proposed a novel hypothetical account that describes the characteristics of action photographs that make them effective cues to social perception. This account includes predictions that can be tested experimentally.
Collapse
|
18
|
Motor Cortex Causally Contributes to Vocabulary Translation following Sensorimotor-Enriched Training. J Neurosci 2021; 41:8618-8631. [PMID: 34429380 DOI: 10.1523/jneurosci.2249-20.2021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
The role of the motor cortex in perceptual and cognitive functions is highly controversial. Here, we investigated the hypothesis that the motor cortex can be instrumental for translating foreign language vocabulary. Human participants of both sexes were trained on foreign language (L2) words and their native language translations over 4 consecutive days. L2 words were accompanied by complementary gestures (sensorimotor enrichment) or pictures (sensory enrichment). Following training, participants translated the auditorily presented L2 words that they had learned. During translation, repetitive transcranial magnetic stimulation was applied bilaterally to a site within the primary motor cortex (Brodmann area 4) located in the vicinity of the arm functional compartment. Responses within the stimulated motor region have previously been found to correlate with behavioral benefits of sensorimotor-enriched L2 vocabulary learning. Compared to sham stimulation, effective perturbation by repetitive transcranial magnetic stimulation slowed down the translation of sensorimotor-enriched L2 words, but not sensory-enriched L2 words. This finding suggests that sensorimotor-enriched training induced changes in L2 representations within the motor cortex, which in turn facilitated the translation of L2 words. The motor cortex may play a causal role in precipitating sensorimotor-based learning benefits, and may directly aid in remembering the native language translations of foreign language words following sensorimotor-enriched training. These findings support multisensory theories of learning while challenging reactivation-based theories.SIGNIFICANCE STATEMENT Despite the potential for sensorimotor enrichment to serve as a powerful tool for learning in many domains, its underlying brain mechanisms remain largely unexplored. Using transcranial magnetic stimulation and a foreign language (L2) learning paradigm, we found that sensorimotor-enriched training can induce changes in L2 representations within the motor cortex, which in turn causally facilitate the translation of L2 words. The translation of recently acquired L2 words may therefore rely not only on auditory information stored in memory or on modality-independent L2 representations, but also on the sensorimotor context in which the words have been experienced.
Collapse
|
19
|
Weilnhammer V, Fritsch M, Chikermane M, Eckert AL, Kanthak K, Stuke H, Kaminski J, Sterzer P. An active role of inferior frontal cortex in conscious experience. Curr Biol 2021; 31:2868-2880.e8. [PMID: 33989530 DOI: 10.1016/j.cub.2021.04.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/22/2021] [Accepted: 04/19/2021] [Indexed: 11/29/2022]
Abstract
In the search for the neural correlates of consciousness, it has remained controversial whether prefrontal cortex determines what is consciously experienced or, alternatively, serves only complementary functions, such as introspection or action. Here, we provide converging evidence from computational modeling and two functional magnetic resonance imaging experiments that indicated a key role of inferior frontal cortex in detecting perceptual conflicts caused by ambiguous sensory information. Crucially, the detection of perceptual conflicts by prefrontal cortex turned out to be critical in the process of transforming ambiguous sensory information into unambiguous conscious experiences: in a third experiment, disruption of neural activity in inferior frontal cortex through transcranial magnetic stimulation slowed down the updating of conscious experience that occurs in response to perceptual conflicts. These findings show that inferior frontal cortex actively contributes to the resolution of perceptual ambiguities. Prefrontal cortex is thus causally involved in determining the contents of conscious experience.
Collapse
Affiliation(s)
- Veith Weilnhammer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, 10178 Berlin, Germany.
| | - Merve Fritsch
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Meera Chikermane
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna-Lena Eckert
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Katharina Kanthak
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Heiner Stuke
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, 10178 Berlin, Germany
| | - Jakob Kaminski
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, 10178 Berlin, Germany
| | - Philipp Sterzer
- Department of Psychiatry, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin Institute of Health, Charité-Universitätsmedizin Berlin and Max Delbrück Center, 10178 Berlin, Germany; Bernstein Center for Computational Neuroscience, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany; Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, 10099 Berlin, Germany; Einstein Center for Neurosciences Berlin, Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
| |
Collapse
|
20
|
Dissociable effects of averted "gaze" on the priming of bodily representations and motor actions. Acta Psychol (Amst) 2021; 212:103225. [PMID: 33260014 DOI: 10.1016/j.actpsy.2020.103225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 11/12/2020] [Accepted: 11/17/2020] [Indexed: 01/18/2023] Open
Abstract
Gaze direction is an important stimulus that signals key details about social (dis)engagement and objects in our physical environment. Here, we explore how gaze direction influences the perceiver's processing of bodily information. Specifically, we examined how averted versus direct gaze modifies the operation of effector-centered representations (i.e., specific fingers) versus movement-centered representations (i.e., finger actions). Study 1 used a stimulus-response compatibility paradigm that tested the priming of a relevant effector or relevant movement, after observing videos of direct or averted gaze. We found a selective priming of relevant effectors, but only after averted gaze videos. Study 2 found similar priming effects with symbolic direction cues (averted arrows). Study 3 found that averted gaze cues do not influence generic spatial compatibility effects, and thus, are specific to body representations. In sum, this research suggests that both human and symbolic averted cues selectively prime relevant body-part representations, highlighting the dynamic interplay between our bodies, minds, and environments.
