1
|
Chuipka N, Smy T, Northoff G. From neural activity to behavioral engagement: temporal dynamics as their "common currency" during music. Neuroimage 2025; 312:121209. [PMID: 40222497 DOI: 10.1016/j.neuroimage.2025.121209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 04/11/2025] [Accepted: 04/11/2025] [Indexed: 04/15/2025] Open
Abstract
The human cortex is highly dynamic as manifest in its vast ongoing temporal repertoire. Similarly, human behavior is also variable over time with, for instance, fluctuating response times. How the brain's ongoing dynamics relates to the fluctuating dynamics of behavior such as emotions remains yet unclear, though. We measure median frequency (MF) in a dynamic way (D-MF) to investigate the dynamics in both electroencephalography (EEG) neural activity and the subjects' continuous behavioral assessment of their perceived emotional engagement changes during five different music pieces. Our main findings are: (i) significant differences in the frequency dynamics, e.g., D-MF, of the subjects' behavioral engagement ratings between the five music pieces, (ii) significant differences in the, e.g., D-MF, of the music pieces' EEG-based neural activity, and (iii) there is a unidirectional relationship from neural to behavioral during the five music pieces as measured through correlation and Granger causality between their respective D-MF's. Together, we demonstrate that neural dynamics relates to behavioral dynamics through the shared fluctuations in their dynamics. This highlights the key role of dynamics in connecting neural and behavioral activity as their "common currency."
Collapse
Affiliation(s)
- Noah Chuipka
- Department of Cognitive Science, Carleton University, Ottawa, ON, Canada.
| | - Tom Smy
- Department of Electronics, Carleton University, Ottawa, ON, Canada
| | - Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, Institute of Mental Health Research, Ottawa, ON, Canada
| |
Collapse
|
2
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia decreases the uniqueness of brain functional connectivity across individuals and species. Nat Hum Behav 2025:10.1038/s41562-025-02121-9. [PMID: 40128306 DOI: 10.1038/s41562-025-02121-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 01/16/2025] [Indexed: 03/26/2025]
Abstract
The human brain is characterized by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI scans acquired under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain, both with respect to the brains of other individuals and the brains of another species. Using functional connectivity, we report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organized: it co-localizes with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol and reversed upon recovery. Providing convergent evidence, we show that anaesthesia shifts the functional connectivity of the human brain closer to the functional connectivity of the macaque brain in a low-dimensional space. Finally, anaesthesia diminishes the match between spontaneous brain activity and cognitive brain patterns aggregated from the Neurosynth meta-analytic engine. Collectively, the present results reveal that anaesthetized human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada.
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.
| | - Daniel Golkowski
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tölz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
- Mila, Quebec Artificial Intelligence Institute, Montréal, Québec, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience, Western University, London, Ontario, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- School of Mathematics, University of Birmingham, Birmingham, UK
- Centre for Human Brain Health, University of Birmingham, Birmingham, UK
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, UK
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, Québec, Canada
| |
Collapse
|
3
|
Hao X, Ma M, Meng F, Liang H, Liang C, Liu X, Zhang B, Ju Y, Liu S, Ming D. Diminished attention network activity and heightened salience-default mode transitions in generalized anxiety disorder: Evidence from resting-state EEG microstate analysis. J Affect Disord 2025; 373:227-236. [PMID: 39743145 DOI: 10.1016/j.jad.2024.12.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/15/2024] [Accepted: 12/27/2024] [Indexed: 01/04/2025]
Abstract
Generalized anxiety disorder (GAD) is a common anxiety disorder characterized by excessive, uncontrollable worry and physical symptoms such as difficulty concentrating and sleep disturbances. Although functional magnetic resonance imaging (fMRI) studies have reported aberrant network-level activity related to cognition and emotion in GAD, its low temporal resolution restricts its ability to capture the rapid neural activity in mental processes. EEG microstate analysis offers millisecond-resolution for tracking the dynamic changes in brain electrical activity, thereby illuminating the neurophysiological mechanisms underlying the cognitive and emotional dysfunctions in GAD. This study collected 64-channel resting-state EEG data from 28 GAD patients and 28 healthy controls (HC), identifying five microstate classes (A-E) in both groups. Results showed that GAD patients exhibited significantly lower duration (p < 0.01), occurrence (p < 0.05), and coverage (p < 0.01) of microstate class D, potentially reflecting deficits in attention-related networks. Such alterations may contribute to the impairments in attention maintenance and cognitive control. Additionally, GAD patients displayed reduced transition probabilities in A → D, B → D, C → D, and E → D (all corrected p < 0.05), but increased in C → E (corrected p < 0.05) and E → C (corrected p < 0.01). These results highlight a significant reduction in the brain's ability to transition into microstate class D, alongside overactivity in switching between the default mode network and the salience network. Such neurophysiological changes may underlie cognitive control deficits, increased spontaneous rumination, and emotional regulation challenges observed in GAD. Together, these insights provide a new perspective for understanding the neurophysiological and pathological mechanisms underlying GAD.
Collapse
Affiliation(s)
- Xinyu Hao
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Mohan Ma
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Fanyu Meng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Hui Liang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Chunyu Liang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China
| | - Xiaoya Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Bo Zhang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, People's Republic of China
| | - Shuang Liu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, People's Republic of China; Tianjin Key Laboratory of Brain Science and Neural Engineering, Tianjin University, Tianjin, People's Republic of China; Haihe Laboratory of Brain-Computer Interaction and Human-Machine Integration, Tianjin, People's Republic of China.
| |
Collapse
|
4
|
Treves IN, Yang WFZ, Sparby T, Sacchet MD. Dynamic brain states underlying advanced concentrative absorption meditation: A 7-T fMRI-intensive case study. Netw Neurosci 2025; 9:125-145. [PMID: 40161981 PMCID: PMC11949543 DOI: 10.1162/netn_a_00432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/19/2024] [Indexed: 04/02/2025] Open
Abstract
Advanced meditation consists of states and stages of practice that unfold with mastery and time. Dynamic functional connectivity (DFC) analysis of fMRI could identify brain states underlying advanced meditation. We conducted an intensive DFC case study of a meditator who completed 27 runs of jhāna advanced absorptive concentration meditation (ACAM-J), concurrently with 7-T fMRI and phenomenological reporting. We identified three brain states that marked differences between ACAM-J and nonmeditative control conditions. These states were characterized as a DMN-anticorrelated brain state, a hyperconnected brain state, and a sparsely connected brain state. Our analyses indicate higher prevalence of the DMN-anticorrelated brain state during ACAM-J than control states, and the prevalence increased significantly with deeper ACAM-J states. The hyperconnected brain state was also more common during ACAM-J and was characterized by elevated thalamocortical connectivity and somatomotor network connectivity. The hyperconnected brain state significantly decreased over the course of ACAM-J, associating with self-reports of wider attention and diminished physical sensations. This brain state may be related to sensory awareness. Advanced meditators have developed well-honed abilities to move in and out of different altered states of consciousness, and this study provides initial evidence that functional neuroimaging can objectively track their dynamics.
Collapse
Affiliation(s)
- Isaac N. Treves
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Winson F. Z. Yang
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Terje Sparby
- Rudolf Steiner University College, Oslo, Norway
- Department of Psychology and Psychotherapy, Witten/Herdecke University, Witten, Germany
- Integrated Curriculum for Anthroposophic Psychology, Witten/Herdecke University, Witten, Germany
| | - Matthew D. Sacchet
- Meditation Research Program, Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Northoff G, Buccellato A, Zilio F. Connecting brain and mind through temporo-spatial dynamics: Towards a theory of common currency. Phys Life Rev 2025; 52:29-43. [PMID: 39615425 DOI: 10.1016/j.plrev.2024.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 11/20/2024] [Indexed: 03/01/2025]
Abstract
Despite major progress in our understanding of the brain, the connection of neural and mental features, that is, brain and mind, remains yet elusive. In our 2020 target paper ("Is temporospatial dynamics the 'common currency' of brain and mind? Spatiotemporal Neuroscience") we proposed the "Common currency hypothesis": temporo-spatial dynamics are shared by neural and mental features, providing their connection. The current paper aims to further support and extend the original description of such common currency into a first outline of a "Common currency theory" (CCT) of neuro-mental relationship. First, we extend the range of examples to thoughts, meditation, depression and attention all lending support that temporal characteristics, (i.e. dynamics) are shared by both neural and mental features. Second, we now also show empirical examples of how spatial characteristics, i.e., topography, are shared by neural and mental features; this is illustrated by topographic reorganization of both neural and mental states in depression and meditation. Third, considering the neuro-mental connection in theoretical terms, we specify their relationship by distinct forms of temporospatial correspondences, ranging on a continuum from simple to complex. In conclusion, we extend our initial hypothesis about the key role of temporo-spatial dynamics in neuro-mental relationship into a first outline of an integrated mind-brain theory, the "Common currency theory" (CCT).
Collapse
Affiliation(s)
- Georg Northoff
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.
| | - Andrea Buccellato
- Mind, Brain Imaging and Neuroethics Research Unit, The Royal's Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Federico Zilio
- Department of Philosophy, Sociology, Education, and Applied Psychology, University of Padova, Italy.
| |
Collapse
|
6
|
Treves IN, Kucyi AK, Tierney AO, Balkind E, Whitfield-Gabrieli S, Schuman-Olivier Z, Gabrieli JDE, Webb CA. Dynamic functional connectivity signatures of focused attention on the breath in adolescents. Cereb Cortex 2025; 35:bhaf024. [PMID: 39995218 PMCID: PMC11850302 DOI: 10.1093/cercor/bhaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 11/20/2024] [Accepted: 01/22/2025] [Indexed: 02/26/2025] Open
Abstract
Breathing meditation typically consists of directing attention toward breathing and redirecting attention when the mind wanders. As yet, we do not have a full understanding of the neural mechanisms of breath attention, in particular, how large-scale network interactions may be different between breath attention and rest and how these interactions may be modulated during periods of on-task and off-task attention to the breath. One promising approach may be examining fMRI measures including static connectivity between brain regions as well as dynamic, time-varying brain states. In this study, we analyzed static and dynamic functional connectivity in 72 adolescents during a breath-counting task (BCT), leveraging physiological respiration data to detect objective on-task and off-task periods. During the BCT relative to rest, we identified increases in static connectivity within attention-direction and orienting networks and anticorrelations between attention networks and the DMN. Dynamic connectivity analysis revealed four distinct brain states, including a DMN-anticorrelated brain state, proportionally more present during the BCT than the rest. We found there were distinct brain state markers of (i) breathing tasks vs rest and (ii) momentary on-task vs off-task attention within the BCT, yet in this analysis, no identifiable brain states reflecting between-individual behavioral variability.
