1
|
Suarez GL, Burt SA, Gard AM, Klump KL, Hyde LW. Exposure to community violence as a mechanism linking neighborhood disadvantage to amygdala reactivity and the protective role of parental nurturance. Dev Psychol 2024; 60:595-609. [PMID: 38386381 PMCID: PMC11197980 DOI: 10.1037/dev0001712] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Emerging literature links neighborhood disadvantage to altered neural function in regions supporting socioemotional and threat processing. Few studies, however, have examined the proximal mechanisms through which neighborhood disadvantage is associated with neural functioning. In a sample of 7- to 19-year-old twins recruited from disadvantaged neighborhoods (354 families, 708 twins; 54.5% boys; 78.5% White, 13.0% Black, 8.5% other racial/ethnic group membership), we found that exposure to community violence was related to increased amygdala reactivity during socioemotional processing and may be one mechanism linking neighborhood disadvantage to amygdala functioning. Importantly, parenting behavior appeared to modulate these effects, such that high parental nurturance buffered the effect of exposure to community violence on amygdala reactivity. These findings elucidate the potential impact of exposure to community violence on brain function and highlight the role parents can play in protecting youth from the neural effects of exposure to adversity. (PsycInfo Database Record (c) 2024 APA, all rights reserved).
Collapse
Affiliation(s)
- Gabriela L. Suarez
- Department of Psychology, The University of Michigan, Ann Arbor, MI, 48109 USA
| | - S. Alexandra Burt
- Department of Psychology, Michigan State University, East Lansing, MI, 48824 USA
| | - Arianna M. Gard
- Department of Psychology, University of Maryland, College Park, MD, 20742 USA
| | - Kelly L. Klump
- Department of Psychology, Michigan State University, East Lansing, MI, 48824 USA
| | - Luke W. Hyde
- Department of Psychology, The University of Michigan, Ann Arbor, MI, 48109 USA
- Survey Research Center at the Institute for Social Research; The University of Michigan, Ann Arbor, MI, 48109 USA
| |
Collapse
|
2
|
Chen C, Wang Z, Cao X, Zhu J. Exploring the association between early exposure to material hardship and psychopathology through indirect effects of fronto-limbic functional connectivity during fear learning. Cereb Cortex 2023; 33:10702-10710. [PMID: 37689831 DOI: 10.1093/cercor/bhad320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 09/11/2023] Open
Abstract
Experiencing family material hardship has been shown to be associated with disruptions in physical and psychological development. However, the association between material hardship and functional connectivity in the fronto-limbic circuit during fear learning is unclear. A total of 161 healthy young adults aged 17-28 were recruited in our brain imaging study, using the Fear Conditioning Task to test the associations between material hardship and connectivity in fronto-limbic circuit and psychopathology. The results showed that family material hardship was linked to higher positive connectivity between the left amygdala and bilateral dorsal anterior cingulate cortex, as well as higher negative connectivity between the left hippocampus and right ventromedial prefrontal cortex. A mediation analysis showed that material hardship was associated with depression via amygdala functional connectivity (indirect effect = 0.228, P = 0.016), and also indirectly associated with aggression and anger-hostility symptoms through hippocampal connections (aggression: indirect effect = 0.057, P = 0.001; anger-hostility: indirect effect = 0.169, P = 0.048). That is, family material hardship appears to affect fronto-limbic circuits through changes in specific connectivity, and these specific changes, in turn, could lead to specific psychological symptoms. The findings have implications for designing developmentally sensitive interventions to mitigate the emergence of psychopathological symptoms.
