1
|
Makkinayeri S, Guidotti R, Basti A, Woolrich MW, Gohil C, Pettorruso M, Ermolova M, Ilmoniemi RJ, Ziemann U, Romani GL, Pizzella V, Marzetti L. Investigating brain network dynamics in state-dependent stimulation: A concurrent electroencephalography and transcranial magnetic stimulation study using hidden Markov models. Brain Stimul 2025; 18:800-809. [PMID: 40169093 PMCID: PMC12092333 DOI: 10.1016/j.brs.2025.03.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 03/16/2025] [Accepted: 03/27/2025] [Indexed: 04/03/2025] Open
Abstract
BACKGROUND Systems neuroscience studies have shown that baseline brain activity can be categorized into large-scale networks (resting-state-networks, RNSs), with influence on cognitive abilities and clinical symptoms. These insights have guided millimeter-precise selection of brain stimulation targets based on RSNs. Concurrently, Transcranial Magnetic Stimulation (TMS) studies revealed that baseline brain states, measured by EEG signal power or phase, affect stimulation outcomes. However, EEG dynamics in these studies are mostly limited to single regions or channels, lacking the spatial resolution needed for accurate network-level characterization. OBJECTIVE We aim at mapping brain networks with high spatial and temporal precision and to assess whether the occurrence of specific network-level-states impact TMS outcome. To this end, we will identify large-scale brain networks and explore how their dynamics relates to corticospinal excitability. METHODS This study leverages Hidden Markov Models to identify large-scale brain states from pre-stimulus source space high-density-EEG data collected during TMS targeting the left primary motor cortex in twenty healthy subjects. The association between states and fMRI-defined RSNs was explored using the Yeo atlas, and the trial-by-trial relation between states and corticospinal excitability was examined. RESULTS We extracted fast-dynamic large-scale brain states with unique spatiotemporal and spectral features resembling major RSNs. The engagement of different networks significantly influences corticospinal excitability, with larger motor evoked potentials when baseline activity was dominated by the sensorimotor network. CONCLUSIONS These findings represent a step forward towards characterizing brain network in EEG-TMS with both high spatial and temporal resolution and underscore the importance of incorporating large-scale network dynamics into TMS experiments.
Collapse
Affiliation(s)
- Saeed Makkinayeri
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Roberto Guidotti
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Alessio Basti
- Department of Engineering and Geology, G. d'Annunzio University of Chieti-Pescara, Pescara, Italy
| | - Mark W Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, Oxford, Oxford, United Kingdom
| | - Chetan Gohil
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom; Department of Psychiatry, Warneford Hospital, Oxford, Oxford, United Kingdom
| | - Mauro Pettorruso
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Maria Ermolova
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany
| | - Risto J Ilmoniemi
- Department of Neuroscience and Biomedical Engineering, Aalto University, Espoo, Finland
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Gian Luca Romani
- Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Vittorio Pizzella
- Department of Neuroscience, Imaging and Clinical Sciences, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy
| | - Laura Marzetti
- Institute for Advanced Biomedical Technologies, G. d'Annunzio University of Chieti-Pescara, Chieti, Italy; Department of Engineering and Geology, G. d'Annunzio University of Chieti-Pescara, Pescara, Italy.
| |
Collapse
|
2
|
Lee DS, Kim HJ, Huh Y, Kang YK, Whi W, Lee H, Kang H. Both k-core percolation and directed graph analysis revealed succession and transition of voxels' spatiotemporal progress on dynamic correlation resting-state fMRI. Front Hum Neurosci 2025; 19:1543854. [PMID: 40309666 PMCID: PMC12040893 DOI: 10.3389/fnhum.2025.1543854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Voxel hierarchy on dynamic brain graphs is produced by k-core percolation on functional dynamic amplitude correlation of resting-state fMRI. Methods Directed graphs and their afferent/efferent capacities are produced by Markov modeling of the universal cover of undirected graphs simultaneously with the calculation of volume entropy. Using these methods, state stationarity was tested for resting-state positive and unsigned negative brain graphs separately on sliding-window representation. The spatiotemporal progress of voxels was visualized and quantified. Results and discussion The voxel hierarchy of positive graphs revealed abrupt changes in coreness k (k-core) and maximum k-core (kmaxcore) voxels on animation maps representing state transitions interspersed among the succession. Afferent voxel capacities of the positive graphs revealed transient modules composed of dominant voxels and independent components as well as their exchanges compatible with transitions. Moreover, this voxel hierarchy and afferent capacity corroborated each other only on the positive directed functional connectivity graphs but not on the unsigned negative graphs. The Spatiotemporal progression of voxels on positive dynamic graphs constructed a hierarchy by k-core percolation and afferent information flow by volume entropy and directed graph methods. We disclosed the non-stationarity and its temporal progress pattern at rest, accompanied by diverse resting-state transitions on resting-state fMRI graphs in normal human subjects.
Collapse
Affiliation(s)
- Dong Soo Lee
- Medical Science and Engineering, School of Convergence Science and Technology, Pohang University of Science and Technology, Pohang, Republic of Korea
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyun Joo Kim
- Nuclear Medicine, Korea University Anam Hospital, Seoul, Republic of Korea
| | - Youngmin Huh
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yeon Koo Kang
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Wonseok Whi
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyekyoung Lee
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Hyejin Kang
- Nuclear Medicine, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| |
Collapse
|
3
|
Wei X, Zhang J, Zhang J, Li Z, Li Q, Wu J, Yang J, Zhang Z. Investigating the Human Brain's Integration of Internal and External Reference Frames: The Role of the Alpha and Beta Bands in a Modified Temporal Order Judgment Task. Hum Brain Mapp 2025; 46:e70196. [PMID: 40116028 PMCID: PMC11926452 DOI: 10.1002/hbm.70196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 02/25/2025] [Accepted: 03/07/2025] [Indexed: 03/23/2025] Open
Abstract
The integration of the internal and external reference frames of the human brain is crucial for achieving accurate tactile spatial localization. However, the mechanisms underlying this integration have yet to be fully elucidated. This study adopted a modified temporal order judgment paradigm with an advanced weighted phase lag index method to investigate brain network interactions when the internal and external reference frames were integrated. We found that when the brain integrated internal and external reference frames, alpha oscillations decreased, beta oscillations increased, and inter-hemispheric connectivity increased. Specifically, compared with the match condition: first, the alpha band oscillation predominantly contributed to processing the internal reference frame mismatch; second, the alpha and late beta band oscillation predominantly contributed to processing the external reference frame mismatch; third, the early alpha and late beta band oscillation predominantly contributed to processing the internal and external reference frame mismatch. These findings suggest that the neural oscillation of the alpha and beta bands plays an essential role in tactile spatial localization.
Collapse
Affiliation(s)
- Xianhao Wei
- School of Computer Science and TechnologyChangchun University of Science and TechnologyChangchunChina
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| | - Jian Zhang
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Jinyan Zhang
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
| | - Zimo Li
- Graduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| | - Qi Li
- School of Computer Science and TechnologyChangchun University of Science and TechnologyChangchunChina
- Zhongshan Institute of Changchun University of Science and TechnologyZhongshanChina
| | - Jinglong Wu
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
- School of Medical TechnologyBeijing Institute of TechnologyBeijingChina
- Graduate School of Interdisciplinary Science and Engineering in Health SystemsOkayama UniversityOkayamaJapan
| | - Jingjing Yang
- School of Artificial IntelligenceChangchun University of Science and TechnologyChangchunChina
| | - Zhilin Zhang
- Research Center for Medical Artificial IntelligenceShenzhen Institute of Advanced Technology, Chinese Academy of SciencesShenzhenChina
| |
Collapse
|
4
|
Sasaki R. Modulating Cortico-cortical Networks with Transcranial Alternating Current Stimulation: A Minireview. Phys Ther Res 2025; 28:1-8. [PMID: 40321689 PMCID: PMC12047044 DOI: 10.1298/ptr.r0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 01/14/2025] [Indexed: 05/08/2025]
Abstract
Advancements in brain imaging and analytical methods have demonstrated that behavior arises from the coordinated activity of multiple brain regions within cortico-cortical networks. Transcranial alternating current stimulation (tACS), a noninvasive brain stimulation (NIBS) technique, applies weak sinusoidal alternating currents to specific brain regions using scalp-mounted electrodes. Traditionally, tACS has been used to target single brain regions to enhance functions such as motor, sensory, and cognitive abilities. However, recent findings indicate its potential for simultaneously stimulating 2 brain regions, thereby modulating cortico-cortical network strength through neural entrainment-where brain oscillations synchronize with external rhythmic stimuli. Despite this potential, tACS applications remain primarily focused on individual brain regions. Given that behavior stems from dynamic interactions within cortico-cortical networks rather than isolated regions, this minireview explores the role of these networks in shaping behavior through functional connectivity as identified by neuroimaging. It also provides an in-depth analysis of tACS as a tool for modifying cortico-cortical networks via neural entrainment, offering promising applications in neurorehabilitation for brain disorders linked to network dysfunction. This highlights tACS as a novel approach for targeted modulation of cortico-cortical networks, distinguishing it from traditional NIBS techniques.
Collapse
Affiliation(s)
- Ryoki Sasaki
- Graduate Course of Health and Social Work, Kanagawa University of Human Services, Japan
| |
Collapse
|
5
|
Mao L, Zheng G, Cai Y, Luo W, Zhang Y, Wu K, Ding J, Wang X. Machine learning-based algorithm of drug-resistant prediction in newly diagnosed patients with temporal lobe epilepsy. Clin Neurophysiol 2025; 171:154-163. [PMID: 39914157 DOI: 10.1016/j.clinph.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/09/2025] [Accepted: 01/18/2025] [Indexed: 03/11/2025]
Abstract
OBJECTIVES To develop a predicted algorithm for drug-resistant epilepsy (DRE) in newly diagnosed temporal lobe epilepsy (TLE) patients. METHODS A total of 139 newly diagnosed TLE patients were prospectively enrolled, and long-term video EEG monitoring was recorded. Clinical evaluations, including seizure frequency and antiseizure medications (ASMs) usage, were collected and prospectively followed up for 24 months. Interictal EEG data were used for feature extraction, identifying 216 EEG network features. Traditional machine learning and ensemble learning techniques were employed to predict DRE outcomes. RESULTS Over two years, TLE patients with DRE exhibited significant EEG differences, particularly in frontotemporal θ-band networks, characterized by increased connectivity metrics such as phase lag index (P = 0.000), etc. The predictive algorithm based on EEG features achieved accuracies between 59.2 %-84.6 % (AUC: 0.60-0.87). When compared to the whole brain, EEG features of the frontotemporal network showed improved classification performance in Naïve Bayes (P = 0.032), Tree Bagger (P = 0.021), and Subspace Discriminant (P = 0.022) models. The ensemble learning technique (Tree Bagger) delivered the best prediction results, achieving 91.5 % accuracy, 97 % sensitivity, 81 % specificity, and AUC of 0.92. CONCLUSIONS Increased frontotemporal EEG connectivity was observed in TLE patients with 2-year DRE. A predictive model based on routine EEG provides an accessible method for forecasting ASMs efficacy. SIGNIFICANCE This study highlights the clinical utility of EEG-based algorithms in identifying DRE early, aiding personalized treatment strategies and improving patient outcomes.
Collapse
Affiliation(s)
- Lingyan Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaoxing Zheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yijun Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Kuidong Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China; Department of The State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Sun S, Yan C, Qu S, Luo G, Liu X, Tian F, Dong Q, Li X, Hu B. Resting-state dynamic functional connectivity in major depressive disorder: A systematic review. Prog Neuropsychopharmacol Biol Psychiatry 2024; 135:111076. [PMID: 38972502 DOI: 10.1016/j.pnpbp.2024.111076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
As a novel measure, dynamic functional connectivity (dFC) provides insight into the dynamic nature of brain networks and their interactions in resting-state, surpassing traditional static functional connectivity in pathological conditions such as depression. Since a comprehensive review is still lacking, we then reviewed forty-five eligible papers to explore pathological mechanisms of major depressive disorder (MDD) from perspectives including abnormal brain regions and functional networks, brain state, topological properties, relevant recognition, along with longitudinal studies. Though inconsistencies could be found, common findings are: (1) From different perspectives based on dFC, default-mode network (DMN) with its subregions exhibited a close relation to the pathological mechanism of MDD. (2) With a corrupted integrity within large-scale functional networks and imbalance between them, longer fraction time in a relatively weakly-connected state may be a possible property of MDD concerning its relation with DMN. Abnormal transition frequencies between states were correlated to the severity of MDD. (3) Including dynamic properties in topological network metrics enhanced recognition effect. In all, this review summarized its use for clinical diagnosis and treatment, elucidating the non-stationary of MDD patients' aberrant brain activity in the absence of stimuli and bringing new views into its underlying neuro mechanism.