Collapse
Affiliation(s)
- Isaac N Treves
- McGovern Institute for Brain Research, Building 46, 43 Vassar Street, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, Building 46, 43 Vassar Street, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Aaron K Kucyi
- Department of Psychological & Brain Sciences, 3141 Chestnut Street, Drexel University, Philadelphia, PA 19104, United States
| | - Anna O Tierney
- Department of Psychiatry, 401 Park Drive, Harvard Medical School, Harvard University, Boston, MA 02215, United States
- McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Emma Balkind
- Department of Psychiatry, 401 Park Drive, Harvard Medical School, Harvard University, Boston, MA 02215, United States
- McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| | - Susan Whitfield-Gabrieli
- Department of Psychology, 105 Forsyth Street, Northeastern University, Boston, MA 02115, United States
- Center for Precision Psychiatry, 55 Fruit Street, Department of Psychiatry, Massachusetts General Hospital, Boston, MA 02114, United States
| | - Zev Schuman-Olivier
- Department of Psychiatry, 401 Park Drive, Harvard Medical School, Harvard University, Boston, MA 02215, United States
- Department of Psychiatry, 350 Main Street, Cambridge Health Alliance, Center for Mindfulness and Compassion, Malden, MA 02148, United States
| | - John D E Gabrieli
- McGovern Institute for Brain Research, Building 46, 43 Vassar Street, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
- Department of Brain and Cognitive Sciences, Building 46, 43 Vassar Street, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Christian A Webb
- Department of Psychiatry, 401 Park Drive, Harvard Medical School, Harvard University, Boston, MA 02215, United States
- McLean Hospital, 115 Mill Street, Belmont, MA 02478, United States
| |
Collapse
|
7
|
Pick H, Fahoum N, Shamay Tsoory SG. Creating together: An interbrain model of group creativity. Neuropsychologia 2025; 207:109063. [PMID: 39653071 DOI: 10.1016/j.neuropsychologia.2024.109063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 11/01/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Despite the growing interest in understanding creativity-the ability to produce novel and useful ideas-most research in the field focuses on examining the neural networks underlying creativity in isolated individuals. However, numerous creative breakthroughs in arts, sciences, and industries occur through social interactions, where ideas are generated collaboratively by dyads and groups. The accumulating evidence indicates that cooperative settings foster higher levels of creativity compared to individual settings, suggesting that social factors play a role in creativity.In this review, we synthesize the findings on individual and group creativity and propose a new brain model for understanding group creativity. We extend the twofold model of creativity and suggest that creativity in social setting involves an interplay between idea generation, social influence and flexibility. Building on this model we suggest that group creativity is mediated by activity as well as interbrain coupling in neural circuits associated with associative thinking (default mode network), flexibility (executive control network) and observation-execution (inferior frontal gyrus). By shifting the focus from isolated individuals to social settings, we can gain a more comprehensive understanding of creativity and its neural mechanisms. This research direction holds the potential to uncover valuable insights into how group dynamics and social interactions facilitate the generation of creative ideas.
Collapse
Affiliation(s)
- Hadas Pick
- Department of Psychology, University of Haifa, Haifa, Israel
| | - Nardine Fahoum
- Department of Psychology, University of Haifa, Haifa, Israel
| | | |
Collapse
|
8
|
Hardikar S, Mckeown B, Schaare HL, Wallace RS, Xu T, Lauckener ME, Valk SL, Margulies DS, Turnbull A, Bernhardt BC, Vos de Wael R, Villringer A, Smallwood J. Macro-scale patterns in functional connectivity associated with ongoing thought patterns and dispositional traits. eLife 2024; 13:RP93689. [PMID: 39565648 DOI: 10.7554/elife.93689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024] Open
Abstract
Complex macro-scale patterns of brain activity that emerge during periods of wakeful rest provide insight into the organisation of neural function, how these differentiate individuals based on their traits, and the neural basis of different types of self-generated thoughts. Although brain activity during wakeful rest is valuable for understanding important features of human cognition, its unconstrained nature makes it difficult to disentangle neural features related to personality traits from those related to the thoughts occurring at rest. Our study builds on recent perspectives from work on ongoing conscious thought that highlight the interactions between three brain networks - ventral and dorsal attention networks, as well as the default mode network. We combined measures of personality with state-of-the-art indices of ongoing thoughts at rest and brain imaging analysis and explored whether this 'tri-partite' view can provide a framework within which to understand the contribution of states and traits to observed patterns of neural activity at rest. To capture macro-scale relationships between different brain systems, we calculated cortical gradients to describe brain organisation in a low-dimensional space. Our analysis established that for more introverted individuals, regions of the ventral attention network were functionally more aligned to regions of the somatomotor system and the default mode network. At the same time, a pattern of detailed self-generated thought was associated with a decoupling of regions of dorsal attention from regions in the default mode network. Our study, therefore, establishes that interactions between attention systems and the default mode network are important influences on ongoing thought at rest and highlights the value of integrating contemporary perspectives on conscious experience when understanding patterns of brain activity at rest.
Collapse
Affiliation(s)
- Samyogita Hardikar
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
| | - Bronte Mckeown
- Department of Psychology, Queen's University, Kingston, Canada
| | - H Lina Schaare
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
| | | | - Ting Xu
- Center for the Developing Brain, Child Mind Institute, New York, United States
| | - Mark Edgar Lauckener
- Max Planck Research Group: Adaptive Memory, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Institute of Neuroscience and Medicine (INM-7: Brain and Behaviour), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Daniel S Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France
| | - Adam Turnbull
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, United States
- Department of Brain and Cognitive Sciences, University of Rochester, Rochester, United States
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, Canada
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Max Planck School of Cognition, Leipzig, Germany
- Day Clinic of Cognitive Neurology, Universitätsklinikum Leipzig, Leipzig, Germany
- MindBrainBody Institute, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin (CSB), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | |
Collapse
|
9
|
Feng Q, Weng L, Geng L, Qiu J. How Freely Moving Mind Wandering Relates to Creativity: Behavioral and Neural Evidence. Brain Sci 2024; 14:1122. [PMID: 39595885 PMCID: PMC11591630 DOI: 10.3390/brainsci14111122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Background: Previous studies have demonstrated that mind wandering during incubation phases enhances post-incubation creative performance. Recent empirical evidence, however, has highlighted a specific form of mind wandering closely related to creativity, termed freely moving mind wandering (FMMW). In this study, we examined the behavioral and neural associations between FMMW and creativity. Methods: We initially validated a questionnaire measuring FMMW by comparing its results with those from the Sustained Attention to Response Task (SART). Data were collected from 1316 participants who completed resting-state fMRI scans, the FMMW questionnaire, and creative tasks. Correlation analysis and Bayes factors indicated that FMMW was associated with creative thinking (AUT). To elucidate the neural mechanisms underlying the relationship between FMMW and creativity, Hidden Markov Models (HMM) were employed to analyze the temporal dynamics of the resting-state fMRI data. Results: Our findings indicated that brain dynamics associated with FMMW involve integration within multiple networks and between networks (r = -0.11, pFDR < 0.05). The links between brain dynamics associated with FMMW and creativity were mediated by FMMW (c' = 0.01, [-0.0181, -0.0029]). Conclusions: These findings demonstrate the relationship between FMMW and creativity, offering insights into the neural mechanisms underpinning this relationship.
Collapse
Affiliation(s)
- Qiuyang Feng
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China; (L.W.); (L.G.)
| | - Linman Weng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China; (L.W.); (L.G.)
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Li Geng
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China; (L.W.); (L.G.)
- Faculty of Psychology, Southwest University, Chongqing 400715, China
| | - Jiang Qiu
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China, Southwest University, Chongqing 400715, China;
- Key Laboratory of Cognition and Personality, Ministry of Education, Southwest University, Chongqing 400715, China; (L.W.); (L.G.)
- Faculty of Psychology, Southwest University, Chongqing 400715, China
- Collaborative Innovation Center of Assessment toward Basic Education Quality at Beijing Normal University, Southwest University Branch, Chongqing 400715, China
| |
Collapse
|
10
|
Treves IN, Marusak HA, Decker A, Kucyi A, Hubbard NA, Bauer CC, Leonard J, Grotzinger H, Giebler MA, Torres YC, Imhof A, Romeo R, Calhoun VD, Gabrieli JD. Dynamic Functional Connectivity Correlates of Trait Mindfulness in Early Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100367. [PMID: 39286525 PMCID: PMC11402920 DOI: 10.1016/j.bpsgos.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/02/2024] [Accepted: 07/16/2024] [Indexed: 09/19/2024] Open
Abstract
Background Trait mindfulness-the tendency to attend to present-moment experiences without judgment-is negatively correlated with adolescent anxiety and depression. Understanding the neural mechanisms that underlie trait mindfulness may inform the neural basis of psychiatric disorders. However, few studies have identified brain connectivity states that are correlated with trait mindfulness in adolescence, and they have not assessed the reliability of such states. Methods To address this gap in knowledge, we rigorously assessed the reliability of brain states across 2 functional magnetic resonance imaging scans from 106 adolescents ages 12 to 15 (50% female). We performed both static and dynamic functional connectivity analyses and evaluated the test-retest reliability of how much time adolescents spent in each state. For the reliable states, we assessed associations with self-reported trait mindfulness. Results Higher trait mindfulness correlated with lower anxiety and depression symptoms. Static functional connectivity (intraclass correlation coefficients 0.31-0.53) was unrelated to trait mindfulness. Among the dynamic brains states that we identified, most were unreliable within individuals across scans. However, one state, a hyperconnected state of elevated positive connectivity between networks, showed good reliability (intraclass correlation coefficient = 0.65). We found that the amount of time that adolescents spent in this hyperconnected state positively correlated with trait mindfulness. Conclusions By applying dynamic functional connectivity analysis on over 100 resting-state functional magnetic resonance imaging scans, we identified a highly reliable brain state that correlated with trait mindfulness. This brain state may reflect a state of mindfulness, or awareness and arousal more generally, which may be more pronounced in people who are higher in trait mindfulness.
Collapse
Affiliation(s)
- Isaac N. Treves
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Hilary A. Marusak
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University School of Medicine, Detroit, Michigan
| | - Alexandra Decker
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Aaron Kucyi
- Department of Psychological & Brain Sciences, Drexel University, Philadelphia, Pennsylvania
| | | | - Clemens C.C. Bauer
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Psychology, Northeastern University, Boston, Massachusetts
| | - Julia Leonard
- Department of Psychology, Yale University, New Haven, Connecticut
| | - Hannah Grotzinger
- Department of Psychological & Brain Sciences, University of California, Santa Barbara, California
| | | | - Yesi Camacho Torres
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Andrea Imhof
- Department of Psychology, University of Oregon, Eugene, Oregon
| | - Rachel Romeo
- Departments of Human Development & Quantitative Methodology and Hearing & Speech Sciences, and Program in Neuroscience & Cognitive Science, University of Maryland College Park, Baltimore, Maryland
| | - Vince D. Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science, Georgia State, Georgia Tech, and Emory, Atlanta, Georgia
| | - John D.E. Gabrieli
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, Massachusetts
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts
| |
Collapse
|
11
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. Netw Neurosci 2024; 8:808-836. [PMID: 39355438 PMCID: PMC11349032 DOI: 10.1162/netn_a_00387] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/14/2024] [Indexed: 10/03/2024] Open
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population- rather than individual-based inferences owing to limited within-person sampling. Here, three densely sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously unrecognized interindividual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Nathan Anderson
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Tiara Bounyarith
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - David Braun
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Lotus Shareef-Trudeau
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Isaac Treves
- Department of Brain and Cognitive Sciences and McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Rodrigo M. Braga
- Department of Neurology, Northwestern University, Chicago, IL, USA
| | - Po-Jang Hsieh
- Department of Psychology, National Taiwan University, Taipei, Taiwan
| | - Shao-Min Hung
- Waseda Institute for Advanced Study, Waseda University, Tokyo, Japan
| |
Collapse
|
12
|
Kucyi A, Anderson N, Bounyarith T, Braun D, Shareef-Trudeau L, Treves I, Braga RM, Hsieh PJ, Hung SM. Individual variability in neural representations of mind-wandering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.20.576471. [PMID: 38328109 PMCID: PMC10849545 DOI: 10.1101/2024.01.20.576471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Mind-wandering is a frequent, daily mental activity, experienced in unique ways in each person. Yet neuroimaging evidence relating mind-wandering to brain activity, for example in the default mode network (DMN), has relied on population-rather than individual-based inferences due to limited within-individual sampling. Here, three densely-sampled individuals each reported hundreds of mind-wandering episodes while undergoing multi-session functional magnetic resonance imaging. We found reliable associations between mind-wandering and DMN activation when estimating brain networks within individuals using precision functional mapping. However, the timing of spontaneous DMN activity relative to subjective reports, and the networks beyond DMN that were activated and deactivated during mind-wandering, were distinct across individuals. Connectome-based predictive modeling further revealed idiosyncratic, whole-brain functional connectivity patterns that consistently predicted mind-wandering within individuals but did not fully generalize across individuals. Predictive models of mind-wandering and attention that were derived from larger-scale neuroimaging datasets largely failed when applied to densely-sampled individuals, further highlighting the need for personalized models. Our work offers novel evidence for both conserved and variable neural representations of self-reported mind-wandering in different individuals. The previously-unrecognized inter-individual variations reported here underscore the broader scientific value and potential clinical utility of idiographic approaches to brain-experience associations.
