1
|
Botes M. Regulatory challenges of digital health: the case of mental health applications and personal data in South Africa. Front Pharmacol 2025; 16:1498600. [PMID: 40371347 PMCID: PMC12074941 DOI: 10.3389/fphar.2025.1498600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/11/2025] [Indexed: 05/16/2025] Open
Abstract
Introduction This study explores the regulatory challenges posed by digital mental health applications in South Africa, particularly regarding the collection and protection of personal data. It aimed to assess whether South Africa's current legal framework sufficiently protects users' sensitive mental health data amidst the rise of digital mental health solutions, especially in the context of privacy concerns. Methods The research focused on the intersection of digital mental health applications, data protection laws, and user privacy in South Africa. It examined existing legal frameworks, including the Protection of Personal Information Act (POPIA), National Health Act (NHA), and Consumer Protection Act (CPA). The study reviewed relevant literature, legal texts, and case studies, focusing on mental health applications in both urban and rural contexts. Results While South Africa has laws in place to protect personal information, these laws have significant gaps in addressing the unique risks associated with digital mental health technologies. Key findings include inadequate regulation of AI-driven mental health tools, insufficient guidelines for third-party data sharing, and challenges with cross-border data transfers. Discussion The implications of these findings suggest that South Africa needs to modernize its legal framework to better regulate digital mental health tools and ensure user privacy. This includes improving AI regulation, strengthening consent mechanisms, and enhancing protections against third-party data misuse. Future research should focus on developing specific legal guidelines for mental health data and addressing the vulnerabilities faced by rural populations with low digital literacy. The study's conclusions align with global concerns over the ethical implications of mental health datacommodification and emphasize the need for robust, adaptable regulatory approaches.
Collapse
Affiliation(s)
- Marietjie Botes
- School of Law, University of KwaZulu Natal, Durban, South Africa
| |
Collapse
|
2
|
Zhou L, Saltoun K, Carrier J, Storch KF, Dunbar RIM, Bzdok D. Multimodal population study reveals the neurobiological underpinnings of chronotype. Nat Hum Behav 2025:10.1038/s41562-025-02182-w. [PMID: 40246996 DOI: 10.1038/s41562-025-02182-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 03/14/2025] [Indexed: 04/19/2025]
Abstract
The rapid shifts in society have altered human behavioural patterns, with increased evening activities, increased screen time and changed sleep schedules. As an explicit manifestation of circadian rhythms, chronotype is closely intertwined with physical and mental health. Night owls often exhibit unhealthier lifestyle habits, are more susceptible to mood disorders and have poorer physical fitness compared with early risers. Although individual differences in chronotype yield varying consequences, their neurobiological underpinnings remain elusive. Here we conducted a pattern-learning analysis with three brain-imaging modalities (grey matter volume, white-matter integrity and functional connectivity) and capitalized on 976 phenotypes in 27,030 UK Biobank participants. The resulting multilevel analysis reveals convergence on the basal ganglia, limbic system, hippocampus and cerebellum. The pattern derived from modelling actigraphy wearables data of daily movement further highlighted these key brain features. Overall, our population-level study comprehensively investigates chronotype, emphasizing its close connections with habit formation, reward processing and emotional regulation.
Collapse
Affiliation(s)
- Le Zhou
- TheNeuro - Montreal Neurological Institute (MNI), Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Karin Saltoun
- TheNeuro - Montreal Neurological Institute (MNI), Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Julie Carrier
- Department of Psychology, Université de Montréal, Montreal, Quebec, Canada
- Center for Advanced Research in Sleep Medicine, Research center of the Centre intégré universitaire de santé et de services sociaux du Nord de l'Île-de-Montréal, Montreal, Quebec, Canada
| | - Kai-Florian Storch
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Robin I M Dunbar
- Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Danilo Bzdok
- TheNeuro - Montreal Neurological Institute (MNI), Department of Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada.
| |
Collapse
|
3
|
Zheng Y, Yang Y, Zhen Y, Wang X, Liu L, Zheng H, Tang S. Understanding Altered Dynamics in Cocaine Use Disorder Through State Transitions Mediated by Artificial Perturbations. Brain Sci 2025; 15:263. [PMID: 40149783 PMCID: PMC11939957 DOI: 10.3390/brainsci15030263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: Cocaine use disorder (CUD) poses a worldwide health challenge, with severe consequences for brain function. However, the phase dynamics underlying CUD and the transitions between CUD and health remain poorly understood. Methods: Here, we used resting-state functional magnetic resonance imaging (fMRI) data from 43 CUD patients and 45 healthy controls (HCT). We performed empirical analysis to identify phase-coherence states and compared their probabilities of occurrence between conditions. To further explore the underlying mechanism, we employed computational modeling to replicate the observed state probabilities for each condition. These generated whole-brain models enabled us to simulate external perturbations and identify optimal brain regions mediating transitions between HCT and CUD. Results: We found that CUD was associated with a reduced occurrence probability of the state dominated by the default mode network (DMN). Perturbing the nucleus accumbens, thalamus, and specific regions within the default mode, limbic and frontoparietal networks drives transitions from HCT to CUD, while perturbing the hippocampus and specific regions within the visual, dorsal attention, and DMN facilitates a return from CUD to HCT. Conclusions: This study revealed altered DMN-related dynamics in CUD from the phase perspective and provides potential regions critical for state transitions. The results contribute to understanding the pathogenesis of CUD and the development of therapeutic stimulation strategies.
Collapse
Affiliation(s)
- Yi Zheng
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Yaqian Yang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
| | - Yi Zhen
- School of Mathematical Sciences, Beihang University, Beijing 100191, China
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
| | - Xin Wang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Longzhao Liu
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
| | - Hongwei Zheng
- Beijing Academy of Blockchain and Edge Computing, Beijing 100085, China
| | - Shaoting Tang
- Key Laboratory of Mathematics, Informatics and Behavioral Semantics, Beihang University, Beijing 100191, China
- Institute of Artificial Intelligence, Beihang University, Beijing 100191, China
- Zhongguancun Laboratory, Beijing 100094, China
- Beijing Advanced Innovation Center for Future Blockchain and Privacy Computing, Beihang University, Beijing 100191, China
- State Key Laboratory of Complex & Critical Software Environment, Beihang University, Beijing 100191, China
- Hangzhou International Innovation Institute, Beihang University, Hangzhou 311115, China
- Institute of Medical Artificial Intelligence, Binzhou Medical University, Yantai 264003, China
| |
Collapse
|
4
|
Zhang Z, Wang M, Lu T, Shi Y, Xie C, Ren Q, Wang Z. Connectome-based prediction of future episodic memory performance for individual amnestic mild cognitive impairment patients. Brain Commun 2025; 7:fcaf033. [PMID: 39963290 PMCID: PMC11831076 DOI: 10.1093/braincomms/fcaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/26/2024] [Accepted: 02/13/2025] [Indexed: 02/20/2025] Open
Abstract
The amnestic mild cognitive impairment progression to probable Alzheimer's disease is a continuous phenomenon. Here we conduct a cohort study and apply machine learning to generate a model of predicting episodic memory development for individual amnestic mild cognitive impairment patient that incorporates whole-brain functional connectivity. Fifty amnestic mild cognitive impairment patients completed baseline and 3-year follow-up visits including episodic memory assessments (e.g. Rey Auditory Verbal Learning Test Delayed Recall) and resting-state functional MRI scanning. Using a multivariate analytical method known as relevance vector regression, we found that the baseline whole-brain functional connectivity features failed to predict the baseline Rey Auditory Verbal Learning Test Delayed Recall scores (r = 0.17, P = 0.082). Nonetheless, the baseline whole-brain functional connectivity pattern could predict the longitudinal Rey Auditory Verbal Learning Test Delayed Recall score with statistically significant accuracy (r = 0.50, P < 0.001). The connectivity that contributed most to the prediction (i.e. the top 1% connectivity) included within-default mode connections, within-limbic connections and the connections between default mode and limbic systems. More importantly, these connections with the highest absolute contribution weight mainly displayed long anatomical distances (i.e. Euclidean distance >75 mm). These 'neural fingerprints' may be appropriate biomarkers for amnestic mild cognitive impairment patients to optimize individual patient management and longitudinal evaluation in a timely fashion.
Collapse
Affiliation(s)
- Zhengsheng Zhang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Mengxue Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Tong Lu
- Department of Radiology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Yachen Shi
- Department of Interventional Neurology, The Affiliated Wuxi People’s Hospital of Nanjing Medical University, Wuxi 214023, China
| | - Chunming Xie
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Qingguo Ren
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| |
Collapse
|
5
|
Griffis JC, Bruss J, Acker SF, Shea C, Tranel D, Boes AD. Iowa Brain-Behavior Modeling Toolkit: An Open-Source MATLAB Tool for Inferential and Predictive Modeling of Imaging-Behavior and Lesion-Deficit Relationships. Hum Brain Mapp 2024; 45:e70115. [PMID: 39715352 PMCID: PMC11665964 DOI: 10.1002/hbm.70115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 12/08/2024] [Indexed: 12/25/2024] Open
Abstract
The traditional analytical framework taken by neuroimaging studies in general, and lesion-behavior studies in particular, has been inferential in nature and has focused on identifying and interpreting statistically significant effects within the sample under study. While this framework is well-suited for hypothesis testing approaches, achieving the modern goal of precision medicine requires a different framework that is predictive in nature and that focuses on maximizing the predictive power of models and evaluating their ability to generalize beyond the data that were used to train them. However, few tools exist to support the development and evaluation of predictive models in the context of neuroimaging or lesion-behavior research, creating an obstacle to the widespread adoption of predictive modeling approaches in the field. Further, existing tools for lesion-behavior analysis are often unable to accommodate categorical outcome variables and often impose restrictions on the predictor data. Researchers therefore often must use different software packages and analytical approaches depending on (a) whether they are addressing a classification versus regression problem and (b) whether their predictor data correspond to binary lesion images, continuous lesion-network images, connectivity matrices, or other data modalities. To address these limitations, we have developed a MATLAB software toolkit that supports both inferential and predictive modeling frameworks, accommodates both classification and regression problems, and does not impose restrictions on the modality of the predictor data. The toolkit features both a graphical user interface and scripting interface, includes implementations of multiple mass-univariate, multivariate, and machine learning models, features built-in and customizable routines for hyper-parameter optimization, cross-validation, model stacking, and significance testing, and automatically generates text-based descriptions of key methodological details and modeling results to improve reproducibility and minimize errors in the reporting of methods and results. Here, we provide an overview and discussion of the toolkit's features and demonstrate its functionality by applying it to the question of how expressive and receptive language impairments relate to lesion location, structural disconnection, and functional network disruption in a large sample of patients with left hemispheric brain lesions. We find that impairments in expressive versus receptive language are most strongly associated with left lateral prefrontal and left posterior temporal/parietal damage, respectively. We also find that impairments in expressive vs. receptive language are associated with partially overlapping patterns of fronto-temporal structural disconnection and with similar functional networks. Importantly, we find that lesion location and lesion-derived network measures are highly predictive of both types of impairment, with predictions from models trained on these measures explaining ~30%-40% of the variance on average when applied to data from patients not used to train the models. We have made the toolkit publicly available, and we have included a comprehensive set of tutorial notebooks to support new users in applying the toolkit in their studies.
Collapse
Affiliation(s)
- Joseph C. Griffis
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Joel Bruss
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Stein F. Acker
- Medical Scientist Training Program, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Carrie Shea
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
| | - Daniel Tranel
- Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Psychological and Brain SciencesUniversity of IowaIowa CityIowaUSA
| | - Aaron D. Boes
- Department of Pediatrics, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Neurology, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Department of Psychiatry, Carver College of MedicineUniversity of IowaIowa CityIowaUSA
- Iowa Neuroscience InstituteUniversity of IowaIowa CityIowaUSA
| |
Collapse
|
6
|
Becchio C, Pullar K, Scaliti E, Panzeri S. Kinematic coding: Measuring information in naturalistic behaviour. Phys Life Rev 2024; 51:442-458. [PMID: 39603216 DOI: 10.1016/j.plrev.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Recent years have seen an explosion of interest in naturalistic behaviour and in machine learning tools for automatically tracking it. However, questions about what to measure, how to measure it, and how to relate naturalistic behaviour to neural activity and cognitive processes remain unresolved. In this Perspective, we propose a general experimental and computational framework - kinematic coding - for measuring how information about cognitive states is encoded in structured patterns of behaviour and how this information is read out by others during social interactions. This framework enables the design of new experiments and the generation of testable hypotheses that link behaviour, cognition, and neural activity at the single-trial level. Researchers can employ this framework to identify single-subject, single-trial encoding and readout computations and address meaningful questions about how information encoded in bodily motion is transmitted and communicated.