Collapse
Affiliation(s)
- Shuting Sun
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Chang Yan
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Shanshan Qu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Gang Luo
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xuesong Liu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Fuze Tian
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Qunxi Dong
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China
| | - Xiaowei Li
- Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China
| | - Bin Hu
- Key Laboratory of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Ministry of Education, China; Gansu Provincial Key Laboratory of Wearable Computing, School of Information Science and Engineering, Lanzhou University, China.
| |
Collapse
|
7
|
Liao C, Zhao S, Zhang J. Motor Imagery Recognition Based on GMM-JCSFE Model. IEEE Trans Neural Syst Rehabil Eng 2024; 32:3348-3357. [PMID: 39208037 DOI: 10.1109/tnsre.2024.3451716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Features from EEG microstate models, such as time-domain statistical features and state transition probabilities, are typically manually selected based on experience. However, traditional microstate models assume abrupt transitions between states, and the classification features can vary among individuals due to personal differences. To date, both empirical and theoretical classification results of EEG microstate features have not been entirely satisfactory. Here, we introduce an enhanced feature extraction method that combines Joint label-Common and label-Specific Feature Exploration (JCSFE) with Gaussian Mixture Models (GMM) to explore microstate features. First, GMMs are employed to represent the smooth transitions of EEG spatiotemporal features within microstate models. Second, category-common and category-specific features are identified by applying regularization constraints to linear classifiers. Third, a graph regularizer is used to extract subject-invariant microstate features. Experimental results on publicly available datasets demonstrate that the proposed model effectively encodes microstate features and improves the accuracy of motor imagery recognition across subjects. The primary code is accessible for download from the website: https://github.com/liaoliao3450/GMM-JCSFE.
Collapse
|
8
|
Cerna J, Gupta P, He M, Ziegelman L, Hu Y, Hernandez ME. Tai Chi Practice Buffers Aging Effects in Functional Brain Connectivity. Brain Sci 2024; 14:901. [PMID: 39335397 PMCID: PMC11430092 DOI: 10.3390/brainsci14090901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Tai Chi (TC) practice has been shown to improve both cognitive and physical function in older adults. However, the neural mechanisms underlying the benefits of TC remain unclear. Our primary aims are to explore whether distinct age-related and TC-practice-related relationships can be identified with respect to either temporal or spatial (within/between-network connectivity) differences. This cross-sectional study examined recurrent neural network dynamics, employing an adaptive, data-driven thresholding approach to source-localized resting-state EEG data in order to identify meaningful connections across time-varying graphs, using both temporal and spatial features derived from a hidden Markov model (HMM). Mann-Whitney U tests assessed between-group differences in temporal and spatial features by age and TC practice using either healthy younger adult controls (YACs, n = 15), healthy older adult controls (OACs, n = 15), or Tai Chi older adult practitioners (TCOAs, n = 15). Our results showed that aging is associated with decreased within-network and between-network functional connectivity (FC) across most brain networks. Conversely, TC practice appears to mitigate these age-related declines, showing increased FC within and between networks in older adults who practice TC compared to non-practicing older adults. These findings suggest that TC practice may abate age-related declines in neural network efficiency and stability, highlighting its potential as a non-pharmacological intervention for promoting healthy brain aging. This study furthers the triple-network model, showing that a balancing and reorientation of attention might be engaged not only through higher-order and top-down mechanisms (i.e., FPN/DAN) but also via the coupling of bottom-up, sensory-motor (i.e., SMN/VIN) networks.
Collapse
Affiliation(s)
- Jonathan Cerna
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Prakhar Gupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA;
| | - Maxine He
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Liran Ziegelman
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
| | - Yang Hu
- Department of Kinesiology, San Jose State University, San Jose, CA 95192, USA;
| | - Manuel E. Hernandez
- Neuroscience Program, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA; (J.C.); (M.H.); (L.Z.)
- Department of Biomedical and Translational Sciences, Carle Illinois College of Medicine, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Kinesiology and Community Health, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
9
|
Marino M, Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications. J Physiol 2024. [PMID: 39173191 DOI: 10.1113/jp286639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Electroencephalography (EEG) is a technique for non-invasively measuring neuronal activity in the human brain using electrodes placed on the participant's scalp. With the advancement of digital technologies, EEG analysis has evolved over time from the qualitative analysis of amplitude and frequency modulations to a comprehensive analysis of the complex spatiotemporal characteristics of the recorded signals. EEG is now considered a powerful tool for measuring neural processes in the same time frame in which they happen (i.e. the subsecond range). However, it is commonly argued that EEG suffers from low spatial resolution, which makes it difficult to localize the generators of EEG activity accurately and reliably. Today, the availability of high-density EEG (hdEEG) systems, combined with methods for incorporating information on head anatomy and sophisticated source-localization algorithms, has transformed EEG into an important neuroimaging tool. hdEEG offers researchers and clinicians a rich and varied range of applications. It can be used not only for investigating neural correlates in motor and cognitive neuroscience experiments, but also for clinical diagnosis, particularly in the detection of epilepsy and the characterization of neural impairments in a wide range of neurological disorders. Notably, the integration of hdEEG systems with other physiological recordings, such as kinematic and/or electromyography data, might be especially beneficial to better understand the neuromuscular mechanisms associated with deconditioning in ageing and neuromotor disorders, by mapping the neurokinematic and neuromuscular connectivity patterns directly in the brain.
Collapse
Affiliation(s)
- Marco Marino
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Department of General Psychology, University of Padua, Padua, Italy
| | - Dante Mantini
- Movement Control and Neuroplasticity Research Group, KU Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Belgium
| |
Collapse
|
10
|
Raghavan M, Pilet J, Carlson C, Anderson CT, Mueller W, Lew S, Ustine C, Shah-Basak P, Youssofzadeh V, Beardsley SA. Gamma amplitude-envelope correlations are strongly elevated within hyperexcitable networks in focal epilepsy. Sci Rep 2024; 14:17736. [PMID: 39085280 PMCID: PMC11291981 DOI: 10.1038/s41598-024-67120-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/08/2024] [Indexed: 08/02/2024] Open
Abstract
Methods to quantify cortical hyperexcitability are of enormous interest for mapping epileptic networks in patients with focal epilepsy. We hypothesize that, in the resting state, cortical hyperexcitability increases firing-rate correlations between neuronal populations within seizure onset zones (SOZs). This hypothesis predicts that in the gamma frequency band (40-200 Hz), amplitude envelope correlations (AECs), a relatively straightforward measure of functional connectivity, should be elevated within SOZs compared to other areas. To test this prediction, we analyzed archived samples of interictal electrocorticographic (ECoG) signals recorded from patients who became seizure-free after surgery targeting SOZs identified by multiday intracranial recordings. We show that in the gamma band, AECs between nodes within SOZs are markedly elevated relative to those elsewhere. AEC-based node strength, eigencentrality, and clustering coefficient are also robustly increased within the SOZ with maxima in the low-gamma band (permutation test Z-scores > 8) and yield moderate discriminability of the SOZ using ROC analysis (maximal mean AUC ~ 0.73). By contrast to AECs, phase locking values (PLVs), a measure of narrow-band phase coupling across sites, and PLV-based graph metrics discriminate the seizure onset nodes weakly. Our results suggest that gamma band AECs may provide a clinically useful marker of cortical hyperexcitability in focal epilepsy.
Collapse
Affiliation(s)
- Manoj Raghavan
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA.
| | - Jared Pilet
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| | - Chad Carlson
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | | | - Wade Mueller
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Sean Lew
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Candida Ustine
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Priyanka Shah-Basak
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Vahab Youssofzadeh
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Scott A Beardsley
- Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
11
|
Sun F, Liu Z, Yang J, Fan Z, Wang F, Yang J. Aberrant brain dynamics in major depressive disorder during working memory task. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01854-4. [PMID: 38976050 DOI: 10.1007/s00406-024-01854-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 06/17/2024] [Indexed: 07/09/2024]
Abstract
Working memory (WM) is a distributed and dynamic process, and WM deficits are recognized as one of the top-ranked endophenotype candidates for major depressive disorders (MDD). However, there is a lack of knowledge of brain temporal-spatial profile of WM deficits in MDD. We used the dynamical degree centrality (dDC) to investigate the whole-brain temporal-spatial profile in 40 MDD and 40 controls during an n-back task with 2 conditions (i.e., '0back' and '2back'). We explored the dDC temporal variability and clustered meta-stable states in 2 groups during different WM conditions. Pearson's correlation analysis was used to evaluate the relationship between the altered dynamics with clinical symptoms and WM performance. Compared with controls, under '2back vs. 0back' contrast, patients showed an elevated dDC variability in wide range of brain regions, including the middle frontal gyrus, orbital part of inferior frontal gyrus (IFGorb), hippocampus, and middle temporal gyrus. Furthermore, the increased dDC variability in the hippocampus and IFGorb correlated with worse WM performance. However, there were no significant group-related differences in the meta-stable states were observed. This study demonstrated the increased WM-related instability (i.e., the elevated dDC variability) was represented in MDD, and enhancing stability may help patients achieve better WM performance.
Collapse
Affiliation(s)
- Fuping Sun
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zhening Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jun Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Zebin Fan
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Feiwen Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jie Yang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
12
|
Liang J, Wang Z, Han J, Zhang L. EEG-based driving intuition and collision anticipation using joint temporal-frequency multi-layer dynamic brain network. Front Neurosci 2024; 18:1421010. [PMID: 38988769 PMCID: PMC11233801 DOI: 10.3389/fnins.2024.1421010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/12/2024] [Indexed: 07/12/2024] Open
Abstract
Intuition plays a crucial role in human driving decision-making, and this rapid and unconscious cognitive process is essential for improving traffic safety. We used the first proposed multi-layer network analysis method, "Joint Temporal-Frequency Multi-layer Dynamic Brain Network" (JTF-MDBN), to study the EEG data from the initial and advanced phases of driving intuition training in the theta, alpha, and beta bands. Additionally, we conducted a comparative study between these two phases using multi-layer metrics as well as local and global metrics of single layers. The results show that brain region activity is more stable in the advanced phase of intuition training compared to the initial phase. Particularly in the alart state task, the JTF-MDBN demonstrated stronger connection strength. Multi-layer network analysis indicates that modularity is significantly higher for the non-alert state task than the alert state task in the alpha and beta bands. In the W4 time window (1 second before a collision), we identified significant features that can differentiate situations where a car collision is imminent from those where no collision occurs. Single-layer network analysis also revealed statistical differences in node strength and local efficiency for some EEG channels in the alpha and beta bands during the W4 and W5 time windows. Using these biomarkers to predict vehicle collision risk, the classification accuracy of a linear kernel SVM reached up to 87.5%, demonstrating the feasibility of predicting driving collisions through brain network biomarkers. These findings are important for the study of human intuition and the development of brain-computer interface-based intelligent driving hazard perception assistance systems.