Collapse
|
13
|
Luppi AI, Golkowski D, Ranft A, Ilg R, Jordan D, Bzdok D, Owen AM, Naci L, Stamatakis EA, Amico E, Misic B. General anaesthesia reduces the uniqueness of brain connectivity across individuals and across species. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566332. [PMID: 38014199 PMCID: PMC10680788 DOI: 10.1101/2023.11.08.566332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The human brain is characterised by idiosyncratic patterns of spontaneous thought, rendering each brain uniquely identifiable from its neural activity. However, deep general anaesthesia suppresses subjective experience. Does it also suppress what makes each brain unique? Here we used functional MRI under the effects of the general anaesthetics sevoflurane and propofol to determine whether anaesthetic-induced unconsciousness diminishes the uniqueness of the human brain: both with respect to the brains of other individuals, and the brains of another species. We report that under anaesthesia individual brains become less self-similar and less distinguishable from each other. Loss of distinctiveness is highly organised: it co-localises with the archetypal sensory-association axis, correlating with genetic and morphometric markers of phylogenetic differences between humans and other primates. This effect is more evident at greater anaesthetic depths, reproducible across sevoflurane and propofol, and reversed upon recovery. Providing convergent evidence, we show that under anaesthesia the functional connectivity of the human brain becomes more similar to the macaque brain. Finally, anaesthesia diminishes the match between spontaneous brain activity and meta-analytic brain patterns aggregated from the NeuroSynth engine. Collectively, the present results reveal that anaesthetised human brains are not only less distinguishable from each other, but also less distinguishable from the brains of other primates, with specifically human-expanded regions being the most affected by anaesthesia.
Collapse
Affiliation(s)
- Andrea I Luppi
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| | - Daniel Golkowski
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Andreas Ranft
- Department of Anesthesiology and Intensive Care, School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Rudiger Ilg
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Asklepios Clinic, Department of Neurology, Bad Tolz, Germany
| | - Denis Jordan
- Department of Anaesthesiology and Intensive Care Medicine, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Danilo Bzdok
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
- MILA, Quebec Artificial Intelligence Institute, Montréal, QC, Canada
| | - Adrian M Owen
- Western Institute for Neuroscience (WIN), Western University, London, ON, Canada
| | - Lorina Naci
- Trinity College Institute of Neuroscience, School of Psychology, Trinity College Dublin, Dublin, Ireland
| | - Emmanuel A Stamatakis
- Division of Anaesthesia and Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Enrico Amico
- Neuro-X Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Bratislav Misic
- Montréal Neurological Institute, McGill University, Montréal, QC, Canada
| |
Collapse
|
14
|
Kucyi A, Kam JWY, Andrews-Hanna JR, Christoff K, Whitfield-Gabrieli S. Recent advances in the neuroscience of spontaneous and off-task thought: implications for mental health. NATURE MENTAL HEALTH 2023; 1:827-840. [PMID: 37974566 PMCID: PMC10653280 DOI: 10.1038/s44220-023-00133-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/25/2023] [Indexed: 11/19/2023]
Abstract
People spend a remarkable 30-50% of awake life thinking about something other than what they are currently doing. These experiences of being "off-task" can be described as spontaneous thought when mental dynamics are relatively flexible. Here we review recent neuroscience developments in this area and consider implications for mental wellbeing and illness. We provide updated overviews of the roles of the default mode network and large-scale network dynamics, and we discuss emerging candidate mechanisms involving hippocampal memory (sharp-wave ripples, replay) and neuromodulatory (noradrenergic and serotonergic) systems. We explore how distinct brain states can be associated with or give rise to adaptive and maladaptive forms of thought linked to distinguishable mental health outcomes. We conclude by outlining new directions in the neuroscience of spontaneous and off-task thought that may clarify mechanisms, lead to personalized biomarkers, and facilitate therapy developments toward the goals of better understanding and improving mental health.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University
| | - Julia W. Y. Kam
- Department of Psychology and Hotchkiss Brain Institute, University of Calgary
| | | | | | | |
Collapse
|
15
|
Wahbeh H, Cannard C, Kriegsman M, Delorme A. Evaluating brain spectral and connectivity differences between silent mind-wandering and trance states. PROGRESS IN BRAIN RESEARCH 2023; 277:29-61. [PMID: 37301570 DOI: 10.1016/bs.pbr.2022.12.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Trance is an altered state of consciousness characterized by alterations in cognition. In general, trance states induce mental silence (i.e., cognitive thought reduction), and mental silence can induce trance states. Conversely, mind-wandering is the mind's propensity to stray its attention away from the task at hand and toward content irrelevant to the current moment, and its main component is inner speech. Building on the previous literature on mental silence and trance states and incorporating inverse source reconstruction advances, the study's objectives were to evaluate differences between trance and mind-wandering states using: (1) electroencephalography (EEG) power spectra at the electrode level, (2) power spectra at the area level (source reconstructed signal), and (3) EEG functional connectivity between these areas (i.e., how they interact). The relationship between subjective trance depths ratings and whole-brain connectivity during trance was also evaluated. Spectral analyses revealed increased delta and theta power in the frontal region and increased gamma in the centro-parietal region during mind-wandering, whereas trance showed increased beta and gamma power in the frontal region. Power spectra at the area level and pairwise comparisons of the connectivity between these areas demonstrated no significant difference between the two states. However, subjective trance depth ratings were inversely correlated with whole-brain connectivity in all frequency bands (i.e., deeper trance is associated with less large-scale connectivity). Trance allows one to enter mentally silent states and explore their neurophenomenological processes. Limitations and future directions are discussed.
Collapse
Affiliation(s)
- Helané Wahbeh
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States.
| | - Cedric Cannard
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States
| | - Michael Kriegsman
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States
| | - Arnaud Delorme
- Research Department, Institute of Noetic Sciences, Petaluma, CA, United States; University of California, San Diego, CA, United States
| |
Collapse
|
16
|
Zhu Y, Parviainen T, Heinilä E, Parkkonen L, Hyvärinen A. Unsupervised representation learning of spontaneous MEG data with Nonlinear ICA. Neuroimage 2023; 274:120142. [PMID: 37120044 DOI: 10.1016/j.neuroimage.2023.120142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/01/2023] Open
Abstract
Resting-state magnetoencephalography (MEG) data show complex but structured spatiotemporal patterns. However, the neurophysiological basis of these signal patterns is not fully known and the underlying signal sources are mixed in MEG measurements. Here, we developed a method based on the nonlinear independent component analysis (ICA), a generative model trainable with unsupervised learning, to learn representations from resting-state MEG data. After being trained with a large dataset from the Cam-CAN repository, the model has learned to represent and generate patterns of spontaneous cortical activity using latent nonlinear components, which reflects principal cortical patterns with specific spectral modes. When applied to the downstream classification task of audio-visual MEG, the nonlinear ICA model achieves competitive performance with deep neural networks despite limited access to labels. We further validate the generalizability of the model across different datasets by applying it to an independent neurofeedback dataset for decoding the subject's attentional states, providing a real-time feature extraction and decoding mindfulness and thought-inducing tasks with an accuracy of around 70% at the individual level, which is much higher than obtained by linear ICA or other baseline methods. Our results demonstrate that nonlinear ICA is a valuable addition to existing tools, particularly suited for unsupervised representation learning of spontaneous MEG activity which can then be applied to specific goals or tasks when labelled data are scarce.
Collapse
Affiliation(s)
- Yongjie Zhu
- Department of Computer Science, University of Helsinki, 00560 Helsinki, Finland; Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Tiina Parviainen
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Erkka Heinilä
- Centre for Interdisciplinary Brain Research, Department of Psychology, University of Jyväskylä, 40014 Jyväskylä, Finland
| | - Lauri Parkkonen
- Department of Neuroscience and Biomedical Engineering, Aalto University, 00076 Espoo, Finland
| | - Aapo Hyvärinen
- Department of Computer Science, University of Helsinki, 00560 Helsinki, Finland.
| |
Collapse
|
17
|
Yuan B, Xie H, Wang Z, Xu Y, Zhang H, Liu J, Chen L, Li C, Tan S, Lin Z, Hu X, Gu T, Lu J, Liu D, Wu J. The domain-separation language network dynamics in resting state support its flexible functional segregation and integration during language and speech processing. Neuroimage 2023; 274:120132. [PMID: 37105337 DOI: 10.1016/j.neuroimage.2023.120132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 04/29/2023] Open
Abstract
Modern linguistic theories and network science propose that language and speech processing are organized into hierarchical, segregated large-scale subnetworks, with a core of dorsal (phonological) stream and ventral (semantic) stream. The two streams are asymmetrically recruited in receptive and expressive language or speech tasks, which showed flexible functional segregation and integration. We hypothesized that the functional segregation of the two streams was supported by the underlying network segregation. A dynamic conditional correlation approach was employed to construct framewise time-varying language networks and k-means clustering was employed to investigate the temporal-reoccurring patterns. We found that the framewise language network dynamics in resting state were robustly clustered into four states, which dynamically reconfigured following a domain-separation manner. Spatially, the hub distributions of the first three states highly resembled the neurobiology of speech perception and lexical-phonological processing, speech production, and semantic processing, respectively. The fourth state was characterized by the weakest functional connectivity and was regarded as a baseline state. Temporally, the first three states appeared exclusively in limited time bins (∼15%), and most of the time (> 55%), state 4 was dominant. Machine learning-based dFC-linguistics prediction analyses showed that dFCs of the four states significantly predicted individual linguistic performance. These findings suggest a domain-separation manner of language network dynamics in resting state, which forms a dynamic "meta-network" framework to support flexible functional segregation and integration during language and speech processing.
Collapse
Affiliation(s)
- Binke Yuan
- Philosophy and Social Science Laboratory of Reading and Development in Children and Adolescents (South China Normal University), Ministry of Education, China; Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China.
| | - Hui Xie
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China; Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Zhihao Wang
- CNRS - Centre d'Economie de la Sorbonne, Panthéon-Sorbonne University, France
| | - Yangwen Xu
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento 38123, Italy
| | - Hanqing Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Jiaxuan Liu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Lifeng Chen
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Chaoqun Li
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Shiyao Tan
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Zonghui Lin
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Xin Hu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Tianyi Gu
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, China
| | - Junfeng Lu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| | - Dongqiang Liu
- Research Center of Brain and Cognitive Neuroscience, Liaoning Normal University, Dalian, China; Key Laboratory of Brain and Cognitive Neuroscience, Liaoning Province, Dalian, PR China.
| | - Jinsong Wu
- Glioma Surgery Division, Neurologic Surgery Department, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China; Brain Function Laboratory, Neurosurgical Institute of Fudan University, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China
| |
Collapse
|
18
|
Trasmundi SB, Toro J. Mind wandering in reading: An embodied approach. Front Hum Neurosci 2023; 17:1061437. [PMID: 36936615 PMCID: PMC10017976 DOI: 10.3389/fnhum.2023.1061437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/14/2023] [Indexed: 03/06/2023] Open
Abstract
In the last 20 years, the study of mind wandering has attracted the attention of a growing number of researchers from fields like psychology, philosophy, and neuroscience. Mind wandering has been characterized in multiple ways: as task-unrelated, unintentional, stimulus-independent, or unguided thought processes. Those accounts have mostly focused on the identification of neurocognitive mechanisms that enable the emergence of mind-wandering episodes. Reading is one activity in which mind wandering frequently occurs, and it is widely accepted that mind wandering is detrimental for reading flow, comprehension and the capacity to make inferences based on the text. This mind wandering scepsis in reading is based on two unchallenged views: (i) that reading is a disembodied, mental activity of information processing, and (ii) that mind wandering is essentially characterized as a task-unrelated and involuntary thought process that disrupts all kinds of goal-oriented behavior. However, recent developments within cognitive science treat the mind as embodied and thus challenge both ontological and epistemological assumptions about what mind wandering is, where it is located, and how it is being studied empirically during reading. In this article we integrate embodied accounts of mind wandering and reading to show how reading benefits from nested mind wandering processes. Empirically, we investigate how a reader can move successfully in and out of different embodied processes and mesh different cognitive strategies over time, including some forms of mind wandering. While such changes in reading are frequently deemed dysfunctional, we suggest an alternative interpretation: Rather than seeking constant flow and fluency, we propose that reading is multi-actional and benefits from drawing on different cognitive strategies spanning mind wandering processes and goal-oriented behavior. In that sense, we suggest that mind wandering has a potential for enriching cognitive processes underlying reading, such as imagining and reflection. We exemplify these insights through analyses of data obtained in ethnographic and semi-experimental studies of reading practices. We conclude that to capture cognitive phenomena within an embodied framework, a richer methodology must be developed. Such a methodology must not only be capable of accounting for brains, bodies, and contexts in isolation, but must consider an overall brain-body-environment system.