Collapse
|
21
|
Breveglieri R, Bosco A, Borgomaneri S, Tessari A, Galletti C, Avenanti A, Fattori P. Transcranial Magnetic Stimulation Over the Human Medial Posterior Parietal Cortex Disrupts Depth Encoding During Reach Planning. Cereb Cortex 2021; 31:267-280. [PMID: 32995831 DOI: 10.1093/cercor/bhaa224] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/01/2020] [Accepted: 07/23/2020] [Indexed: 11/12/2022] Open
Abstract
Accumulating evidence supports the view that the medial part of the posterior parietal cortex (mPPC) is involved in the planning of reaching, but while plenty of studies investigated reaching performed toward different directions, only a few studied different depths. Here, we investigated the causal role of mPPC (putatively, human area V6A-hV6A) in encoding depth and direction of reaching. Specifically, we applied single-pulse transcranial magnetic stimulation (TMS) over the left hV6A at different time points while 15 participants were planning immediate, visually guided reaching by using different eye-hand configurations. We found that TMS delivered over hV6A 200 ms after the Go signal affected the encoding of the depth of reaching by decreasing the accuracy of movements toward targets located farther with respect to the gazed position, but only when they were also far from the body. The effectiveness of both retinotopic (farther with respect to the gaze) and spatial position (far from the body) is in agreement with the presence in the monkey V6A of neurons employing either retinotopic, spatial, or mixed reference frames during reach plan. This work provides the first causal evidence of the critical role of hV6A in the planning of visually guided reaching movements in depth.
Collapse
Affiliation(s)
- Rossella Breveglieri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Annalisa Bosco
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Sara Borgomaneri
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,IRCCS, Santa Lucia Foundation, 00179 Rome, Italy
| | - Alessia Tessari
- Department of Psychology, University of Bologna, 40127 Bologna, Italy
| | - Claudio Galletti
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| | - Alessio Avenanti
- Center for studies and research in Cognitive Neuroscience, University of Bologna, 47521 Cesena, Italy.,Center for research in Neuropsychology and Cognitive Neurosciences, Catholic University of Maule, 3460000 Talca, Chile
| | - Patrizia Fattori
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40126 Bologna, Italy
| |
Collapse
|
22
|
Implicit visual sensitivity towards slim versus overweight bodies modulates motor resonance in the primary motor cortex: A tDCS study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2020; 21:93-104. [PMID: 33263151 PMCID: PMC7994241 DOI: 10.3758/s13415-020-00850-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 11/09/2020] [Indexed: 11/25/2022]
Abstract
Motor resonance (MR) can be influenced by individual differences and similarity in the physical appearance between the actor and observer. Recently, we reported that action simulation is modulated by an implicit visual sensitivity towards normal-weight compared with overweight bodies. Furthermore, recent research has suggested the existence of an action observation network responsible for MR, with limited evidence whether the primary motor cortex (M1) is part of this. We expanded our previous findings with regards to the role of an implicit normal-weight-body preference in the MR mechanism. At the same time, we tested the functional relevance of M1 to MR, by using a transcranial direct current stimulation (tDCS) protocol. Seventeen normal-weight and 17 overweight participants were asked to observe normal-weight or overweight actors reaching and grasping a light or heavy cube, and then, at the end of each video-clip to indicate the correct cube weight. Before the task, all participants received 15 min of sham or cathodal tDCS over the left M1. Measures of anti-fat attitudes were also collected. During sham tDCS, all participants were better in simulating the actions performed by normal-weight compared with overweight models. Surprisingly, cathodal tDCS selectively improved the ability in the overweight group to simulate actions performed by the overweight models. This effect was not associated with scores of fat phobic attitudes or implicit anti-fat bias. Our findings are discussed in the context of relevance of M1 to MR and its social modulation by anti-fat attitudes.
Collapse
|
23
|
Decroix J, Borgomaneri S, Kalénine S, Avenanti A. State-dependent TMS of inferior frontal and parietal cortices highlights integration of grip configuration and functional goals during action recognition. Cortex 2020; 132:51-62. [DOI: 10.1016/j.cortex.2020.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/09/2020] [Accepted: 08/06/2020] [Indexed: 12/13/2022]
|
24
|
Cross-modal involvement of the primary somatosensory cortex in visual working memory: A repetitive TMS study. Neurobiol Learn Mem 2020; 175:107325. [PMID: 33059033 DOI: 10.1016/j.nlm.2020.107325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/01/2020] [Accepted: 10/08/2020] [Indexed: 12/23/2022]
Abstract
Recent literature suggests that the primary somatosensory cortex (S1), once thought to be a low-level area only modality-specific, is also involved in higher-level, cross-modal, cognitive functions. In particular, electrophysiological studies have highlighted that the cross-modal activation of this area may also extend to visual Working Memory (WM), being part of a mnemonic network specific for the temporary storage and manipulation of visual information concerning bodies and body-related actions. However, the causal recruitment of S1 in the WM network remains speculation. In the present study, by taking advantage of repetitive Transcranial Magnetic Stimulation (rTMS), we look for causal evidence that S1 is implicated in the retention of visual stimuli that are salient for this cortical area. To this purpose, in a first experiment, high-frequency (10 Hz) rTMS was delivered over S1 of the right hemisphere, and over two control sites, the right lateral occipital cortex (LOC) and the right dorsolateral prefrontal cortex (dlPFC), during the maintenance phase of a high-load delayed match-to-sample task in which body-related visual stimuli (non-symbolic hand gestures) have to be retained. In a second experiment, the specificity of S1 recruitment was deepened by using a version of the delayed match-to-sample task in which visual stimuli depict geometrical shapes (non-body related stimuli). Results show that rTMS perturbation of S1 activity leads to an enhancement of participants' performance that is selective for body-related visual stimuli; instead, the stimulation of the right LOC and dlPFC does not affect the temporary storage of body-related visual stimuli. These findings suggest that S1 may be recruited in visual WM when information to store (and recall) is salient for this area, corroborating models which suggest the existence of a dedicated mnemonic system for body-related information in which also somatosensory cortices play a key role, likely thanks to their cross-modal (visuo-tactile) properties.