Collapse
Affiliation(s)
- Jialong Liang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
| | - Zhe Wang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Engineering Research Center of AI and Robotics, Fudan University, Shanghai, China
| | - Jinghang Han
- School of Data Science, Fudan University, Shanghai, China
| | - Lihua Zhang
- Academy for Engineering and Technology, Fudan University, Shanghai, China
- Engineering Research Center of AI and Robotics, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Müller V, Lindenberger U. Hyper-brain hyper-frequency network topology dynamics when playing guitar in quartet. Front Hum Neurosci 2024; 18:1416667. [PMID: 38919882 PMCID: PMC11196789 DOI: 10.3389/fnhum.2024.1416667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Ensemble music performance is a highly coordinated form of social behavior requiring not only precise motor actions but also synchronization of different neural processes both within and between the brains of ensemble players. In previous analyses, which were restricted to within-frequency coupling (WFC), we showed that different frequencies participate in intra- and inter-brain coordination, exhibiting distinct network topology dynamics that underlie coordinated actions and interactions. However, many of the couplings both within and between brains are likely to operate across frequencies. Hence, to obtain a more complete picture of hyper-brain interaction when musicians play the guitar in a quartet, cross-frequency coupling (CFC) has to be considered as well. Furthermore, WFC and CFC can be used to construct hyper-brain hyper-frequency networks (HB-HFNs) integrating all the information flows between different oscillation frequencies, providing important details about ensemble interaction in terms of network topology dynamics (NTD). Here, we reanalyzed EEG (electroencephalogram) data obtained from four guitarists playing together in quartet to explore changes in HB-HFN topology dynamics and their relation to acoustic signals of the music. Our findings demonstrate that low-frequency oscillations (e.g., delta, theta, and alpha) play an integrative or pacemaker role in such complex networks and that HFN topology dynamics are specifically related to the guitar quartet playing dynamics assessed by sound properties. Simulations by link removal showed that the HB-HFN is relatively robust against loss of connections, especially when the strongest connections are preserved and when the loss of connections only affects the brain of one guitarist. We conclude that HB-HFNs capture neural mechanisms that support interpersonally coordinated action and behavioral synchrony.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, London, United Kingdom
| |
Collapse
|
14
|
Gutiérrez-de Pablo V, Poza J, Maturana-Candelas A, Rodríguez-González V, Tola-Arribas MÁ, Cano M, Hoshi H, Shigihara Y, Hornero R, Gómez C. Exploring the disruptions of the neurophysiological organization in Alzheimer's disease: An integrative approach. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 250:108197. [PMID: 38688139 DOI: 10.1016/j.cmpb.2024.108197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 12/20/2023] [Accepted: 04/21/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Alzheimer's disease (AD) is a neurological disorder that impairs brain functions associated with cognition, memory, and behavior. Noninvasive neurophysiological techniques like magnetoencephalography (MEG) and electroencephalography (EEG) have shown promise in reflecting brain changes related to AD. These techniques are usually assessed at two levels: local activation (spectral, nonlinear, and dynamic properties) and global synchronization (functional connectivity, frequency-dependent network, and multiplex network organization characteristics). Nonetheless, the understanding of the organization formed by the existing relationships between these levels, henceforth named neurophysiological organization, remains unexplored. This work aims to assess the alterations AD causes in the resting-state neurophysiological organization. METHODS To that end, three datasets from healthy controls (HC) and patients with dementia due to AD were considered: MEG database (55 HC and 87 patients with AD), EEG1 database (51 HC and 100 patients with AD), and EEG2 database (45 HC and 82 patients with AD). To explore the alterations induced by AD in the relationships between several features extracted from M/EEG data, association networks (ANs) were computed. ANs are graphs, useful to quantify and visualize the intricate relationships between multiple features. RESULTS Our results suggested a disruption in the neurophysiological organization of patients with AD, exhibiting a greater inclination towards the local activation level; and a significant decrease in the complexity and diversity of the ANs (p-value ¡ 0.05, Mann-Whitney U-test, Bonferroni correction). This effect might be due to a shift of the neurophysiological organization towards more regular configurations, which may increase its vulnerability. Moreover, our findings support the crucial role played by the local activation level in maintaining the stability of the neurophysiological organization. Classification performance exhibited accuracy values of 83.91%, 73.68%, and 72.65% for MEG, EEG1, and EEG2 databases, respectively. CONCLUSION This study introduces a novel, valuable methodology able to integrate parameters characterize different properties of the brain activity and to explore the intricate organization of the neurophysiological organization at different levels. It was noted that AD increases susceptibility to changes in functional neural organization, suggesting a greater ease in the development of severe impairments. Therefore, ANs could facilitate a deeper comprehension of the complex interactions in brain function from a global standpoint.
Collapse
Affiliation(s)
- Víctor Gutiérrez-de Pablo
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain.
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Aarón Maturana-Candelas
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| | - Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| | - Miguel Ángel Tola-Arribas
- CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; Department of Neurology, Río Hortega University Hospital, Valladolid, Spain
| | - Mónica Cano
- Department of Clinical Neurophysiology, Río Hortega University Hospital, Valladolid, Spain
| | - Hideyuki Hoshi
- Precision Medicine Centre, Hokuto Hospital, Obihiro, Japan
| | | | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; CIBER-BBN, Centro de Investigación Biomédica en Red - Bioingeniería, Biomateriales y Nanomedicina, Spain
| |
Collapse
|
15
|
Nagy P, Tóth B, Winkler I, Boncz Á. The effects of spatial leakage correction on the reliability of EEG-based functional connectivity networks. Hum Brain Mapp 2024; 45:e26747. [PMID: 38825981 PMCID: PMC11144954 DOI: 10.1002/hbm.26747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 03/28/2024] [Accepted: 05/16/2024] [Indexed: 06/04/2024] Open
Abstract
Electroencephalography (EEG) functional connectivity (FC) estimates are confounded by the volume conduction problem. This effect can be greatly reduced by applying FC measures insensitive to instantaneous, zero-lag dependencies (corrected measures). However, numerous studies showed that FC measures sensitive to volume conduction (uncorrected measures) exhibit higher reliability and higher subject-level identifiability. We tested how source reconstruction contributed to the reliability difference of EEG FC measures on a large (n = 201) resting-state data set testing eight FC measures (including corrected and uncorrected measures). We showed that the high reliability of uncorrected FC measures in resting state partly stems from source reconstruction: idiosyncratic noise patterns define a baseline resting-state functional network that explains a significant portion of the reliability of uncorrected FC measures. This effect remained valid for template head model-based, as well as individual head model-based source reconstruction. Based on our findings we made suggestions how to best use spatial leakage corrected and uncorrected FC measures depending on the main goals of the study.
Collapse
Affiliation(s)
- Péter Nagy
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
- Faculty of Electrical Engineering and Informatics, Department of Measurement and Information SystemsBudapest University of Technology and EconomicsBudapestHungary
| | - Brigitta Tóth
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - István Winkler
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| | - Ádám Boncz
- HUN‐REN Research Centre for Natural SciencesBudapestHungary
| |
Collapse
|
16
|
Huang Y, Cao C, Dai S, Deng H, Su L, Zheng JS. Magnetoencephalography-derived oscillatory microstate patterns across lifespan: the Cambridge centre for ageing and neuroscience cohort. Brain Commun 2024; 6:fcae150. [PMID: 38745970 PMCID: PMC11091929 DOI: 10.1093/braincomms/fcae150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 03/01/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
The aging brain represents the primary risk factor for many neurodegenerative disorders. Whole-brain oscillations may contribute novel early biomarkers of aging. Here, we investigated the dynamic oscillatory neural activities across lifespan (from 18 to 88 years) using resting Magnetoencephalography (MEG) in a large cohort of 624 individuals. Our aim was to examine the patterns of oscillation microstates during the aging process. By using a machine-learning algorithm, we identify four typical clusters of microstate patterns across different age groups and different frequency bands: left-to-right topographic MS1, right-to-left topographic MS2, anterior-posterior MS3 and fronto-central MS4. We observed a decreased alpha duration and an increased alpha occurrence for sensory-related microstate patterns (MS1 & MS2). Accordingly, theta and beta changes from MS1 & MS2 may be related to motor decline that increased with age. Furthermore, voluntary 'top-down' saliency/attention networks may be reflected by the increased MS3 & MS4 alpha occurrence and complementary beta activities. The findings of this study advance our knowledge of how the aging brain shows dysfunctions in neural state transitions. By leveraging the identified microstate patterns, this study provides new insights into predicting healthy aging and the potential neuropsychiatric cognitive decline.
Collapse
Affiliation(s)
- Yujing Huang
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| | - Chenglong Cao
- Department of Neurosurgery, The First Affiliated Hospital of University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Shenyi Dai
- Department of Economics and Management, China Jiliang University, Hangzhou 310024, Zhejiang Province, China
- Hangzhou iNeuro Technology Co., LTD, Hangzhou 310024, Zhejiang Province, China
| | - Hu Deng
- Peking University Huilongguan Clinical Medical School, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Li Su
- Department of Psychiatry, University of Cambridge, Cambridge CB20SZ, United Kingdom
- Neuroscience Institute, University of Sheffield, Sheffield, South Yorkshire S102HQ, United Kingdom
| | - Ju-Sheng Zheng
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Research Center for Industries of the Future, School of Life Sciences, Westlake University, Hangzhou 310024, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, Zhejiang Province, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
17
|
Medrano J, Friston K, Zeidman P. Linking fast and slow: The case for generative models. Netw Neurosci 2024; 8:24-43. [PMID: 38562283 PMCID: PMC10861163 DOI: 10.1162/netn_a_00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/11/2023] [Indexed: 04/04/2024] Open
Abstract
A pervasive challenge in neuroscience is testing whether neuronal connectivity changes over time due to specific causes, such as stimuli, events, or clinical interventions. Recent hardware innovations and falling data storage costs enable longer, more naturalistic neuronal recordings. The implicit opportunity for understanding the self-organised brain calls for new analysis methods that link temporal scales: from the order of milliseconds over which neuronal dynamics evolve, to the order of minutes, days, or even years over which experimental observations unfold. This review article demonstrates how hierarchical generative models and Bayesian inference help to characterise neuronal activity across different time scales. Crucially, these methods go beyond describing statistical associations among observations and enable inference about underlying mechanisms. We offer an overview of fundamental concepts in state-space modeling and suggest a taxonomy for these methods. Additionally, we introduce key mathematical principles that underscore a separation of temporal scales, such as the slaving principle, and review Bayesian methods that are being used to test hypotheses about the brain with multiscale data. We hope that this review will serve as a useful primer for experimental and computational neuroscientists on the state of the art and current directions of travel in the complex systems modelling literature.
Collapse
Affiliation(s)
- Johan Medrano
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Karl Friston
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| | - Peter Zeidman
- The Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
18
|
Schwock F, Bloch J, Khateeb K, Zhou J, Atlas L, Yazdan-Shahmorad A. Inferring Neural Communication Dynamics from Field Potentials Using Graph Diffusion Autoregression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.26.582177. [PMID: 38464147 PMCID: PMC10925120 DOI: 10.1101/2024.02.26.582177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Estimating dynamic network communication is attracting increased attention, spurred by rapid advancements in multi-site neural recording technologies and efforts to better understand cognitive processes. Yet, traditional methods, which infer communication from statistical dependencies among distributed neural recordings, face core limitations: they do not model neural interactions in a biologically plausible way, neglect spatial information from the recording setup, and yield predominantly static estimates that cannot capture rapid changes in the brain. To address these issues, we introduce a graph diffusion autoregressive model. Designed for distributed field potential recordings, our model combines vector autoregression with a network communication process to produce a high-resolution communication signal. We successfully validated the model on simulated neural activity and recordings from subdural and intracortical micro-electrode arrays placed in macaque sensorimotor cortex demonstrating its ability to describe rapid communication dynamics induced by optogenetic stimulation, changes in resting state communication, and the trial-by-trial variability during a reach task.
Collapse
Affiliation(s)
- Felix Schwock
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Primate Research Center, Seattle, WA, USA
| | - Julien Bloch
- Department of Bioengineering, University of Washington, Seattle, WA, USA. Washington National
- Primate Research Center, Seattle, WA, USA
| | - Karam Khateeb
- Department of Bioengineering, University of Washington, Seattle, WA, USA. Washington National
- Primate Research Center, Seattle, WA, USA
| | - Jasmine Zhou
- Department of Bioengineering, University of Washington, Seattle, WA, USA. Washington National
- Primate Research Center, Seattle, WA, USA
| | - Les Atlas
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
| | - Azadeh Yazdan-Shahmorad
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, USA
- Department of Bioengineering, University of Washington, Seattle, WA, USA. Washington National
- Primate Research Center, Seattle, WA, USA
| |
Collapse
|
19
|
Gosti G, Milanetti E, Folli V, de Pasquale F, Leonetti M, Corbetta M, Ruocco G, Della Penna S. A recurrent Hopfield network for estimating meso-scale effective connectivity in MEG. Neural Netw 2024; 170:72-93. [PMID: 37977091 DOI: 10.1016/j.neunet.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/07/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
The architecture of communication within the brain, represented by the human connectome, has gained a paramount role in the neuroscience community. Several features of this communication, e.g., the frequency content, spatial topology, and temporal dynamics are currently well established. However, identifying generative models providing the underlying patterns of inhibition/excitation is very challenging. To address this issue, we present a novel generative model to estimate large-scale effective connectivity from MEG. The dynamic evolution of this model is determined by a recurrent Hopfield neural network with asymmetric connections, and thus denoted Recurrent Hopfield Mass Model (RHoMM). Since RHoMM must be applied to binary neurons, it is suitable for analyzing Band Limited Power (BLP) dynamics following a binarization process. We trained RHoMM to predict the MEG dynamics through a gradient descent minimization and we validated it in two steps. First, we showed a significant agreement between the similarity of the effective connectivity patterns and that of the interregional BLP correlation, demonstrating RHoMM's ability to capture individual variability of BLP dynamics. Second, we showed that the simulated BLP correlation connectomes, obtained from RHoMM evolutions of BLP, preserved some important topological features, e.g, the centrality of the real data, assuring the reliability of RHoMM. Compared to other biophysical models, RHoMM is based on recurrent Hopfield neural networks, thus, it has the advantage of being data-driven, less demanding in terms of hyperparameters and scalable to encompass large-scale system interactions. These features are promising for investigating the dynamics of inhibition/excitation at different spatial scales.