Collapse
Affiliation(s)
- Cristina Becchio
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| | - Kiri Pullar
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Institute for Neural Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany
| | - Eugenio Scaliti
- Department of Neurology, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany; Department of Management "Valter Cantino", University of Turin, Turin, Italy; Human Science and Technologies, University of Turin, Turin, Italy
| | - Stefano Panzeri
- Institute for Neural Information Processing, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf (UKE), Hamburg, Germany.
| |
Collapse
|
7
|
Zabihi M, Kia SM, Wolfers T, de Boer S, Fraza C, Dinga R, Arenas AL, Bzdok D, Beckmann CF, Marquand A. Nonlinear latent representations of high-dimensional task-fMRI data: Unveiling cognitive and behavioral insights in heterogeneous spatial maps. PLoS One 2024; 19:e0308329. [PMID: 39116147 PMCID: PMC11309387 DOI: 10.1371/journal.pone.0308329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 07/22/2024] [Indexed: 08/10/2024] Open
Abstract
Finding an interpretable and compact representation of complex neuroimaging data is extremely useful for understanding brain behavioral mapping and hence for explaining the biological underpinnings of mental disorders. However, hand-crafted representations, as well as linear transformations, may inadequately capture the considerable variability across individuals. Here, we implemented a data-driven approach using a three-dimensional autoencoder on two large-scale datasets. This approach provides a latent representation of high-dimensional task-fMRI data which can account for demographic characteristics whilst also being readily interpretable both in the latent space learned by the autoencoder and in the original voxel space. This was achieved by addressing a joint optimization problem that simultaneously reconstructs the data and predicts clinical or demographic variables. We then applied normative modeling to the latent variables to define summary statistics ('latent indices') and establish a multivariate mapping to non-imaging measures. Our model, trained with multi-task fMRI data from the Human Connectome Project (HCP) and UK biobank task-fMRI data, demonstrated high performance in age and sex predictions and successfully captured complex behavioral characteristics while preserving individual variability through a latent representation. Our model also performed competitively with respect to various baseline models including several variants of principal components analysis, independent components analysis and classical regions of interest, both in terms of reconstruction accuracy and strength of association with behavioral variables.
Collapse
Affiliation(s)
- Mariam Zabihi
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- MRC Unit for Lifelong Health & Ageing, University College London (UCL), London, United Kingdom
| | - Seyed Mostafa Kia
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Department of Psychiatry, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Thomas Wolfers
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry and Psychotherapy, Tübingen Center for Mental Health, University of Tübingen, Tübingen, Germany
| | - Stijn de Boer
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Charlotte Fraza
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Richard Dinga
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
| | - Alberto Llera Arenas
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Danilo Bzdok
- Multimodal Imaging and Connectome Analysis Lab, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
- Mila ‐ Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| | - Christian F. Beckmann
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Centre for Functional MRI of the Brain, University of Oxford, Oxford, United Kingdom
| | - Andre Marquand
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, the Netherlands
- Department of Neuroimaging, Institute of Psychiatry, Psychology, & Neuroscience, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Kopal J, Kumar K, Shafighi K, Saltoun K, Modenato C, Moreau CA, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Douard E, Jizi K, Beauchamp-Chatel A, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Zatorre R, Jacquemont S, Bzdok D. Using rare genetic mutations to revisit structural brain asymmetry. Nat Commun 2024; 15:2639. [PMID: 38531844 PMCID: PMC10966068 DOI: 10.1038/s41467-024-46784-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
Asymmetry between the left and right hemisphere is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variants, which typically exert small effects on brain-related phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We designed a pattern-learning approach to dissect the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior data fusion highlights the consequences of genetically controlled brain lateralization on uniquely human cognitive capacities.
Collapse
Affiliation(s)
- Jakub Kopal
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Kimia Shafighi
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Karin Saltoun
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | | | | | - Zohra Saci
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Nadine Younis
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Khadije Jizi
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Alexis Beauchamp-Chatel
- Institut universitaire en santé mentale de Montréal, University of Montréal, Montréal, Canada
- Department of Psychiatry, University of Montreal, Montréal, Canada
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, Netherlands
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Innovation Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Marina del Rey, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, USA
| | - Robert Zatorre
- International Laboratory for Brain, Music and Sound Research, Montreal, QC, Canada
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine, Montréal, Quebec, Canada
- Department of Pediatrics, University of Montréal, Montréal, Quebec, Canada
| | - Danilo Bzdok
- Mila - Québec Artificial Intelligence Institute, Montréal, QC, Canada.
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
9
|
Bzdok D, Thieme A, Levkovskyy O, Wren P, Ray T, Reddy S. Data science opportunities of large language models for neuroscience and biomedicine. Neuron 2024; 112:698-717. [PMID: 38340718 DOI: 10.1016/j.neuron.2024.01.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/03/2024] [Accepted: 01/17/2024] [Indexed: 02/12/2024]
Abstract
Large language models (LLMs) are a new asset class in the machine-learning landscape. Here we offer a primer on defining properties of these modeling techniques. We then reflect on new modes of investigation in which LLMs can be used to reframe classic neuroscience questions to deliver fresh answers. We reason that LLMs have the potential to (1) enrich neuroscience datasets by adding valuable meta-information, such as advanced text sentiment, (2) summarize vast information sources to overcome divides between siloed neuroscience communities, (3) enable previously unthinkable fusion of disparate information sources relevant to the brain, (4) help deconvolve which cognitive concepts most usefully grasp phenomena in the brain, and much more.
Collapse
Affiliation(s)
- Danilo Bzdok
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; TheNeuro - Montreal Neurological Institute (MNI), Department of Biomedical Engineering, McGill University, Montreal, QC, Canada.
| | | | | | - Paul Wren
- Mindstate Design Labs, San Francisco, CA, USA
| | - Thomas Ray
- Mindstate Design Labs, San Francisco, CA, USA
| | - Siva Reddy
- Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; Facebook CIFAR AI Chair; ServiceNow Research
| |
Collapse
|
10
|
Vohryzek J, Cabral J, Lord LD, Fernandes HM, Roseman L, Nutt DJ, Carhart-Harris RL, Deco G, Kringelbach ML. Brain dynamics predictive of response to psilocybin for treatment-resistant depression. Brain Commun 2024; 6:fcae049. [PMID: 38515439 PMCID: PMC10957168 DOI: 10.1093/braincomms/fcae049] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 10/16/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Psilocybin therapy for depression has started to show promise, yet the underlying causal mechanisms are not currently known. Here, we leveraged the differential outcome in responders and non-responders to psilocybin (10 and 25 mg, 7 days apart) therapy for depression-to gain new insights into regions and networks implicated in the restoration of healthy brain dynamics. We used large-scale brain modelling to fit the spatiotemporal brain dynamics at rest in both responders and non-responders before treatment. Dynamic sensitivity analysis of systematic perturbation of these models enabled us to identify specific brain regions implicated in a transition from a depressive brain state to a healthy one. Binarizing the sample into treatment responders (>50% reduction in depressive symptoms) versus non-responders enabled us to identify a subset of regions implicated in this change. Interestingly, these regions correlate with in vivo density maps of serotonin receptors 5-hydroxytryptamine 2a and 5-hydroxytryptamine 1a, which psilocin, the active metabolite of psilocybin, has an appreciable affinity for, and where it acts as a full-to-partial agonist. Serotonergic transmission has long been associated with depression, and our findings provide causal mechanistic evidence for the role of brain regions in the recovery from depression via psilocybin.
Collapse
Affiliation(s)
- Jakub Vohryzek
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joana Cabral
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s—PT Government Associate Laboratory, Braga/Guimarães, University of Minho, Portugal
| | - Louis-David Lord
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Henrique M Fernandes
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
| | - Leor Roseman
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - David J Nutt
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
| | - Robin L Carhart-Harris
- Centre for Psychedelic Research, Department of Brain Sciences, Imperial College London, London, UK
- Psychedelics Division, Neuroscape, Department of Neurology, University of California San Francisco, San Francisco, CA, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford, UK
- Center for Music in the Brain, Aarhus University, Aarhus, Denmark
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
| |
Collapse
|
11
|
Xu K, Sun Z, Qiao Z, Chen A. Diagnosing autism severity associated with physical fitness and gray matter volume in children with autism spectrum disorder: Explainable machine learning method. Complement Ther Clin Pract 2024; 54:101825. [PMID: 38169278 DOI: 10.1016/j.ctcp.2023.101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/18/2023] [Accepted: 12/29/2023] [Indexed: 01/05/2024]
Abstract
PURPOSE This study aimed to investigate the relationship between physical fitness, gray matter volume (GMV), and autism severity in children with autism spectrum disorder (ASD). Besides, we sought to diagnose autism severity associated with physical fitness and GMV using machine learning methods. METHODS Ninety children diagnosed with ASD underwent physical fitness tests, magnetic resonance imaging scans, and autism severity assessments. Diagnosis models were established using extreme gradient boosting (XGB), random forest (RF), support vector machine (SVM), and decision tree (DT) algorithms. Hyperparameters were optimized through the grid search cross-validation method. The shapley additive explanation (SHAP) method was employed to explain the diagnosis results. RESULTS Our study revealed associations between muscular strength in physical fitness and GMV in specific brain regions (left paracentral lobule, bilateral thalamus, left inferior temporal gyrus, and cerebellar vermis I-II) with autism severity in children with ASD. The accuracy (95 % confidence interval) of the XGB, RF, SVM, and DT models were 77.9 % (77.3, 78.6 %), 72.4 % (71.7, 73.2 %), 71.9 % (71.1, 72.6 %), and 66.9 % (66.2, 67.7 %), respectively. SHAP analysis revealed that muscular strength and thalamic GMV significantly influenced the decision-making process of the XGB model. CONCLUSION Machine learning methods can effectively diagnose autism severity associated with physical fitness and GMV in children with ASD. In this respect, the XGB model demonstrated excellent performance across various indicators, suggesting its potential for diagnosing autism severity.
Collapse
Affiliation(s)
- Keyun Xu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Zhiyuan Sun
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Zhiyuan Qiao
- College of Physical Education, Yangzhou University, Yangzhou, 225127, China
| | - Aiguo Chen
- Nanjing Sport Institute, Nanjing, 210014, China.
| |
Collapse
|
12
|
Bzdok D, Wolf G, Kopal J. Harnessing population diversity: in search of tools of the trade. Gigascience 2024; 13:giae068. [PMID: 39331809 PMCID: PMC11427908 DOI: 10.1093/gigascience/giae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/29/2024] Open
Abstract
Big neuroscience datasets are not big small datasets when it comes to quantitative data analysis. Neuroscience has now witnessed the advent of many population cohort studies that deep-profile participants, yielding hundreds of measures, capturing dimensions of each individual's position in the broader society. Indeed, there is a rebalancing from small, strictly selected, and thus homogenized cohorts toward always larger, more representative, and thus diverse cohorts. This shift in cohort composition is prompting the revision of incumbent modeling practices. Major sources of population stratification increasingly overshadow the subtle effects that neuroscientists are typically studying. In our opinion, as we sample individuals from always wider diversity backgrounds, we will require a new stack of quantitative tools to realize diversity-aware modeling. We here take inventory of candidate analytical frameworks. Better incorporating driving factors behind population structure will allow refining our understanding of how brain-behavior relationships depend on human subgroups.