Collapse
Affiliation(s)
- Cheng Chen
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| | - Zhengxinyue Wang
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinyu Cao
- Center for Cognition and Brain Disorders of Affiliated Hospital, Hangzhou Normal University, Hangzhou 311121, China
| | - Jianjun Zhu
- Center for Early Environment and Brain Development, School of Education, Guangzhou University, Guangzhou 510006, China
- Department of Psychology, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
3
|
Barendse MEA, Lara GA, Guyer AE, Swartz JR, Taylor SL, Shirtcliff EA, Lamb ST, Miller C, Ng J, Yu G, Tully LM. Sex and pubertal influences on the neurodevelopmental underpinnings of schizophrenia: A case for longitudinal research on adolescents. Schizophr Res 2023; 252:231-241. [PMID: 36682313 PMCID: PMC10725041 DOI: 10.1016/j.schres.2022.12.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/08/2022] [Accepted: 12/10/2022] [Indexed: 01/21/2023]
Abstract
Sex is a significant source of heterogeneity in schizophrenia, with more negative symptoms in males and more affective symptoms and internalizing comorbidity in females. In this narrative review, we argue that there are likely sex differences in the pathophysiological mechanisms of schizophrenia-spectrum disorders (SZ) that originate during puberty and relate to the sex-specific impacts of pubertal maturation on brain development. Pubertal maturation might also trigger underlying (genetic or other) vulnerabilities in at-risk individuals, influencing brain development trajectories that contribute to the emergence of SZ. This review is the first to integrate links between pubertal development and neural development with cognitive neuroscience research in SZ to form and evaluate these hypotheses, with a focus on the frontal-striatal and frontal-limbic networks and their hypothesized contribution to negative and mood symptoms respectively. To test these hypotheses, longitudinal research with human adolescents is needed that examines the role of sex and pubertal development using large cohorts or high risk samples. We provide recommendations for such studies, which will integrate the fields of psychiatry, developmental cognitive neuroscience, and developmental endocrinology towards a more nuanced understanding of the role of pubertal factors in the hypothesized sex-specific pathophysiological mechanisms of schizophrenia.
Collapse
Affiliation(s)
- M E A Barendse
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - G A Lara
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - A E Guyer
- Department of Human Ecology, UC Davis, CA, USA; Center for Mind and Brain, UC Davis, CA, USA
| | - J R Swartz
- Center for Mind and Brain, UC Davis, CA, USA
| | - S L Taylor
- Division of Biostatistics, Department of Public Health Sciences, UC Davis, CA, USA
| | - E A Shirtcliff
- Human Development and Family Studies, Iowa State University, Ames, IA, USA
| | - S T Lamb
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - C Miller
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - J Ng
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - G Yu
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA
| | - L M Tully
- Department of Psychiatry and Behavioral Sciences, UC Davis, CA, USA.
| |
Collapse
|
4
|
Gard AM, Hein TC, Mitchell C, Brooks-Gunn J, McLanahan SS, Monk CS, Hyde LW. Prospective longitudinal associations between harsh parenting and corticolimbic function during adolescence. Dev Psychopathol 2022; 34:981-996. [PMID: 33487207 PMCID: PMC8310533 DOI: 10.1017/s0954579420001583] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Childhood adversity is thought to undermine youth socioemotional development via altered neural function within regions that support emotion processing. These effects are hypothesized to be developmentally specific, with adversity in early childhood sculpting subcortical structures (e.g., amygdala) and adversity during adolescence impacting later-developing structures (e.g., prefrontal cortex; PFC). However, little work has tested these theories directly in humans. Using prospectively collected longitudinal data from the Fragile Families and Child Wellbeing Study (FFCWS) (N = 4,144) and neuroimaging data from a subsample of families recruited in adolescence (N = 162), the current study investigated the trajectory of harsh parenting across childhood (i.e., ages 3 to 9) and how initial levels versus changes in harsh parenting across childhood were associated with corticolimbic activation and connectivity during socioemotional processing. Harsh parenting in early childhood (indexed by the intercept term from a linear growth curve model) was associated with less amygdala, but not PFC, reactivity to angry facial expressions. In contrast, change in harsh parenting across childhood (indexed by the slope term) was associated with less PFC, but not amygdala, activation to angry faces. Increases in, but not initial levels of, harsh parenting were also associated with stronger positive amygdala-PFC connectivity during angry face processing.