Collapse
Affiliation(s)
- Giorgio Gosti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 5, 00185, Rome, Italy; Istituto di Scienze del Patrimonio Culturale, Sede di Roma, Consiglio Nazionale delle Ricerche, CNR-ISPC, Via Salaria km, 34900 Rome, Italy.
| | - Edoardo Milanetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | - Viola Folli
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; D-TAILS srl, Via di Torre Rossa, 66, 00165, Rome, Italy.
| | - Francesco de Pasquale
- Faculty of Veterinary Medicine, University of Teramo, 64100 Piano D'Accio, Teramo, Italy.
| | - Marco Leonetti
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Soft and Living Matter Laboratory, Institute of Nanotechnology, Consiglio Nazionale delle Ricerche, Piazzale Aldo Moro, 5, 00185, Rome, Italy; D-TAILS srl, Via di Torre Rossa, 66, 00165, Rome, Italy.
| | - Maurizio Corbetta
- Department of Neuroscience, University of Padova, Via Belzoni, 160, 35121, Padova, Italy; Padova Neuroscience Center (PNC), University of Padova, Via Orus, 2/B, 35129, Padova, Italy; Veneto Institute of Molecular Medicine (VIMM), Via Orus, 2, 35129, Padova, Italy.
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Viale Regina Elena, 291, 00161, Rome, Italy; Department of Physics, Sapienza University of Rome, Piazzale Aldo Moro, 5, 00185, Rome, Italy.
| | - Stefania Della Penna
- Department of Neuroscience, Imaging and Clinical Sciences, and Institute for Advanced Biomedical Technologies, "G. d'Annunzio" University of Chieti-Pescara, Via Luigi Polacchi, 11, 66100 Chieti, Italy.
| |
Collapse
|
20
|
Li Y, Gao J, Yang Y, Zhuang Y, Kang Q, Li X, Tian M, Lv H, He J. Temporal and spatial variability of dynamic microstate brain network in disorders of consciousness. CNS Neurosci Ther 2024; 30:e14641. [PMID: 38385681 PMCID: PMC10883110 DOI: 10.1111/cns.14641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/17/2024] [Accepted: 02/01/2024] [Indexed: 02/23/2024] Open
Abstract
BACKGROUND Accurately diagnosing patients with the vegetative state (VS) and the minimally conscious state (MCS) reached a misdiagnosis of approximately 40%. METHODS A method combined microstate and dynamic functional connectivity (dFC) to study the spatiotemporal variability of the brain in disorders of consciousness (DOC) patients was proposed. Resting-state EEG data were obtained from 16 patients with MCS and 16 patients with VS. Mutual information (MI) was used to assess the EEG connectivity in each microstate. MI-based features with statistical differences were selected as the total feature subset (TFS), then the TFS was utilized to feature selection and fed into the classifier, obtaining the optimal feature subsets (OFS) in each microstate. Subsequently, an OFS-based MI functional connectivity network (MIFCN) was constructed in the cortex. RESULTS The group-average MI connectivity matrix focused on all channels revealed that all five microstates exhibited stronger information interaction in the MCS when comparing with the VS. While OFS-based MIFCN, which only focused on a few channels, revealed greater MI flow in VS patients than in MCS patients under microstates A, B, C, and E, except for microstate D. Additionally, the average classification accuracy of OFS in the five microstates was 96.2%. CONCLUSION Constructing features based on microstates to distinguish between two categories of DOC patients had effectiveness.
Collapse
Affiliation(s)
- Yaqian Li
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Junfeng Gao
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Ying Yang
- College of Foreign LanguagesWuhan University of TechnologyWuhanChina
| | - Yvtong Zhuang
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qianruo Kang
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Xiang Li
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Min Tian
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Haoan Lv
- Key Laboratory of Cognitive Science of State Ethnic Affairs Commission, College of Biomedical EngineeringSouth‐Central Minzu UniversityWuhanChina
| | - Jianghong He
- Department of Neurosurgery, Beijing Tiantan HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
21
|
Qi X, Zhang X, Shen H, Su J, Gao X, Li Y, Yang H, Gao C, Ni W, Lei Y, Gu Y, Mao Y, Yu Y. Switching of brain networks across different cerebral perfusion states: insights from EEG dynamic microstate analyses. Cereb Cortex 2024; 34:bhae035. [PMID: 38342687 DOI: 10.1093/cercor/bhae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/13/2024] Open
Abstract
The alteration of neural interactions across different cerebral perfusion states remains unclear. This study aimed to fulfill this gap by examining the longitudinal brain dynamic information interactions before and after cerebral reperfusion. Electroencephalogram in eyes-closed state at baseline and postoperative 7-d and 3-month follow-ups (moyamoya disease: 20, health controls: 23) were recorded. Dynamic network analyses were focused on the features and networks of electroencephalogram microstates across different microstates and perfusion states. Considering the microstate features, the parameters were disturbed of microstate B, C, and D but preserved of microstate A. The transition probabilities of microstates A-B and B-D were increased to play a complementary role across different perfusion states. Moreover, the microstate variability was decreased, but was significantly improved after cerebral reperfusion. Regarding microstate networks, the functional connectivity strengths were declined, mainly within frontal, parietal, and occipital lobes and between parietal and occipital lobes in different perfusion states, but were ameliorated after cerebral reperfusion. This study elucidates how dynamic interaction patterns of brain neurons change after cerebral reperfusion, which allows for the observation of brain network transitions across various perfusion states in a live clinical setting through direct intervention.
Collapse
Affiliation(s)
- Xiaoying Qi
- Department of Physiology, School of Medicine, Yan'an University, Yan'an 716000, China
- School of Life Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems and Institute of Science and Technology for Brain-Inspired Intelligence Fudan University, Shanghai 200433, China
| | - Xin Zhang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Hao Shen
- School of Life Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems and Institute of Science and Technology for Brain-Inspired Intelligence Fudan University, Shanghai 200433, China
| | - Jiabin Su
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Xinjie Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Yanjiang Li
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Heng Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Chao Gao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Wei Ni
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Yu Lei
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Yuxiang Gu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200040, China
- National Center for Neurological Disorders, Fudan University, Shanghai 200433, China
| | - Yuguo Yu
- School of Life Science and Human Phenome Institute, Research Institute of Intelligent Complex Systems and Institute of Science and Technology for Brain-Inspired Intelligence Fudan University, Shanghai 200433, China
| |
Collapse
|
22
|
Huang CY, Chen YA, Wu RM, Hwang IS. Neural Oscillations and Functional Significances for Prioritizing Dual-Task Walking in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:283-296. [PMID: 38457151 PMCID: PMC10977445 DOI: 10.3233/jpd-230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Abstract
Background Task prioritization involves allocating brain resources in a dual-task scenario, but the mechanistic details of how prioritization strategies affect dual-task walking performance for Parkinson's disease (PD) are little understood. Objective We investigated the performance benefits and corresponding neural signatures for people with PD during dual-task walking, using gait-prioritization (GP) and manual-prioritization (MP) strategies. Methods Participants (N = 34) were asked to hold two inter-locking rings while walking and to prioritize either taking big steps (GP strategy) or separating the two rings (MP strategy). Gait parameters and ring-touch time were measured, and scalp electroencephalograph was performed. Results Compared with the MP strategy, the GP strategy yielded faster walking speed and longer step length, whereas ring-touch time did not significantly differ between the two strategies. The MP strategy led to higher alpha (8-12 Hz) power in the posterior cortex and beta (13-35 Hz) power in the left frontal-temporal area, but the GP strategy was associated with stronger network connectivity in the beta band. Changes in walking speed and step length because of prioritization negatively correlated with changes in alpha power. Prioritization-related changes in ring-touch time correlated negatively with changes in beta power but positively with changes in beta network connectivity. Conclusions A GP strategy in dual-task walking for PD can enhance walking speed and step length without compromising performance in a secondary manual task. This strategy augments attentional focus and facilitates compensatory reinforcement of inter-regional information exchange.
Collapse
Affiliation(s)
- Cheng-Ya Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-An Chen
- Department of Rehabilitation, Division of Physical Therapy, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
23
|
Idesis S, Geli S, Faskowitz J, Vohryzek J, Sanz Perl Y, Pieper F, Galindo-Leon E, Engel AK, Deco G. Functional hierarchies in brain dynamics characterized by signal reversibility in ferret cortex. PLoS Comput Biol 2024; 20:e1011818. [PMID: 38241383 PMCID: PMC10836715 DOI: 10.1371/journal.pcbi.1011818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 02/02/2024] [Accepted: 01/09/2024] [Indexed: 01/21/2024] Open
Abstract
Brain signal irreversibility has been shown to be a promising approach to study neural dynamics. Nevertheless, the relation with cortical hierarchy and the influence of different electrophysiological features is not completely understood. In this study, we recorded local field potentials (LFPs) during spontaneous behavior, including awake and sleep periods, using custom micro-electrocorticographic (μECoG) arrays implanted in ferrets. In contrast to humans, ferrets remain less time in each state across the sleep-wake cycle. We deployed a diverse set of metrics in order to measure the levels of complexity of the different behavioral states. In particular, brain irreversibility, which is a signature of non-equilibrium dynamics, captured by the arrow of time of the signal, revealed the hierarchical organization of the ferret's cortex. We found different signatures of irreversibility and functional hierarchy of large-scale dynamics in three different brain states (active awake, quiet awake, and deep sleep), showing a lower level of irreversibility in the deep sleep stage, compared to the other. Irreversibility also allowed us to disentangle the influence of different cortical areas and frequency bands in this process, showing a predominance of the parietal cortex and the theta band. Furthermore, when inspecting the embedded dynamic through a Hidden Markov Model, the deep sleep stage was revealed to have a lower switching rate and lower entropy production. These results suggest functional hierarchies in organization that can be revealed through thermodynamic features and information theory metrics.
Collapse
Affiliation(s)
- Sebastian Idesis
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Sebastián Geli
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
| | - Joshua Faskowitz
- Department of Psychological and Brain Sciences, Indiana University Bloomington, Bloomington, Indiana, United States of America
| | - Jakub Vohryzek
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, United Kingdom
| | - Yonatan Sanz Perl
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- National Scientific and Technical Research Council, Buenos Aires, Argentina
- Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Florian Pieper
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Edgar Galindo-Leon
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Andreas K. Engel
- Department of Neurophysiology and Pathophysiology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Gustavo Deco
- Center for Brain and Cognition (CBC), Department of Information Technologies and Communications (DTIC), Pompeu Fabra University, Edifici Mercè Rodoreda, Barcelona, Catalonia, Spain
- Institució Catalana de Recerca I Estudis Avançats (ICREA), Barcelona, Catalonia, Spain
| |
Collapse
|
24
|
Deng J, Sun B, Kavcic V, Liu M, Giordani B, Li T. Novel methodology for detection and prediction of mild cognitive impairment using resting-state EEG. Alzheimers Dement 2024; 20:145-158. [PMID: 37496373 PMCID: PMC10811294 DOI: 10.1002/alz.13411] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND Early discrimination and prediction of cognitive decline are crucial for the study of neurodegenerative mechanisms and interventions to promote cognitive resiliency. METHODS Our research is based on resting-state electroencephalography (EEG) and the current dataset includes 137 consensus-diagnosed, community-dwelling Black Americans (ages 60-90 years, 84 healthy controls [HC]; 53 mild cognitive impairment [MCI]) recruited through Wayne State University and Michigan Alzheimer's Disease Research Center. We conducted multiscale analysis on time-varying brain functional connectivity and developed an innovative soft discrimination model in which each decision on HC or MCI also comes with a connectivity-based score. RESULTS The leave-one-out cross-validation accuracy is 91.97% and 3-fold accuracy is 91.17%. The 9 to 18 months' progression trend prediction accuracy over an availability-limited subset sample is 84.61%. CONCLUSION The EEG-based soft discrimination model demonstrates high sensitivity and reliability for MCI detection and shows promising capability in proactive prediction of people at risk of MCI before clinical symptoms may occur.