Collapse
|
25
|
Transient Disruption of the Inferior Parietal Lobule Impairs the Ability to Attribute Intention to Action. Curr Biol 2020; 30:4594-4605.e7. [PMID: 32976808 DOI: 10.1016/j.cub.2020.08.104] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 08/03/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023]
Abstract
Although it is well established that fronto-parietal regions are active during action observation, whether they play a causal role in the ability to infer others' intentions from visual kinematics remains undetermined. In the experiments reported here, we combined offline continuous theta burst stimulation (cTBS) with computational modeling to reveal and causally probe single-trial computations in the inferior parietal lobule (IPL) and inferior frontal gyrus (IFG). Participants received cTBS over the left anterior IPL and the left IFG pars orbitalis in separate sessions before completing an intention discrimination task (discriminate intention of observed reach-to-grasp acts) or a kinematic discrimination task unrelated to intention (discriminate peak wrist height of the same acts). We targeted intention-sensitive regions whose fMRI activity, recorded when observing the same reach-to-grasp acts, could accurately discriminate intention. We found that transient disruption of activity of the left IPL, but not the IFG, impaired the observer's ability to attribute intention to action. Kinematic discrimination unrelated to intention, in contrast, was largely unaffected. Computational analyses of how encoding (mapping of intention to movement kinematics) and readout (mapping of kinematics to intention choices) intersect at the single-trial level revealed that IPL cTBS did not diminish the overall sensitivity of intention readout to movement kinematics. Rather, it selectively misaligned intention readout with respect to encoding, deteriorating mapping from informative kinematic features to intention choices. These results provide causal evidence of how the left anterior IPL computes mapping from kinematics to intentions.
Collapse
|
26
|
Courson M, Tremblay P. Neural correlates of manual action language: Comparative review, ALE meta-analysis and ROI meta-analysis. Neurosci Biobehav Rev 2020; 116:221-238. [PMID: 32580020 DOI: 10.1016/j.neubiorev.2020.06.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 03/30/2020] [Accepted: 06/18/2020] [Indexed: 10/24/2022]
Abstract
Despite decades of research, the nature of the involvement of the motor system in action language processing is still controversial, and little is known about how processing action language relates to observing, imaging and executing motor actions. This study combines a systematic review of the literature, an ALE meta-analysis and a region-of-interest (ROI) meta-analysis to provide the first complete (qualitative and quantitative) account of the motor-related functional network involved in action language processing in comparison to activation reported during motor observation, motor imagery and motor execution. The review of the literature revealed that the methodology of action language studies differed considerably from the methodology of other motor-related processes which may have contributed to blurring the interpretations over the years. The ALE and ROI meta-analyses showed that the functional network of action language was more similar to observation than imagery and finally execution, following a motor gradation. Overall, our results point towards a more cognitive, as opposed to purely motoric, involvement of the motor system during action language processing.
Collapse
Affiliation(s)
- Melody Courson
- Département de réadaptation, Université Laval, CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, Qc, G1J 2G3, Canada.
| | - Pascale Tremblay
- Département de réadaptation, Université Laval, CERVO Brain Research Center, 2601 Chemin de la Canardière, Québec, Qc, G1J 2G3, Canada.
| |
Collapse
|
27
|
Bukowski H, Tik M, Silani G, Ruff C, Windischberger C, Lamm C. When differences matter: rTMS/fMRI reveals how differences in dispositional empathy translate to distinct neural underpinnings of self-other distinction in empathy. Cortex 2020; 128:143-161. [DOI: 10.1016/j.cortex.2020.03.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 01/11/2020] [Accepted: 03/20/2020] [Indexed: 02/06/2023]
|
28
|
Abdelgabar AR, Suttrup J, Broersen R, Bhandari R, Picard S, Keysers C, De Zeeuw CI, Gazzola V. Action perception recruits the cerebellum and is impaired in patients with spinocerebellar ataxia. Brain 2020; 142:3791-3805. [PMID: 31747689 PMCID: PMC7409410 DOI: 10.1093/brain/awz337] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 09/02/2019] [Accepted: 09/09/2019] [Indexed: 11/14/2022] Open
Abstract
Our cerebellum has been proposed to generate prediction signals that may help us plan and execute our motor programmes. However, to what extent our cerebellum is also actively involved in perceiving the action of others remains to be elucidated. Using functional MRI, we show here that observing goal-directed hand actions of others bilaterally recruits lobules VI, VIIb and VIIIa in the cerebellar hemispheres. Moreover, whereas healthy subjects (n = 31) were found to be able to discriminate subtle differences in the kinematics of observed limb movements of others, patients suffering from spinocerebellar ataxia type 6 (SCA6; n = 21) were severely impaired in performing such tasks. Our data suggest that the human cerebellum is actively involved in perceiving the kinematics of the hand actions of others and that SCA6 patients’ deficits include a difficulty in perceiving the actions of other individuals. This finding alerts us to the fact that cerebellar disorders can alter social cognition.
Collapse
Affiliation(s)
- Abdel R Abdelgabar
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Judith Suttrup
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Robin Broersen
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| | - Ritu Bhandari
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Samuel Picard
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Christian Keysers
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| | - Chris I De Zeeuw
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Department of Neuroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Valeria Gazzola
- Social Brain Lab and Cerebellar Coordination and Cognition Group, Netherlands Institute for Neuroscience, A Research Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.,Brain and Cognition, Department of Psychology, University of Amsterdam. Amsterdam, The Netherlands
| |
Collapse
|
29
|
Borja Jimenez KC, Abdelgabar AR, De Angelis L, McKay LS, Keysers C, Gazzola V. Changes in brain activity following the voluntary control of empathy. Neuroimage 2020; 216:116529. [PMID: 31931155 DOI: 10.1016/j.neuroimage.2020.116529] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 12/19/2019] [Accepted: 01/07/2020] [Indexed: 01/10/2023] Open
Abstract
In neuroscience, empathy is often conceived as relatively automatic. The voluntary control that people can exert on brain mechanisms that map the emotions of others onto our own emotions has received comparatively less attention. Here, we therefore measured brain activity while participants watched emotional Hollywood movies under two different instructions: to rate the main characters' emotions by empathizing with them, or to do so while keeping a detached perspective. We found that participants yielded highly consistent and similar ratings of emotions under both conditions. Using intersubject correlation-based analyses we found that, when encouraged to empathize, participants' brain activity in limbic (including cingulate and putamen) and somatomotor regions (including premotor, SI and SII) synchronized more during the movie than when encouraged to detach. Using intersubject functional connectivity we found that comparing the empathic and detached perspectives revealed widespread increases in functional connectivity between large scale networks. Our findings contribute to the increasing awareness that we have voluntary control over the neural mechanisms through which we process the emotions of others.