Collapse
Affiliation(s)
- Arianna M. Gard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Tyler C. Hein
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Serious Mental Illness Treatment Resource Evaluation Center, Office of Mental Health and Suicide Prevention, Department of Veterans Affairs, Ann Arbor, MI, USA
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne Brooks-Gunn
- Teachers College and the College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Columbia Population Research Center, Columbia University, New York, NY, USA
| | - Sarah S. McLanahan
- Department of Sociology and Public Affairs, Princeton University, Princeton, NJ, USA
- Center for Research on Child Wellbeing, Princeton University, Princeton, NJ, USA
- Office of Population Research, Princeton University, Princeton, NJ, USA
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Dragan WŁ, Sokołowski A, Folkierska-Żukowska M. Temperament and neural activation during the affective Stroop task: A functional connectivity study. PERSONALITY AND INDIVIDUAL DIFFERENCES 2022. [DOI: 10.1016/j.paid.2021.111385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
6
|
Chahal R, Weissman DG, Hallquist MN, Robins RW, Hastings PD, Guyer AE. Neural connectivity biotypes: associations with internalizing problems throughout adolescence. Psychol Med 2021; 51:2835-2845. [PMID: 32466823 PMCID: PMC7845761 DOI: 10.1017/s003329172000149x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
BACKGROUND Neurophysiological patterns may distinguish which youth are at risk for the well-documented increase in internalizing symptoms during adolescence. Adolescents with internalizing problems exhibit altered resting-state functional connectivity (RSFC) of brain regions involved in socio-affective processing. Whether connectivity-based biotypes differentiate adolescents' levels of internalizing problems remains unknown. METHOD Sixty-eight adolescents (37 females) reported on their internalizing problems at ages 14, 16, and 18 years. A resting-state functional neuroimaging scan was collected at age 16. Time-series data of 15 internalizing-relevant brain regions were entered into the Subgroup-Group Iterative Multi-Model Estimation program to identify subgroups based on RSFC maps. Associations between internalizing problems and connectivity-based biotypes were tested with regression analyses. RESULTS Two connectivity-based biotypes were found: a Diffusely-connected biotype (N = 46), with long-range fronto-parietal paths, and a Hyper-connected biotype (N = 22), with paths between subcortical and medial frontal areas (e.g. affective and default-mode network regions). Higher levels of past (age 14) internalizing problems predicted a greater likelihood of belonging to the Hyper-connected biotype at age 16. The Hyper-connected biotype showed higher levels of concurrent problems (age 16) and future (age 18) internalizing problems. CONCLUSIONS Differential patterns of RSFC among socio-affective brain regions were predicted by earlier internalizing problems and predicted future internalizing problems in adolescence. Measuring connectivity-based biotypes in adolescence may offer insight into which youth face an elevated risk for internalizing disorders during this critical developmental period.