Collapse
Affiliation(s)
- Sarah Bro Trasmundi
- Department of Literature, Area Studies and European Languages, University of Oslo, Oslo, Norway
- Department of Language, Culture, History and Communication, University of Southern Denmark, Odense, Denmark
| | - Juan Toro
- Department of Language, Culture, History and Communication, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
19
|
Westlin C, Theriault JE, Katsumi Y, Nieto-Castanon A, Kucyi A, Ruf SF, Brown SM, Pavel M, Erdogmus D, Brooks DH, Quigley KS, Whitfield-Gabrieli S, Barrett LF. Improving the study of brain-behavior relationships by revisiting basic assumptions. Trends Cogn Sci 2023; 27:246-257. [PMID: 36739181 PMCID: PMC10012342 DOI: 10.1016/j.tics.2022.12.015] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/23/2022] [Accepted: 12/29/2022] [Indexed: 02/05/2023]
Abstract
Neuroimaging research has been at the forefront of concerns regarding the failure of experimental findings to replicate. In the study of brain-behavior relationships, past failures to find replicable and robust effects have been attributed to methodological shortcomings. Methodological rigor is important, but there are other overlooked possibilities: most published studies share three foundational assumptions, often implicitly, that may be faulty. In this paper, we consider the empirical evidence from human brain imaging and the study of non-human animals that calls each foundational assumption into question. We then consider the opportunities for a robust science of brain-behavior relationships that await if scientists ground their research efforts in revised assumptions supported by current empirical evidence.
Collapse
Affiliation(s)
| | - Jordan E Theriault
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Yuta Katsumi
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alfonso Nieto-Castanon
- Department of Speech, Language, and Hearing Sciences, Boston University, Boston, MA, USA; Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Aaron Kucyi
- Department of Psychological and Brain Sciences, Drexel University, Philadelphia, PA, USA
| | - Sebastian F Ruf
- Department of Civil and Environmental Engineering, Northeastern University, Boston, MA, USA
| | - Sarah M Brown
- Department of Computer Science and Statistics, University of Rhode Island, Kingston, RI, USA
| | - Misha Pavel
- Khoury College of Computer Sciences, Northeastern University, Boston, MA, USA; Bouvé College of Health Sciences, Northeastern University, Boston, MA, USA
| | - Deniz Erdogmus
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Dana H Brooks
- Department of Electrical and Computer Engineering, Northeastern University, Boston, MA, USA
| | - Karen S Quigley
- Department of Psychology, Northeastern University, Boston, MA, USA
| | | | - Lisa Feldman Barrett
- Department of Psychology, Northeastern University, Boston, MA, USA; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA; Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
20
|
Axelrod V, Rozier C, Lehongre K, Adam C, Lambrecq V, Navarro V, Naccache L. Neural modulations in the auditory cortex during internal and external attention tasks: A single-patient intracranial recording study. Cortex 2022; 157:211-230. [PMID: 36335821 DOI: 10.1016/j.cortex.2022.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/12/2022] [Accepted: 09/27/2022] [Indexed: 12/15/2022]
Abstract
Brain sensory processing is not passive, but is rather modulated by our internal state. Different research methods such as non-invasive imaging methods and intracranial recording of the local field potential (LFP) have been used to study to what extent sensory processing and the auditory cortex in particular are modulated by selective attention. However, at the level of the single- or multi-units the selective attention in humans has not been tested. In addition, most previous research on selective attention has explored externally-oriented attention, but attention can be also directed inward (i.e., internal attention), like spontaneous self-generated thoughts and mind-wandering. In the present study we had a rare opportunity to record multi-unit activity (MUA) in the auditory cortex of a patient. To complement, we also analyzed the LFP signal of the macro-contact in the auditory cortex. Our experiment consisted of two conditions with periodic beeping sounds. The participants were asked either to count the beeps (i.e., an "external attention" condition) or to recall the events of the previous day (i.e., an "internal attention" condition). We found that the four out of seven recorded units in the auditory cortex showed increased firing rates in "external attention" compared to "internal attention" condition. The beginning of this attentional modulation varied across multi-units between 30-50 msec and 130-150 msec from stimulus onset, a result that is compatible with an early selection view. The LFP evoked potential and induced high gamma activity both showed attentional modulation starting at about 70-80 msec. As the control, for the same experiment we recorded MUA activity in the amygdala and hippocampus of two additional patients. No major attentional modulation was found in the control regions. Overall, we believe that our results provide new empirical information and support for existing theoretical views on selective attention and spontaneous self-generated cognition.
Collapse
Affiliation(s)
- Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| | - Camille Rozier
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U1127, CNRS UMR 7225, Paris, France
| | - Katia Lehongre
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U1127, CNRS UMR 7225, Paris, France; Centre de NeuroImagerie de Recherche-CENIR, Paris Brain Institute, UMRS 1127, CNRS UMR 7225, Pitié-Salpêtriere Hospital, Paris, France
| | - Claude Adam
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit, Neurology Department, Paris, France
| | - Virginie Lambrecq
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U1127, CNRS UMR 7225, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France; Sorbonne Université, UMR S1127, Paris, France
| | - Vincent Navarro
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U1127, CNRS UMR 7225, Paris, France; AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit, Neurology Department, Paris, France; Sorbonne Université, UMR S1127, Paris, France
| | - Lionel Naccache
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute, ICM, INSERM U1127, CNRS UMR 7225, Paris, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France
| |
Collapse
|
21
|
Liu Y, Kang XG, Chen BB, Song CG, Liu Y, Hao JM, Yuan F, Jiang W. Detecting residual brain networks in disorders of consciousness: a resting-state fNIRS study. Brain Res 2022; 1798:148162. [DOI: 10.1016/j.brainres.2022.148162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/22/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022]
|
22
|
Gbadeyan O, Teng J, Prakash RS. Predicting response time variability from task and resting-state functional connectivity in the aging brain. Neuroimage 2022; 250:118890. [PMID: 35007719 PMCID: PMC9063711 DOI: 10.1016/j.neuroimage.2022.118890] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 12/23/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with declines in a host of cognitive functions, including attentional control, inhibitory control, episodic memory, processing speed, and executive functioning. Theoretical models attribute the age-related decline in cognitive functioning to deficits in goal maintenance and attentional inhibition. Despite these well-documented declines in executive control resources, older adults endorse fewer episodes of mind-wandering when assessed using task-embedded thought probes. Furthermore, previous work on the neural basis of mind-wandering has mostly focused on young adults with studies predominantly focusing on the activity and connectivity of a select few canonical networks. However, whole-brain functional networks associated with mind-wandering in aging have not yet been characterized. In this study, using response time variability-the trial-to-trial fluctuations in behavioral responses-as an indirect marker of mind-wandering or an "out-of-the-zone" attentional state representing suboptimal behavioral performance, we show that brain-based predictive models of response time variability can be derived from whole-brain task functional connectivity. In contrast, models derived from resting-state functional connectivity alone did not predict individual response time variability. Finally, we show that despite successful within-sample prediction of response time variability, our models did not generalize to predict response time variability in independent cohorts of older adults with resting-state connectivity. Overall, our findings provide evidence for the utility of task-based functional connectivity in predicting individual response time variability in aging. Future research is needed to derive more robust and generalizable models.
Collapse
Affiliation(s)
- Oyetunde Gbadeyan
- Department of Psychology, The Ohio State University, 139 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - James Teng
- Department of Psychology, The Ohio State University, 139 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210, USA
| | - Ruchika Shaurya Prakash
- Department of Psychology, The Ohio State University, 139 Psychology Building, 1835 Neil Avenue, Columbus, OH 43210, USA; Center for Cognitive and Behavioral Brain Imaging, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
23
|
Hua J, Wolff A, Zhang J, Yao L, Zang Y, Luo J, Ge X, Liu C, Northoff G. Alpha and theta peak frequency track on- and off-thoughts. Commun Biol 2022; 5:209. [PMID: 35256748 PMCID: PMC8901672 DOI: 10.1038/s42003-022-03146-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 02/08/2022] [Indexed: 11/09/2022] Open
Abstract
Our thoughts are highly dynamic in their contents. At some points, our thoughts are related to external stimuli or tasks focusing on single content (on-single thoughts), While in other moments, they are drifting away with multiple simultaneous items as contents (off-multiple thoughts). Can such thought dynamics be tracked by corresponding neurodynamics? To address this question, here we track thought dynamics during post-stimulus periods by electroencephalogram (EEG) neurodynamics of alpha and theta peak frequency which, as based on the phase angle, must be distinguished from non-phase-based alpha and theta power. We show how, on the psychological level, on-off thoughts are highly predictive of single-multiple thought contents, respectively. Using EEG, on-single and off-multiple thoughts are mediated by opposite changes in the time courses of alpha (high in on-single but low in off-multiple thoughts) and theta (low in on-single but high in off-multiple thoughts) peak frequencies. In contrast, they cannot be distinguished by frequency power. Overall, these findings provide insight into how alpha and theta peak frequency with their phase-related processes track on- and off-thoughts dynamically. In short, neurodynamics track thought dynamics.
Collapse
Affiliation(s)
- Jingyu Hua
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.,Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada.,School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China
| | - Annemarie Wolff
- Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada.,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada
| | - Jianfeng Zhang
- Center for Brain Disorder and Cognitive Science, Shenzhen University, Shenzhen, Guangdong, China.,College of Biomedical Engineering and Instrument Science, Zhejiang University, Hangzhou, Zhejiang, China
| | - Lin Yao
- Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brain Medicine, and the MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yufeng Zang
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China.,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China.,Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou Normal University, Hangzhou, China.,TMS center, Deqing Hospital of Hangzhou Normal university, Deqing 313200, China
| | - Jing Luo
- School of Psychology, Capital Normal University, Beijing, China
| | - Xianliang Ge
- Center for Psychological Sciences at Zhejiang University, Zhejiang University, Hangzhou, China
| | - Chang Liu
- School of Psychology, Nanjing Normal University, Nanjing, Jiangsu, China.
| | - Georg Northoff
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, Zhejiang, China. .,Institute of Psychological Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China. .,Department of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada. .,Institute of Mental Health Research, University of Ottawa, Ottawa, ON, Canada. .,Mental Health Centre, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Kam JWY, Mittner M, Knight RT. Mind-wandering: mechanistic insights from lesion, tDCS, and iEEG. Trends Cogn Sci 2022; 26:268-282. [PMID: 35086725 PMCID: PMC9166901 DOI: 10.1016/j.tics.2021.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 01/04/2023]
Abstract
Cognitive neuroscience has witnessed a surge of interest in investigating the neural correlates of the mind when it drifts away from an ongoing task and the external environment. To that end, functional neuroimaging research has consistently implicated the default mode network (DMN) and frontoparietal control network (FPCN) in mind-wandering. Yet, it remains unknown which subregions within these networks are necessary and how they facilitate mind-wandering. In this review, we synthesize evidence from lesion, transcranial direct current stimulation (tDCS), and intracranial electroencephalogram (iEEG) studies demonstrating the causal relevance of brain regions, and providing insights into the neuronal mechanism underlying mind-wandering. We propose that the integration of complementary approaches is the optimal strategy to establish a comprehensive understanding of the neural basis of mind-wandering.