Collapse
Affiliation(s)
- Danilo Bzdok
- MNI-Montreal Neurological Institute, Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- MILA-Quebec Artificial Intelligence Institute, Montreal H2S 3H1, Canada
| | - Guy Wolf
- MILA-Quebec Artificial Intelligence Institute, Montreal H2S 3H1, Canada
| | - Jakub Kopal
- MNI-Montreal Neurological Institute, Department of Biomedical Engineering, McGill University, Montreal, Quebec H3A 2B4, Canada
- MILA-Quebec Artificial Intelligence Institute, Montreal H2S 3H1, Canada
| |
Collapse
|
13
|
Hobbs NZ, Papoutsi M, Delva A, Kinnunen KM, Nakajima M, Van Laere K, Vandenberghe W, Herath P, Scahill RI. Neuroimaging to Facilitate Clinical Trials in Huntington's Disease: Current Opinion from the EHDN Imaging Working Group. J Huntingtons Dis 2024; 13:163-199. [PMID: 38788082 PMCID: PMC11307036 DOI: 10.3233/jhd-240016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Neuroimaging is increasingly being included in clinical trials of Huntington's disease (HD) for a wide range of purposes from participant selection and safety monitoring, through to demonstration of disease modification. Selection of the appropriate modality and associated analysis tools requires careful consideration. On behalf of the EHDN Imaging Working Group, we present current opinion on the utility and future prospects for inclusion of neuroimaging in HD trials. Covering the key imaging modalities of structural-, functional- and diffusion- MRI, perfusion imaging, positron emission tomography, magnetic resonance spectroscopy, and magnetoencephalography, we address how neuroimaging can be used in HD trials to: 1) Aid patient selection, enrichment, stratification, and safety monitoring; 2) Demonstrate biodistribution, target engagement, and pharmacodynamics; 3) Provide evidence for disease modification; and 4) Understand brain re-organization following therapy. We also present the challenges of translating research methodology into clinical trial settings, including equipment requirements and cost, standardization of acquisition and analysis, patient burden and invasiveness, and interpretation of results. We conclude, that with appropriate consideration of modality, study design and analysis, imaging has huge potential to facilitate effective clinical trials in HD.
Collapse
Affiliation(s)
- Nicola Z. Hobbs
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
| | - Marina Papoutsi
- HD Research Centre, UCL Institute of Neurology, UCL, London, UK
- IXICO plc, London, UK
| | - Aline Delva
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | | - Koen Van Laere
- Department of Imaging and Pathology, Nuclear Medicine and Molecular Imaging, KU Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Belgium
| | | | | |
Collapse
|
14
|
Wang Y, Genon S, Dong D, Zhou F, Li C, Yu D, Yuan K, He Q, Qiu J, Feng T, Chen H, Lei X. Covariance patterns between sleep health domains and distributed intrinsic functional connectivity. Nat Commun 2023; 14:7133. [PMID: 37932259 PMCID: PMC10628193 DOI: 10.1038/s41467-023-42945-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 10/25/2023] [Indexed: 11/08/2023] Open
Abstract
Sleep health is both conceptually and operationally a composite concept containing multiple domains of sleep. In line with this, high dependence and interaction across different domains of sleep health encourage a transition in sleep health research from categorical to dimensional approaches that integrate neuroscience and sleep health. Here, we seek to identify the covariance patterns between multiple sleep health domains and distributed intrinsic functional connectivity by applying a multivariate approach (partial least squares). This multivariate analysis reveals a composite sleep health dimension co-varying with connectivity patterns involving the attentional and thalamic networks and which appear relevant at the neuromolecular level. These findings are further replicated and generalized to several unseen independent datasets. Critically, the identified sleep-health related connectome shows diagnostic potential for insomnia disorder. These results together delineate a potential brain connectome biomarker for sleep health with high potential for clinical translation.
Collapse
Affiliation(s)
- Yulin Wang
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Sarah Genon
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute for Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Debo Dong
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Feng Zhou
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Chenyu Li
- Sleep Center, Department of Brain Disease, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Dahua Yu
- Information Processing Laboratory, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, China
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Sleep and NeuroImaging Center, Faculty of Psychology, Southwest University, Chongqing, China.
- Key Laboratory of Cognition and Personality, Ministry of Education, Faculty of Psychology, Southwest University, Chongqing, China.
| |
Collapse
|
15
|
Lefort-Besnard J, Naveau M, Delcroix N, Decker LM, Cignetti F. Grey matter volume and CSF biomarkers predict neuropsychological subtypes of MCI. Neurobiol Aging 2023; 131:196-208. [PMID: 37689017 DOI: 10.1016/j.neurobiolaging.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 09/11/2023]
Abstract
There is increasing evidence of different subtypes of individuals with mild cognitive impairment (MCI). An important line of research is whether neuropsychologically-defined subtypes have distinct patterns of neurodegeneration and cerebrospinal fluid (CSF) biomarker composition. In our study, we demonstrated that MCI participants of the ADNI database (N = 640) can be discriminated into 3 coherent neuropsychological subgroups. Our clustering approach revealed amnestic MCI, mixed MCI, and cluster-derived normal subgroups. Furthermore, classification modeling revealed that specific predictive features can be used to differentiate amnestic and mixed MCI from cognitively normal (CN) controls: CSF Aβ142 concentration for the former and CSF Aβ1-42 concentration, tau concentration as well as grey matter atrophy (especially in the temporal and occipital lobes) for the latter. In contrast, participants from the cluster-derived normal subgroup exhibited an identical profile to CN controls in terms of cognitive performance, brain structure, and CSF biomarker levels. Our comprehensive data analytics strategy provides further evidence that multimodal neuropsychological subtyping is both clinically and neurobiologically meaningful.
Collapse
Affiliation(s)
| | - Mikael Naveau
- Normandie Univ, UNICAEN, CNRS, CEA, INSERM, GIP Cyceron, Caen, France
| | - Nicolas Delcroix
- Normandie Univ, UNICAEN, CNRS, CEA, INSERM, GIP Cyceron, Caen, France
| | - Leslie Marion Decker
- Normandie Univ, UNICAEN, INSERM, COMETE, Caen, France; Normandie Univ, UNICAEN, CIREVE, Caen, France.
| | - Fabien Cignetti
- Univ. Grenoble Alpes, CNRS, VetAgro Sup, Grenoble INP, TIMC, Grenoble, France.
| |
Collapse
|
16
|
Nashwan AJ, Gharib S, Alhadidi M, El-Ashry AM, Alamgir A, Al-Hassan M, Khedr MA, Dawood S, Abufarsakh B. Harnessing Artificial Intelligence: Strategies for Mental Health Nurses in Optimizing Psychiatric Patient Care. Issues Ment Health Nurs 2023; 44:1020-1034. [PMID: 37850937 DOI: 10.1080/01612840.2023.2263579] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
This narrative review explores the transformative impact of Artificial Intelligence (AI) on mental health nursing, particularly in enhancing psychiatric patient care. AI technologies present new strategies for early detection, risk assessment, and improving treatment adherence in mental health. They also facilitate remote patient monitoring, bridge geographical gaps, and support clinical decision-making. The evolution of virtual mental health assistants and AI-enhanced therapeutic interventions are also discussed. These technological advancements reshape the nurse-patient interactions while ensuring personalized, efficient, and high-quality care. The review also addresses AI's ethical and responsible use in mental health nursing, emphasizing patient privacy, data security, and the balance between human interaction and AI tools. As AI applications in mental health care continue to evolve, this review encourages continued innovation while advocating for responsible implementation, thereby optimally leveraging the potential of AI in mental health nursing.
Collapse
Affiliation(s)
- Abdulqadir J Nashwan
- Nursing Department, Hamad Medical Corporation, Doha, Qatar
- Department of Public Health, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Suzan Gharib
- Nursing Department, Al-Khaldi Hospital, Amman, Jordan
| | - Majdi Alhadidi
- Psychiatric & Mental Health Nursing, Faculty of Nursing, Al-Zaytoonah University of Jordan, Amman, Jordan
| | | | | | | | | | - Shaimaa Dawood
- Faculty of Nursing, Alexandria University, Alexandria, Egypt
| | | |
Collapse
|
17
|
Kopal J, Uddin LQ, Bzdok D. The end game: respecting major sources of population diversity. Nat Methods 2023; 20:1122-1128. [PMID: 36869122 DOI: 10.1038/s41592-023-01812-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA, USA
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montréal, Quebec, Canada.
| |
Collapse
|
18
|
Durham EL, Ghanem K, Stier AJ, Cardenas-Iniguez C, Reimann GE, Jeong HJ, Dupont RM, Dong X, Moore TM, Berman MG, Lahey BB, Bzdok D, Kaczkurkin AN. Multivariate analytical approaches for investigating brain-behavior relationships. Front Neurosci 2023; 17:1175690. [PMID: 37583413 PMCID: PMC10423877 DOI: 10.3389/fnins.2023.1175690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/13/2023] [Indexed: 08/17/2023] Open
Abstract
Background Many studies of brain-behavior relationships rely on univariate approaches where each variable of interest is tested independently, which does not allow for the simultaneous investigation of multiple correlated variables. Alternatively, multivariate approaches allow for examining relationships between psychopathology and neural substrates simultaneously. There are multiple multivariate methods to choose from that each have assumptions which can affect the results; however, many studies employ one method without a clear justification for its selection. Additionally, there are few studies illustrating how differences between methods manifest in examining brain-behavior relationships. The purpose of this study was to exemplify how the choice of multivariate approach can change brain-behavior interpretations. Method We used data from 9,027 9- to 10-year-old children from the Adolescent Brain Cognitive DevelopmentSM Study (ABCD Study®) to examine brain-behavior relationships with three commonly used multivariate approaches: canonical correlation analysis (CCA), partial least squares correlation (PLSC), and partial least squares regression (PLSR). We examined the associations between psychopathology dimensions including general psychopathology, attention-deficit/hyperactivity symptoms, conduct problems, and internalizing symptoms with regional brain volumes. Results The results of CCA, PLSC, and PLSR showed both consistencies and differences in the relationship between psychopathology symptoms and brain structure. The leading significant component yielded by each method demonstrated similar patterns of associations between regional brain volumes and psychopathology symptoms. However, the additional significant components yielded by each method demonstrated differential brain-behavior patterns that were not consistent across methods. Conclusion Here we show that CCA, PLSC, and PLSR yield slightly different interpretations regarding the relationship between child psychopathology and brain volume. In demonstrating the divergence between these approaches, we exemplify the importance of carefully considering the method's underlying assumptions when choosing a multivariate approach to delineate brain-behavior relationships.
Collapse
Affiliation(s)
- E. Leighton Durham
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Karam Ghanem
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | - Andrew J. Stier
- Department of Psychology, University of Chicago, Chicago, IL, United States
| | - Carlos Cardenas-Iniguez
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| | | | - Hee Jung Jeong
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Randolph M. Dupont
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Xiaoyu Dong
- Department of Psychology, Vanderbilt University, Nashville, TN, United States
| | - Tyler M. Moore
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Marc G. Berman
- Department of Psychology, University of Chicago, Chicago, IL, United States
- The University of Chicago Neuroscience Institute, University of Chicago, Chicago, IL, United States
| | - Benjamin B. Lahey
- Department of Health Studies, University of Chicago, Chicago, IL, United States
- Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, United States
| | - Danilo Bzdok
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
| | | |
Collapse
|
19
|
Azevedo T, Bethlehem RAI, Whiteside DJ, Swaddiwudhipong N, Rowe JB, Lió P, Rittman T. Identifying healthy individuals with Alzheimer's disease neuroimaging phenotypes in the UK Biobank. COMMUNICATIONS MEDICINE 2023; 3:100. [PMID: 37474615 PMCID: PMC10359360 DOI: 10.1038/s43856-023-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Identifying prediagnostic neurodegenerative disease is a critical issue in neurodegenerative disease research, and Alzheimer's disease (AD) in particular, to identify populations suitable for preventive and early disease-modifying trials. Evidence from genetic and other studies suggests the neurodegeneration of Alzheimer's disease measured by brain atrophy starts many years before diagnosis, but it is unclear whether these changes can be used to reliably detect prediagnostic sporadic disease. METHODS We trained a Bayesian machine learning neural network model to generate a neuroimaging phenotype and AD score representing the probability of AD using structural MRI data in the Alzheimer's Disease Neuroimaging Initiative (ADNI) Cohort (cut-off 0.5, AUC 0.92, PPV 0.90, NPV 0.93). We go on to validate the model in an independent real-world dataset of the National Alzheimer's Coordinating Centre (AUC 0.74, PPV 0.65, NPV 0.80) and demonstrate the correlation of the AD-score with cognitive scores in those with an AD-score above 0.5. We then apply the model to a healthy population in the UK Biobank study to identify a cohort at risk for Alzheimer's disease. RESULTS We show that the cohort with a neuroimaging Alzheimer's phenotype has a cognitive profile in keeping with Alzheimer's disease, with strong evidence for poorer fluid intelligence, and some evidence of poorer numeric memory, reaction time, working memory, and prospective memory. We found some evidence in the AD-score positive cohort for modifiable risk factors of hypertension and smoking. CONCLUSIONS This approach demonstrates the feasibility of using AI methods to identify a potentially prediagnostic population at high risk for developing sporadic Alzheimer's disease.