Collapse
Affiliation(s)
- Rajpreet Chahal
- Department of Human Ecology, University of California, Davis, One Shields Avenue, Davis, CA 95618
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95616
| | | | - Michael N. Hallquist
- Department of Psychology, Pennsylvania State University, 309 Moore Building, University Park, PA 16802
| | - Richard W. Robins
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95618
| | - Paul D. Hastings
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95616
- Department of Psychology, University of California, Davis, One Shields Avenue, Davis, CA 95618
| | - Amanda E. Guyer
- Department of Human Ecology, University of California, Davis, One Shields Avenue, Davis, CA 95618
- Center for Mind and Brain, University of California, Davis, 267 Cousteau Place, Davis, CA 95616
| |
Collapse
|
7
|
Jiang N, Xu J, Li X, Wang Y, Zhuang L, Qin S. Negative Parenting Affects Adolescent Internalizing Symptoms Through Alterations in Amygdala-Prefrontal Circuitry: A Longitudinal Twin Study. Biol Psychiatry 2021; 89:560-569. [PMID: 33097228 DOI: 10.1016/j.biopsych.2020.08.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 08/03/2020] [Accepted: 08/03/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND The synergic interaction of risk genes and environmental factors has been thought to play a critical role in mediating emotion-related brain circuitry function and dysfunction in depression and anxiety disorders. Little, however, is known regarding neurodevelopmental bases underlying how maternal negative parenting affects emotion-related brain circuitry linking to adolescent internalizing symptoms and whether this neurobehavioral association is heritable during adolescence. METHODS The effects of maternal parenting on amygdala-based emotional circuitry and internalizing symptoms were examined by using longitudinal functional magnetic resonance imaging among 100 monozygotic twins and 78 dizygotic twins from early adolescence (age 13 years) to mid-adolescence (age 16 years). The mediation effects among variables of interest and their heritability were assessed by structural equation modeling and quantitative genetic analysis, respectively. RESULTS Exposure to maternal negative parenting was positively predictive of stronger functional connectivity of the amygdala with the ventrolateral prefrontal cortex. This neural pathway mediated the association between negative parenting and adolescent depressive symptoms and exhibited moderate heritability (21%). CONCLUSIONS These findings highlight that maternal negative parenting in early adolescence is associated with the development of atypical amygdala-prefrontal connectivity in relation to internalizing depressive symptoms in mid-adolescence. Such abnormality of emotion-related brain circuitry is heritable to a moderate degree.
Collapse
Affiliation(s)
- Nengzhi Jiang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; School of Psychology, Weifang Medical University, Weifang, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Jiahua Xu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Xinying Li
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Yanyu Wang
- School of Psychology, Weifang Medical University, Weifang, China
| | - Liping Zhuang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China
| | - Shaozheng Qin
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Beijing Key Laboratory of Brain Imaging and Connectomics, Beijing Normal University, Beijing, China; Chinese Institute for Brain Research, Beijing, China.
| |
Collapse
|
8
|
Gard AM, Maxwell AM, Shaw DS, Mitchell C, Brooks-Gunn J, McLanahan SS, Forbes EE, Monk CS, Hyde LW. Beyond family-level adversities: Exploring the developmental timing of neighborhood disadvantage effects on the brain. Dev Sci 2021; 24:e12985. [PMID: 32416027 PMCID: PMC7669733 DOI: 10.1111/desc.12985] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 02/06/2023]
Abstract
A growing literature suggests that adversity is associated with later altered brain function, particularly within the corticolimbic system that supports emotion processing and salience detection (e.g., amygdala, prefrontal cortex [PFC]). Although neighborhood socioeconomic disadvantage has been shown to predict maladaptive behavioral outcomes, particularly for boys, most of the research linking adversity to corticolimbic function has focused on family-level adversities. Moreover, although animal models and studies of normative brain development suggest that there may be sensitive periods during which adversity exerts stronger effects on corticolimbic development, little prospective evidence exists in humans. Using two low-income samples of boys (n = 167; n = 77), Census-derived neighborhood disadvantage during early childhood, but not adolescence, was uniquely associated with greater amygdala, but not PFC, reactivity to ambiguous neutral faces in adolescence and young adulthood. These associations remained after accounting for several family-level adversities (e.g., low family income, harsh parenting), highlighting the independent and developmentally specific neural effects of the neighborhood context. Furthermore, in both samples, indicators measuring income and poverty status of neighbors were predictive of amygdala function, suggesting that neighborhood economic resources may be critical to brain development.