Collapse
Affiliation(s)
- Julia W Y Kam
- Department of Psychology, University of Calgary, Calgary, Canada; Hotchkiss Brain Institute, University of Calgary, Calgary, Canada.
| | | | - Robert T Knight
- Department of Psychology, University of California Berkeley, Berkeley, CA, USA; Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| |
Collapse
|
25
|
Schirner M, Kong X, Yeo BTT, Deco G, Ritter P. Dynamic primitives of brain network interaction Special Issue "Advances in Mapping the Connectome". Neuroimage 2022; 250:118928. [PMID: 35101596 DOI: 10.1016/j.neuroimage.2022.118928] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/04/2023] Open
Abstract
What dynamic processes underly functional brain networks? Functional connectivity (FC) and functional connectivity dynamics (FCD) are used to represent the patterns and dynamics of functional brain networks. FC(D) is related to the synchrony of brain activity: when brain areas oscillate in a coordinated manner this yields a high correlation between their signal time series. To explain the processes underlying FC(D) we review how synchronized oscillations emerge from coupled neural populations in brain network models (BNMs). From detailed spiking networks to more abstract population models, there is strong support for the idea that the brain operates near critical instabilities that give rise to multistable or metastable dynamics that in turn lead to the intermittently synchronized slow oscillations underlying FC(D). We explore further consequences from these fundamental mechanisms and how they fit with reality. We conclude by highlighting the need for integrative brain models that connect separate mechanisms across levels of description and spatiotemporal scales and link them with cognitive function.
Collapse
Affiliation(s)
- Michael Schirner
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| | - Xiaolu Kong
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore
| | - B T Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore; Centre for Sleep & Cognition & Centre for Translational Magnetic Resonance Research, Yong Loo Lin School of Medicine, Singapore; N.1 Institute for Health & Institute for Digital Medicine, National University of Singapore, Singapore; Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, Singapore, Singapore; Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, USA
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain; Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany; School of Psychological Sciences, Turner Institute for Brain and Mental Health, Monash University, Melbourne, Clayton, Australia
| | - Petra Ritter
- Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt Universität zu Berlin, Department of Neurology with Experimental Neurology, Charitéplatz 1, 10117 Berlin, Germany; Bernstein Focus State Dependencies of Learning & Bernstein Center for Computational Neuroscience, Berlin, Germany; Einstein Center for Neuroscience Berlin, Charitéplatz 1, 10117 Berlin, Germany; Einstein Center Digital Future, Wilhelmstraße 67, 10117 Berlin, Germany.
| |
Collapse
|
26
|
Serban CA, Barborica A, Roceanu AM, Mindruta I, Ciurea J, Pâslaru AC, Zăgrean AM, Zăgrean L, Moldovan M. A method to assess the default EEG macrostate and its reactivity to stimulation. Clin Neurophysiol 2021; 134:50-64. [PMID: 34973517 DOI: 10.1016/j.clinph.2021.12.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 08/23/2021] [Accepted: 12/04/2021] [Indexed: 11/16/2022]
Abstract
OBJECTIVE The default mode network (DMN) is deactivated by stimulation. We aimed to assess the DMN reactivity impairment by routine EEG recordings in stroke patients with impaired consciousness. METHODS Binocular light flashes were delivered at 1 Hz in 1-minute epochs, following a 1-minute baseline (PRE). The EEG was decomposed in a series of binary oscillatory macrostates by topographic spectral clustering. The most deactivated macrostate was labeled the default EEG macrostate (DEM). Its reactivity (DER) was quantified as the decrease in DEM occurrence probability during stimulation. A normalized DER index (DERI) was calculated as DER/PRE. The measures were compared between 14 healthy controls and 32 comatose patients under EEG monitoring following an acute stroke. RESULTS The DEM was mapped to the posterior DMN hubs. In the patients, these DEM source dipoles were 3-4 times less frequent and were associated with an increased theta activity. Even in a reduced 6-channel montage, a DER below 6.26% corresponding to a DERI below 0.25 could discriminate the patients with sensitivity and specificity well above 80%. CONCLUSION The method detected the DMN impairment in post-stroke coma patients. SIGNIFICANCE The DEM and its reactivity to stimulation could be useful to monitor the DMN function at bedside.
Collapse
Affiliation(s)
- Cosmin-Andrei Serban
- Physics Department, University of Bucharest, Romania; Termobit Prod SRL, Bucharest, Romania; FHC Inc, Bowdoin, ME, USA.
| | - Andrei Barborica
- Physics Department, University of Bucharest, Romania; Termobit Prod SRL, Bucharest, Romania; FHC Inc, Bowdoin, ME, USA.
| | | | - Ioana Mindruta
- Neurology Department, University Emergency Hospital, Bucharest, Romania.
| | - Jan Ciurea
- Department of Neurosurgery, Bagdasar-Arseni Emergency Hospital, Bucharest, Romania.
| | - Alexandru C Pâslaru
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Ana-Maria Zăgrean
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zăgrean
- Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Mihai Moldovan
- Termobit Prod SRL, Bucharest, Romania; Division of Physiology and Neuroscience, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania; Neuroscience, University of Copenhagen, Copenhagen, Denmark; Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen, Denmark.
| |
Collapse
|
27
|
Martin CG, He BJ, Chang C. State-related neural influences on fMRI connectivity estimation. Neuroimage 2021; 244:118590. [PMID: 34560268 PMCID: PMC8815005 DOI: 10.1016/j.neuroimage.2021.118590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 09/11/2021] [Accepted: 09/16/2021] [Indexed: 12/01/2022] Open
Abstract
The spatiotemporal structure of functional magnetic resonance imaging (fMRI) signals has provided a valuable window into the network underpinnings of human brain function and dysfunction. Although some cross-regional temporal correlation patterns (functional connectivity; FC) exhibit a high degree of stability across individuals and species, there is growing acknowledgment that measures of FC can exhibit marked changes over a range of temporal scales. Further, FC can covary with experimental task demands and ongoing neural processes linked to arousal, consciousness and perception, cognitive and affective state, and brain-body interactions. The increased recognition that such interrelated neural processes modulate FC measurements has raised both challenges and new opportunities in using FC to investigate brain function. Here, we review recent advances in the quantification of neural effects that shape fMRI FC and discuss the broad implications of these findings in the design and analysis of fMRI studies. We also discuss how a more complete understanding of the neural factors that shape FC measurements can resolve apparent inconsistencies in the literature and lead to more interpretable conclusions from fMRI studies.
Collapse
Affiliation(s)
- Caroline G Martin
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Biyu J He
- Neuroscience Institute, New York University School of Medicine, New York, NY 10016, USA; Departments of Neurology, Neuroscience & Physiology, and Radiology, New York University School of Medicine, New York, NY 10016, USA
| | - Catie Chang
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA; Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
28
|
Sun J, He L, Chen Q, Yang W, Wei D, Qiu J. The bright side and dark side of daydreaming predict creativity together through brain functional connectivity. Hum Brain Mapp 2021; 43:902-914. [PMID: 34676650 PMCID: PMC8764487 DOI: 10.1002/hbm.25693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 10/03/2021] [Accepted: 10/12/2021] [Indexed: 01/02/2023] Open
Abstract
Daydreaming and creativity have similar cognitive processes and neural basis. However, few empirical studies have examined the relationship between daydreaming and creativity using cognitive neuroscience methods. The present study explored the relationship between different types of daydreaming and creativity and their common neural basis. The behavioral results revealed that positive constructive daydreaming is positively related to creativity, while poor attentional control is negatively related to it. Machine learning framework was adopted to examine the predictive effect of daydreaming-related brain functional connectivity (FC) on creativity. The results demonstrated that task FCs related to positive constructive daydreaming and task FCs related to poor attentional control both predicted an individual's creativity score successfully. In addition, task FCs combining the positive constructive daydreaming and poor attentional control also had significant predictive effect on creativity score. Furthermore, predictive analysis based on resting-state FCs showed similar patterns. Both of the subscale-related FCs and combined FCs had significant predictive effect on creativity score. Further analysis showed the task and the resting-state FCs both mainly located in the default mode network, central executive network, salience network, and attention network. These results showed that daydreaming was closely related to creativity, as they shared common FC basis.
Collapse
Affiliation(s)
- Jiangzhou Sun
- Center for Studies of Education and Psychology of Ethnic Minorities in Southwest China of Southwest UniversityChongqingChina
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Li He
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Qunlin Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Wenjing Yang
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Dongtao Wei
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of EducationChongqingChina
- Faculty of PsychologySouthwest UniversityChongqingChina
- Southwest University Branch, Collaborative Innovation Center of Assessment Toward Basic Education Quality at Beijing Normal UniversityBeijingChina
| |
Collapse
|
29
|
Xifra-Porxas A, Kassinopoulos M, Mitsis GD. Physiological and motion signatures in static and time-varying functional connectivity and their subject identifiability. eLife 2021; 10:e62324. [PMID: 34342582 PMCID: PMC8378847 DOI: 10.7554/elife.62324] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 08/02/2021] [Indexed: 02/06/2023] Open
Abstract
Human brain connectivity yields significant potential as a noninvasive biomarker. Several studies have used fMRI-based connectivity fingerprinting to characterize individual patterns of brain activity. However, it is not clear whether these patterns mainly reflect neural activity or the effect of physiological and motion processes. To answer this question, we capitalize on a large data sample from the Human Connectome Project and rigorously investigate the contribution of the aforementioned processes on functional connectivity (FC) and time-varying FC, as well as their contribution to subject identifiability. We find that head motion, as well as heart rate and breathing fluctuations, induce artifactual connectivity within distinct resting-state networks and that they correlate with recurrent patterns in time-varying FC. Even though the spatiotemporal signatures of these processes yield above-chance levels in subject identifiability, removing their effects at the preprocessing stage improves identifiability, suggesting a neural component underpinning the inter-individual differences in connectivity.
Collapse
Affiliation(s)
- Alba Xifra-Porxas
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | - Michalis Kassinopoulos
- Graduate Program in Biological and Biomedical Engineering, McGill University, Montréal, Canada
| | | |
Collapse
|
30
|
Song H, Rosenberg MD. Predicting attention across time and contexts with functional brain connectivity. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2020.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Duffy KA, Rosch KS, Nebel MB, Seymour KE, Lindquist MA, Pekar JJ, Mostofsky SH, Cohen JR. Increased integration between default mode and task-relevant networks in children with ADHD is associated with impaired response control. Dev Cogn Neurosci 2021; 50:100980. [PMID: 34252881 PMCID: PMC8278154 DOI: 10.1016/j.dcn.2021.100980] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/03/2021] [Accepted: 06/17/2021] [Indexed: 01/22/2023] Open
Abstract
Default mode network (DMN) dysfunction is theorized to play a role in attention lapses and task errors in children with attention-deficit/hyperactivity disorder (ADHD). In ADHD, the DMN is hyperconnected to task-relevant networks, and both increased functional connectivity and reduced activation are related to poor task performance. The current study extends existing literature by considering interactions between the DMN and task-relevant networks from a brain network perspective and by assessing how these interactions relate to response control. We characterized both static and time-varying functional brain network organization during the resting state in 43 children with ADHD and 43 age-matched typically developing (TD) children. We then related aspects of network integration to go/no-go performance. We calculated participation coefficient (PC), a measure of a region’s inter-network connections, for regions of the DMN, canonical cognitive control networks (fronto-parietal, salience/cingulo-opercular), and motor-related networks (somatomotor, subcortical). Mean PC was higher in children with ADHD as compared to TD children, indicating greater integration across networks. Further, higher and less variable PC was related to greater commission error rate in children with ADHD. Together, these results inform our understanding of the role of the DMN and its interactions with task-relevant networks in response control deficits in ADHD. The DMN is more integrated with task-relevant networks in children with ADHD. Higher and less variable DMN integration relates to poorer response control in ADHD. DMN dysfunction may play a key role in response control deficits in ADHD.