Collapse
Affiliation(s)
- Jinxian Deng
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Boxin Sun
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
| | - Voyko Kavcic
- Institute of GerontologyWayne State UniversityDetroitMichiganUSA
- International Institute of Applied GerontologyLjubljanaSlovenia
| | - Mingyan Liu
- Department of Electrical Engineering and Computer ScienceUniversity of MichiganAnn ArborMichiganUSA
| | - Bruno Giordani
- Departments of PsychiatryNeurologyPsychology and School of NursingUniversity of MichiganAnn ArborMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| | - Tongtong Li
- Department of Electrical and Computer EngineeringMichigan State UniversityEast LansingMichiganUSA
- Michigan Alzheimer's Disease Research CenterAnn ArborMichiganUSA
| |
Collapse
|
25
|
Wang Z, Juhasz Z. GPU Implementation of the Improved CEEMDAN Algorithm for Fast and Efficient EEG Time-Frequency Analysis. SENSORS (BASEL, SWITZERLAND) 2023; 23:8654. [PMID: 37896747 PMCID: PMC10611056 DOI: 10.3390/s23208654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 10/09/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023]
Abstract
Time-frequency analysis of EEG data is a key step in exploring the internal activities of the human brain. Studying oscillations is an important part of the analysis, as they are thought to provide the underlying mechanism for communication between neural assemblies. Traditional methods of analysis, such as Short-Time FFT and Wavelet Transforms, are not ideal for this task due to the time-frequency uncertainty principle and their reliance on predefined basis functions. Empirical Mode Decomposition and its variants are more suited to this task as they are able to extract the instantaneous frequency and phase information but are too time consuming for practical use. Our aim was to design and develop a massively parallel and performance-optimized GPU implementation of the Improved Complete Ensemble EMD with the Adaptive Noise (CEEMDAN) algorithm that significantly reduces the computational time (from hours to seconds) of such analysis. The resulting GPU program, which is publicly available, was validated against a MATLAB reference implementation and reached over a 260× speedup for actual EEG measurement data, and provided predicted speedups in the range of 3000-8300× for longer measurements when sufficient memory was available. The significance of our research is that this implementation can enable researchers to perform EMD-based EEG analysis routinely, even for high-density EEG measurements. The program is suitable for execution on desktop, cloud, and supercomputer systems and can be the starting point for future large-scale multi-GPU implementations.
Collapse
Affiliation(s)
| | - Zoltan Juhasz
- Department of Electrical Engineering and Information Systems, University of Pannonia, 8200 Veszprem, Hungary;
| |
Collapse
|
26
|
Rodríguez-González V, Núñez P, Gómez C, Shigihara Y, Hoshi H, Tola-Arribas MÁ, Cano M, Guerrero Á, García-Azorín D, Hornero R, Poza J. Connectivity-based Meta-Bands: A new approach for automatic frequency band identification in connectivity analyses. Neuroimage 2023; 280:120332. [PMID: 37619796 DOI: 10.1016/j.neuroimage.2023.120332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 07/05/2023] [Accepted: 08/14/2023] [Indexed: 08/26/2023] Open
Abstract
The majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as "canonical" frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network. The resting-state neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1: 27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was used to identify communities in the frequency domain showing a similar network topology. We have called this approach the "Connectivity-based Meta-Bands" (CMB) algorithm. Additionally, two types of synthetic signals were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches to band segmentation are partially aligned with the underlying network topologies at group level for the MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that defined by the "canonical" frequency bands. To the best of our knowledge, this is the first study that proposes an unsupervised band segmentation method based on the topological similarity of functional neural network across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent structure of brain connectivity.
Collapse
Affiliation(s)
- Víctor Rodríguez-González
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain.
| | - Pablo Núñez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium
| | - Carlos Gómez
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain
| | | | | | - Miguel Ángel Tola-Arribas
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Mónica Cano
- Servicio de Neurología. Hospital Universitario Río Hortega, Valladolid, Spain
| | - Ángel Guerrero
- Hospital Clínico Universitario, Valladolid, Spain; Department of Medicine, University of Valladolid, Spain
| | | | - Roberto Hornero
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| | - Jesús Poza
- Biomedical Engineering Group, University of Valladolid, Valladolid, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III (CIBER-BBN), Spain; IMUVA, Instituto de Investigación en Matemáticas, University of Valladolid, Spain
| |
Collapse
|
27
|
Kember J, Stepien L, Panda E, Tekok-Kilic A. Resting-state EEG dynamics help explain differences in response control in ADHD: Insight into electrophysiological mechanisms and sex differences. PLoS One 2023; 18:e0277382. [PMID: 37796795 PMCID: PMC10553225 DOI: 10.1371/journal.pone.0277382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/12/2023] [Indexed: 10/07/2023] Open
Abstract
Reductions in response control (greater reaction time variability and commission error rate) are consistently observed in those diagnosed with attention-deficit/hyperactivity disorder (ADHD). Previous research suggests these reductions arise from a dysregulation of large-scale cortical networks. Here, we extended our understanding of this cortical-network/response-control pathway important to the neurobiology of ADHD. First, we assessed how dynamic changes in three resting-state EEG network properties thought to be relevant to ADHD (phase-synchronization, modularity, oscillatory power) related with response control during a simple perceptual decision-making task in 112 children/adolescents (aged 8-16) with and without ADHD. Second, we tested whether these associations differed in males and females who were matched in age, ADHD-status and ADHD- subtype. We found that changes in oscillatory power (as opposed to phase-synchrony and modularity) are most related with response control, and that this relationship is stronger in ADHD compared to controls. Specifically, a tendency to dwell in an electrophysiological state characterized by high alpha/beta power (8-12/13-30Hz) and low delta/theta power (1-3/4-7Hz) supported response control, particularly in those with ADHD. Time in this state might reflect an increased initiation of alpha-suppression mechanisms, recruited by those with ADHD to suppress processing unfavourable to response control. We also found marginally significant evidence that this relationship is stronger in males compared to females, suggesting a distinct etiology for response control in the female presentation of ADHD.
Collapse
Affiliation(s)
- Jonah Kember
- Department of Neurology and Neurosurgery, McGill University, Montréal, Québec, Canada
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Lauren Stepien
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Erin Panda
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| | - Ayda Tekok-Kilic
- Department of Child and Youth Studies, Brock University, St. Catharine’s, Ontario, Canada
| |
Collapse
|
28
|
Schoonhoven DN, Coomans EM, Millán AP, van Nifterick AM, Visser D, Ossenkoppele R, Tuncel H, van der Flier WM, Golla SSV, Scheltens P, Hillebrand A, van Berckel BNM, Stam CJ, Gouw AA. Tau protein spreads through functionally connected neurons in Alzheimer's disease: a combined MEG/PET study. Brain 2023; 146:4040-4054. [PMID: 37279597 PMCID: PMC10545627 DOI: 10.1093/brain/awad189] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/03/2023] [Accepted: 04/10/2023] [Indexed: 06/08/2023] Open
Abstract
Recent studies on Alzheimer's disease (AD) suggest that tau proteins spread through the brain following neuronal connections. Several mechanisms could be involved in this process: spreading between brain regions that interact strongly (functional connectivity); through the pattern of anatomical connections (structural connectivity); or simple diffusion. Using magnetoencephalography (MEG), we investigated which spreading pathways influence tau protein spreading by modelling the tau propagation process using an epidemic spreading model. We compared the modelled tau depositions with 18F-flortaucipir PET binding potentials at several stages of the AD continuum. In this cross-sectional study, we analysed source-reconstructed MEG data and dynamic 100-min 18F-flortaucipir PET from 57 subjects positive for amyloid-β pathology [preclinical AD (n = 16), mild cognitive impairment (MCI) due to AD (n = 16) and AD dementia (n = 25)]. Cognitively healthy subjects without amyloid-β pathology were included as controls (n = 25). Tau propagation was modelled as an epidemic process (susceptible-infected model) on MEG-based functional networks [in alpha (8-13 Hz) and beta (13-30 Hz) bands], a structural or diffusion network, starting from the middle and inferior temporal lobe. The group-level network of the control group was used as input for the model to predict tau deposition in three stages of the AD continuum. To assess performance, model output was compared to the group-specific tau deposition patterns as measured with 18F-flortaucipir PET. We repeated the analysis by using networks of the preceding disease stage and/or using regions with most observed tau deposition during the preceding stage as seeds. In the preclinical AD stage, the functional networks predicted most of the modelled tau-PET binding potential, with best correlations between model and tau-PET [corrected amplitude envelope correlation (AEC-c) alpha C = 0.584; AEC-c beta C = 0.569], followed by the structural network (C = 0.451) and simple diffusion (C = 0.451). Prediction accuracy declined for the MCI and AD dementia stages, although the correlation between modelled tau and tau-PET binding remained highest for the functional networks (C = 0.384; C = 0.376). Replacing the control-network with the network from the preceding disease stage and/or alternative seeds improved prediction accuracy in MCI but not in the dementia stage. These results suggest that in addition to structural connections, functional connections play an important role in tau spread, and highlight that neuronal dynamics play a key role in promoting this pathological process. Aberrant neuronal communication patterns should be taken into account when identifying targets for future therapy. Our results also suggest that this process is more important in earlier disease stages (preclinical AD/MCI); possibly, in later stages, other processes may be influential.
Collapse
Affiliation(s)
- Deborah N Schoonhoven
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Emma M Coomans
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Ana P Millán
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Anne M van Nifterick
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Denise Visser
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Rik Ossenkoppele
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Clinical Memory Research Unit, Lund University, 221 00 Lund, Sweden
| | - Hayel Tuncel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Wiesje M van der Flier
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Sandeep S V Golla
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Philip Scheltens
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
- Amsterdam Neuroscience, Systems and Network Neuroscience, 1081 HV Amsterdam, The Netherlands
| | - Bart N M van Berckel
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
- Radiology and Nuclear Medicine, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Brain Imaging, 1081 HV Amsterdam, The Netherlands
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| | - Alida A Gouw
- Department of Clinical Neurophysiology and MEG Center, Neurology, Amsterdam UMC location Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmc, 1081 HZ Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
29
|
Kulik SD, Douw L, van Dellen E, Steenwijk MD, Geurts JJG, Stam CJ, Hillebrand A, Schoonheim MM, Tewarie P. Comparing individual and group-level simulated neurophysiological brain connectivity using the Jansen and Rit neural mass model. Netw Neurosci 2023; 7:950-965. [PMID: 37781149 PMCID: PMC10473283 DOI: 10.1162/netn_a_00303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/24/2022] [Indexed: 10/03/2023] Open
Abstract
Computational models are often used to assess how functional connectivity (FC) patterns emerge from neuronal population dynamics and anatomical brain connections. It remains unclear whether the commonly used group-averaged data can predict individual FC patterns. The Jansen and Rit neural mass model was employed, where masses were coupled using individual structural connectivity (SC). Simulated FC was correlated to individual magnetoencephalography-derived empirical FC. FC was estimated using phase-based (phase lag index (PLI), phase locking value (PLV)), and amplitude-based (amplitude envelope correlation (AEC)) metrics to analyze their goodness of fit for individual predictions. Individual FC predictions were compared against group-averaged FC predictions, and we tested whether SC of a different participant could equally well predict participants' FC patterns. The AEC provided a better match between individually simulated and empirical FC than phase-based metrics. Correlations between simulated and empirical FC were higher using individual SC compared to group-averaged SC. Using SC from other participants resulted in similar correlations between simulated and empirical FC compared to using participants' own SC. This work underlines the added value of FC simulations using individual instead of group-averaged SC for this particular computational model and could aid in a better understanding of mechanisms underlying individual functional network trajectories.
Collapse
Affiliation(s)
- S. D. Kulik
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - L. Douw
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, Brain Tumour Center Amsterdam, Amsterdam, The Netherlands
| | - E. van Dellen
- University Medical Center Utrecht, Department of Psychiatry, Brain Center, Utrecht, The Netherlands
| | - M. D. Steenwijk
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - J. J. G. Geurts
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - C. J. Stam
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - A. Hillebrand
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| | - M. M. Schoonheim
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Anatomy & Neuroscience, Amsterdam Neuroscience, Amsterdam The Netherlands
- Amsterdam UMC, Vrije Universiteit Amsterdam, MS Center Amsterdam, Amsterdam, The Netherlands
| | - P. Tewarie
- Amsterdam UMC, Vrije Universiteit Amsterdam, Department of Neurology and Department of Clinical Neurophysiology and MEG Center, Amsterdam Neuroscience, Amsterdam The Netherlands
| |
Collapse
|
30
|
Martial C, Cassol H, Slater M, Bourdin P, Mensen A, Oliva R, Laureys S, Núñez P. Electroencephalographic Signature of Out-of-Body Experiences Induced by Virtual Reality: A Novel Methodological Approach. J Cogn Neurosci 2023; 35:1410-1422. [PMID: 37255451 DOI: 10.1162/jocn_a_02011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Out-of-body experiences (OBEs) are subjective experiences of seeing one's own body and the environment from a location outside the physical body. They can arise spontaneously or in specific conditions, such as during the intake of dissociative drug. Given its unpredictable occurrence, one way to empirically study it is to induce subjective experiences resembling an OBE using technology such as virtual reality. We employed a complex multisensory method of virtual embodiment in a virtual reality scenario with seven healthy participants to induce virtual OBE-like experiences. Participants performed two conditions in a randomly determined order. For both conditions, the participant's viewpoint was lifted out of the virtual body toward the ceiling of the virtual room, and real body movements were (visuo-tactile ON condition) or were not (visuo-tactile OFF condition) translated into movements on the virtual body below-the latter aiming to maintain a feeling of connection with the virtual body. A continuous 128-electrode EEG was recorded. Participants reported subjective experiences of floating in the air and of feeling high up in the virtual room at a strong intensity, but a weak to moderate feeling of being "out of their body" in both conditions. The EEG analysis revealed that this subjective experience was associated with a power shift that manifested in an increase of delta and a decrease of alpha relative power. A reduction of theta complexity and an increase of beta-2 connectivity were also found. This supports the growing body of evidence revealing a prominent role of delta activity during particular conscious states.