Collapse
Affiliation(s)
- Arianna M. Gard
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, USA
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Colter Mitchell
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Jeanne Brooks-Gunn
- Teachers College, Columbia University, New York, NY, USA
- College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Sara S. McLanahan
- Department of Sociology and Public Affairs, Princeton University, Princeton, NJ, USA
- Center for Research on Child Wellbeing, Princeton University, Princeton, NJ, USA
- Office of Population Research, Princeton University, Princeton, NJ, USA
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christopher S. Monk
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center of the Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
- Center for Human Growth and Development, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Parental Education, Household Income, Race, and Children's Working Memory: Complexity of the Effects. Brain Sci 2020; 10:brainsci10120950. [PMID: 33297546 PMCID: PMC7762416 DOI: 10.3390/brainsci10120950] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/01/2020] [Accepted: 12/04/2020] [Indexed: 12/20/2022] Open
Abstract
Background. Considerable research has linked social determinants of health (SDoHs) such as race, parental education, and household income to school performance, and these effects may be in part due to working memory. However, a growing literature shows that these effects may be complex: while the effects of parental education may be diminished for Blacks than Whites, household income may explain such effects. Purpose. Considering race as sociological rather than a biological construct (race as a proxy of racism) and built on Minorities' Diminished Returns (MDRs), this study explored complexities of the effects of SDoHs on children's working memory. Methods. We borrowed data from the Adolescent Brain Cognitive Development (ABCD) study. The total sample was 10,418, 9- and 10-year-old children. The independent variables were race, parental education, and household income. The primary outcome was working memory measured by the NIH Toolbox Card Sorting Test. Age, sex, ethnicity, and parental marital status were the covariates. To analyze the data, we used mixed-effect regression models. Results. High parental education and household income were associated with higher and Black race was associated with lower working memory. The association between high parental education but not household income was less pronounced for Black than White children. This differential effect of parental education on working memory was explained by household income. Conclusions. For American children, parental education generates unequal working memory, depending on race. This means parental education loses some of its expected effects for Black families. It also suggests that while White children with highly educated parents have the highest working memory, Black children report lower working memory, regardless of their parental education. This inequality is mainly because of differential income in highly educated White and Black families. This finding has significant public policy and economic implications and suggests we need to do far more than equalizing education to eliminate racial inequalities in children's cognitive outcomes. While there is a need for multilevel policies that reduce the effect of racism and social stratification for middle-class Black families, equalizing income may have more returns than equalizing education.
Collapse
|
10
|
Assari S. Socioeconomic Status Inequalities Partially Mediate Racial and Ethnic Differences in Children's Amygdala Volume. STUDIES IN SOCIAL SCIENCE RESEARCH 2020; 1:62-79. [PMID: 33215166 DOI: 10.22158/sssr.v1n2p62] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND While race/ethnicity and socioeconomic status (SES) impact brain structures such as the amygdala, less is known on whether or not family SES partially explains why amygdala volume is smaller for racial and ethnic minority groups. PURPOSE This study tested the mediating effects of family SES on racial and ethnic differences in right and left amygdala volume. METHODS We borrowed the structural Magnetic Resonance Imaging (sMRI) data of the Children Brain Cognitive Development (ABCD) study, a brain imaging investigation of childhood brain development in the US. The total sample was 8977, 9-10-year-old children. The independent variables were race and ethnicity. The primary outcomes were right and left amygdala volume. Age, sex, household size, and marital status were the covariates. Multiple SES indicators such as family income, subjective family SES, parental employment, parental education, and neighborhood income were the mediators. To analyze the data, we used regression models without and with our mediators. Sobel test was used to test if these mediational paths are statistically significant. RESULTS Black and Latino children had smaller amygdala sizes than non-Latino White children. The effects of race and ethnicity on amygdala volume were partially mediated by SES indicators, suggesting that one of the many reasons Black and Latino children have smaller volumes of right and left amygdala is their lower SES. CONCLUSIONS For American children, lower family and neighborhood SES indicators partially, but not fully, explain smaller amygdala sizes of Black and Latino children compared to non- Latino White children.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
- Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
11
|
Subjective Socioeconomic Status and Children's Amygdala Volume: Minorities' Diminish Returns. NEUROSCI 2020; 1:59-74. [PMID: 33103157 DOI: 10.3390/neurosci1020006] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Considerable research has suggested that low socioeconomic status (SES) negatively influences brain structure, including but not limited to decreased amygdala volume. Considering race and ethnicity as sociological rather than biological constructs, this study was built on minorities' diminished returns (MDRs) to test if the effects of family SES on the total amygdala volume is weaker for black and Latino children than white and non-Latino children. We borrowed data from the Adolescent Brain Cognitive Development (ABCD) study, a national multi-center brain imaging investigation of childhood brain development in the US. The total sample was 9380 9-10-year-old children. The independent variables were subjective family SES and parental education. The primary outcome was total amygdala volume. High subjective SES and parental education were independently associated with larger total amygdala size. The association between high subjective SES and larger total amygdala volume was less pronounced for black and Latino children than white and non-Latino children. For American children, family SES has unequal effects on amygdala size and function, a pattern that is consistent with MDRs. This result suggests that SES loses some of its expected effects for racial and ethnic minority families.