Collapse
Affiliation(s)
- Tiago Azevedo
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Richard A I Bethlehem
- Brain Mapping Unit, Department of Psychiatry, University of Cambridge, Cambridge, UK
- Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - David J Whiteside
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Nol Swaddiwudhipong
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK
| | - Pietro Lió
- Department of Computer Science and Technology, University of Cambridge, Cambridge, UK
| | - Timothy Rittman
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, Cambridge, UK.
| |
Collapse
|
20
|
Kopal J, Kumar K, Saltoun K, Modenato C, Moreau CA, Martin-Brevet S, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Tamer P, Douard E, Maillard AM, Rodriguez-Herreros B, Pain A, Richetin S, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Jacquemont S, Bzdok D. Rare CNVs and phenome-wide profiling highlight brain structural divergence and phenotypical convergence. Nat Hum Behav 2023; 7:1001-1017. [PMID: 36864136 PMCID: PMC7615290 DOI: 10.1038/s41562-023-01541-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 01/30/2023] [Indexed: 03/04/2023]
Abstract
Copy number variations (CNVs) are rare genomic deletions and duplications that can affect brain and behaviour. Previous reports of CNV pleiotropy imply that they converge on shared mechanisms at some level of pathway cascades, from genes to large-scale neural circuits to the phenome. However, existing studies have primarily examined single CNV loci in small clinical cohorts. It remains unknown, for example, how distinct CNVs escalate vulnerability for the same developmental and psychiatric disorders. Here we quantitatively dissect the associations between brain organization and behavioural differentiation across 8 key CNVs. In 534 CNV carriers, we explored CNV-specific brain morphology patterns. CNVs were characteristic of disparate morphological changes involving multiple large-scale networks. We extensively annotated these CNV-associated patterns with ~1,000 lifestyle indicators through the UK Biobank resource. The resulting phenotypic profiles largely overlap and have body-wide implications, including the cardiovascular, endocrine, skeletal and nervous systems. Our population-level investigation established brain structural divergences and phenotypical convergences of CNVs, with direct relevance to major brain disorders.
Collapse
Affiliation(s)
- Jakub Kopal
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada
| | - Kuldeep Kumar
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Karin Saltoun
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada
| | - Claudia Modenato
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Clara A Moreau
- Human Genetics and Cognitive Functions, CNRS UMR 3571: Genes, Synapses and Cognition, Institut Pasteur, Paris, France
| | - Sandra Martin-Brevet
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Guillaume Huguet
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Martineau Jean-Louis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Charles-Olivier Martin
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Zohra Saci
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Nadine Younis
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Petra Tamer
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Elise Douard
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Anne M Maillard
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Borja Rodriguez-Herreros
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Aurèlie Pain
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Sonia Richetin
- Service des Troubles du Spectre de l'Autisme et apparentés, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - Leila Kushan
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, USA
| | - Ana I Silva
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Marianne B M van den Bree
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - David E J Linden
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Neuroscience and Mental Health Research Institute, Cardiff University, Cardiff, UK
| | - Michael J Owen
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Jeremy Hall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
- Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Sarah Lippé
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Bogdan Draganski
- LREN - Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
- Neurology Department, Max-Planck-Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Ida E Sønderby
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital and University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, Departments of Psychiatry and Biobehavioral Sciences and Psychology, UCLA, Los Angeles, CA, USA
| | - Sébastien Jacquemont
- Centre de recherche CHU Sainte-Justine and University of Montréal, Montréal, Quebec, Canada
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
- Mila - Quebec Artificial Intelligence Institute, Montréal, Quebec, Canada.
- TheNeuro - Montreal Neurological Institute (MNI), McConnell Brain Imaging Centre, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Goelz C, Reuter EM, Fröhlich S, Rudisch J, Godde B, Vieluf S, Voelcker-Rehage C. Classification of age groups and task conditions provides additional evidence for differences in electrophysiological correlates of inhibitory control across the lifespan. Brain Inform 2023; 10:11. [PMID: 37154855 PMCID: PMC10167079 DOI: 10.1186/s40708-023-00190-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/01/2023] [Indexed: 05/10/2023] Open
Abstract
The aim of this study was to extend previous findings on selective attention over a lifetime using machine learning procedures. By decoding group membership and stimulus type, we aimed to study differences in the neural representation of inhibitory control across age groups at a single-trial level. We re-analyzed data from 211 subjects from six age groups between 8 and 83 years of age. Based on single-trial EEG recordings during a flanker task, we used support vector machines to predict the age group as well as to determine the presented stimulus type (i.e., congruent, or incongruent stimulus). The classification of group membership was highly above chance level (accuracy: 55%, chance level: 17%). Early EEG responses were found to play an important role, and a grouped pattern of classification performance emerged corresponding to age structure. There was a clear cluster of individuals after retirement, i.e., misclassifications mostly occurred within this cluster. The stimulus type could be classified above chance level in ~ 95% of subjects. We identified time windows relevant for classification performance that are discussed in the context of early visual attention and conflict processing. In children and older adults, a high variability and latency of these time windows were found. We were able to demonstrate differences in neuronal dynamics at the level of individual trials. Our analysis was sensitive to mapping gross changes, e.g., at retirement age, and to differentiating components of visual attention across age groups, adding value for the diagnosis of cognitive status across the lifespan. Overall, the results highlight the use of machine learning in the study of brain activity over a lifetime.
Collapse
Affiliation(s)
- Christian Goelz
- Institute of Sports Medicine, Paderborn University, Paderborn, Germany
| | - Eva-Maria Reuter
- Department of Sport and Health Sciences, Technical University of Munich, Munich, Germany
| | - Stephanie Fröhlich
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Julian Rudisch
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany
| | - Ben Godde
- School of Business, Social and Decision Sciences, Constructor University, Bremen, Germany
| | - Solveig Vieluf
- Institute of Sports Medicine, Paderborn University, Paderborn, Germany
- Division of Epilepsy and Clinical Neurophysiology, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Claudia Voelcker-Rehage
- Department of Neuromotor Behavior and Exercise, Institute of Sport and Exercise Sciences, University of Münster, Wilhelm-Schickard-Str. 8, 48149, Münster, Germany.
| |
Collapse
|
22
|
Kopal J, Kumar K, Shafighi K, Saltoun K, Modenato C, Moreau CA, Huguet G, Jean-Louis M, Martin CO, Saci Z, Younis N, Douard E, Jizi K, Beauchamp-Chatel A, Kushan L, Silva AI, van den Bree MBM, Linden DEJ, Owen MJ, Hall J, Lippé S, Draganski B, Sønderby IE, Andreassen OA, Glahn DC, Thompson PM, Bearden CE, Zatorre R, Jacquemont S, Bzdok D. Using rare genetic mutations to revisit structural brain asymmetry. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.537199. [PMID: 37131672 PMCID: PMC10153125 DOI: 10.1101/2023.04.17.537199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Asymmetry between the left and right brain is a key feature of brain organization. Hemispheric functional specialization underlies some of the most advanced human-defining cognitive operations, such as articulated language, perspective taking, or rapid detection of facial cues. Yet, genetic investigations into brain asymmetry have mostly relied on common variant studies, which typically exert small effects on brain phenotypes. Here, we leverage rare genomic deletions and duplications to study how genetic alterations reverberate in human brain and behavior. We quantitatively dissected the impact of eight high-effect-size copy number variations (CNVs) on brain asymmetry in a multi-site cohort of 552 CNV carriers and 290 non-carriers. Isolated multivariate brain asymmetry patterns spotlighted regions typically thought to subserve lateralized functions, including language, hearing, as well as visual, face and word recognition. Planum temporale asymmetry emerged as especially susceptible to deletions and duplications of specific gene sets. Targeted analysis of common variants through genome-wide association study (GWAS) consolidated partly diverging genetic influences on the right versus left planum temporale structure. In conclusion, our gene-brain-behavior mapping highlights the consequences of genetically controlled brain lateralization on human-defining cognitive traits.
Collapse
|
23
|
Weaver NA, Mamdani MH, Lim JS, Biesbroek JM, Biessels GJ, Huenges Wajer IMC, Kang Y, Kim BJ, Lee BC, Lee KJ, Yu KH, Bae HJ, Bzdok D, Kuijf HJ. Disentangling poststroke cognitive deficits and their neuroanatomical correlates through combined multivariable and multioutcome lesion-symptom mapping. Hum Brain Mapp 2023; 44:2266-2278. [PMID: 36661231 PMCID: PMC10028652 DOI: 10.1002/hbm.26208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 12/21/2022] [Accepted: 01/04/2023] [Indexed: 01/21/2023] Open
Abstract
Studies in patients with brain lesions play a fundamental role in unraveling the brain's functional anatomy. Lesion-symptom mapping (LSM) techniques can relate lesion location to cognitive performance. However, a limitation of current LSM approaches is that they can only evaluate one cognitive outcome at a time, without considering interdependencies between different cognitive tests. To overcome this challenge, we implemented canonical correlation analysis (CCA) as combined multivariable and multioutcome LSM approach. We performed a proof-of-concept study on 1075 patients with acute ischemic stroke to explore whether addition of CCA to a multivariable single-outcome LSM approach (support vector regression) could identify infarct locations associated with deficits in three well-defined verbal memory functions (encoding, consolidation, retrieval) based on four verbal memory subscores derived from the Seoul Verbal Learning Test (immediate recall, delayed recall, recognition, learning ability). We evaluated whether CCA could extract cognitive score patterns that matched prior knowledge of these verbal memory functions, and if these patterns could be linked to more specific infarct locations than through single-outcome LSM alone. Two of the canonical modes identified with CCA showed distinct cognitive patterns that matched prior knowledge on encoding and consolidation. In addition, CCA revealed that each canonical mode was linked to a distinct infarct pattern, while with multivariable single-outcome LSM individual verbal memory subscores were associated with largely overlapping patterns. In conclusion, our findings demonstrate that CCA can complement single-outcome LSM techniques to help disentangle cognitive functions and their neuroanatomical correlates.
Collapse
Affiliation(s)
- Nick A Weaver
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Muhammad Hasnain Mamdani
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, School of Computer Science, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
| | - Jae-Sung Lim
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | | | - Geert Jan Biessels
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
| | - Irene M C Huenges Wajer
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, Utrecht, The Netherlands
- Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, The Netherlands
| | - Yeonwook Kang
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
- Department of Psychology, Hallym University, Chuncheon, Republic of Korea
| | - Beom Joon Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Byung-Chul Lee
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Keon-Joo Lee
- Department of Neurology, Korea University Guro Hospital, Seoul, Republic of Korea
| | - Kyung-Ho Yu
- Department of Neurology, Hallym University Sacred Heart Hospital, Hallym Neurological Institute, Hallym University College of Medicine, Anyang, Republic of Korea
| | - Hee-Joon Bae
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McConnell Brain Imaging Centre, School of Computer Science, Montreal Neurological Institute (MNI), McGill University, Montreal, Canada
- Mila-Quebec Artificial Intelligence Institute, Montreal, Canada
| | - Hugo J Kuijf
- Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
24
|
Home alone: A population neuroscience investigation of brain morphology substrates. Neuroimage 2023; 269:119936. [PMID: 36781113 DOI: 10.1016/j.neuroimage.2023.119936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/13/2023] Open
Abstract
As a social species, ready exchange with peers is a pivotal asset - our "social capital". Yet, single-person households have come to pervade metropolitan cities worldwide, with unknown consequences in the long run. Here, we systematically explore the morphological manifestations associated with singular living in ∼40,000 UK Biobank participants. The uncovered population-level signature spotlights the highly associative default mode network, in addition to findings such as in the amygdala central, cortical and corticoamygdaloid nuclei groups, as well as the hippocampal fimbria and dentate gyrus. Both positive effects, equating to greater gray matter volume associated with living alone, and negative effects, which can be interpreted as greater gray matter associations with not living alone, were found across the cortex and subcortical structures Sex-stratified analyses revealed male-specific neural substrates, including somatomotor, saliency and visual systems, while female-specific neural substrates centered on the dorsomedial prefrontal cortex. In line with our demographic profiling results, the discovered neural pattern of living alone is potentially linked to alcohol and tobacco consumption, anxiety, sleep quality as well as daily TV watching. The persistent trend for solitary living will require new answers from public-health decision makers. SIGNIFICANCE STATEMENT: Living alone has profound consequences for mental and physical health. Despite this, there has been a rapid increase in single-person households worldwide, with the long-term consequences yet unknown. In the largest study of its kind, we investigate how the objective lack of everyday social interaction, through living alone, manifests in the brain. Our population neuroscience approach uncovered a gray matter signature that converged on the 'default network', alongside targeted subcortical, sex and demographic profiling analyses. The human urge for social relationships is highlighted by the evolving COVID-19 pandemic. Better understanding of how social isolation relates to the brain will influence health and social policy decision-making of pandemic planning, as well as social interventions in light of global shifts in houseful structures.