Collapse
Affiliation(s)
- K C Borja Jimenez
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - A R Abdelgabar
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - L De Angelis
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands
| | - L S McKay
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Current Address: Division of Psychology, School of Education & Social Sciences, University of the West of Scotland, High Street, Paisley, PA1 2BE, UK
| | - C Keysers
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018, WV, Amsterdam, the Netherlands
| | - V Gazzola
- Social Brain Lab, Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, the Netherlands; Department of Psychology, University of Amsterdam, Nieuwe Achtergracht 166, 1018, WV, Amsterdam, the Netherlands.
| |
Collapse
|
30
|
Cazzato V, Makris S. Implicit preference towards slim bodies and weight-stigma modulate the understanding of observed familiar actions. PSYCHOLOGICAL RESEARCH 2019; 83:1825-1835. [PMID: 29948182 PMCID: PMC6794244 DOI: 10.1007/s00426-018-1030-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 05/23/2018] [Indexed: 12/21/2022]
Abstract
Mounting research evidence suggests that motor resonance (MR, i.e., the mapping of others' actions onto one's own motor repertoire) can be influenced by diverse factors related to individual differences. However, no evidence has been reported so far on the effects of physical appearance and negative attitudes toward obesity to the mechanism of MR. Thirty-six participants (18 normal-weight and 18 overweight) performed a weight discrimination task, in which they were observing amateur actors reaching and grasping a light or heavy cube with or without deception (true vs. fake actions). At the end of each video clip, participants were instructed to indicate the correct cube size (light or heavy). Importantly, body similarity between observers and actors was manipulated by presenting videos of normal-weight or overweight actors. Fat phobic attitudes and automatic preference for normal-weight than obese people were also examined. Signal detection analysis (d') on the acquired accuracy data has shown that both normal- and overweight participants were able to better discriminate truthful actions when performed by the normal-weight as compared to overweight actors. Furthermore, this finding was negatively correlated with increased scores of fat phobic attitudes in both groups. Hence, for the first time, we provide experimental evidence of action simulation being modulated by an implicit visual sensitivity towards slim bodies.
Collapse
Affiliation(s)
- Valentina Cazzato
- Division of Psychology, University of Bradford, Bradford, UK.
- School of Natural Sciences and Psychology, Liverpool John Moores University, Tom Reilly Building, Byrom Street, Liverpool, L3 3AF, UK.
| | - Stergios Makris
- Department of Psychology, Edge Hill University, Ormskirk, Lancashire,, L39 4QP, UK.
| |
Collapse
|
31
|
Thompson EL, Bird G, Catmur C. Conceptualizing and testing action understanding. Neurosci Biobehav Rev 2019; 105:106-114. [DOI: 10.1016/j.neubiorev.2019.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 06/25/2019] [Accepted: 08/04/2019] [Indexed: 11/30/2022]
|
32
|
Keysers C, Paracampo R, Gazzola V. What neuromodulation and lesion studies tell us about the function of the mirror neuron system and embodied cognition. Curr Opin Psychol 2018; 24:35-40. [PMID: 29734039 PMCID: PMC6173305 DOI: 10.1016/j.copsyc.2018.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/28/2018] [Accepted: 04/04/2018] [Indexed: 12/20/2022]
Abstract
We review neuromodulation and lesion studies that address how activations in the mirror neuron system contribute to our perception of observed actions. Past reviews showed disruptions of this parieto-premotor network impair imitation and goal and kinematic processing. Recent studies bring five new themes. First, focal perturbations of a node of that circuit lead to changes across all nodes. Second, primary somatosensory cortex is an integral part of this network suggesting embodied representations are somatosensory-motor. Third, disturbing this network impairs the ability to predict the actions of others in the close (∼300ms) future. Fourth, disruptions impair our ability to coordinate our actions with others. Fifth, disrupting this network, the insula or cingulate also impairs emotion recognition.
Collapse
Affiliation(s)
- Christian Keysers
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands.