Collapse
Affiliation(s)
- Kelly A Duffy
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Keri S Rosch
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neuropsychology, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Mary Beth Nebel
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Karen E Seymour
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Mental Health, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Martin A Lindquist
- Department of Biostatistics, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - James J Pekar
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| | - Stewart H Mostofsky
- Center for Neurodevelopmental and Imaging Research, Kennedy Krieger Institute, Baltimore, MD, USA; Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD, USA; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | - Jessica R Cohen
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA; Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
32
|
Alperin BR, Christoff K, Mills C, Karalunas SL. More than off-task: Increased freely-moving thought in ADHD. Conscious Cogn 2021; 93:103156. [PMID: 34119895 DOI: 10.1016/j.concog.2021.103156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/24/2021] [Accepted: 05/26/2021] [Indexed: 11/19/2022]
Abstract
Off-task thought has been found to occur at high rates and is related to impairment in ADHD. However, off-task thought is heterogenous and it remains unclear which specific dimensions of off-task thought are more prevalent in this disorder. It is therefore important to dissociate different aspects of off-task thought in order to better understand the mechanisms underlying impairment. The current study focused on the dimension of constrained (focused) to freely moving off-task thought. Self-report and neurophysiological measures during a computerized attention tasks provided convergent evidence that individuals with ADHD not only have more off-task thought than those without, but also engaged in a greater proportion of freely moving off-task thought than non-ADHD controls. Overall, this work demonstrated differences in both the quantity and type of off-task thought in adults with ADHD. It provides novel insight into both the phenomenology of off-task thought, as well as potential mechanisms underlying impairment in ADHD.
Collapse
Affiliation(s)
| | - Kalina Christoff
- Department of Psychology, University of British Columbia, Canada
| | - Caitlin Mills
- Department of Psychology, University of New Hampshire, United States
| | | |
Collapse
|
33
|
The Time Varying Networks of the Interoceptive Attention and Rest. eNeuro 2021; 8:ENEURO.0341-20.2021. [PMID: 33975858 PMCID: PMC8174797 DOI: 10.1523/eneuro.0341-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 03/09/2021] [Accepted: 04/27/2021] [Indexed: 11/21/2022] Open
Abstract
Focused attention to spontaneous sensations is a dynamic process that demands interoceptive abilities. Failure to control it has been linked to neuropsychiatric disorders like illness-anxiety disorder. Regulatory strategies, such as focused attention meditation (FAM), may enhance the ability to control focused attention particularly to body sensations, which can be reflected on functional neuroanatomy. The functional connectivity (FC) related to focused attention has been described, however, the dynamic brain organization associated to this process and the differences to the resting state remains to be studied. To quantify the cerebral dynamic counterpart of focused attention to interoception, we examined fifteen experienced meditators while performing a 20-min attentional task to spontaneous sensations. Subjects underwent three scanning sessions obtaining a resting-state scan before and after the task. Sliding window dynamic FC (DFC) and k-means clustering identified five recurrent FC patterns along the dorsal attention network (DAN), default mode network (DMN), and frontoparietal network (FPN). Subjects remained longer in a low connectivity brain pattern during the resting conditions. By contrast, subjects spent a higher proportion of time in complex patterns during the task than rest. Moreover, a carry-over effect in FC was observed following the interoceptive task performance, suggestive of an active role in the learning process linked to cognitive training. Our results suggest that focused attention to interoceptive processes, demands a dynamic brain organization with specific features that distinguishes it from the resting condition. This approach may provide new insights characterizing the neural basis of the focused attention, an essential component for human adaptability.
Collapse
|
34
|
Testing the construct validity of competing measurement approaches to probed mind-wandering reports. Behav Res Methods 2021; 53:2372-2411. [PMID: 33835393 PMCID: PMC8613094 DOI: 10.3758/s13428-021-01557-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Psychology faces a measurement crisis, and mind-wandering research is not immune. The present study explored the construct validity of probed mind-wandering reports (i.e., reports of task-unrelated thought [TUT]) with a combined experimental and individual-differences approach. We examined laboratory data from over 1000 undergraduates at two U.S. institutions, who responded to one of four different thought-probe types across two cognitive tasks. We asked a fundamental measurement question: Do different probe types yield different results, either in terms of average reports (average TUT rates, TUT-report confidence ratings), or in terms of TUT-report associations, such as TUT rate or confidence stability across tasks, or between TUT reports and other consciousness-related constructs (retrospective mind-wandering ratings, executive-control performance, and broad questionnaire trait assessments of distractibility–restlessness and positive-constructive daydreaming)? Our primary analyses compared probes that asked subjects to report on different dimensions of experience: TUT-content probes asked about what they’d been mind-wandering about, TUT-intentionality probes asked about why they were mind-wandering, and TUT-depth probes asked about the extent (on a rating scale) of their mind-wandering. Our secondary analyses compared thought-content probes that did versus didn’t offer an option to report performance-evaluative thoughts. Our findings provide some “good news”—that some mind-wandering findings are robust across probing methods—and some “bad news”—that some findings are not robust across methods and that some commonly used probing methods may not tell us what we think they do. Our results lead us to provisionally recommend content-report probes rather than intentionality- or depth-report probes for most mind-wandering research.
Collapse
|
35
|
Vidaurre D, Llera A, Smith SM, Woolrich MW. Behavioural relevance of spontaneous, transient brain network interactions in fMRI. Neuroimage 2021; 229:117713. [PMID: 33421594 PMCID: PMC7994296 DOI: 10.1016/j.neuroimage.2020.117713] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/26/2020] [Indexed: 12/19/2022] Open
Abstract
How spontaneously fluctuating functional magnetic resonance imaging (fMRI) signals in different brain regions relate to behaviour has been an open question for decades. Correlations in these signals, known as functional connectivity, can be averaged over several minutes of data to provide a stable representation of the functional network architecture for an individual. However, associations between these stable features and behavioural traits have been shown to be dominated by individual differences in anatomy. Here, using kernel learning tools, we propose methods to assess and compare the relation between time-varying functional connectivity, time-averaged functional connectivity, structural brain data, and non-imaging subject behavioural traits. We applied these methods to Human Connectome Project resting-state fMRI data to show that time-varying fMRI functional connectivity, detected at time-scales of a few seconds, has associations with some behavioural traits that are not dominated by anatomy. Despite time-averaged functional connectivity accounting for the largest proportion of variability in the fMRI signal between individuals, we found that some aspects of intelligence could only be explained by time-varying functional connectivity. The finding that time-varying fMRI functional connectivity has a unique relationship to population behavioural variability suggests that it might reflect transient neuronal communication fluctuating around a stable neural architecture.
Collapse
Affiliation(s)
- D Vidaurre
- Center for Functionally Integrative Neuroscience, Department of Clinical Health, Aarhus University, 8000 Denmark; Department of Psychiatry, University of Oxford, OX37JX UK; Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK,.
| | - A Llera
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 Netherlands
| | - S M Smith
- Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK
| | - M W Woolrich
- Department of Psychiatry, University of Oxford, OX37JX UK; Wellcome Trust Center for Integrative Neuroimaging, University of Oxford, OX37JX UK
| |
Collapse
|
36
|
Smallwood J, Turnbull A, Wang HT, Ho NS, Poerio GL, Karapanagiotidis T, Konu D, Mckeown B, Zhang M, Murphy C, Vatansever D, Bzdok D, Konishi M, Leech R, Seli P, Schooler JW, Bernhardt B, Margulies DS, Jefferies E. The neural correlates of ongoing conscious thought. iScience 2021; 24:102132. [PMID: 33665553 PMCID: PMC7907463 DOI: 10.1016/j.isci.2021.102132] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
A core goal in cognitive neuroscience is identifying the physical substrates of the patterns of thought that occupy our daily lives. Contemporary views suggest that the landscape of ongoing experience is heterogeneous and can be influenced by features of both the person and the context. This perspective piece considers recent work that explicitly accounts for both the heterogeneity of the experience and context dependence of patterns of ongoing thought. These studies reveal that systems linked to attention and control are important for organizing experience in response to changing environmental demands. These studies also establish a role of the default mode network beyond task-negative or purely episodic content, for example, implicating it in the level of vivid detail in experience in both task contexts and in spontaneous self-generated experiential states. Together, this work demonstrates that the landscape of ongoing thought is reflected in the activity of multiple neural systems, and it is important to distinguish between processes contributing to how the experience unfolds from those linked to how these experiences are regulated.
Collapse
Affiliation(s)
- Jonathan Smallwood
- Department of Psychology / York Imaging Centre, University of York, York, England
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Adam Turnbull
- Department of Psychology / York Imaging Centre, University of York, York, England
- University of Rochester School of Nursing, Rochester, NY, USA
| | | | - Nerissa S.P. Ho
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Giulia L. Poerio
- Department of Psychology, University of Essex, Colchester, England
| | | | - Delali Konu
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Brontë Mckeown
- Department of Psychology / York Imaging Centre, University of York, York, England
| | - Meichao Zhang
- Department of Psychology / York Imaging Centre, University of York, York, England
| | | | | | - Danilo Bzdok
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Mahiko Konishi
- Laboratoire de Sciences Cognitives et de Psycholinguistique, Department d'Etudes Cognitives, ENS, PSL University, EHESS, CNRS, Paris, France
| | | | | | - Jonathan W. Schooler
- Department of Psychology, duke University, Durham, NC, USA
- Department of Psychological and Brain Sciences, University of California, Santa Barbara, CA, USA
| | - Boris Bernhardt
- Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Daniel S. Margulies
- Centre Nationale de la Researche Scientifique, Institute du Cerveau et de la Moelle epiniere, Paris, France
| | - Elizabeth Jefferies
- Department of Psychology / York Imaging Centre, University of York, York, England
| |
Collapse
|
37
|
Kucyi A, Esterman M, Capella J, Green A, Uchida M, Biederman J, Gabrieli JDE, Valera EM, Whitfield-Gabrieli S. Prediction of stimulus-independent and task-unrelated thought from functional brain networks. Nat Commun 2021; 12:1793. [PMID: 33741956 PMCID: PMC7979817 DOI: 10.1038/s41467-021-22027-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022] Open
Abstract
Neural substrates of "mind wandering" have been widely reported, yet experiments have varied in their contexts and their definitions of this psychological phenomenon, limiting generalizability. We aimed to develop and test the generalizability, specificity, and clinical relevance of a functional brain network-based marker for a well-defined feature of mind wandering-stimulus-independent, task-unrelated thought (SITUT). Combining functional MRI (fMRI) with online experience sampling in healthy adults, we defined a connectome-wide model of inter-regional coupling-dominated by default-frontoparietal control subnetwork interactions-that predicted trial-by-trial SITUT fluctuations within novel individuals. Model predictions generalized in an independent sample of adults with attention-deficit/hyperactivity disorder (ADHD). In three additional resting-state fMRI studies (total n = 1115), including healthy individuals and individuals with ADHD, we demonstrated further prediction of SITUT (at modest effect sizes) defined using multiple trait-level and in-scanner measures. Our findings suggest that SITUT is represented within a common pattern of brain network interactions across time scales and contexts.