Collapse
Affiliation(s)
| | | | - Mel Slater
- University of Barcelona, Spain
- Institute of Neurosciences of the University of Barcelona, Spain
| | - Pierre Bourdin
- University of Barcelona, Spain
- Open University of Catalonia, Spain
| | | | | | - Steven Laureys
- University of Liège, Belgium
- University Hospital of Liège, Belgium
- University Laval, Québec, Canada
| | | |
Collapse
|
31
|
Tewarie PKB, Hindriks R, Lai YM, Sotiropoulos SN, Kringelbach M, Deco G. Non-reversibility outperforms functional connectivity in characterisation of brain states in MEG data. Neuroimage 2023; 276:120186. [PMID: 37268096 DOI: 10.1016/j.neuroimage.2023.120186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
Characterising brain states during tasks is common practice for many neuroscientific experiments using electrophysiological modalities such as electroencephalography (EEG) and magnetoencephalography (MEG). Brain states are often described in terms of oscillatory power and correlated brain activity, i.e. functional connectivity. It is, however, not unusual to observe weak task induced functional connectivity alterations in the presence of strong task induced power modulations using classical time-frequency representation of the data. Here, we propose that non-reversibility, or the temporal asymmetry in functional interactions, may be more sensitive to characterise task induced brain states than functional connectivity. As a second step, we explore causal mechanisms of non-reversibility in MEG data using whole brain computational models. We include working memory, motor, language tasks and resting-state data from participants of the Human Connectome Project (HCP). Non-reversibility is derived from the lagged amplitude envelope correlation (LAEC), and is based on asymmetry of the forward and reversed cross-correlations of the amplitude envelopes. Using random forests, we find that non-reversibility outperforms functional connectivity in the identification of task induced brain states. Non-reversibility shows especially better sensitivity to capture bottom-up gamma induced brain states across all tasks, but also alpha band associated brain states. Using whole brain computational models we find that asymmetry in the effective connectivity and axonal conduction delays play a major role in shaping non-reversibility across the brain. Our work paves the way for better sensitivity in characterising brain states during both bottom-up as well as top-down modulation in future neuroscientific experiments.
Collapse
Affiliation(s)
- Prejaas K B Tewarie
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Clinical Neurophysiology Group, University of Twente, Enschede, The Netherlands; Department of Neurology, Amsterdam UMC, Amsterdam, the Netherlands; Sir Peter Mansfield Imaging Centre, School of Physics, University of Nottingham, Nottingham, United Kingdom.
| | - Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Yi Ming Lai
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, United Kingdom; NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Morten Kringelbach
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK; Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Spain; Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain; Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
32
|
Yang L, Lu J, Li D, Xiang J, Yan T, Sun J, Wang B. Alzheimer's Disease: Insights from Large-Scale Brain Dynamics Models. Brain Sci 2023; 13:1133. [PMID: 37626490 PMCID: PMC10452161 DOI: 10.3390/brainsci13081133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
Alzheimer's disease (AD) is a degenerative brain disease, and the condition is difficult to assess. In the past, numerous brain dynamics models have made remarkable contributions to neuroscience and the brain from the microcosmic to the macroscopic scale. Recently, large-scale brain dynamics models have been developed based on dual-driven multimodal neuroimaging data and neurodynamics theory. These models bridge the gap between anatomical structure and functional dynamics and have played an important role in assisting the understanding of the brain mechanism. Large-scale brain dynamics have been widely used to explain how macroscale neuroimaging biomarkers emerge from potential neuronal population level disturbances associated with AD. In this review, we describe this emerging approach to studying AD that utilizes a biophysically large-scale brain dynamics model. In particular, we focus on the application of the model to AD and discuss important directions for the future development and analysis of AD models. This will facilitate the development of virtual brain models in the field of AD diagnosis and treatment and add new opportunities for advancing clinical neuroscience.
Collapse
Affiliation(s)
- Lan Yang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jiayu Lu
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Dandan Li
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Jie Xiang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Ting Yan
- Teranslational Medicine Research Center, Shanxi Medical University, Taiyuan 030001, China;
| | - Jie Sun
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| | - Bin Wang
- College of Computer Science and Technology, Taiyuan University of Technology, Taiyuan 030024, China; (L.Y.); (J.L.); (D.L.); (J.X.); (J.S.)
| |
Collapse
|
33
|
Duman AN, Tatar AE. Topological data analysis for revealing dynamic brain reconfiguration in MEG data. PeerJ 2023; 11:e15721. [PMID: 37489123 PMCID: PMC10363343 DOI: 10.7717/peerj.15721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/16/2023] [Indexed: 07/26/2023] Open
Abstract
In recent years, the focus of the functional connectivity community has shifted from stationary approaches to the ones that include temporal dynamics. Especially, non-invasive electrophysiological data (magnetoencephalography/electroencephalography (MEG/EEG)) with high temporal resolution and good spatial coverage have made it possible to measure the fast alterations in the neural activity in the brain during ongoing cognition. In this article, we analyze dynamic brain reconfiguration using MEG images collected from subjects during the rest and the cognitive tasks. Our proposed topological data analysis method, called Mapper, produces biomarkers that differentiate cognitive tasks without prior spatial and temporal collapse of the data. The suggested method provides an interactive visualization of the rapid fluctuations in electrophysiological data during motor and cognitive tasks; hence, it has the potential to extract clinically relevant information at an individual level without temporal and spatial collapse.
Collapse
Affiliation(s)
- Ali Nabi Duman
- Department of Mathematics, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Ahmet E. Tatar
- Center for Information Technology, University of Groningen, Groningen, Netherlands
| |
Collapse
|
34
|
Wiafe SL, Fu Z, Calhoun VD, Faghiri A. Phase and amplitude, two sides of functional connectivity. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083120 DOI: 10.1109/embc40787.2023.10341073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The dynamics of the human brain can be captured by estimating time-resolved functional network connectivity (trFNC). The most used method for estimating trFNC is sliding window Pearson correlation (SWPC). Methods based on instantaneous phase synchrony, which uses phase information for estimating trFNC are being increasingly used. These two approaches are similar under specific assumptions. Prior works have focused on which of these approaches is the best. Some works argue that SWPC can capture amplitude information and therefore we believe that instantaneous phase synchrony methods and SWPC capture different aspects of connectivity since phase synchrony methods work with the phase of the signal. Here we show that these two approaches result in different time-resolved information and therefore should be viewed as complimentary views of connectivity.
Collapse
|
35
|
Kargarnovin S, Hernandez C, Farahani FV, Karwowski W. Evidence of Chaos in Electroencephalogram Signatures of Human Performance: A Systematic Review. Brain Sci 2023; 13:813. [PMID: 37239285 PMCID: PMC10216576 DOI: 10.3390/brainsci13050813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/09/2023] [Accepted: 05/15/2023] [Indexed: 05/28/2023] Open
Abstract
(1) Background: Chaos, a feature of nonlinear dynamical systems, is well suited for exploring biological time series, such as heart rates, respiratory records, and particularly electroencephalograms. The primary purpose of this article is to review recent studies using chaos theory and nonlinear dynamical methods to analyze human performance in different brain processes. (2) Methods: Several studies have examined chaos theory and related analytical tools for describing brain dynamics. The present study provides an in-depth analysis of the computational methods that have been proposed to uncover brain dynamics. (3) Results: The evidence from 55 articles suggests that cognitive function is more frequently assessed than other brain functions in studies using chaos theory. The most frequently used techniques for analyzing chaos include the correlation dimension and fractal analysis. Approximate, Kolmogorov and sample entropy account for the largest proportion of entropy algorithms in the reviewed studies. (4) Conclusions: This review provides insights into the notion of the brain as a chaotic system and the successful use of nonlinear methods in neuroscience studies. Additional studies of brain dynamics would aid in improving our understanding of human cognitive performance.
Collapse
Affiliation(s)
- Shaida Kargarnovin
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (C.H.); (F.V.F.); (W.K.)
| | - Christopher Hernandez
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (C.H.); (F.V.F.); (W.K.)
| | - Farzad V. Farahani
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (C.H.); (F.V.F.); (W.K.)
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL 32816, USA; (C.H.); (F.V.F.); (W.K.)
| |
Collapse
|
36
|
Kida T, Tanaka E, Kakigi R, Inui K. Brain-wide network analysis of resting-state neuromagnetic data. Hum Brain Mapp 2023; 44:3519-3540. [PMID: 36988453 DOI: 10.1002/hbm.26295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Revised: 03/16/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The present study performed a brain-wide network analysis of resting-state magnetoencephalograms recorded from 53 healthy participants to visualize elaborate brain maps of phase- and amplitude-derived graph-theory metrics at different frequencies. To achieve this, we conducted a vertex-wise computation of threshold-independent graph metrics by combining proportional thresholding and a conjunction analysis and applied them to a correlation analysis of age and brain networks. Source power showed a frequency-dependent cortical distribution. Threshold-independent graph metrics derived from phase- and amplitude-based connectivity showed similar or different distributions depending on frequency. Vertex-wise age-brain correlation maps revealed that source power at the beta band and the amplitude-based degree at the alpha band changed with age in local regions. The present results indicate that a brain-wide analysis of neuromagnetic data has the potential to reveal neurophysiological network features in the human brain in a resting state.
Collapse
Affiliation(s)
- Tetsuo Kida
- Higher Brain Function Unit, Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| | - Emi Tanaka
- Brain and Mind Research Center, Nagoya University, Nagoya, Japan
| | - Ryusuke Kakigi
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
| | - Koji Inui
- Department of Functioning and Disability, Institute for Developmental Research, Aichi Developmental Disability Center, Kasugai, Japan
- Department of Integrative Physiology, National Institute for Physiological Sciences, Okazaki, Japan
- Section of Brain Function Information, Supportive Center for Brain Research, National Institute for Physiological Sciences, Okazaki, Japan
| |
Collapse
|
37
|
Verma P, Nagarajan S, Raj A. Stability and dynamics of a spectral graph model of brain oscillations. Netw Neurosci 2023; 7:48-72. [PMID: 37334000 PMCID: PMC10270709 DOI: 10.1162/netn_a_00263] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 06/15/2022] [Indexed: 01/17/2025] Open
Abstract
We explore the stability and dynamic properties of a hierarchical, linearized, and analytic spectral graph model for neural oscillations that integrates the structural wiring of the brain. Previously, we have shown that this model can accurately capture the frequency spectra and the spatial patterns of the alpha and beta frequency bands obtained from magnetoencephalography recordings without regionally varying parameters. Here, we show that this macroscopic model based on long-range excitatory connections exhibits dynamic oscillations with a frequency in the alpha band even without any oscillations implemented at the mesoscopic level. We show that depending on the parameters, the model can exhibit combinations of damped oscillations, limit cycles, or unstable oscillations. We determined bounds on model parameters that ensure stability of the oscillations simulated by the model. Finally, we estimated time-varying model parameters to capture the temporal fluctuations in magnetoencephalography activity. We show that a dynamic spectral graph modeling framework with a parsimonious set of biophysically interpretable model parameters can thereby be employed to capture oscillatory fluctuations observed in electrophysiological data in various brain states and diseases.