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, an institute of the Royal Netherlands Academy of Art and Sciences (KNAW), Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Faculty of Social and Behavioural Sciences, University of Amsterdam (UvA), 1001 NK Amsterdam, The Netherlands
| |
Collapse
|
33
|
Paracampo R, Montemurro M, de Vega M, Avenanti A. Primary motor cortex crucial for action prediction: A tDCS study. Cortex 2018; 109:287-302. [DOI: 10.1016/j.cortex.2018.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 09/02/2018] [Accepted: 09/16/2018] [Indexed: 10/28/2022]
|
34
|
Fiori F, Chiappini E, Avenanti A. Enhanced action performance following TMS manipulation of associative plasticity in ventral premotor-motor pathway. Neuroimage 2018; 183:847-858. [DOI: 10.1016/j.neuroimage.2018.09.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 08/17/2018] [Accepted: 09/02/2018] [Indexed: 12/16/2022] Open
|
35
|
McGregor HR, Cashaback JGA, Gribble PL. Somatosensory perceptual training enhances motor learning by observing. J Neurophysiol 2018; 120:3017-3025. [PMID: 30230990 DOI: 10.1152/jn.00313.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Action observation activates brain regions involved in sensory-motor control. Recent research has shown that action observation can also facilitate motor learning; observing a tutor undergoing motor learning results in functional plasticity within the motor system and gains in subsequent motor performance. However, the effects of observing motor learning extend beyond the motor domain. Converging evidence suggests that observation also results in somatosensory functional plasticity and somatosensory perceptual changes. This work has raised the possibility that the somatosensory system is also involved in motor learning that results from observation. Here we tested this hypothesis using a somatosensory perceptual training paradigm. If the somatosensory system is indeed involved in motor learning by observing, then improving subjects' somatosensory function before observation should enhance subsequent motor learning by observing. Subjects performed a proprioceptive discrimination task in which a robotic manipulandum moved the arm, and subjects made judgments about the position of their hand. Subjects in a Trained Learning group received trial-by-trial feedback to improve their proprioceptive perception. Subjects in an Untrained Learning group performed the same task without feedback. All subjects then observed a learning video showing a tutor adapting her reaches to a left force field. Subjects in the Trained Learning group, who had superior proprioceptive acuity before observation, benefited more from observing learning than subjects in the Untrained Learning group. Improving somatosensory function can therefore enhance subsequent observation-related gains in motor learning. This study provides further evidence in favor of the involvement of the somatosensory system in motor learning by observing. NEW & NOTEWORTHY We show that improving somatosensory performance before observation can improve the extent to which subjects learn from watching others. Somatosensory perceptual training may prime the sensory-motor system, thereby facilitating subsequent observational learning. The findings of this study suggest that the somatosensory system supports motor learning by observing. This finding may be useful if observation is incorporated as part of therapies for diseases affecting movement, such as stroke.
Collapse
Affiliation(s)
- Heather R McGregor
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Graduate Program in Neuroscience, The University of Western Ontario , London, Ontario , Canada
| | - Joshua G A Cashaback
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada
| | - Paul L Gribble
- The Brain and Mind Institute, The University of Western Ontario , London, Ontario , Canada.,Department of Psychology, The University of Western Ontario , London, Ontario , Canada.,Department of Physiology & Pharmacology, Schulich School of Medicine & Dentistry, The University of Western Ontario , London, Ontario , Canada.,Haskins Laboratories , New Haven, Connecticut
| |
Collapse
|
36
|
Enhancing creative cognition with a rapid right-parietal neurofeedback procedure. Neuropsychologia 2018; 118:99-106. [DOI: 10.1016/j.neuropsychologia.2018.02.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/23/2018] [Accepted: 02/12/2018] [Indexed: 01/18/2023]
|
37
|
Theta-burst stimulation causally affects side perception in the Deutsch's octave illusion. Sci Rep 2018; 8:12844. [PMID: 30150659 PMCID: PMC6110737 DOI: 10.1038/s41598-018-31248-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/07/2018] [Indexed: 11/16/2022] Open
Abstract
Deutsch’s octave illusion is produced by a sequence of two specular dichotic stimuli presented in alternation to the left and right ear causing an illusory segregation of pitch (frequency) and side (ear of origin). Previous studies have indicated that illusory perception of pitch takes place in temporo-frontal areas, whereas illusory perception of side is primarily associated to neural activity in parietal cortex and in particular in the inferior parietal lobule (IPL). Here we investigated the causal role of left IPL in the perception of side (ear of origin) during the octave illusion by following its inhibition through continuous theta-burst stimulation (cTBS), as compared to the left posterior intraparietal sulcus (pIPS), whose activity is thought to be unrelated to side perception during the illusion. We observed a prolonged modification in the side of the illusory perceived tone during the first 10 minutes following the stimulation. Specifically, while after cTBS over the left IPS subjects reported to perceive the last tone more often at the right compared to the left ear, cTBS over left IPL significantly reverted this distribution, as the number of last perceived tones at the right ear was smaller than at the left ear. Such alteration was not maintained in the successive 10 minutes. These results provide the first evidence of the causal involvement of the left IPL in the perception of side during the octave illusion.
Collapse
|
38
|
Amoruso L, Finisguerra A, Urgesi C. Contextualizing action observation in the predictive brain: Causal contributions of prefrontal and middle temporal areas. Neuroimage 2018; 177:68-78. [DOI: 10.1016/j.neuroimage.2018.05.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/27/2018] [Accepted: 05/07/2018] [Indexed: 10/16/2022] Open
|
39
|
Paracampo R, Pirruccio M, Costa M, Borgomaneri S, Avenanti A. Visual, sensorimotor and cognitive routes to understanding others' enjoyment: An individual differences rTMS approach to empathic accuracy. Neuropsychologia 2018; 116:86-98. [DOI: 10.1016/j.neuropsychologia.2018.01.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 01/15/2018] [Accepted: 01/31/2018] [Indexed: 01/26/2023]
|
40
|
Ji GJ, Hu P, Liu TT, Li Y, Chen X, Zhu C, Tian Y, Chen X, Wang K. Functional Connectivity of the Corticobasal Ganglia-Thalamocortical Network in Parkinson Disease: A Systematic Review and Meta-Analysis with Cross-Validation. Radiology 2018; 287:973-982. [PMID: 29514016 DOI: 10.1148/radiol.2018172183] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
Purpose To quantitatively summarize the functional connectivity (FC) feature of the corticobasal ganglia-thalamocortical (CBTC) network in patients with Parkinson disease (PD) by means of a meta-analysis with cross-validation. Materials and Methods For this prospective study, a systematic literature search in the PubMed and EMBASE databases was performed for resting-state functional magnetic resonance (MR) imaging studies of PD published between January 2000 and May 2017. Then, a coordinate-based meta-analysis was conducted by Effect Size-Signed Differential Mapping. A cross-validation analysis was performed by using an independent resting-state functional MR imaging data set that contained 25 patients with PD and 19 age-, sex-, and education-matched healthy control participants. Two-sample t test was performed on FC maps between PD and control groups. Results Thirty studies with 854 patients with PD and 831 control participants were included in this meta-analysis. The main meta-analysis found increased FC in the left pre- and postcentral gyrus in patients with PD compared with healthy control participants (z = 2.6; P < .001). The abnormality of the postcentral gyrus was further confirmed by subgroup meta-analyses on medication-naive (n = 25; z = 2.2; P < .001) and medication-off (n = 11; z = 1.5; P < .001) experiments, which suggested that the finding was unaffected by medication. The abnormality of the postcentral gyrus was cross-validated by the independent data set (t = 5.0; P < .05), which suggested a high reproducibility and generalizability. Conclusion This meta-analysis emphasizes the left postcentral gyrus as a critical region in PD, which may become a potential target for clinical intervention. © RSNA, 2018 Online supplemental material is available for this article.