Collapse
Affiliation(s)
- Aaron Kucyi
- Department of Psychology, Northeastern University, Boston, MA, USA.
| | - Michael Esterman
- National Center for PTSD & Neuroimaging Research for Veterans Center (NeRVe), Veterans Administration Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - James Capella
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Green
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
| | - Mai Uchida
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph Biederman
- Clinical and Research Program in Pediatric Psychopharmacology and Adult ADHD, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - John D E Gabrieli
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Athinoula A. Martinos Imaging Center at the McGovern Institute for Brain Research, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Eve M Valera
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Charlestown, MA, USA
| | | |
Collapse
|
38
|
Zanesco AP, Denkova E, Jha AP. Associations between self-reported spontaneous thought and temporal sequences of EEG microstates. Brain Cogn 2021; 150:105696. [PMID: 33706148 DOI: 10.1016/j.bandc.2021.105696] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 12/01/2022]
Abstract
Thought dynamically evolves from one moment to the next even in the absence of external stimulation. The extent to which patterns of spontaneous thought covary with time-varying fluctuations in intrinsic brain activity is of great interest but remains unknown. We conducted novel analyses of data originally reported by Portnova et al. (2019) to examine associations between the intrinsic dynamics of EEG microstates and self-reported thought measured using the Amsterdam Resting-State Questionnaire (ARSQ). Accordingly, the millisecond fluctuations of microstates were associated with specific dimensions of thought. We evaluated the reliability of these findings by combining our results with those of another study using meta-analysis. Importantly, we extended this investigation using multivariate methods to evaluate multidimensional thought profiles of individuals and their links to sequences of successive microstates. Thought profiles were identified based on hierarchical clustering of ARSQ ratings and were distinguished in terms of the temporal ordering of successive microstates based on sequence analytic methods. These findings demonstrate the relevance of assessing spontaneous thought for understanding intrinsic brain activity and the novel use of sequence analysis for characterizing microstate dynamics. Integrating the phenomenological view from within remains crucial for understanding the functional significance of intrinsic large-scale neurodynamics.
Collapse
Affiliation(s)
| | | | - Amishi P Jha
- Department of Psychology, University of Miami, United States
| |
Collapse
|
39
|
O'Callaghan C, Walpola IC, Shine JM. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190699. [PMID: 33308063 DOI: 10.1098/rstb.2019.0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mind-wandering has become a captivating topic for cognitive neuroscientists. By now, it is reasonably well described in terms of its phenomenology and the large-scale neural networks that support it. However, we know very little about what neurobiological mechanisms trigger a mind-wandering episode and sustain the mind-wandering brain state. Here, we focus on the role of ascending neuromodulatory systems (i.e. acetylcholine, noradrenaline, serotonin and dopamine) in shaping mind-wandering. We advance the hypothesis that the hippocampal sharp wave-ripple (SWR) is a compelling candidate for a brain state that can trigger mind-wandering episodes. This hippocampal rhythm, which occurs spontaneously in quiescent behavioural states, is capable of propagating widespread activity in the default network and is functionally associated with recollective, associative, imagination and simulation processes. The occurrence of the SWR is heavily dependent on hippocampal neuromodulatory tone. We describe how the interplay of neuromodulators may promote the hippocampal SWR and trigger mind-wandering episodes. We then identify the global neuromodulatory signatures that shape the evolution of the mind-wandering brain state. Under our proposed framework, mind-wandering emerges due to the interplay between neuromodulatory systems that influence the transitions between brain states, which either facilitate, or impede, a wandering mind. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ishan C Walpola
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
40
|
Karapanagiotidis T, Jefferies E, Smallwood J. Interactions between the neural correlates of dispositional internally directed thought and visual imagery. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190691. [PMID: 33308072 DOI: 10.1098/rstb.2019.0691] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Cognition is not always directed to the events in the here and now and we often self-generate thoughts and images in imagination. Important aspects of these self-generated experiences are associated with various dispositional traits. In this study, we explored whether these psychological associations relate to a common underlying neurocognitive mechanism. We acquired resting state functional magnetic resonance imaging data from a large cohort of participants and asked them to retrospectively report their experience during the scan. Participants also completed questionnaires reflecting a range of dispositional traits. We found thoughts emphasizing visual imagery at rest were associated with dispositional tendency towards internally directed attention (self-consciousness and attentional problems) and linked to a stronger correlation between a posterior parietal network and a lateral fronto-temporal network. Furthermore, decoupling between the brainstem and a lateral visual network was associated with dispositional internally directed attention. Critically, these brain-cognition associations were related: the correlation between parietal-frontal regions and reports of visual imagery was stronger for individuals with increased connectivity between brainstem and visual cortex. Our results highlight neural mechanisms linked to the dispositional basis for patterns of self-generated thought, and suggest that accounting for dispositional traits is important when exploring the neural substrates of self-generated experience (and vice versa). This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, York YO10 5DD, UK
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, York YO10 5DD, UK
| |
Collapse
|
41
|
Karapanagiotidis T, Vidaurre D, Quinn AJ, Vatansever D, Poerio GL, Turnbull A, Ho NSP, Leech R, Bernhardt BC, Jefferies E, Margulies DS, Nichols TE, Woolrich MW, Smallwood J. The psychological correlates of distinct neural states occurring during wakeful rest. Sci Rep 2020; 10:21121. [PMID: 33273566 PMCID: PMC7712889 DOI: 10.1038/s41598-020-77336-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022] Open
Abstract
When unoccupied by an explicit external task, humans engage in a wide range of different types of self-generated thinking. These are often unrelated to the immediate environment and have unique psychological features. Although contemporary perspectives on ongoing thought recognise the heterogeneity of these self-generated states, we lack both a clear understanding of how to classify the specific states, and how they can be mapped empirically. In the current study, we capitalise on advances in machine learning that allow continuous neural data to be divided into a set of distinct temporally re-occurring patterns, or states. We applied this technique to a large set of resting state data in which we also acquired retrospective descriptions of the participants' experiences during the scan. We found that two of the identified states were predictive of patterns of thinking at rest. One state highlighted a pattern of neural activity commonly seen during demanding tasks, and the time individuals spent in this state was associated with descriptions of experience focused on problem solving in the future. A second state was associated with patterns of activity that are commonly seen under less demanding conditions, and the time spent in it was linked to reports of intrusive thoughts about the past. Finally, we found that these two neural states tended to fall at either end of a neural hierarchy that is thought to reflect the brain's response to cognitive demands. Together, these results demonstrate that approaches which take advantage of time-varying changes in neural function can play an important role in understanding the repertoire of self-generated states. Moreover, they establish that important features of self-generated ongoing experience are related to variation along a similar vein to those seen when the brain responds to cognitive task demands.
Collapse
Affiliation(s)
| | - Diego Vidaurre
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
- Department of Clinical Medicine, Center of Functionally Integrative Neuroscience, Aarhus University, 8000, Aarhus, Denmark
| | - Andrew J Quinn
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, 200433, People's Republic of China
| | - Giulia L Poerio
- Department of Psychology, University of Essex, Colchester, Essex, CO4 3SQ, UK
| | - Adam Turnbull
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5DD, UK
| | - Nerissa Siu Ping Ho
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5DD, UK
| | - Robert Leech
- Centre for Neuroimaging Science, Kings College, London, SE5 8AF, UK
| | - Boris C Bernhardt
- McConnell Brain Imaging Centre, Montréal Neurological Institute, McGill University, Montréal, QC, H3A 2B4, Canada
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5DD, UK
| | - Daniel S Margulies
- Brain and Spine Institute (ICM), National Center for Scientific Research, Paris, 75013, France
| | - Thomas E Nichols
- Oxford Centre for Functional MRI of the Brain, Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, OX3 9DU, UK
| | - Mark W Woolrich
- Department of Psychiatry, Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 7JX, UK
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, York, YO10 5DD, UK
| |
Collapse
|
42
|
Vandewouw MM, Dunkley BT, Lerch JP, Anagnostou E, Taylor MJ. Characterizing Inscapes and resting-state in MEG: Effects in typical and atypical development. Neuroimage 2020; 225:117524. [PMID: 33147510 DOI: 10.1016/j.neuroimage.2020.117524] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Examining the brain at rest is a powerful approach used to understand the intrinsic properties of typical and disordered human brain function, yet task-free paradigms are associated with greater head motion, particularly in young and/or clinical populations such as autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD). Inscapes, a non-social and non-verbal movie paradigm, has been introduced to increase attention, thus mitigating head motion, while reducing the task-induced activations found during typical movie watching. Inscapes has not yet been validated for use in magnetoencephalography (MEG), and it has yet to be shown whether its effects are stable in clinical populations. Across typically developing (N = 32) children and adolescents and those with ASD (N = 46) and ADHD (N = 42), we demonstrate that head motion is reduced during Inscapes. Due to the task state evoked by movie paradigms, we also expectedly observed concomitant modulations in local neural activity (oscillatory power) and functional connectivity (phase and envelope coupling) in intrinsic resting-state networks and across the frequency spectra compared to a fixation cross resting-state. Increases in local activity were accompanied by decreases in low-frequency connectivity within and between resting-state networks, primarily the visual network, suggesting that task-state evoked by Inscapes moderates ongoing and spontaneous cortical inhibition that forms the idling intrinsic networks found during a fixation cross resting-state. Importantly, these effects were similar in ASD and ADHD, making Inscapes a well-suited advancement for investigations of resting brain function in young and clinical populations.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada.
| | - Benjamin T Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada
| | - Jason P Lerch
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, 555 University Ave, Toronto, ON M5G 1X8, Canada; Program in Neurosciences and Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
43
|
D'Croz-Baron DF, Bréchet L, Baker M, Karp T. Auditory and Visual Tasks Influence the Temporal Dynamics of EEG Microstates During Post-encoding Rest. Brain Topogr 2020; 34:19-28. [PMID: 33095401 DOI: 10.1007/s10548-020-00802-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 10/15/2020] [Indexed: 11/24/2022]
Abstract
Re-activations of task-dependent patterns of neural activity take place during post-encoding periods of wakeful rest and sleep. However, it is still unclear how the temporal dynamics of brain states change during these periods, which are shaped by prior conscious experiences. Here, we examined the very brief periods of wakeful rest immediately after encoding and recognition of auditory and visual stimuli, by applying the EEG microstate analysis, in which the global variance of the EEG is explained by only a few prototypical topographies. We identified the dominant brain states of sub-second duration during the tasks-dependent periods of rest, finding that the temporal dynamics-represented here by two temporal parameters: the frequency of occurrence and the fraction of time coverage-of three task-related microstate classes changed compared to wakeful rest. This study provides evidence of experience-dependent temporal changes in post-encoding periods of resting brain activity, which can be captured using the EEG microstates approach.
Collapse
Affiliation(s)
- David F D'Croz-Baron
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA.
| | - Lucie Bréchet
- Arthur and Hinda Marcus Institute for Aging Research and Center for Memory Health, Hebrew SeniorLife, and Department of Neurology, Harvard Medical School, Boston, MA, USA.,Center for Biomedical Imaging (CIBM), Lausanne, Switzerland
| | - Mary Baker
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| | - Tanja Karp
- Department of Electrical and Computer Engineering, Texas Tech University, 2500 Broadway, Lubbock, TX, 79409, USA
| |
Collapse
|
44
|
Mckeown B, Strawson WH, Wang HT, Karapanagiotidis T, Vos de Wael R, Benkarim O, Turnbull A, Margulies D, Jefferies E, McCall C, Bernhardt B, Smallwood J. The relationship between individual variation in macroscale functional gradients and distinct aspects of ongoing thought. Neuroimage 2020; 220:117072. [PMID: 32585346 PMCID: PMC7573534 DOI: 10.1016/j.neuroimage.2020.117072] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 05/15/2020] [Accepted: 06/17/2020] [Indexed: 12/12/2022] Open
Abstract
Contemporary accounts of ongoing thought recognise it as a heterogeneous and multidimensional construct, varying in both form and content. An emerging body of evidence demonstrates that distinct types of experience are associated with unique neurocognitive profiles, that can be described at the whole-brain level as interactions between multiple large-scale networks. The current study sought to explore the possibility that whole-brain functional connectivity patterns at rest may be meaningfully related to patterns of ongoing thought that occurred over this period. Participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) followed by a questionnaire retrospectively assessing the content and form of their ongoing thoughts during the scan. A non-linear dimension reduction algorithm was applied to the rs-fMRI data to identify components explaining the greatest variance in whole-brain connectivity patterns. Using these data, we examined whether specific types of thought measured at the end of the scan were predictive of individual variation along the first three low-dimensional components of functional connectivity at rest. Multivariate analyses revealed that individuals for whom the connectivity of the sensorimotor system was maximally distinct from the visual system were most likely to report thoughts related to finding solutions to problems or goals and least likely to report thoughts related to the past. These results add to an emerging literature that suggests that unique patterns of experience are associated with distinct distributed neurocognitive profiles and highlight that unimodal systems may play an important role in this process.