Collapse
Affiliation(s)
- Parul Verma
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Srikantan Nagarajan
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Ashish Raj
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
38
|
Mao L, Zheng G, Cai Y, Luo W, Zhang Q, Peng W, Ding J, Wang X. Frontotemporal phase lag index correlates with seizure severity in patients with temporal lobe epilepsy. Front Neurol 2022; 13:855842. [PMID: 36530607 PMCID: PMC9752927 DOI: 10.3389/fneur.2022.855842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 10/18/2022] [Indexed: 09/10/2024] Open
Abstract
Objectives To find the brain network indicators correlated with the seizure severity in temporal lobe epilepsy (TLE) by graph theory analysis. Methods We enrolled 151 patients with TLE and 36 age- and sex-matched controls with video-EEG monitoring. The 90-s interictal EEG data were acquired. We adopted a network analyzing pipeline based on graph theory to quantify and localize their functional networks, including weighted classical network, minimum spanning tree, community structure, and LORETA. The seizure severities were evaluated using the seizure frequency, drug-resistant epilepsy (DRE), and VA-2 scores. Results Our network analysis pipeline showed ipsilateral frontotemporal activation in patients with TLE. The frontotemporal phase lag index (PLI) values increased in the theta band (4-7 Hz), which were elevated in patients with higher seizure severities (P < 0.05). Multivariate linear regression analysis showed that the VA-2 scores were independently correlated with frontotemporal PLI values in the theta band (β = 0.259, P = 0.001) and age of onset (β = -0.215, P = 0.007). Significance This study illustrated that the frontotemporal PLI in the theta band independently correlated with seizure severity in patients with TLE. Our network analysis provided an accessible approach to guide the treatment strategy in routine clinical practice.
Collapse
Affiliation(s)
- Lingyan Mao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Gaoxing Zheng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Cai
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qianqian Zhang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Weifeng Peng
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of the State Key Laboratory of Medical Neurobiology, The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai, China
| |
Collapse
|
39
|
Mercier MR, Dubarry AS, Tadel F, Avanzini P, Axmacher N, Cellier D, Vecchio MD, Hamilton LS, Hermes D, Kahana MJ, Knight RT, Llorens A, Megevand P, Melloni L, Miller KJ, Piai V, Puce A, Ramsey NF, Schwiedrzik CM, Smith SE, Stolk A, Swann NC, Vansteensel MJ, Voytek B, Wang L, Lachaux JP, Oostenveld R. Advances in human intracranial electroencephalography research, guidelines and good practices. Neuroimage 2022; 260:119438. [PMID: 35792291 PMCID: PMC10190110 DOI: 10.1016/j.neuroimage.2022.119438] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/23/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Since the second-half of the twentieth century, intracranial electroencephalography (iEEG), including both electrocorticography (ECoG) and stereo-electroencephalography (sEEG), has provided an intimate view into the human brain. At the interface between fundamental research and the clinic, iEEG provides both high temporal resolution and high spatial specificity but comes with constraints, such as the individual's tailored sparsity of electrode sampling. Over the years, researchers in neuroscience developed their practices to make the most of the iEEG approach. Here we offer a critical review of iEEG research practices in a didactic framework for newcomers, as well addressing issues encountered by proficient researchers. The scope is threefold: (i) review common practices in iEEG research, (ii) suggest potential guidelines for working with iEEG data and answer frequently asked questions based on the most widespread practices, and (iii) based on current neurophysiological knowledge and methodologies, pave the way to good practice standards in iEEG research. The organization of this paper follows the steps of iEEG data processing. The first section contextualizes iEEG data collection. The second section focuses on localization of intracranial electrodes. The third section highlights the main pre-processing steps. The fourth section presents iEEG signal analysis methods. The fifth section discusses statistical approaches. The sixth section draws some unique perspectives on iEEG research. Finally, to ensure a consistent nomenclature throughout the manuscript and to align with other guidelines, e.g., Brain Imaging Data Structure (BIDS) and the OHBM Committee on Best Practices in Data Analysis and Sharing (COBIDAS), we provide a glossary to disambiguate terms related to iEEG research.
Collapse
Affiliation(s)
- Manuel R Mercier
- INSERM, INS, Institut de Neurosciences des Systèmes, Aix-Marseille University, Marseille, France.
| | | | - François Tadel
- Signal & Image Processing Institute, University of Southern California, Los Angeles, CA United States of America
| | - Pietro Avanzini
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Nikolai Axmacher
- Department of Neuropsychology, Faculty of Psychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Universitätsstraße 150, Bochum 44801, Germany; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, 19 Xinjiekou Outer St, Beijing 100875, China
| | - Dillan Cellier
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America
| | - Maria Del Vecchio
- Institute of Neuroscience, National Research Council of Italy, Parma, Italy
| | - Liberty S Hamilton
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States of America; Institute for Neuroscience, The University of Texas at Austin, Austin, TX, United States of America; Department of Speech, Language, and Hearing Sciences, Moody College of Communication, The University of Texas at Austin, Austin, TX, United States of America
| | - Dora Hermes
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Michael J Kahana
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, United States of America
| | - Robert T Knight
- Department of Psychology and the Helen Wills Neuroscience Institute, University of California, Berkeley, CA 94720, United States of America
| | - Anais Llorens
- Helen Wills Neuroscience Institute, University of California, Berkeley, United States of America
| | - Pierre Megevand
- Department of Clinical neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lucia Melloni
- Department of Neuroscience, Max Planck Institute for Empirical Aesthetics, Grüneburgweg 14, Frankfurt am Main 60322, Germany; Department of Neurology, NYU Grossman School of Medicine, 145 East 32nd Street, Room 828, New York, NY 10016, United States of America
| | - Kai J Miller
- Department of Neurosurgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Vitória Piai
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Department of Medical Psychology, Radboudumc, Donders Centre for Medical Neuroscience, Nijmegen, the Netherlands
| | - Aina Puce
- Department of Psychological & Brain Sciences, Programs in Neuroscience, Cognitive Science, Indiana University, Bloomington, IN, United States of America
| | - Nick F Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Caspar M Schwiedrzik
- Neural Circuits and Cognition Lab, European Neuroscience Institute Göttingen - A Joint Initiative of the University Medical Center Göttingen and the Max Planck Society, Göttingen, Germany; Perception and Plasticity Group, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
| | - Sydney E Smith
- Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America
| | - Arjen Stolk
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States of America
| | - Nicole C Swann
- University of Oregon in the Department of Human Physiology, United States of America
| | - Mariska J Vansteensel
- Department of Neurology and Neurosurgery, UMC Utrecht Brain Center, UMC Utrecht, the Netherlands
| | - Bradley Voytek
- Department of Cognitive Science, University of California, La Jolla, San Diego, United States of America; Neurosciences Graduate Program, University of California, La Jolla, San Diego, United States of America; Halıcıoğlu Data Science Institute, University of California, La Jolla, San Diego, United States of America; Kavli Institute for Brain and Mind, University of California, La Jolla, San Diego, United States of America
| | - Liang Wang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jean-Philippe Lachaux
- Lyon Neuroscience Research Center, EDUWELL Team, INSERM UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, Lyon F-69000, France
| | - Robert Oostenveld
- Donders Institute for Brain, Cognition, and Behaviour, Radboud University, Nijmegen, the Netherlands; NatMEG, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
40
|
Tang X, Zhang X, Dong H, Zhao G. Electroencephalogram Features of Perioperative Neurocognitive Disorders in Elderly Patients: A Narrative Review of the Clinical Literature. Brain Sci 2022; 12:1073. [PMID: 36009136 PMCID: PMC9405602 DOI: 10.3390/brainsci12081073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Postoperative neurocognitive disorder (PND) is a common postoperative complication, particularly in older patients. Electroencephalogram (EEG) monitoring, a non-invasive technique with a high spatial-temporal resolution, can accurately characterize the dynamic changes in brain function during the perioperative period. Current clinical studies have confirmed that the power density of alpha oscillation during general anesthesia decreased with age, which was considered to be associated with increased susceptibility to PND in the elderly. However, evidence on whether general anesthesia under EEG guidance results in a lower morbidity of PND is still contradictory. This is one of the reasons that common indicators of the depth of anesthesia were limitedly derived from EEG signals in the frontal lobe. The variation of multi-channel EEG features during the perioperative period has the potential to highlight the occult structural and functional abnormalities of the subcortical-cortical neurocircuit. Therefore, we present a review of the application of multi-channel EEG monitoring to predict the incidence of PND in older patients. The data confirmed that the abnormal variation in EEG power and functional connectivity between distant brain regions was closely related to the incidence and long-term poor outcomes of PND in older adults.
Collapse
Affiliation(s)
- Xuemiao Tang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Xinxin Zhang
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | - Guangchao Zhao
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
41
|
Cabral J, Castaldo F, Vohryzek J, Litvak V, Bick C, Lambiotte R, Friston K, Kringelbach ML, Deco G. Metastable oscillatory modes emerge from synchronization in the brain spacetime connectome. COMMUNICATIONS PHYSICS 2022; 5:184. [PMID: 38288392 PMCID: PMC7615562 DOI: 10.1038/s42005-022-00950-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 06/20/2022] [Indexed: 01/31/2024]
Abstract
A rich repertoire of oscillatory signals is detected from human brains with electro- and magnetoencephalography (EEG/MEG). However, the principles underwriting coherent oscillations and their link with neural activity remain under debate. Here, we revisit the mechanistic hypothesis that transient brain rhythms are a signature of metastable synchronization, occurring at reduced collective frequencies due to delays between brain areas. We consider a system of damped oscillators in the presence of background noise - approximating the short-lived gamma-frequency oscillations generated within neuronal circuits - coupled according to the diffusion weighted tractography between brain areas. Varying the global coupling strength and conduction speed, we identify a critical regime where spatially and spectrally resolved metastable oscillatory modes (MOMs) emerge at sub-gamma frequencies, approximating the MEG power spectra from 89 healthy individuals at rest. Further, we demonstrate that the frequency, duration, and scale of MOMs - as well as the frequency-specific envelope functional connectivity - can be controlled by global parameters, while the connectome structure remains unchanged. Grounded in the physics of delay-coupled oscillators, these numerical analyses demonstrate how interactions between locally generated fast oscillations in the connectome spacetime structure can lead to the emergence of collective brain rhythms organized in space and time.
Collapse
Affiliation(s)
- Joana Cabral
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- ICVS/3B’s - Portuguese Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Francesca Castaldo
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Jakub Vohryzek
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
| | - Vladimir Litvak
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Christian Bick
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Neuroscience – Systems & Network Neuroscience, Amsterdam, The Netherlands
- Mathematical Institute, University of Oxford, Oxford, UK
- Department of Mathematics, University of Exeter, Exeter, UK
| | | | - Karl Friston
- Wellcome Centre for Human Neuroimaging, University College London, Queen Square Institute of Neurology, London, UK
| | - Morten L. Kringelbach
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
- Department of Psychiatry, University of Oxford, Oxford, UK
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
42
|
Liu L, Ren J, Li Z, Yang C. A review of MEG dynamic brain network research. Proc Inst Mech Eng H 2022; 236:763-774. [PMID: 35465768 DOI: 10.1177/09544119221092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dynamic description of neural networks has attracted the attention of researchers for dynamic networks may carry more information compared with resting-state networks. As a non-invasive electrophysiological data with high temporal and spatial resolution, magnetoencephalogram (MEG) can provide rich information for the analysis of dynamic functional brain networks. In this review, the development of MEG brain network was summarized. Several analysis methods such as sliding window, Hidden Markov model, and time-frequency based methods used in MEG dynamic brain network studies were discussed. Finally, the current research about multi-modal brain network analysis and their applications with MEG neurophysiology, which are prospected to be one of the research directions in the future, were concluded.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
43
|
Donoghue T, Schaworonkow N, Voytek B. Methodological considerations for studying neural oscillations. Eur J Neurosci 2022; 55:3502-3527. [PMID: 34268825 PMCID: PMC8761223 DOI: 10.1111/ejn.15361] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/25/2021] [Accepted: 06/16/2021] [Indexed: 12/29/2022]
Abstract
Neural oscillations are ubiquitous across recording methodologies and species, broadly associated with cognitive tasks, and amenable to computational modelling that investigates neural circuit generating mechanisms and neural population dynamics. Because of this, neural oscillations offer an exciting potential opportunity for linking theory, physiology and mechanisms of cognition. However, despite their prevalence, there are many concerns-new and old-about how our analysis assumptions are violated by known properties of field potential data. For investigations of neural oscillations to be properly interpreted, and ultimately developed into mechanistic theories, it is necessary to carefully consider the underlying assumptions of the methods we employ. Here, we discuss seven methodological considerations for analysing neural oscillations. The considerations are to (1) verify the presence of oscillations, as they may be absent; (2) validate oscillation band definitions, to address variable peak frequencies; (3) account for concurrent non-oscillatory aperiodic activity, which might otherwise confound measures; measure and account for (4) temporal variability and (5) waveform shape of neural oscillations, which are often bursty and/or nonsinusoidal, potentially leading to spurious results; (6) separate spatially overlapping rhythms, which may interfere with each other; and (7) consider the required signal-to-noise ratio for obtaining reliable estimates. For each topic, we provide relevant examples, demonstrate potential errors of interpretation, and offer suggestions to address these issues. We primarily focus on univariate measures, such as power and phase estimates, though we discuss how these issues can propagate to multivariate measures. These considerations and recommendations offer a helpful guide for measuring and interpreting neural oscillations.