Collapse
Affiliation(s)
- Gong-Jun Ji
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Panpan Hu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Ting-Ting Liu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Ying Li
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Xingui Chen
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Chunyan Zhu
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Yanghua Tian
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Xianwen Chen
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| | - Kai Wang
- From the Department of Medical Psychology, Chaohu Clinical Medical College, Anhui Medical University, 81 Meishan Rd, Hefei, Anhui 230032, China (G.J.J., C.Z., K.W.); Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China (G.J.J., P.H., Xingui Chen, C.Z., Y.T., K.W.); and Department of Neurology, the First Affiliated Hospital of Anhui Medical University, Hefei, China (P.H., T.T.L., Y.L., Xingui Chen, Y.T., Xianwen Chen, K.W.)
| |
Collapse
|
41
|
Agnew ZK, Banissy MJ, McGettigan C, Walsh V, Scott SK. Investigating the Neural Basis of Theta Burst Stimulation to Premotor Cortex on Emotional Vocalization Perception: A Combined TMS-fMRI Study. Front Hum Neurosci 2018; 12:150. [PMID: 29867402 PMCID: PMC5962765 DOI: 10.3389/fnhum.2018.00150] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 04/04/2018] [Indexed: 12/01/2022] Open
Abstract
Previous studies have established a role for premotor cortex in the processing of auditory emotional vocalizations. Inhibitory continuous theta burst transcranial magnetic stimulation (cTBS) applied to right premotor cortex selectively increases the reaction time to a same-different task, implying a causal role for right ventral premotor cortex (PMv) in the processing of emotional sounds. However, little is known about the functional networks to which PMv contribute across the cortical hemispheres. In light of these data, the present study aimed to investigate how and where in the brain cTBS affects activity during the processing of auditory emotional vocalizations. Using functional neuroimaging, we report that inhibitory cTBS applied to the right premotor cortex (compared to vertex control site) results in three distinct response profiles: following stimulation of PMv, widespread frontoparietal cortices, including a site close to the target site, and parahippocampal gyrus displayed an increase in activity, whereas the reverse response profile was apparent in a set of midline structures and right IFG. A third response profile was seen in left supramarginal gyrus in which activity was greater post-stimulation at both stimulation sites. Finally, whilst previous studies have shown a condition specific behavioral effect following cTBS to premotor cortex, we did not find a condition specific neural change in BOLD response. These data demonstrate a complex relationship between cTBS and activity in widespread neural networks and are discussed in relation to both emotional processing and the neural basis of cTBS.
Collapse
Affiliation(s)
- Zarinah K Agnew
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Otolaryngology-Head & Neck Surgery Clinic, University of California, San Francisco, San Francisco, CA, United States
| | - Michael J Banissy
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom.,Department of Psychology, Goldsmiths, University of London, London, United Kingdom
| | | | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - Sophie K Scott
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| |
Collapse
|
42
|
Gallo S, Paracampo R, Müller-Pinzler L, Severo MC, Blömer L, Fernandes-Henriques C, Henschel A, Lammes BK, Maskaljunas T, Suttrup J, Avenanti A, Keysers C, Gazzola V. The causal role of the somatosensory cortex in prosocial behaviour. eLife 2018; 7:32740. [PMID: 29735015 PMCID: PMC5973831 DOI: 10.7554/elife.32740] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 04/20/2018] [Indexed: 01/09/2023] Open
Abstract
Witnessing another person’s suffering elicits vicarious brain activity in areas that are active when we ourselves are in pain. Whether this activity influences prosocial behavior remains the subject of debate. Here participants witnessed a confederate express pain through a reaction of the swatted hand or through a facial expression, and could decide to reduce that pain by donating money. Participants donate more money on trials in which the confederate expressed more pain. Electroencephalography shows that activity of the somatosensory cortex I (SI) hand region explains variance in donation. Transcranial magnetic stimulation (TMS) shows that altering this activity interferes with the pain–donation coupling only when pain is expressed by the hand. High-definition transcranial direct current stimulation (HD-tDCS) shows that altering SI activity also interferes with pain perception. These experiments show that vicarious somatosensory activations contribute to prosocial decision-making and suggest that they do so by helping to transform observed reactions of affected body-parts into accurate perceptions of pain that are necessary for decision-making. When we experience physical pain, certain areas in our brain that process bodily sensation and emotions switch on. If we see someone else in pain, many of the same regions also get activated. In contrast, convicted criminals with psychopathic traits have less activation in these areas of the brain when witnessing someone’s pain; they also show less empathy and disregard the needs of others. This suggests that a lack of this ‘shared activations’ may lead to problems in empathy. In fact, many scientists believe that shared activations are why we feel empathy for people in pain, and why we are driven to help them. Yet, there is little direct evidence about how the activity in the pain processing parts of the brain actually influences helpful behavior. As a result, some scientists now argue that empathy-related processes may actually contribute very little to helping behavior. Gallo et al. designed an experiment where participants watched videos of someone having their hand swatted with a belt, and showing different levels of pain as a result. The volunteers could decide to reduce the amount of pain the person received by donating money they could have taken home. The more pain the participants thought the victim was in, the more money they gave up to lessen it. During the study, the activity in the brain region that processes pain in the hand was also measured in the participants. The more active this region was, the more money people donated to help. Then, Gallo et al. used techniques that interfered with the activity of the brain area involved in perceiving sensations from the hand. This interference changed how accurately participants assessed the victim's pain. It also disrupted the link between donations and the victim's perceived pain: the amount of money people gave no longer matched the level of pain they had witnessed. This suggests that the brain areas that perceive sensations of pain in the self, which evolved primarily to experience our own sensations, also have a social function. They transform the sight of bodily harm into an accurate feeling for how much pain the victim experiences. The findings also show that we need this feeling so we can adapt our help to the needs of others. In the current debate about the role of empathy in helping behaviors, this study demonstrates that empathy-related brain activity indeed promotes helping by allowing us to detect those that need our assistance. Understanding the relationship between helping behavior and the activity of the brain may further lead to treatments for individuals with antisocial behavior and for children with callous and unemotional traits, a disorder that is associated with a lack of empathy and a general disregard for others.