Collapse
Affiliation(s)
- Brontë Mckeown
- Department of Psychology, York Neuroimaging Centre, University of York, United Kingdom.
| | - Will H Strawson
- Neuroscience, Brighton and Sussex Medical School, University of Sussex, United Kingdom
| | - Hao-Ting Wang
- Sackler Centre for Consciousness Studies, University of Sussex, United Kingdom
| | | | - Reinder Vos de Wael
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Oualid Benkarim
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Adam Turnbull
- Department of Psychology, York Neuroimaging Centre, University of York, United Kingdom
| | - Daniel Margulies
- Frontlab, Institut du Cerveau et de la Moelle épinière, UPMC UMRS 1127, Inserm U 1127, CNRS UMR, 7225, Paris, France
| | - Elizabeth Jefferies
- Department of Psychology, York Neuroimaging Centre, University of York, United Kingdom
| | - Cade McCall
- Department of Psychology, York Neuroimaging Centre, University of York, United Kingdom
| | - Boris Bernhardt
- McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC, Canada
| | - Jonathan Smallwood
- Department of Psychology, York Neuroimaging Centre, University of York, United Kingdom
| |
Collapse
|
45
|
Zanesco AP, Denkova E, Jha AP. Self-reported Mind Wandering and Response Time Variability Differentiate Prestimulus Electroencephalogram Microstate Dynamics during a Sustained Attention Task. J Cogn Neurosci 2020; 33:28-45. [PMID: 33054554 DOI: 10.1162/jocn_a_01636] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Brain activity continuously and spontaneously fluctuates during tasks of sustained attention. This spontaneous activity reflects the intrinsic dynamics of neurocognitive networks, which have been suggested to differentiate moments of externally directed task focus from episodes of mind wandering. However, the contribution of specific electrophysiological brain states and their millisecond dynamics to the experience of mind wandering is still unclear. In this study, we investigated the association between electroencephalogram microstate temporal dynamics and self-reported mind wandering. Thirty-six participants completed a sustained attention to response task in which they were asked to respond to frequently occurring upright faces (nontargets) and withhold responses to rare inverted faces (targets). Intermittently, experience sampling probes assessed whether participants were focused on the task or whether they were mind wandering (i.e., off-task). Broadband electroencephalography was recorded and segmented into a time series of brain electric microstates based on data-driven clustering of topographic voltage patterns. The strength, prevalence, and rate of occurrence of specific microstates differentiated on- versus off-task moments in the prestimulus epochs of trials preceding probes. Similar associations were also evident between microstates and variability in response times. Together, these findings demonstrate that distinct microstates and their millisecond dynamics are sensitive to the experience of mind wandering.
Collapse
|
46
|
Groot JM, Boayue NM, Csifcsák G, Boekel W, Huster R, Forstmann BU, Mittner M. Probing the neural signature of mind wandering with simultaneous fMRI-EEG and pupillometry. Neuroimage 2020; 224:117412. [PMID: 33011417 DOI: 10.1016/j.neuroimage.2020.117412] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/27/2020] [Indexed: 12/18/2022] Open
Abstract
Mind wandering reflects the shift in attentional focus from task-related cognition driven by external stimuli toward self-generated and internally-oriented thought processes. Although such task-unrelated thoughts (TUTs) are pervasive and detrimental to task performance, their underlying neural mechanisms are only modestly understood. To investigate TUTs with high spatial and temporal precision, we simultaneously measured fMRI, EEG, and pupillometry in healthy adults while they performed a sustained attention task with experience sampling probes. Features of interest were extracted from each modality at the single-trial level and fed to a support vector machine that was trained on the probe responses. Compared to task-focused attention, the neural signature of TUTs was characterized by weaker activity in the default mode network but elevated activity in its anticorrelated network, stronger functional coupling between these networks, widespread increase in alpha, theta, delta, but not beta, frequency power, predominantly reduced amplitudes of late, but not early, event-related potentials, and larger baseline pupil size. Particularly, information contained in dynamic interactions between large-scale cortical networks was predictive of transient changes in attentional focus above other modalities. Together, our results provide insight into the spatiotemporal dynamics of TUTs and the neural markers that may facilitate their detection.
Collapse
Affiliation(s)
- Josephine M Groot
- Department of Psychology, UiT - The Arctic University of Norway, 9037 Tromsø, Norway; Department of Psychology, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| | - Nya M Boayue
- Department of Psychology, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Gábor Csifcsák
- Department of Psychology, UiT - The Arctic University of Norway, 9037 Tromsø, Norway
| | - Wouter Boekel
- Institute of Psychology, Leiden University, 2333 AK Leiden, The Netherlands
| | - René Huster
- Department of Psychology, University of Oslo, 0317 Oslo, Norway
| | - Birte U Forstmann
- Department of Psychology, University of Amsterdam, 1001 NK Amsterdam, The Netherlands
| | - Matthias Mittner
- Department of Psychology, UiT - The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
47
|
Alderson TH, Bokde ALW, Kelso JAS, Maguire L, Coyle D. Metastable neural dynamics underlies cognitive performance across multiple behavioural paradigms. Hum Brain Mapp 2020; 41:3212-3234. [PMID: 32301561 PMCID: PMC7375112 DOI: 10.1002/hbm.25009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/20/2020] [Accepted: 03/31/2020] [Indexed: 12/24/2022] Open
Abstract
Despite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies towards integration and segregation by operating in a metastable regime of their coordination dynamics. Metastability may confer important behavioural qualities by binding distributed local areas into large-scale neurocognitive networks. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N = 566) and comparing the metastability of the brain's large-scale resting network architecture at rest and during the performance of several tasks. Metastability was estimated using a well-defined collective variable capturing the level of 'phase-locking' between large-scale networks over time. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving or fluid intelligence, but was less important in tasks relying on previous experience or crystallised intelligence. Crucially, subjects with resting architectures similar or 'pre-configured' to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a key linkage between the spontaneous metastability of large-scale networks in the cerebral cortex and cognition.
Collapse
Affiliation(s)
- Thomas H. Alderson
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Beckman Institute for Advanced Science and TechnologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUnited States
| | - Arun L. W. Bokde
- Trinity College Institute of Neuroscience and Cognitive Systems Group, Discipline of Psychiatry, School of MedicineTrinity College DublinDublinIreland
| | - J. A. Scott Kelso
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
- Center for Complex Systems and Brain SciencesFlorida Atlantic UniversityBoca RatonFloridaUnited States
| | - Liam Maguire
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| | - Damien Coyle
- Intelligent Systems Research CentreUlster UniversityAntrimUnited Kingdom
| |
Collapse
|
48
|
Iraji A, Faghiri A, Lewis N, Fu Z, Rachakonda S, Calhoun VD. Tools of the trade: estimating time-varying connectivity patterns from fMRI data. Soc Cogn Affect Neurosci 2020; 16:849-874. [PMID: 32785604 PMCID: PMC8343585 DOI: 10.1093/scan/nsaa114] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 06/24/2020] [Accepted: 08/05/2020] [Indexed: 01/04/2023] Open
Abstract
Given the dynamic nature of the brain, there has always been a motivation to move beyond 'static' functional connectivity, which characterizes functional interactions over an extended period of time. Progress in data acquisition and advances in analytical neuroimaging methods now allow us to assess the whole brain's dynamic functional connectivity (dFC) and its network-based analog, dynamic functional network connectivity at the macroscale (mm) using fMRI. This has resulted in the rapid growth of analytical approaches, some of which are very complex, requiring technical expertise that could daunt researchers and neuroscientists. Meanwhile, making real progress toward understanding the association between brain dynamism and brain disorders can only be achieved through research conducted by domain experts, such as neuroscientists and psychiatrists. This article aims to provide a gentle introduction to the application of dFC. We first explain what dFC is and the circumstances under which it can be used. Next, we review two major categories of analytical approaches to capture dFC. We discuss caveats and considerations in dFC analysis. Finally, we walk readers through an openly accessible toolbox to capture dFC properties and briefly review some of the dynamic metrics calculated using this toolbox.
Collapse
Affiliation(s)
- Armin Iraji
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Ashkan Faghiri
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Noah Lewis
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Zening Fu
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Srinivas Rachakonda
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| |
Collapse
|
49
|
Vatansever D, Karapanagiotidis T, Margulies DS, Jefferies E, Smallwood J. Distinct patterns of thought mediate the link between brain functional connectomes and well-being. Netw Neurosci 2020; 4:637-657. [PMID: 32885119 PMCID: PMC7462429 DOI: 10.1162/netn_a_00137] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/04/2020] [Indexed: 12/29/2022] Open
Abstract
Ongoing thought patterns constitute important aspects of both healthy and abnormal human cognition. However, the neural mechanisms behind these daily experiences and their contribution to well-being remain a matter of debate. Here, using resting-state fMRI and retrospective thought sampling in a large neurotypical cohort (n = 211), we identified two distinct patterns of thought, broadly describing the participants' current concerns and future plans, that significantly explained variability in the individual functional connectomes. Consistent with the view that ongoing thoughts are an emergent property of multiple neural systems, network-based analysis highlighted the central importance of both unimodal and transmodal cortices in the generation of these experiences. Importantly, while state-dependent current concerns predicted better psychological health, mediating the effect of functional connectomes, trait-level future plans were related to better social health, yet with no mediatory influence. Collectively, we show that ongoing thoughts can influence the link between brain physiology and well-being.
Collapse
Affiliation(s)
- Deniz Vatansever
- Institute of Science and Technology for Brain-inspired Intelligence, Fudan University, Shanghai, China
| | | | - Daniel S Margulies
- Brain and Spine Institute, French National Centre for Scientific Research, Paris, France
| | | | | |
Collapse
|
50
|
Shu S, Qin L, Yin Y, Han M, Cui W, Gao JH. Cortical electrophysiological evidence for individual-specific temporal organization of brain functional networks. Hum Brain Mapp 2020; 41:2160-2172. [PMID: 31961469 PMCID: PMC7267903 DOI: 10.1002/hbm.24937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 01/02/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
The human brain has been demonstrated to rapidly and continuously form and dissolve networks on a subsecond timescale, offering effective and essential substrates for cognitive processes. Understanding how the dynamic organization of brain functional networks on a subsecond level varies across individuals is, therefore, of great interest for personalized neuroscience. However, it remains unclear whether features of such rapid network organization are reliably unique and stable in single subjects and, therefore, can be used in characterizing individual networks. Here, we used two sets of 5‐min magnetoencephalography (MEG) resting data from 39 healthy subjects over two consecutive days and modeled the spontaneous brain activity as recurring networks fast shifting between each other in a coordinated manner. MEG cortical maps were obtained through source reconstruction using the beamformer method and subjects' temporal structure of recurring networks was obtained via the Hidden Markov Model. Individual organization of dynamic brain activity was quantified with the features of the network‐switching pattern (i.e., transition probability and mean interval time) and the time‐allocation mode (i.e., fractional occupancy and mean lifetime). Using these features, we were able to identify subjects from the group with significant accuracies (~40% on average in 0.5–48 Hz). Notably, the default mode network displayed a distinguishable pattern, being the least frequently visited network with the longest duration for each visit. Together, we provide initial evidence suggesting that the rapid dynamic temporal organization of brain networks achieved in electrophysiology is intrinsic and subject specific.
Collapse
Affiliation(s)
- Su Shu
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Lang Qin
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Linguistics, The University of Hong Kong, Hong Kong, China
| | - Yayan Yin
- Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Meizhen Han
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Wei Cui
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Center for Biomedical Engineering, University of Science and Technology of China, Hefei, Anhui, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China
| |
Collapse
|