Collapse
|
12
|
Rakesh D, Allen NB, Whittle S. Balancing act: Neural correlates of affect dysregulation in youth depression and substance use - A systematic review of functional neuroimaging studies. Dev Cogn Neurosci 2020; 42:100775. [PMID: 32452461 PMCID: PMC7139159 DOI: 10.1016/j.dcn.2020.100775] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/22/2022] Open
Abstract
Both depression and substance use problems have their highest incidence during youth (i.e., adolescence and emerging adulthood), and are characterized by emotion regulation deficits. Influential neurodevelopmental theories suggest that alterations in the function of limbic and frontal regions render youth susceptible to these deficits. However, whether depression and substance use in youth are associated with similar alterations in emotion regulation neural circuitry is unknown. In this systematic review we synthesized the results of functional magnetic resonance imaging (fMRI) studies investigating the neural correlates of emotion regulation in youth depression and substance use. Resting-state fMRI studies focusing on limbic connectivity were also reviewed. While findings were largely inconsistent within and between studies of depression and substance use, some patterns emerged. First, youth depression appears to be associated with exaggerated amygdala activity in response to negative stimuli; second, both depression and substance use appear to be associated with lower functional connectivity between the amygdala and prefrontal cortex during rest. Findings are discussed in relation to support for existing neurodevelopmental models, and avenues for future work are suggested, including studying neurodevelopmental trajectories from a network perspective.
Collapse
Affiliation(s)
- Divyangana Rakesh
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia
| | - Nicholas B Allen
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Sarah Whittle
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Melbourne, Victoria, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, Victoria, Australia.
| |
Collapse
|
13
|
Sylvester CM, Yu Q, Srivastava AB, Marek S, Zheng A, Alexopoulos D, Smyser CD, Shimony JS, Ortega M, Dierker DL, Patel GH, Nelson SM, Gilmore AW, McDermott KB, Berg JJ, Drysdale AT, Perino MT, Snyder AZ, Raut RV, Laumann TO, Gordon EM, Barch DM, Rogers CE, Greene DJ, Raichle ME, Dosenbach NUF. Individual-specific functional connectivity of the amygdala: A substrate for precision psychiatry. Proc Natl Acad Sci U S A 2020; 117:3808-3818. [PMID: 32015137 PMCID: PMC7035483 DOI: 10.1073/pnas.1910842117] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.