Collapse
Affiliation(s)
- Thomas Donoghue
- Department of Cognitive Science, University of California, San Diego
| | | | - Bradley Voytek
- Department of Cognitive Science, University of California, San Diego
- Neurosciences Graduate Program, University of California, San Diego
- Halıcıoğlu Data Science Institute, University of California, San Diego
- Kavli Institute for Brain and Mind, University of California, San Diego
| |
Collapse
|
44
|
Tewarie P, Prasse B, Meier J, Mandke K, Warrington S, Stam CJ, Brookes MJ, Van Mieghem P, Sotiropoulos SN, Hillebrand A. Predicting time-resolved electrophysiological brain networks from structural eigenmodes. Hum Brain Mapp 2022; 43:4475-4491. [PMID: 35642600 PMCID: PMC9435022 DOI: 10.1002/hbm.25967] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/25/2022] [Accepted: 05/16/2022] [Indexed: 01/20/2023] Open
Abstract
How temporal modulations in functional interactions are shaped by the underlying anatomical connections remains an open question. Here, we analyse the role of structural eigenmodes, in the formation and dissolution of temporally evolving functional brain networks using resting-state magnetoencephalography and diffusion magnetic resonance imaging data at the individual subject level. Our results show that even at short timescales, phase and amplitude connectivity can partly be expressed by structural eigenmodes, but hardly by direct structural connections. Albeit a stronger relationship was found between structural eigenmodes and time-resolved amplitude connectivity. Time-resolved connectivity for both phase and amplitude was mostly characterised by a stationary process, superimposed with very brief periods that showed deviations from this stationary process. For these brief periods, dynamic network states were extracted that showed different expressions of eigenmodes. Furthermore, the eigenmode expression was related to overall cognitive performance and co-occurred with fluctuations in community structure of functional networks. These results implicate that ongoing time-resolved resting-state networks, even at short timescales, can to some extent be understood in terms of activation and deactivation of structural eigenmodes and that these eigenmodes play a role in the dynamic integration and segregation of information across the cortex, subserving cognitive functions.
Collapse
Affiliation(s)
- Prejaas Tewarie
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Bastian Prasse
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Jil Meier
- Department of Neurology, Brain Simulation Section, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Kanad Mandke
- Centre for Neuroscience in Education, Department of Psychology, University of Cambridge, Cambridge, UK
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Cornelis J Stam
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Piet Van Mieghem
- Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft, The Netherlands
| | - Stamatios N Sotiropoulos
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, Nottingham, UK.,Wellcome Centre for Integrative Neuroimaging (WIN-FMRIB), University of Oxford, Oxford, UK.,NIHR Biomedical Research Centre, University of Nottingham, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | - Arjan Hillebrand
- Department of Clinical Neurophysiology and MEG Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
45
|
Tait L, Zhang J. +microstate: A MATLAB toolbox for brain microstate analysis in sensor and cortical EEG/MEG. Neuroimage 2022; 258:119346. [PMID: 35660463 DOI: 10.1016/j.neuroimage.2022.119346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/13/2022] [Accepted: 05/29/2022] [Indexed: 01/14/2023] Open
Abstract
+microstate is a MATLAB toolbox for brain functional microstate analysis. It builds upon previous EEG microstate literature and toolboxes by including algorithms for source-space microstate analysis. +microstate includes codes for performing individual- and group-level brain microstate analysis in resting-state and task-based data including event-related potentials/fields. Functions are included to visualise and perform statistical analysis of microstate sequences, including novel advanced statistical approaches such as statistical testing for associated functional connectivity patterns, cluster-permutation topographic ANOVAs, and χ2 analysis of microstate probabilities in response to stimuli. Additionally, codes for simulating microstate sequences and their associated M/EEG data are included in the toolbox, which can be used to generate artificial data with ground truth microstates and to validate the methodology. +microstate integrates with widely used toolboxes for M/EEG processing including Fieldtrip, SPM, LORETA/sLORETA, EEGLAB, and Brainstorm to aid with accessibility, and includes wrappers for pre-existing toolboxes for brain-state estimation such as Hidden Markov modelling (HMM-MAR) and independent component analysis (FastICA) to aid with direct comparison with these techniques. In this paper, we first introduce +microstate before subsequently performing example analyses using open access datasets to demonstrate and validate the methodology. MATLAB live scripts for each of these analyses are included in +microstate, to act as a tutorial and to aid with reproduction of the results presented in this manuscript.
Collapse
Affiliation(s)
- Luke Tait
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom; Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK.
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
46
|
Hao Z, Zhai X, Cheng D, Pan Y, Dou W. EEG Microstate-Specific Functional Connectivity and Stroke-Related Alterations in Brain Dynamics. Front Neurosci 2022; 16:848737. [PMID: 35645720 PMCID: PMC9131012 DOI: 10.3389/fnins.2022.848737] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
The brain, as a complex dynamically distributed information processing system, involves the coordination of large-scale brain networks such as neural synchronization and fast brain state transitions, even at rest. However, the neural mechanisms underlying brain states and the impact of dysfunction following brain injury on brain dynamics remain poorly understood. To this end, we proposed a microstate-based method to explore the functional connectivity pattern associated with each microstate class. We capitalized on microstate features from eyes-closed resting-state EEG data to investigate whether microstate dynamics differ between subacute stroke patients (N = 31) and healthy populations (N = 23) and further examined the correlations between microstate features and behaviors. An important finding in this study was that each microstate class was associated with a distinct functional connectivity pattern, and it was highly consistent across different groups (including an independent dataset). Although the connectivity patterns were diminished in stroke patients, the skeleton of the patterns was retained to some extent. Nevertheless, stroke patients showed significant differences in most parameters of microstates A, B, and C compared to healthy controls. Notably, microstate C exhibited an opposite pattern of differences to microstates A and B. On the other hand, there were no significant differences in all microstate parameters for patients with left-sided vs. right-sided stroke, as well as patients before vs. after lower limb training. Moreover, support vector machine (SVM) models were developed using only microstate features and achieved moderate discrimination between patients and controls. Furthermore, significant negative correlations were observed between the microstate-wise functional connectivity and lower limb motor scores. Overall, these results suggest that the changes in microstate dynamics for stroke patients appear to be state-selective, compensatory, and related to brain dysfunction after stroke and subsequent functional reconfiguration. These findings offer new insights into understanding the neural mechanisms of microstates, uncovering stroke-related alterations in brain dynamics, and exploring new treatments for stroke patients.
Collapse
Affiliation(s)
- Zexuan Hao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Xiaoxue Zhai
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Dandan Cheng
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Yu Pan
- Department of Rehabilitation Medicine, School of Clinical Medicine, Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
47
|
Tait L, Zhang J. MEG cortical microstates: Spatiotemporal characteristics, dynamic functional connectivity and stimulus-evoked responses. Neuroimage 2022; 251:119006. [PMID: 35181551 PMCID: PMC8961001 DOI: 10.1016/j.neuroimage.2022.119006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 12/12/2022] Open
Abstract
EEG microstate analysis is an approach to study brain states and their fast transitions in healthy cognition and disease. A key limitation of conventional microstate analysis is that it must be performed at the sensor level, and therefore gives limited anatomical insight. Here, we generalise the microstate methodology to be applicable to source-reconstructed electrophysiological data. Using simulations of a neural-mass network model, we first established the validity and robustness of the proposed method. Using MEG resting-state data, we uncovered ten microstates with distinct spatial distributions of cortical activation. Multivariate pattern analysis demonstrated that source-level microstates were associated with distinct functional connectivity patterns. We further demonstrated that the occurrence probability of MEG microstates were altered by auditory stimuli, exhibiting a hyperactivity of the microstate including the auditory cortex. Our results support the use of source-level microstates as a method for investigating brain dynamic activity and connectivity at the millisecond scale.
Collapse
Affiliation(s)
- Luke Tait
- Centre for Systems Modelling & Quantitative Biomedicine (SMQB), University of Birmingham, Birmingham, UK; Cardiff University Brain Research Imaging Centre, Cardiff, UK.
| | - Jiaxiang Zhang
- Cardiff University Brain Research Imaging Centre, Cardiff, UK
| |
Collapse
|
48
|
Müller V. Neural Synchrony and Network Dynamics in Social Interaction: A Hyper-Brain Cell Assembly Hypothesis. Front Hum Neurosci 2022; 16:848026. [PMID: 35572007 PMCID: PMC9101304 DOI: 10.3389/fnhum.2022.848026] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/25/2022] [Indexed: 11/13/2022] Open
Abstract
Mounting neurophysiological evidence suggests that interpersonal interaction relies on continual communication between cell assemblies within interacting brains and continual adjustments of these neuronal dynamic states between the brains. In this Hypothesis and Theory article, a Hyper-Brain Cell Assembly Hypothesis is suggested on the basis of a conceptual review of neural synchrony and network dynamics and their roles in emerging cell assemblies within the interacting brains. The proposed hypothesis states that such cell assemblies can emerge not only within, but also between the interacting brains. More precisely, the hyper-brain cell assembly encompasses and integrates oscillatory activity within and between brains, and represents a common hyper-brain unit, which has a certain relation to social behavior and interaction. Hyper-brain modules or communities, comprising nodes across two or several brains, are considered as one of the possible representations of the hypothesized hyper-brain cell assemblies, which can also have a multidimensional or multilayer structure. It is concluded that the neuronal dynamics during interpersonal interaction is brain-wide, i.e., it is based on common neuronal activity of several brains or, more generally, of the coupled physiological systems including brains.
Collapse
Affiliation(s)
- Viktor Müller
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| |
Collapse
|
49
|
Hao Z, Xia X, Bai Y, Wang Y, Dou W. EEG Evidence Reveals Zolpidem-Related Alterations and Prognostic Value in Disorders of Consciousness. Front Neurosci 2022; 16:863016. [PMID: 35573300 PMCID: PMC9093050 DOI: 10.3389/fnins.2022.863016] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 02/02/2023] Open
Abstract
Effective treatment and accurate long-term prognostication of patients with disorders of consciousness (DOC) remain pivotal clinical issues and challenges in neuroscience. Previous studies have shown that zolpidem produces paradoxical recovery and induces similar change patterns in specific electrophysiological features in some DOC (∼6%). However, whether these specific features are neural markers of responders, and how neural features evolve over time remain unclear. Here, we capitalized on static and dynamic EEG analysis techniques to fully uncover zolpidem-induced alterations in eight patients with DOC and constructed machine-learning models to predict long-term outcomes at the single-subject level. We observed consistent patterns of change across all patients in several static features (e.g., decreased relative theta power and weakened alpha-band functional connectivity) after zolpidem administration, albeit none zolpidem responders. Based on the current evidence, previously published electrophysiological features are not neural markers for zolpidem responders. Moreover, we found that the temporal dynamics of the brain slowed down after zolpidem intake. Brain states before and after zolpidem administration could be completely characterized by the EEG features. Furthermore, long-term outcomes were accurately predicted using connectivity features. Our findings suggest that EEG neural signatures have huge potential to assess consciousness states and predict fine-grained outcomes. In summary, our results extend the understanding of the effects of zolpidem on the brain and open avenues for the application prospect of zolpidem and EEG in patients with DOC.
Collapse
Affiliation(s)
- Zexuan Hao
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| | - Xiaoyu Xia
- Department of Neurosurgery, The First Medical Center of PLA General Hospital, Beijing, China
- Department of Neurosurgery, Hainan Hospital of PLA General Hospital, Sanya, China
| | - Yang Bai
- Center for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Yong Wang
- Key Laboratory of Intelligent Rehabilitation and Neuromodulation of Hebei Province, Department of Electrical Engineering, Yanshan University, Qinhuangdao, China
| | - Weibei Dou
- Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, China
| |
Collapse
|
50
|
Tibon R, Geerligs L, Campbell K. Bridging the big (data) gap: levels of control in small- and large-scale cognitive neuroscience research. Trends Neurosci 2022; 45:507-516. [DOI: 10.1016/j.tins.2022.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 12/16/2022]
|