Collapse
|
25
|
Clemens B, Lefort-Besnard J, Ritter C, Smith E, Votinov M, Derntl B, Habel U, Bzdok D. Accurate machine learning prediction of sexual orientation based on brain morphology and intrinsic functional connectivity. Cereb Cortex 2023; 33:4013-4025. [PMID: 36104854 PMCID: PMC10068286 DOI: 10.1093/cercor/bhac323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Sexual orientation in humans represents a multilevel construct that is grounded in both neurobiological and environmental factors. OBJECTIVE Here, we bring to bear a machine learning approach to predict sexual orientation from gray matter volumes (GMVs) or resting-state functional connectivity (RSFC) in a cohort of 45 heterosexual and 41 homosexual participants. METHODS In both brain assessments, we used penalized logistic regression models and nonparametric permutation. RESULTS We found an average accuracy of 62% (±6.72) for predicting sexual orientation based on GMV and an average predictive accuracy of 92% (±9.89) using RSFC. Regions in the precentral gyrus, precuneus and the prefrontal cortex were significantly informative for distinguishing heterosexual from homosexual participants in both the GMV and RSFC settings. CONCLUSIONS These results indicate that, aside from self-reports, RSFC offers neurobiological information valuable for highly accurate prediction of sexual orientation. We demonstrate for the first time that sexual orientation is reflected in specific patterns of RSFC, which enable personalized, brain-based predictions of this highly complex human trait. While these results are preliminary, our neurobiologically based prediction framework illustrates the great value and potential of RSFC for revealing biologically meaningful and generalizable predictive patterns in the human brain.
Collapse
Affiliation(s)
- Benjamin Clemens
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
- Research Center Jülich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Strase, 52428 Jülich, Germany
| | | | - Christoph Ritter
- Interdisciplinary Center for Clinical Research (IZKF), RWTH Aachen University, Pauwelsstr. 30, 52074 Aachen, Germany
| | - Elke Smith
- Biological Psychology, Department of Psychology, University of Cologne, Bernhard-Feilchenfeld-Str. 11, 50969 Cologne, Germany
| | - Mikhail Votinov
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
- Research Center Jülich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Strase, 52428 Jülich, Germany
| | - Birgit Derntl
- Department of Psychiatry and Psychotherapy, University of Tübingen, Calwerst. 14, 72076 Tübingen, Germany
- Werner Reichardt Center for Integrative Neuroscience (CIN), University of Tübingen, Otfried-Müller-Str. 25, 72076 Tübingen, Germany
| | - Ute Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics, Faculty of Medicine, RWTH Aachen, Pauwelsstr. 30, 52074 Aachen, Germany
- Research Center Jülich, Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Wilhelm-Johnen-Strase, 52428 Jülich, Germany
| | - Danilo Bzdok
- McConnell Brain Imaging Centre, McGill University, 3801 University Rue, Montreal Quebec H3A 2B4, Canada
- Department of Biomedical Engineering, McGill University, 3775 University Rue, Montreal Quebec H3A 2B4, Canada
- Faculty of Medicine, Montreal Neurological Institute (MNI) and Hospital, McGill University, 3801 University Rue, Montreal Quebec H3A 2B4, Canada
- Mila–Quebec Artificial Intelligence Institute, 6666 Rue St-Urbain #200, Montreal Quebec H2S 3H1, Canada
| |
Collapse
|
26
|
Shafighi K, Villeneuve S, Rosa Neto P, Badhwar A, Poirier J, Sharma V, Medina YI, Silveira PP, Dube L, Glahn D, Bzdok D. Social isolation is linked to classical risk factors of Alzheimer's disease-related dementias. PLoS One 2023; 18:e0280471. [PMID: 36724157 PMCID: PMC9891507 DOI: 10.1371/journal.pone.0280471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 12/31/2022] [Indexed: 02/02/2023] Open
Abstract
Alzheimer's disease and related dementias is a major public health burden-compounding over upcoming years due to longevity. Recently, clinical evidence hinted at the experience of social isolation in expediting dementia onset. In 502,506 UK Biobank participants and 30,097 participants from the Canadian Longitudinal Study of Aging, we revisited traditional risk factors for developing dementia in the context of loneliness and lacking social support. Across these measures of subjective and objective social deprivation, we have identified strong links between individuals' social capital and various indicators of Alzheimer's disease and related dementias risk, which replicated across both population cohorts. The quality and quantity of daily social encounters had deep connections with key aetiopathological factors, which represent 1) personal habits and lifestyle factors, 2) physical health, 3) mental health, and 4) societal and external factors. Our population-scale assessment suggest that social lifestyle determinants are linked to most neurodegeneration risk factors, highlighting them as promising targets for preventive clinical action.
Collapse
Affiliation(s)
- Kimia Shafighi
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (StoP-AD) Centre, Montreal, Quebec, Canada
| | - Pedro Rosa Neto
- Douglas Mental Health University Institute, Studies on Prevention of Alzheimer’s Disease (StoP-AD) Centre, Montreal, Quebec, Canada
- Translational Neuroimaging Laboratory, McGill University Research Centre for Studies in Aging, Alzheimer’s Disease Research Unit, Montreal, Canada
- Le Centre Intégré Universitaire de Santé et de Services Sociaux (CIUSSS) de l’Ouest-de-l’Île-de-Montréal, Montréal, Canada
- Department of Neurology and Neurosurgery, Psychiatry and Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - AmanPreet Badhwar
- Département de Pharmacologie et Physiologie & Institut de Génie Biomédical, Faculté de Médecine, Université de Montréal, Montréal, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, Canada
| | - Judes Poirier
- Centre for Studies in the Prevention of Alzheimer’s Disease, Douglas Mental Health Institute, McGill University, Montreal, Canada
| | - Vaibhav Sharma
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
| | - Yasser Iturria Medina
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- Neurology and Neurosurgery Department, Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Patricia P. Silveira
- Department of Psychiatry, McGill University, Montreal, Quebec, Canada
- Ludmer Centre for Neuroinformatics and Mental Health, McGill University, Montreal, Canada
| | - Laurette Dube
- Desautels Faculty of Management, McGill Center for the Convergence of Health and Economics, McGill University, Montreal, QC, Canada
| | - David Glahn
- Tommy Fuss Center for Neuropsychiatric Disease Research, Department of Psychiatry, Boston Children’s Hospital, Boston, MA, United States of America
- Department of Psychiatry, Harvard Medical School, Boston, MA, United States of America
| | - Danilo Bzdok
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
- McConnell Brain Imaging Centre (BIC), MNI, Faculty of Medicine, McGill University, Montreal, Canada
- School of Computer Science, McGill University, Montreal, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
27
|
Mihalik A, Chapman J, Adams RA, Winter NR, Ferreira FS, Shawe-Taylor J, Mourão-Miranda J. Canonical Correlation Analysis and Partial Least Squares for Identifying Brain-Behavior Associations: A Tutorial and a Comparative Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2022; 7:1055-1067. [PMID: 35952973 DOI: 10.1016/j.bpsc.2022.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 06/30/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Canonical correlation analysis (CCA) and partial least squares (PLS) are powerful multivariate methods for capturing associations across 2 modalities of data (e.g., brain and behavior). However, when the sample size is similar to or smaller than the number of variables in the data, standard CCA and PLS models may overfit, i.e., find spurious associations that generalize poorly to new data. Dimensionality reduction and regularized extensions of CCA and PLS have been proposed to address this problem, yet most studies using these approaches have some limitations. This work gives a theoretical and practical introduction into the most common CCA/PLS models and their regularized variants. We examine the limitations of standard CCA and PLS when the sample size is similar to or smaller than the number of variables. We discuss how dimensionality reduction and regularization techniques address this problem and explain their main advantages and disadvantages. We highlight crucial aspects of the CCA/PLS analysis framework, including optimizing the hyperparameters of the model and testing the identified associations for statistical significance. We apply the described CCA/PLS models to simulated data and real data from the Human Connectome Project and Alzheimer's Disease Neuroimaging Initiative (both of n > 500). We use both low- and high-dimensionality versions of these data (i.e., ratios between sample size and variables in the range of ∼1-10 and ∼0.1-0.01, respectively) to demonstrate the impact of data dimensionality on the models. Finally, we summarize the key lessons of the tutorial.
Collapse
Affiliation(s)
- Agoston Mihalik
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom.
| | - James Chapman
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - Rick A Adams
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom; Wellcome Centre for Human Neuroimaging, University College London, London, United Kingdom
| | - Nils R Winter
- Institute of Translational Psychiatry, University of Münster, Münster, Germany
| | - Fabio S Ferreira
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| | - John Shawe-Taylor
- Department of Computer Science, University College London, London, United Kingdom
| | - Janaina Mourão-Miranda
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, United Kingdom; Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, United Kingdom
| |
Collapse
|
28
|
Dhamala E, Ooi LQR, Chen J, Kong R, Anderson KM, Chin R, Yeo BTT, Holmes AJ. Proportional intracranial volume correction differentially biases behavioral predictions across neuroanatomical features, sexes, and development. Neuroimage 2022; 260:119485. [PMID: 35843514 PMCID: PMC9425854 DOI: 10.1016/j.neuroimage.2022.119485] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/13/2022] [Indexed: 01/03/2023] Open
Abstract
Individual differences in brain anatomy can be used to predict variations in cognitive ability. Most studies to date have focused on broad population-level trends, but the extent to which the observed predictive features are shared across sexes and age groups remains to be established. While it is standard practice to account for intracranial volume (ICV) using proportion correction in both regional and whole-brain morphometric analyses, in the context of brain-behavior predictions the possible differential impact of ICV correction on anatomical features and subgroups within the population has yet to be systematically investigated. In this work, we evaluate the effect of proportional ICV correction on sex-independent and sex-specific predictive models of individual cognitive abilities across multiple anatomical properties (surface area, gray matter volume, and cortical thickness) in healthy young adults (Human Connectome Project; n = 1013, 548 females) and typically developing children (Adolescent Brain Cognitive Development study; n = 1823, 979 females). We demonstrate that ICV correction generally reduces predictive accuracies derived from surface area and gray matter volume, while increasing predictive accuracies based on cortical thickness in both adults and children. Furthermore, the extent to which predictive models generalize across sexes and age groups depends on ICV correction: models based on surface area and gray matter volume are more generalizable without ICV correction, while models based on cortical thickness are more generalizable with ICV correction. Finally, the observed neuroanatomical features predictive of cognitive abilities are unique across age groups regardless of ICV correction, but whether they are shared or unique across sexes (within age groups) depends on ICV correction. These findings highlight the importance of considering individual differences in ICV, and show that proportional ICV correction does not remove the effects of cranial volume from anatomical measurements and can introduce ICV bias where previously there was none. ICV correction choices affect not just the strength of the relationships captured, but also the conclusions drawn regarding the neuroanatomical features that underlie those relationships.