Collapse
Affiliation(s)
- Chad M Sylvester
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110;
| | - Qiongru Yu
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - A Benjamin Srivastava
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Scott Marek
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Annie Zheng
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
| | | | - Christopher D Smyser
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Joshua S Shimony
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Mario Ortega
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Teva Pharmaceuticals, North Wales, PA 19454
| | - Donna L Dierker
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Gaurav H Patel
- Department of Psychiatry, Columbia University, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Steven M Nelson
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Adrian W Gilmore
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Kathleen B McDermott
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Jeffrey J Berg
- Department of Psychology, New York University, New York, NY 10003
| | - Andrew T Drysdale
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Michael T Perino
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Abraham Z Snyder
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Ryan V Raut
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Timothy O Laumann
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
| | - Evan M Gordon
- VISN 17 Center of Excellence for Research on Returning War Veterans, Doris Miller VA Medical Center, Waco, TX 76711
- Center for Vital Longevity, University of Texas at Dallas, Dallas, TX 75235
- Department of Psychology and Neuroscience, Baylor University, Waco, TX 76706
| | - Deanna M Barch
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, MO 63110
| | - Cynthia E Rogers
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
| | - Deanna J Greene
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
| | - Marcus E Raichle
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110;
| | - Nico U F Dosenbach
- Department of Neurology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Radiology, Washington University in St. Louis, St. Louis, MO 63110
- Department of Pediatrics, Washington University in St. Louis, St. Louis, MO 63110
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63110
| |
Collapse
|
14
|
Abstract
Introduction Considerable research has established a link between socioeconomic status (SES) and brain function. While studies have shown a link between poverty status and amygdala response to negative stimuli, a paucity of knowledge exists on whether neighborhood poverty is also independently associated with amygdala hyperactive response to negative stimuli. Purpose Using functional brain imaging data, this study tested the association between neighborhood SES and the amygdala's response to negative stimuli. Considering race as a sociological rather than a biological construct, we also explored racial heterogeneity in this association between non-Hispanic Black and non-Hispanic White youth. Methods We borrowed the functional Magnetic Resonance Imaging (fMRI) data of the Adolescent Brain Cognitive Development (ABCD) study. The sample was 2,490 nine to ten year old non-Hispanic Black and non-Hispanic White adolescents. The independent variable was neighborhood income which was treated as a continuous measure. The primary outcomes were the right and left amygdala response to negative face during an N-Back task. Age, sex, race, marital status, and family SES were the covariates. To analyze the data, we used linear regression models. Results Low neighborhood income was independently associated with a higher level of amygdala response to negative face. Similar results were seen for the right and left amygdala. These effects were significant net of race, age, sex, marital status, and family SES. An association between low neighborhood SES and higher left but not right amygdala response to negative face could be observed for non-Hispanic Black youth. No association between neighborhood SES and left or right amygdala response to negative face could be observed for non-Hispanic White youth. Conclusions For American youth, particularly non-Hispanic Black youth, living in a poor neighborhood predicts the left amygdala reaction to negative face. This result suggested that Black youth who live in poor neighborhoods are at a high risk of poor emotion regulation. This finding has implications for policy making to reduce inequalities in undesired behavioral and emotional outcomes. Policy solutions to health inequalities should address inequalities in neighborhood SES.
Collapse
Affiliation(s)
- Shervin Assari
- Department of Family Medicine, College of Medicine, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA.,Department of Urban Public Health, Charles R. Drew University of Medicine and Science, Los Angeles, CA 90059, USA
| |
Collapse
|
15
|
Radoman M, Phan KL, Gorka SM. Neural correlates of predictable and unpredictable threat in internalizing psychopathology. Neurosci Lett 2019; 701:193-201. [PMID: 30825592 PMCID: PMC6476657 DOI: 10.1016/j.neulet.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/08/2019] [Accepted: 02/20/2019] [Indexed: 11/19/2022]
Abstract
Converging lines of evidence suggest that heightened responding to unpredictable threat may be an important neurobiological marker of internalizing psychopathology (IP). Prior data also indicate that aversive responding to uncertainty may be mediated by hyperactivation of several brain regions within the frontolimbic circuit, namely the anterior insula (aINS) and the dorsal anterior cingulate cortex (dACC). To date, however, the majority of this research has been focused on individual diagnoses and it is unclear whether abnormal neural reactivity to unpredictable threat is observed within heterogeneous, transdiagnostic IP patient populations, as theory would suggest. The aim of the current study was to therefore examine the neural correlates of temporally unpredictable (U) and predictable (P) threat in a sample of healthy controls (n = 24) and patients with a broad range of IP diagnoses (n = 51). We also examined whether symptom severity measures of fear and distress/misery dimensions correlated with neural reactivity to U- and P-threat. All participants completed a modified version of a well-validated threat-of-shock task during functional magnetic resonance imaging (fMRI). Across all participants, U- and P-threat elicited heightened activation in the aINS and brainstem, while P-threat alone also activated the dACC. Relative to healthy controls, patients displayed greater activation in the right aINS during U-threat, and greater right brainstem activation during P-threat. In addition, we found that brainstem activity during U-threat correlated with fear, but not distress/misery, psychopathology. Taken together, these preliminary results suggest that exaggerated aINS reactivity during U-threat and brainstem reactivity during P-threat may have the potential to become important transdiagnostic biomarkers of IP; however, future research efforts are needed to corroborate and expand the present findings.