Collapse
Affiliation(s)
- Selene Gallo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Riccardo Paracampo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands.,Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Laura Müller-Pinzler
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands.,Department of Psychiatry and Psychotherapy, Social Neuroscience Lab, University of Lübeck, Lübeck, Germany
| | - Mario Carlo Severo
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Laila Blömer
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Carolina Fernandes-Henriques
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Anna Henschel
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Balint Kalista Lammes
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Tatjana Maskaljunas
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Judith Suttrup
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands
| | - Alessio Avenanti
- Department of Psychology, Center for Studies and Research in Cognitive Neuroscience, University of Bologna, Cesena, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Christian Keysers
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands.,Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, Netherlands
| | - Valeria Gazzola
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Art and Sciences (KNAW), Amsterdam, Netherlands.,Faculty of Social and Behavioural Sciences, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
43
|
How Visual Body Perception Influences Somatosensory Plasticity. Neural Plast 2018; 2018:7909684. [PMID: 29713338 PMCID: PMC5866863 DOI: 10.1155/2018/7909684] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 01/10/2023] Open
Abstract
The study of somatosensory plasticity offers unique insights into the neuronal mechanisms that underlie human adaptive and maladaptive plasticity. So far, little attention has been paid on the specific influence of visual body perception on somatosensory plasticity and learning in humans. Here, we review evidence on how visual body perception induces changes in the functional architecture of the somatosensory system and discuss the specific influence the social environment has on tactile plasticity and learning. We focus on studies that have been published in the areas of human cognitive and clinical neuroscience and refer to animal studies when appropriate. We discuss the therapeutic potential of socially mediated modulations of somatosensory plasticity and introduce specific paradigms to induce plastic changes under controlled conditions. This review offers a contribution to understanding the complex interactions between social perception and somatosensory learning by focusing on a novel research field: socially mediated sensory plasticity.
Collapse
|
44
|
Wermelinger S, Gampe A, Behr J, Daum MM. Interference of action perception on action production increases across the adult life span. Exp Brain Res 2017; 236:577-586. [PMID: 29249051 DOI: 10.1007/s00221-017-5157-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 12/14/2017] [Indexed: 10/18/2022]
Abstract
Action perception and action production are assumed to be based on an internal simulation process that involves the sensorimotor system. This system undergoes changes across the life span and is assumed to become less precise with age. In the current study, we investigated how increasing age affects the magnitude of interference in action production during simultaneous action perception. In a task adapted from Brass et al. (Brain Cogn 44(2):124-143, 2000), we asked participants (aged 20-80 years) to respond to a visually presented finger movement and/or symbolic cue by executing a previously defined finger movement. Action production was assessed via participants' reaction times. Results show that participants were slower in trials in which they were asked to ignore an incongruent finger movement compared to trials in which they had to ignore an incongruent symbolic cue. Moreover, advancing age was shown to accentuate this effect. We suggest that the internal simulation of the action becomes less precise with age making the sensorimotor system more susceptible to perturbations such as the interference of a concurrent action perception.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Jannis Behr
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
45
|
Transcranial direct current stimulation of the medial prefrontal cortex dampens mind-wandering in men. Sci Rep 2017; 7:16962. [PMID: 29209069 PMCID: PMC5717259 DOI: 10.1038/s41598-017-17267-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 11/22/2017] [Indexed: 02/06/2023] Open
Abstract
Mind-wandering, the mind’s capacity to stray from external events and generate task-unrelated thought, has been associated with activity in the brain default network. To date, little is understood about the contribution of individual nodes of this network to mind-wandering. Here, we investigated the role of medial prefrontal cortex (mPFC) in mind-wandering, by perturbing this region with transcranial direct current stimulation (tDCS). Young healthy participants performed a choice reaction time task both before and after receiving cathodal tDCS over mPFC, and had their thoughts periodically sampled. We found that tDCS over mPFC - but not occipital or sham tDCS - decreased the propensity to mind-wander. The tDCS-induced reduction in mind-wandering occurred in men, but not in women, and was accompanied by a change in the content of task-unrelated though, which became more related to other people (as opposed to the self) following tDCS. These findings indicate that mPFC is crucial for mind-wandering, possibly by helping construction of self-relevant scenarios capable to divert attention inward, away from perceptual reality. Gender-related differences in tDCS-induced changes suggest that mPFC controls mind-wandering differently in men and women, which may depend on differences in the structural and functional organization of distributed brain networks governing mind-wandering, including mPFC.