Collapse
Affiliation(s)
- Elvisha Dhamala
- Department of Psychology, Yale University, New Haven, United States; Kavli Institute for Neuroscience, Yale University, New Haven, United States.
| | - Leon Qi Rong Ooi
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Jianzhong Chen
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Ru Kong
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore
| | - Kevin M Anderson
- Department of Psychology, Yale University, New Haven, United States
| | - Rowena Chin
- Department of Psychology, Yale University, New Haven, United States
| | - B T Thomas Yeo
- Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore, National University of Singapore, Singapore; Department of Electrical and Computer Engineering, National University of Singapore, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore; Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, United States
| | - Avram J Holmes
- Department of Psychology, Yale University, New Haven, United States; Kavli Institute for Neuroscience, Yale University, New Haven, United States; Department of Psychiatry, Yale University, New Haven, United States; Wu Tsai Institute, Yale University, New Haven, United States.
| |
Collapse
|
29
|
Parrino L, Halasz P, Szucs A, Thomas RJ, Azzi N, Rausa F, Pizzarotti S, Zilioli A, Misirocchi F, Mutti C. Sleep medicine: Practice, challenges and new frontiers. Front Neurol 2022; 13:966659. [PMID: 36313516 PMCID: PMC9616008 DOI: 10.3389/fneur.2022.966659] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Sleep medicine is an ambitious cross-disciplinary challenge, requiring the mutual integration between complementary specialists in order to build a solid framework. Although knowledge in the sleep field is growing impressively thanks to technical and brain imaging support and through detailed clinic-epidemiologic observations, several topics are still dominated by outdated paradigms. In this review we explore the main novelties and gaps in the field of sleep medicine, assess the commonest sleep disturbances, provide advices for routine clinical practice and offer alternative insights and perspectives on the future of sleep research.
Collapse
Affiliation(s)
- Liborio Parrino
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- *Correspondence: Liborio Parrino
| | - Peter Halasz
- Szentagothai János School of Ph.D Studies, Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Anna Szucs
- Department of Behavioral Sciences, National Institute of Clinical Neurosciences, Semmelweis University, Budapest, Hungary
| | - Robert J. Thomas
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, United States
| | - Nicoletta Azzi
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Francesco Rausa
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Silvia Pizzarotti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
| | - Alessandro Zilioli
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Francesco Misirocchi
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| | - Carlotta Mutti
- Department of General and Specialized Medicine, Sleep Disorders Center, University Hospital of Parma, Parma, Italy
- Department of Medicine and Surgery, Unit of Neurology, University of Parma, Parma, Italy
| |
Collapse
|
30
|
Srivastava P, Fotiadis P, Parkes L, Bassett DS. The expanding horizons of network neuroscience: From description to prediction and control. Neuroimage 2022; 258:119250. [PMID: 35659996 PMCID: PMC11164099 DOI: 10.1016/j.neuroimage.2022.119250] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/15/2022] [Accepted: 04/25/2022] [Indexed: 01/11/2023] Open
Abstract
The field of network neuroscience has emerged as a natural framework for the study of the brain and has been increasingly applied across divergent problems in neuroscience. From a disciplinary perspective, network neuroscience originally emerged as a formal integration of graph theory (from mathematics) and neuroscience (from biology). This early integration afforded marked utility in describing the interconnected nature of neural units, both structurally and functionally, and underscored the relevance of that interconnection for cognition and behavior. But since its inception, the field has not remained static in its methodological composition. Instead, it has grown to use increasingly advanced graph-theoretic tools and to bring in several other disciplinary perspectives-including machine learning and systems engineering-that have proven complementary. In doing so, the problem space amenable to the discipline has expanded markedly. In this review, we discuss three distinct flavors of investigation in state-of-the-art network neuroscience: (i) descriptive network neuroscience, (ii) predictive network neuroscience, and (iii) a perturbative network neuroscience that draws on recent advances in network control theory. In considering each area, we provide a brief summary of the approaches, discuss the nature of the insights obtained, and highlight future directions.
Collapse
Affiliation(s)
- Pragya Srivastava
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Panagiotis Fotiadis
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neuroscience, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Linden Parkes
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA
| | - Dani S Bassett
- Department of Bioengineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Physics & Astronomy, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Electrical & Systems Engineering, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Neurology, University of Pennsylvania, Philadelphia PA 19104, USA; Department of Psychiatry, University of Pennsylvania, Philadelphia PA 19104, USA; Santa Fe Institute, Santa Fe NM 87501, USA.
| |
Collapse
|
31
|
Sperber C, Griffis J, Kasties V. Indirect structural disconnection-symptom mapping. Brain Struct Funct 2022; 227:3129-3144. [PMID: 36048282 DOI: 10.1007/s00429-022-02559-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 08/24/2022] [Indexed: 01/01/2023]
Abstract
In vivo tracking of white matter fibres catalysed a modern perspective on the pivotal role of brain connectome disruption in neuropsychological deficits. However, the examination of white matter integrity in neurological patients by diffusion-weighted magnetic resonance imaging bears conceptual limitations and is not widely applicable, as it requires imaging-compatible patients and resources beyond the capabilities of many researchers. The indirect estimation of structural disconnection offers an elegant and economical alternative. For this approach, a patient's structural lesion information and normative connectome data are combined to estimate different measures of lesion-induced structural disconnection. Using one of several toolboxes, this method is relatively easy to implement and is even available to scientists without expertise in fibre tracking analyses. Nevertheless, the anatomo-behavioural statistical mapping of structural brain disconnection requires analysis steps that are not covered by these toolboxes. In this paper, we first review the current state of indirect lesion disconnection estimation, the different existing measures, and the available software. Second, we aim to fill the remaining methodological gap in statistical disconnection-symptom mapping by providing an overview and guide to disconnection data and the statistical mapping of their relationship to behavioural measurements using either univariate or multivariate statistical modelling. To assist in the practical implementation of statistical analyses, we have included software tutorials and analysis scripts.
Collapse
Affiliation(s)
- Christoph Sperber
- University of Tubingen: Eberhard Karls Universitat Tubingen, Tubingen, Germany.
| | - Joseph Griffis
- University of Tubingen: Eberhard Karls Universitat Tubingen, Tubingen, Germany
| | - Vanessa Kasties
- Centre of Neurology, Hertie-Institute for Clinical Brain Research, University of Tubingen, Tubingen, Germany
- Child Development Center, University Childrens Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
32
|
Gaidai R, Goelz C, Mora K, Rudisch J, Reuter E, Godde B, Reinsberger C, Voelcker-Rehage C, Vieluf S. Classification characteristics of fine motor experts based on electroencephalographic and force tracking data. Brain Res 2022; 1792:148001. [DOI: 10.1016/j.brainres.2022.148001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/02/2022]
|
33
|
Abstract
For most neuroimaging questions the range of possible analytic choices makes it unclear how to evaluate conclusions from any single analytic method. One possible way to address this issue is to evaluate all possible analyses using a multiverse approach, however, this can be computationally challenging and sequential analyses on the same data can compromise predictive power. Here, we establish how active learning on a low-dimensional space capturing the inter-relationships between pipelines can efficiently approximate the full spectrum of analyses. This approach balances the benefits of a multiverse analysis without incurring the cost on computational and predictive power. We illustrate this approach with two functional MRI datasets (predicting brain age and autism diagnosis) demonstrating how a multiverse of analyses can be efficiently navigated and mapped out using active learning. Furthermore, our presented approach not only identifies the subset of analysis techniques that are best able to predict age or classify individuals with autism spectrum disorder and healthy controls, but it also allows the relationships between analyses to be quantified.
Collapse
|
34
|
Malik N, Bzdok D. From YouTube to the brain: Transfer learning can improve brain-imaging predictions with deep learning. Neural Netw 2022; 153:325-338. [PMID: 35777174 DOI: 10.1016/j.neunet.2022.06.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 04/20/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022]
Abstract
Deep learning has recently achieved best-in-class performance in several fields, including biomedical domains such as X-ray images. Yet, data scarcity poses a strict limit on training successful deep learning systems in many, if not most, biomedical applications, including those involving brain images. In this study, we translate state-of-the-art transfer learning techniques for single-subject prediction of simpler (sex and age) and more complex phenotypes (number of people in household, household income, fluid intelligence and smoking behavior). We fine-tuned 2D and 3D ResNet-18 convolutional neural networks for target phenotype predictions from brain images of ∼40,000 UK Biobank participants, after pretraining on YouTube videos from the Kinetics dataset and natural images from the ImageNet dataset. Transfer learning was effective on several phenotypes, especially sex and age classification. Additionally, transfer learning in particular outperformed deep learning models trained from scratch especially on smaller sample sizes. The out-of-sample performance using transfer learning from previously learned knowledge based on real-world images and videos could unlock the potential in many areas of imaging neuroscience where deep learning solutions are currently infeasible.
Collapse
Affiliation(s)
- Nahiyan Malik
- School of Computer Science, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada.
| | - Danilo Bzdok
- School of Computer Science, McGill University, Montreal, QC, Canada; Mila - Quebec Artificial Intelligence Institute, Montreal, QC, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute (MNI), McGill University, Montreal, QC, Canada; Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, QC, Canada.
| |
Collapse
|
35
|
Comprehensive decoding mental processes from Web repositories of functional brain images. Sci Rep 2022; 12:7050. [PMID: 35488032 PMCID: PMC9054752 DOI: 10.1038/s41598-022-10710-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 04/05/2022] [Indexed: 11/08/2022] Open
Abstract
Associating brain systems with mental processes requires statistical analysis of brain activity across many cognitive processes. These analyses typically face a difficult compromise between scope-from domain-specific to system-level analysis-and accuracy. Using all the functional Magnetic Resonance Imaging (fMRI) statistical maps of the largest data repository available, we trained machine-learning models that decode the cognitive concepts probed in unseen studies. For this, we leveraged two comprehensive resources: NeuroVault-an open repository of fMRI statistical maps with unconstrained annotations-and Cognitive Atlas-an ontology of cognition. We labeled NeuroVault images with Cognitive Atlas concepts occurring in their associated metadata. We trained neural networks to predict these cognitive labels on tens of thousands of brain images. Overcoming the heterogeneity, imbalance and noise in the training data, we successfully decoded more than 50 classes of mental processes on a large test set. This success demonstrates that image-based meta-analyses can be undertaken at scale and with minimal manual data curation. It enables broad reverse inferences, that is, concluding on mental processes given the observed brain activity.
Collapse
|
36
|
Spencer D, Yue YR, Bolin D, Ryan S, Mejia AF. Spatial Bayesian GLM on the cortical surface produces reliable task activations in individuals and groups. Neuroimage 2022; 249:118908. [PMID: 35032660 PMCID: PMC9006342 DOI: 10.1016/j.neuroimage.2022.118908] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 12/19/2021] [Accepted: 01/12/2022] [Indexed: 11/24/2022] Open
Abstract
The general linear model (GLM) is a widely popular and convenient tool for estimating the functional brain response and identifying areas of significant activation during a task or stimulus. However, the classical GLM is based on a massive univariate approach that does not explicitly leverage the similarity of activation patterns among neighboring brain locations. As a result, it tends to produce noisy estimates and be underpowered to detect significant activations, particularly in individual subjects and small groups. A recently proposed alternative, a cortical surface-based spatial Bayesian GLM, leverages spatial dependencies among neighboring cortical vertices to produce more accurate estimates and areas of functional activation. The spatial Bayesian GLM can be applied to individual and group-level analysis. In this study, we assess the reliability and power of individual and group-average measures of task activation produced via the surface-based spatial Bayesian GLM. We analyze motor task data from 45 subjects in the Human Connectome Project (HCP) and HCP Retest datasets. We also extend the model to multi-run analysis and employ subject-specific cortical surfaces rather than surfaces inflated to a sphere for more accurate distance-based modeling. Results show that the surface-based spatial Bayesian GLM produces highly reliable activations in individual subjects and is powerful enough to detect trait-like functional topologies. Additionally, spatial Bayesian modeling enhances reliability of group-level analysis even in moderately sized samples (n=45). Notably, the power of the spatial Bayesian GLM to detect activations above a scientifically meaningful effect size is nearly invariant to sample size, exhibiting high power even in small samples (n=10). The spatial Bayesian GLM is computationally efficient in individuals and groups and is convenient to implement with the open-source BayesfMRI R package.