Collapse
Affiliation(s)
- Milena Radoman
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Department of Anatomy and Cell Biology, and the Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States
| | - K Luan Phan
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Department of Anatomy and Cell Biology, and the Graduate Program in Neuroscience, University of Illinois at Chicago, Chicago, IL, United States; Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States; Mental Health Service Line, Jesse Brown VA Medical Center, Chicago, IL, United States
| | - Stephanie M Gorka
- Department of Psychiatry, University of Illinois at Chicago, Chicago, IL, United States; Department of Psychology, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
16
|
Waller R, Gard AM, Shaw DS, Forbes EE, Neumann CS, Hyde LW. Weakened Functional Connectivity Between the Amygdala and the Ventromedial Prefrontal Cortex Is Longitudinally Related to Psychopathic Traits in Low-Income Males During Early Adulthood. Clin Psychol Sci 2019; 7:628-635. [PMID: 31275737 PMCID: PMC6605032 DOI: 10.1177/2167702618810231] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Psychopathy is a complex disorder comprised of harmful personality traits and impulsive-lifestyle and antisocial behaviors. Weakened functional connectivity between limbic and prefrontal brain regions is thought to underlie impaired sensitivity to others' emotions that contribute to the interpersonal and affective personality traits associated with psychopathy. We tested whether weakened functional connectivity between the amygdala and ventromedial prefrontal cortex (vmPFC) during the processing of fearful, angry, and neutral facial expressions, was prospectively related to psychopathic traits in early adulthood. The sample included 167 low-income, racially diverse, urban males who completed an fMRI scan at age 20 and questionnaire measures at ages 20 and 22. Weakened amygdala-vmPFC functional connectivity to fearful, but not neutral or angry, faces at age 20 was related to higher psychopathic traits at age 22.
Collapse
Affiliation(s)
- Rebecca Waller
- Department of Psychology, University of Pennsylvania,
Philadelphia, USA
- Department of Psychology, University of Michigan, Ann
Arbor, USA
| | - Arianna M. Gard
- Department of Psychology, University of Michigan, Ann
Arbor, USA
| | - Daniel S. Shaw
- Department of Psychology, University of Pittsburgh,
Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh Medical
Center, Pittsburgh, USA
- Center for the Neural Basis of Cognition, University of
Pittsburgh, USA
| | - Erika E. Forbes
- Department of Psychology, University of Pittsburgh,
Pittsburgh, USA
- Department of Psychiatry, University of Pittsburgh Medical
Center, Pittsburgh, USA
- Center for the Neural Basis of Cognition, University of
Pittsburgh, USA
- Department of Pediatrics, University of Pittsburgh,
USA
| | | | - Luke W. Hyde
- Department of Psychology, University of Michigan, Ann
Arbor, USA
- Center for Human Growth and Development, University of
Michigan, Ann Arbor, USA
- Survey Research Center of the Institute for Social
Research, University of Michigan, Ann Arbor, USA
| |
Collapse
|