Collapse
|
46
|
Wermelinger S, Gampe A, Daum MM. Higher levels of motor competence are associated with reduced interference in action perception across the lifespan. PSYCHOLOGICAL RESEARCH 2017; 83:432-444. [PMID: 29116436 DOI: 10.1007/s00426-017-0941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 10/27/2017] [Indexed: 11/29/2022]
Abstract
Action perception and action production are tightly linked and elicit bi-directional influences on each other when performed simultaneously. In this study, we investigated whether age-related differences in manual fine-motor competence and/or age affect the (interfering) influence of action production on simultaneous action perception. In a cross-sectional eye-tracking study, participants of a broad age range (N = 181, 20-80 years) observed a manual grasp-and-transport action while performing an additional motor or cognitive distractor task. Action perception was measured via participants' frequency of anticipatory gaze shifts towards the action goal. Manual fine-motor competence was assessed with the Motor Performance Series. The interference effect in action perception was greater in the motor than the cognitive distractor task. Furthermore, manual fine-motor competence and age in years were both associated with this interference. The better the participants' manual fine-motor competence and the younger they were, the smaller the interference effect. However, when both influencing factors (age and fine-motor competence) were taken into account, a model including only age-related differences in manual fine-motor competence best fit with our data. These results add to the existing literature that motor competence and its age-related differences influence the interference effects between action perception and production.
Collapse
Affiliation(s)
- Stephanie Wermelinger
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.
| | - Anja Gampe
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland
| | - Moritz M Daum
- Department of Psychology, University of Zurich, Binzmuehlestrasse 14, 8050, Zurich, Switzerland.,Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
47
|
Fiori F, Chiappini E, Candidi M, Romei V, Borgomaneri S, Avenanti A. Long-latency interhemispheric interactions between motor-related areas and the primary motor cortex: a dual site TMS study. Sci Rep 2017; 7:14936. [PMID: 29097700 PMCID: PMC5668244 DOI: 10.1038/s41598-017-13708-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/27/2017] [Indexed: 12/19/2022] Open
Abstract
The primary motor cortex (M1) is highly influenced by premotor/motor areas both within and across hemispheres. Dual site transcranial magnetic stimulation (dsTMS) has revealed interhemispheric interactions mainly at early latencies. Here, we used dsTMS to systematically investigate long-latency causal interactions between right-hemisphere motor areas and the left M1 (lM1). We stimulated lM1 using a suprathreshold test stimulus (TS) to elicit motor-evoked potentials (MEPs) in the right hand. Either a suprathreshold or a subthreshold conditioning stimulus (CS) was applied over the right M1 (rM1), the right ventral premotor cortex (rPMv), the right dorsal premotor cortex (rPMd) or the supplementary motor area (SMA) prior to the TS at various CS-TS inter-stimulus intervals (ISIs: 40–150 ms). The CS strongly affected lM1 excitability depending on ISI, CS site and intensity. Inhibitory effects were observed independently of CS intensity when conditioning PMv, rM1 and SMA at a 40-ms ISI, with larger effects after PMv conditioning. Inhibition was observed with suprathreshold PMv and rM1 conditioning at a 150-ms ISI, while site-specific, intensity-dependent facilitation was detected at an 80-ms ISI. Thus, long-latency interhemispheric interactions, likely reflecting indirect cortico-cortical/cortico-subcortical pathways, cannot be reduced to nonspecific activation across motor structures. Instead, they reflect intensity-dependent, connection- and time-specific mechanisms.
Collapse
Affiliation(s)
- Francesca Fiori
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Roma, Italy
| | - Emilio Chiappini
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy
| | - Matteo Candidi
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Dipartimento di Psicologia, Sapienza Università di Roma, 00185, Roma, Italy
| | - Vincenzo Romei
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.,Centre for Brain Science, Department of Psychology, University of Essex, CO4 3SQ, Colchester, UK
| | - Sara Borgomaneri
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy.,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy
| | - Alessio Avenanti
- IRCCS Fondazione Santa Lucia, 00179, Rome, Italy. .,Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia, Università di Bologna, 47521, Cesena, Italy.
| |
Collapse
|
48
|
Bowling NC, Banissy MJ. Modulating vicarious tactile perception with transcranial electrical current stimulation. Eur J Neurosci 2017; 46:2355-2364. [PMID: 28921774 PMCID: PMC5900887 DOI: 10.1111/ejn.13699] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 12/03/2022]
Abstract
Our capacity to share the experiences of others is a critical part of social behaviour. One process thought to be important for this is vicarious perception. Passively viewing touch activates some of the same network of brain regions as the direct experience of touch. This vicarious experience is usually implicit, but for some people, viewing touch evokes conscious tactile sensations (mirror-touch synaesthesia). Recent work has attempted to induce conscious vicarious touch in those that do not normally experience these sensations, using transcranial direct current stimulation (tDCS). Anodal tDCS applied to primary somatosensory cortex (SI) was found to induce behavioural performance akin to mirror-touch synaesthesia on a visuotactile interference task. Here, we conducted two experiments that sought to replicate and extend these findings by examining: (i) the effects of tDCS and high-frequency transcranial random noise stimulation (tRNS) targeted at SI and temporo-parietal junction (TPJ) on vicarious tactile perception, (ii) the extent to which any stimulation effects were specific to viewing touch to humans vs. inanimate agents and (iii) the influence of visual perspective (viewing touch from one's own vs. another's perspective) on vicarious perception. In Experiment 1, tRNS targeted at SI did not modulate vicarious perception. In Experiment 2, tDCS targeted at SI, but not TPJ, resulted in some modulation of vicarious perception, but there were important caveats to this effect. Implications regarding mechanisms of vicarious perception are discussed. Collectively, the findings do not provide convincing evidence for the potential to modulate vicarious tactile perception with transcranial electrical current stimulation.
Collapse
|