Collapse
Affiliation(s)
- Daniel Spencer
- Department of Statistics, Indiana University, Myles Brand Hall E104 901 E. 10th Street Bloomington, IN, 47408, USA.
| | - Yu Ryan Yue
- Paul H. Chook Department of Information Systems and Statistics, Baruch College, The City University of New York, New York, NY, 10010, USA
| | - David Bolin
- CEMSE Division, King Abdullah University of Science and Technology, Thuwal, Makkah Province, 23955-6900, Saudi Arabia
| | - Sarah Ryan
- Department of Biostatistics, Epidemiology, and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Amanda F Mejia
- Department of Statistics, Indiana University, Myles Brand Hall E104 901 E. 10th Street Bloomington, IN, 47408, USA
| |
Collapse
|
37
|
Tibon R, Geerligs L, Campbell K. Bridging the big (data) gap: levels of control in small- and large-scale cognitive neuroscience research. Trends Neurosci 2022; 45:507-516. [DOI: 10.1016/j.tins.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
|
38
|
Benkarim O, Paquola C, Park BY, Kebets V, Hong SJ, Vos de Wael R, Zhang S, Yeo BTT, Eickenberg M, Ge T, Poline JB, Bernhardt BC, Bzdok D. Population heterogeneity in clinical cohorts affects the predictive accuracy of brain imaging. PLoS Biol 2022; 20:e3001627. [PMID: 35486643 PMCID: PMC9094526 DOI: 10.1371/journal.pbio.3001627] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 05/11/2022] [Accepted: 04/11/2022] [Indexed: 12/18/2022] Open
Abstract
Brain imaging research enjoys increasing adoption of supervised machine learning for single-participant disease classification. Yet, the success of these algorithms likely depends on population diversity, including demographic differences and other factors that may be outside of primary scientific interest. Here, we capitalize on propensity scores as a composite confound index to quantify diversity due to major sources of population variation. We delineate the impact of population heterogeneity on the predictive accuracy and pattern stability in 2 separate clinical cohorts: the Autism Brain Imaging Data Exchange (ABIDE, n = 297) and the Healthy Brain Network (HBN, n = 551). Across various analysis scenarios, our results uncover the extent to which cross-validated prediction performances are interlocked with diversity. The instability of extracted brain patterns attributable to diversity is located preferentially in regions part of the default mode network. Collectively, our findings highlight the limitations of prevailing deconfounding practices in mitigating the full consequences of population diversity.
Collapse
Affiliation(s)
- Oualid Benkarim
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
| | - Casey Paquola
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
- Institute of Neuroscience and Medicine (INM-1), Forschungszentrum Jülich, Jülich, Germany
| | - Bo-yong Park
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
- Department of Data Science, Inha University, Incheon, South Korea
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
| | - Valeria Kebets
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
| | - Seok-Jun Hong
- Center for Neuroscience Imaging Research, Institute for Basic Science, Sungkyunkwan University, Suwon, South Korea
- Center for the Developing Brain, Child Mind Institute, New York, New York, United States of America
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, South Korea
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
| | - Shaoshi Zhang
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore, Singapore
- Centre for Sleep and Cognition (CSC) & Centre for Translational Magnetic Resonance Research (TMR), National University of Singapore, Singapore, Singapore
- N.1 Institute for Health & Institute for Digital Medicine (WisDM), National University of Singapore, Singapore, Singapore
| | | | - Tian Ge
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jean-Baptiste Poline
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
| | - Boris C. Bernhardt
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Canada
- Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Canada
- School of Computer Science, McGill University, Montreal, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
39
|
Horien C, Lee K, Westwater ML, Noble S, Tejavibulya L, Kayani T, Constable RT, Scheinost D. A protocol for working with open-source neuroimaging datasets. STAR Protoc 2022; 3:101077. [PMID: 35036958 PMCID: PMC8749295 DOI: 10.1016/j.xpro.2021.101077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Large, publicly available neuroimaging datasets are becoming increasingly common, but their use presents challenges because of insufficient knowledge of the tool options for data processing and proper data organization. Here, we describe a protocol to lessen these barriers. We describe the steps for the search and download of the open-source dataset. We detail the steps for proper data management and practical guidelines for data analysis. Finally, we give instructions for data and result sharing on public repositories and preprint services. For complete details on the use and execution of this profile, please refer to Horien et al. (2021).
Collapse
Affiliation(s)
- Corey Horien
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- MD-PhD Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kangjoo Lee
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Margaret L. Westwater
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Stephanie Noble
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - Link Tejavibulya
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
| | - Teimur Kayani
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
| | - R. Todd Constable
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT 06510, USA
| | - Dustin Scheinost
- Interdepartmental Neuroscience Program, Yale School of Medicine, New Haven, CT 06510, USA
- Department of Radiology and Biomedical Imaging, Yale School of Medicine, New Haven, CT 06510, USA
- Yale Child Study Center, New Haven, CT 06510, USA
- Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
40
|
Ballentine G, Friedman SF, Bzdok D. Trips and neurotransmitters: Discovering principled patterns across 6850 hallucinogenic experiences. SCIENCE ADVANCES 2022; 8:eabl6989. [PMID: 35294242 PMCID: PMC8926331 DOI: 10.1126/sciadv.abl6989] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/17/2021] [Indexed: 05/06/2023]
Abstract
Psychedelics probably alter states of consciousness by disrupting how the higher association cortex governs bottom-up sensory signals. Individual hallucinogenic drugs are usually studied in participants in controlled laboratory settings. Here, we have explored word usage in 6850 free-form testimonials about 27 drugs through the prism of 40 neurotransmitter receptor subtypes, which were then mapped to three-dimensional coordinates in the brain via their gene transcription levels from invasive tissue probes. Despite high interindividual variability, our pattern-learning approach delineated how drug-induced changes of conscious awareness are linked to cortex-wide anatomical distributions of receptor density proxies. Each discovered receptor-experience factor spanned between a higher-level association pole and a sensory input pole, which may relate to the previously reported collapse of hierarchical order among large-scale networks. Coanalyzing many psychoactive molecules and thousands of natural language descriptions of drug experiences, our analytical framework finds the underlying semantic structure and maps it directly to the brain.
Collapse
Affiliation(s)
- Galen Ballentine
- Department of Psychiatry, SUNY Downstate Health Sciences University, Brooklyn, NY, USA
| | | | - Danilo Bzdok
- Department of Biomedical Engineering, McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, School of Computer Science, McGill University, Montreal, Canada
- Mila—Quebec Artificial Intelligence Institute, Montreal, Canada
| |
Collapse
|
41
|
Wagner AS, Waite LK, Wierzba M, Hoffstaedter F, Waite AQ, Poldrack B, Eickhoff SB, Hanke M. FAIRly big: A framework for computationally reproducible processing of large-scale data. Sci Data 2022; 9:80. [PMID: 35277501 PMCID: PMC8917149 DOI: 10.1038/s41597-022-01163-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/11/2022] [Indexed: 11/30/2022] Open
Abstract
Large-scale datasets present unique opportunities to perform scientific investigations with unprecedented breadth. However, they also pose considerable challenges for the findability, accessibility, interoperability, and reusability (FAIR) of research outcomes due to infrastructure limitations, data usage constraints, or software license restrictions. Here we introduce a DataLad-based, domain-agnostic framework suitable for reproducible data processing in compliance with open science mandates. The framework attempts to minimize platform idiosyncrasies and performance-related complexities. It affords the capture of machine-actionable computational provenance records that can be used to retrace and verify the origins of research outcomes, as well as be re-executed independent of the original computing infrastructure. We demonstrate the framework's performance using two showcases: one highlighting data sharing and transparency (using the studyforrest.org dataset) and another highlighting scalability (using the largest public brain imaging dataset available: the UK Biobank dataset).
Collapse
Affiliation(s)
- Adina S Wagner
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany.
| | - Laura K Waite
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Małgorzata Wierzba
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Laboratory of Brain Imaging, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Warsaw, Poland
| | - Felix Hoffstaedter
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Alexander Q Waite
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Benjamin Poldrack
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Michael Hanke
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Center Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
42
|
White T, Blok E, Calhoun VD. Data sharing and privacy issues in neuroimaging research: Opportunities, obstacles, challenges, and monsters under the bed. Hum Brain Mapp 2022; 43:278-291. [PMID: 32621651 PMCID: PMC8675413 DOI: 10.1002/hbm.25120] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/12/2020] [Accepted: 06/22/2020] [Indexed: 12/19/2022] Open
Abstract
Collaborative networks and data sharing initiatives are broadening the opportunities for the advancement of science. These initiatives offer greater transparency in science, with the opportunity for external research groups to reproduce, replicate, and extend research findings. Further, larger datasets offer the opportunity to identify homogeneous patterns within subgroups of individuals, where these patterns may be obscured by the heterogeneity of the neurobiological measure in smaller samples. However, data sharing and data pooling initiatives are not without their challenges, especially with new laws that may at first glance appear quite restrictive for open science initiatives. Interestingly, what is key to some of these new laws (i.e, the European Union's general data protection regulation) is that they provide greater control of data to those who "give" their data for research purposes. Thus, the most important element in data sharing is allowing the participants to make informed decisions about how they want their data to be used, and, within the law of the specific country, to follow the participants' wishes. This framework encompasses obtaining thorough informed consent and allowing the participant to determine the extent that they want their data shared, many of the ethical and legal obstacles are reduced to just monsters under the bed. In this manuscript we discuss the many options and obstacles for data sharing, from fully open, to federated learning, to fully closed. Importantly, we highlight the intersection of data sharing, privacy, and data ownership and highlight specific examples that we believe are informative to the neuroimaging community.
Collapse
Affiliation(s)
- Tonya White
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
- Department of RadiologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Elisabet Blok
- Department of Child and Adolescent Psychiatry/PsychologyErasmus University Medical CenterRotterdamThe Netherlands
| | - Vince D. Calhoun
- Tri‐institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS)Georgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
43
|
Lee H, Chung D. Characterization of the Core Determinants of Social Influence From a Computational and Cognitive Perspective. Front Psychiatry 2022; 13:846535. [PMID: 35509882 PMCID: PMC9059935 DOI: 10.3389/fpsyt.2022.846535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 03/22/2022] [Indexed: 01/10/2023] Open
Abstract
Most human decisions are made among social others, and in what social context the choices are made is known to influence individuals' decisions. Social influence has been noted as an important factor that may nudge individuals to take more risks (e.g., initiation of substance use), but ironically also help individuals to take safer actions (e.g., successful abstinence). Such bi-directional impacts of social influence hint at the complexity of social information processing. Here, we first review the recent computational approaches that shed light on neural and behavioral mechanisms underlying social influence following basic computations involved in decision-making: valuation, action selection, and learning. We next review the studies on social influence from various fields including neuroeconomics, developmental psychology, social psychology, and cognitive neuroscience, and highlight three dimensions of determinants-who are the recipients, how the social contexts are presented, and to what domains and processes of decisions the influence is applied-that modulate the extent to which individuals are influenced by others. Throughout the review, we also introduce the brain regions that were suggested as neural instantiations of social influence from a large body of functional neuroimaging studies. Finally, we outline the remaining questions to be addressed in the translational application of computational and cognitive theories of social influence to psychopathology and health.
Collapse
Affiliation(s)
- Hyeji Lee
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea.,Department of Psychology, The University of Edinburgh, Edinburgh, United Kingdom
| | - Dongil Chung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, South Korea
| |
Collapse
|
44
|
Ngo GH, Khosla M, Jamison K, Kuceyeski A, Sabuncu MR. Predicting Individual Task Contrasts From Resting-state Functional Connectivity using a Surface-based Convolutional Network. Neuroimage 2021; 248:118849. [PMID: 34965456 PMCID: PMC10155599 DOI: 10.1016/j.neuroimage.2021.118849] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 11/20/2021] [Accepted: 12/21/2021] [Indexed: 12/23/2022] Open
Abstract
Task-based and resting-state represent the two most common experimental paradigms of functional neuroimaging. While resting-state offers a flexible and scalable approach for characterizing brain function, task-based techniques provide superior localization. In this paper, we build on recent deep learning methods to create a model that predicts task-based contrast maps from resting-state fMRI scans. Specifically, we propose BrainSurfCNN, a surface-based fully-convolutional neural network model that works with a representation of the brain's cortical sheet. BrainSurfCNN achieves exceptional predictive accuracy on independent test data from the Human Connectome Project, which is on par with the repeat reliability of the measured subject-level contrast maps. Conversely, our analyses reveal that a previously published benchmark is no better than group-average contrast maps. Finally, we demonstrate that BrainSurfCNN can generalize remarkably well to novel domains with limited training data.
Collapse
Affiliation(s)
- Gia H Ngo
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States
| | - Meenakshi Khosla
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States
| | | | | | - Mert R Sabuncu
- School of Electrical & Computer Engineering, Cornell University and Cornell Tech, United States; Radiology, Weill Cornell Medicine, United States.
| |
Collapse
|
45
|
WeBrain: A web-based brainformatics platform of computational ecosystem for EEG big data analysis. Neuroimage 2021; 245:118713. [PMID: 34798231 DOI: 10.1016/j.neuroimage.2021.118713] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/25/2021] [Accepted: 11/04/2021] [Indexed: 01/06/2023] Open
Abstract
The current evolution of 'cloud neuroscience' leads to more efforts with the large-scale EEG applications, by using EEG pipelines to handle the rapidly accumulating EEG data. However, there are a few specific cloud platforms that seek to address the cloud computational challenges of EEG big data analysis to benefit the EEG community. In response to the challenges, a WeBrain cloud platform (https://webrain.uestc.edu.cn/) is designed as a web-based brainformatics platform and computational ecosystem to enable large-scale EEG data storage, exploration and analysis using cloud high-performance computing (HPC) facilities. WeBrain connects researchers from different fields to EEG and multimodal tools that have become the norm in the field and the cloud processing power required to handle those large EEG datasets. This platform provides an easy-to-use system for novice users (even no computer programming skills) and provides satisfactory maintainability, sustainability and flexibility for IT administrators and tool developers. A range of resources are also available on https://webrain.uestc.edu.cn/, including documents, manuals, example datasets related to WeBrain, and collected links to open EEG datasets and tools. It is not necessary for users or administrators to install any software or system, and all that is needed is a modern web browser, which reduces the technical expertise required to use or manage WeBrain. The WeBrain platform is sponsored and driven by the China-Canada-Cuba international brain cooperation project (CCC-Axis, http://ccc-axis.org/), and we hope that WeBrain will be a promising cloud brainformatics platform for exploring brain information in large-scale EEG applications in the EEG community.
Collapse
|
46
|
Zajner C, Spreng RN, Bzdok D. Loneliness is linked to specific subregional alterations in hippocampus-default network covariation. J Neurophysiol 2021; 126:2138-2157. [PMID: 34817294 PMCID: PMC8715056 DOI: 10.1152/jn.00339.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Social interaction complexity makes humans unique. But in times of social deprivation, this strength risks exposure of important vulnerabilities. Human social neuroscience studies have placed a premium on the default network (DN). In contrast, hippocampus (HC) subfields have been intensely studied in rodents and monkeys. To bridge these two literatures, we here quantified how DN subregions systematically covary with specific HC subfields in the context of subjective social isolation (i.e., loneliness). By codecomposition using structural brain scans of ∼40,000 UK Biobank participants, loneliness was specially linked to midline subregions in the uncovered DN patterns. These association cortex patterns coincided with concomitant HC patterns implicating especially CA1 and molecular layer. These patterns also showed a strong affiliation with the fornix white matter tract and the nucleus accumbens. In addition, separable signatures of structural HC-DN covariation had distinct associations with the genetic predisposition for loneliness at the population level. NEW & NOTEWORTHY The hippocampus and default network have been implicated in rich social interaction. Yet, these allocortical and neocortical neural systems have been interrogated in mostly separate literatures. Here, we conjointly investigate the hippocampus and default network at a subregion level, by capitalizing structural brain scans from ∼40,000 participants. We thus reveal unique insights on the nature of the “lonely brain” by estimating the regimes of covariation between the hippocampus and default network at population scale.
Collapse
Affiliation(s)
- Chris Zajner
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| | - R Nathan Spreng
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada.,Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada.,Douglas Mental Health University Institute, Verdun, Quebec, Canada
| | - Danilo Bzdok
- McConnell Brain Imaging Centre (BIC), Montreal Neurological Institute (MNI), Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Department of Biomedical Engineering, Faculty of Medicine, McGill University, Montreal, Quebec, Canada.,Mila-Quebec Artificial Intelligence Institute, Montreal, Quebec, Canada
| |
Collapse
|
47
|
Srećković S, Berber A, Filipović N. The Automated Laplacean Demon: How ML Challenges Our Views on Prediction and Explanation. Minds Mach (Dordr) 2021. [DOI: 10.1007/s11023-021-09575-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
48
|
Yang YC, Islam SU, Noor A, Khan S, Afsar W, Nazir S. Influential Usage of Big Data and Artificial Intelligence in Healthcare. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:5812499. [PMID: 34527076 PMCID: PMC8437645 DOI: 10.1155/2021/5812499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 08/09/2021] [Indexed: 01/07/2023]
Abstract
Artificial intelligence (AI) is making computer systems capable of executing human brain tasks in many fields in all aspects of daily life. The enhancement in information and communications technology (ICT) has indisputably improved the quality of people's lives around the globe. Especially, ICT has led to a very needy and tremendous improvement in the health sector which is commonly known as electronic health (eHealth) and medical health (mHealth). Deep machine learning and AI approaches are commonly presented in many applications using big data, which consists of all relevant data about the medical health and diseases which a model can access at the time of execution or diagnosis of diseases. For example, cardiovascular imaging has now accurate imaging combined with big data from the eHealth record and pathology to better characterize the disease and personalized therapy. In clinical work and imaging, cancer care is getting improved by knowing the tumor biology and helping in the implementation of precision medicine. The Markov model is used to extract new approaches for leveraging cancer. In this paper, we have reviewed existing research relevant to eHealth and mHealth where various models are discussed which uses big data for the diagnosis and healthcare system. This paper summarizes the recent promising applications of AI and big data in medical health and electronic health, which have potentially added value to diagnosis and patient care.
Collapse
Affiliation(s)
- Yan Cheng Yang
- Foreign Language Department, Luoyang Institute of Science and Technology, Luoyang, Henan, China
- Foreign Language Department/Language and Cognition Center, Hunan University, Changsha, Hunan, China
| | - Saad Ul Islam
- Department of Computer Science, University of Swabi, Swabi, Pakistan
| | - Asra Noor
- Department of Computer Science, University of Swabi, Swabi, Pakistan
| | - Sadia Khan
- Department of Computer Science, University of Swabi, Swabi, Pakistan
| | - Waseem Afsar
- Department of Computer Science, University of Swabi, Swabi, Pakistan
| | - Shah Nazir
- Department of Computer Science, University of Swabi, Swabi, Pakistan
| |
Collapse
|
49
|
Lee EE, Torous J, De Choudhury M, Depp CA, Graham SA, Kim HC, Paulus MP, Krystal JH, Jeste DV. Artificial Intelligence for Mental Health Care: Clinical Applications, Barriers, Facilitators, and Artificial Wisdom. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2021; 6:856-864. [PMID: 33571718 PMCID: PMC8349367 DOI: 10.1016/j.bpsc.2021.02.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/19/2022]
Abstract
Artificial intelligence (AI) is increasingly employed in health care fields such as oncology, radiology, and dermatology. However, the use of AI in mental health care and neurobiological research has been modest. Given the high morbidity and mortality in people with psychiatric disorders, coupled with a worsening shortage of mental health care providers, there is an urgent need for AI to help identify high-risk individuals and provide interventions to prevent and treat mental illnesses. While published research on AI in neuropsychiatry is rather limited, there is a growing number of successful examples of AI's use with electronic health records, brain imaging, sensor-based monitoring systems, and social media platforms to predict, classify, or subgroup mental illnesses as well as problems such as suicidality. This article is the product of a study group held at the American College of Neuropsychopharmacology conference in 2019. It provides an overview of AI approaches in mental health care, seeking to help with clinical diagnosis, prognosis, and treatment, as well as clinical and technological challenges, focusing on multiple illustrative publications. Although AI could help redefine mental illnesses more objectively, identify them at a prodromal stage, personalize treatments, and empower patients in their own care, it must address issues of bias, privacy, transparency, and other ethical concerns. These aspirations reflect human wisdom, which is more strongly associated than intelligence with individual and societal well-being. Thus, the future AI or artificial wisdom could provide technology that enables more compassionate and ethically sound care to diverse groups of people.
Collapse
Affiliation(s)
- Ellen E Lee
- Department of Psychiatry, University of California San Diego, San Diego, California; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, San Diego, California; VA San Diego Healthcare System, San Diego, California
| | - John Torous
- Department of Psychiatry, Beth Israel Deaconess Medical Center and Harvard University, Boston, Massachusetts
| | - Munmun De Choudhury
- School of Interactive Computing, Georgia Institute of Technology, Atlanta, Georgia
| | - Colin A Depp
- Department of Psychiatry, University of California San Diego, San Diego, California; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, San Diego, California; VA San Diego Healthcare System, San Diego, California
| | - Sarah A Graham
- Department of Psychiatry, University of California San Diego, San Diego, California; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, San Diego, California
| | - Ho-Cheol Kim
- AI and Cognitive Software, IBM Research-Almaden, San Jose, California
| | | | - John H Krystal
- Department of Psychiatry, Yale University, New Haven, Connecticut
| | - Dilip V Jeste
- Department of Psychiatry, University of California San Diego, San Diego, California; Department of Neurosciences, University of California San Diego, San Diego, California; Sam and Rose Stein Institute for Research on Aging, University of California San Diego, San Diego, California.
| |
Collapse
|
50
|
Farahibozorg SR, Bijsterbosch JD, Gong W, Jbabdi S, Smith SM, Harrison SJ, Woolrich MW. Hierarchical modelling of functional brain networks in population and individuals from big fMRI data. Neuroimage 2021; 243:118513. [PMID: 34450262 PMCID: PMC8526871 DOI: 10.1016/j.neuroimage.2021.118513] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
We introduce stochastic PROFUMO (sPROFUMO) for inferring functional brain networks from big data. sPROFUMO hierarchically estimates fMRI networks for the population and every individual. We characterised high dimensional resting state fMRI networks from UK Biobank. Model outperforms ICA and dual regression for estimation of individual-specific network topography. We demonstrate the model's utility for predicting cognitive traits, and capturing subject variability in network topographies versus connectivity.
A major goal of large-scale brain imaging datasets is to provide resources for investigating heterogeneous populations. Characterisation of functional brain networks for individual subjects from these datasets will have an enormous potential for prediction of cognitive or clinical traits. We propose for the first time a technique, Stochastic Probabilistic Functional Modes (sPROFUMO), that is scalable to UK Biobank (UKB) with expected 100,000 participants, and hierarchically estimates functional brain networks in individuals and the population, while allowing for bidirectional flow of information between the two. Using simulations, we show the model's utility, especially in scenarios that involve significant cross-subject variability, or require delineation of fine-grained differences between the networks. Subsequently, by applying the model to resting-state fMRI from 4999 UKB subjects, we mapped resting state networks (RSNs) in single subjects with greater detail than has been possible previously in UKB (>100 RSNs), and demonstrate that these RSNs can predict a range of sensorimotor and higher-level cognitive functions. Furthermore, we demonstrate several advantages of the model over independent component analysis combined with dual-regression (ICA-DR), particularly with respect to the estimation of the spatial configuration of the RSNs and the predictive power for cognitive traits. The proposed model and results can open a new door for future investigations into individualised profiles of brain function from big data.
Collapse
Affiliation(s)
- Seyedeh-Rezvan Farahibozorg
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom.
| | - Janine D Bijsterbosch
- Department of Radiology, Washington University School of Medicine, St. Louis, United States
| | - Weikang Gong
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Saad Jbabdi
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Stephen M Smith
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Samuel J Harrison
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom; Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich and ETH Zurich, Zurich, Switzerland; New Zealand Brain Research Institute, University of Otago, Christchurch, New Zealand
| | - Mark W Woolrich
- FMRIB, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom; OHBA, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, Oxford University, Oxford, United Kingdom
| |
Collapse
|