1
|
Tremblay SA, Nathan Spreng R, Wearn A, Alasmar Z, Pirhadi A, Tardif CL, Chakravarty MM, Villeneuve S, Leppert IR, Carbonell F, Medina YI, Steele CJ, Gauthier CJ. Sex and APOE4-specific links between cardiometabolic risk factors and white matter alterations in individuals with a family history of Alzheimer's disease. Neurobiol Aging 2025; 150:80-96. [PMID: 40086421 DOI: 10.1016/j.neurobiolaging.2025.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 02/11/2025] [Accepted: 03/02/2025] [Indexed: 03/16/2025]
Abstract
Early detection of pathological changes in Alzheimer's disease (AD) has garnered significant attention in the last few decades as interventions aiming to prevent progression will likely be most effective when initiated early. White matter (WM) alterations are among the earliest changes in AD, yet limited work has comprehensively characterized the effects of AD risk factors on WM. In older adults with a family history of AD, we investigated the sex-specific and APOE genotype-related relationships between WM microstructure and risk factors. Multiple MRI-derived metrics were integrated using a multivariate approach based on the Mahalanobis distance (D2). To uncover the specific biological underpinnings of these WM alterations, we then extracted the contribution of each MRI feature to D2 in significant clusters. Lastly, the links between WM D2 and cognition were explored. WM D2 in several regions was associated with high systolic blood pressure, BMI, and glycated hemoglobin, and low cholesterol, in both males and females. APOE4 + displayed a distinct risk pattern, with LDL-cholesterol having a detrimental effect only in carriers, and this pattern was linked to immediate memory performance. Myelination was the main mechanism underlying WM alterations. Our findings reveal that combined exposure to multiple cardiometabolic risk factors negatively impacts microstructural health, which may subsequently affect cognition. Notably, APOE4 carriers exhibited a different risk pattern, especially in the role of LDL, suggesting distinct underlying mechanisms in this group.
Collapse
Affiliation(s)
- Stefanie A Tremblay
- Physics department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada; School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada.
| | - R Nathan Spreng
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Alfie Wearn
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Zaki Alasmar
- School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Psychology department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada
| | - Amir Pirhadi
- Electrical Engineering department, Concordia University, 1455 De Maisonneuve Blvd. W, Montreal, QC H3G 1M8, Canada; ViTAA Medical Solutions, 400 Rue Montfort, Montréal, QC H3C 4J9, Canada
| | - Christine L Tardif
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Department of Biomedical Engineering, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada
| | - Mallar M Chakravarty
- Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Department of Biomedical Engineering, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Sylvia Villeneuve
- Department of Psychiatry, McGill University, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; StoP-AD Centre, Douglas Mental Health Institute Research Centre, 6875 Blvd. LaSalle, Verdun, QC H4H 1R3, Canada
| | - Ilana R Leppert
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada
| | | | - Yasser Iturria Medina
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; McConnell Brain Imaging Centre, Montreal Neurological Institute, 845 Rue Sherbrooke W, Montréal, QC H3A 0G4, Canada; Ludmer Center for NeuroInformatics and Mental Health, 1010 rue Sherbrooke W, Montreal, Canada
| | - Christopher J Steele
- School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Psychology department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, Leipzig 04103, Germany
| | - Claudine J Gauthier
- Physics department, Concordia University, 7141 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada; Montreal Heart Institute, 5000 Rue Bélanger, Montréal, QC H1T 1C8, Canada; School of Health, Concordia University, 7200 Rue Sherbrooke W, Montréal, QC H4B 1R6, Canada.
| |
Collapse
|
2
|
Dietze LMF, McWhinney SR, Favre P, Abé C, Alexander N, Barkhau C, Benedetti F, Berk M, Bøen E, Boye B, Brosch K, Canales-Rodríguez EJ, Cannon DM, Carruthers SP, Corkum ELV, Dannlowski U, Díaz-Zuluaga AM, Dohm K, Elvsåshagen T, Flinkenflügel K, Fortea L, Furlong LS, Goldstein BI, Grotegerd D, Gruber M, Haarman BCM, Howells FM, Jahanshad N, Jamalabadi H, Jansen A, Karantonis JA, Kennedy KG, Kircher TTJ, Klahn AL, Kochunov P, Kraus A, Landén M, López-Jaramillo C, MacIntosh BJ, Mazza E, McDonald C, McIntosh AM, Meinert H, Meinert S, Melloni EMT, Mitchell PB, Nenadić I, Opel N, Phillips M, Piguet C, Polosan M, Pomarol-Clotet E, Pouchon A, Radua J, Roberts G, Ross AJ, Rossell SL, Salvador R, Sim K, Soares JC, Zunta-Soares GB, Stein F, Straube B, Suo C, Teutenberg L, Thomas-Odenthal F, Thomopoulos SI, Usemann P, Van Rheenen TE, Versace A, Vieta E, Vilajosana E, Mwangi B, Wen W, Whalley HC, Wu MJ, Andreassen OA, Ching CRK, Thompson PM, Houenou J, Hajek T. White matter microstructure in obesity and bipolar disorders: an ENIGMA bipolar disorder working group study in 2186 individuals. Mol Psychiatry 2025; 30:1770-1779. [PMID: 39501059 DOI: 10.1038/s41380-024-02784-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 09/26/2024] [Accepted: 10/07/2024] [Indexed: 03/21/2025]
Abstract
Although specific risk factors for brain alterations in bipolar disorders (BD) are currently unknown, obesity impacts the brain and is highly prevalent in BD. Gray matter correlates of obesity in BD have been well documented, but we know much less about brain white matter abnormalities in people who have both obesity and BD. We obtained body mass index (BMI) and diffusion tensor imaging derived fractional anisotropy (FA) from 22 white matter tracts in 899 individuals with BD, and 1287 control individuals from 20 cohorts in the ENIGMA-BD working group. In a mega-analysis, we investigated the associations between BMI, diagnosis or medication and FA. Lower FA was associated with both BD and BMI in six white matter tracts, including the corpus callosum and thalamic radiation. Higher BMI or BD were uniquely associated with lower FA in three and six white matter tracts, respectively. People not receiving lithium treatment had a greater negative association between FA and BMI than people treated with lithium in the posterior thalamic radiation and sagittal stratum. In three tracts BMI accounted for 10.5 to 17% of the negative association between the number of medication classes other than lithium and FA. Both overweight/obesity and BD demonstrated lower FA in some of the same regions. People prescribed lithium had a weaker association between BMI and FA than people not on lithium. In contrast, greater weight contributed to the negative associations between medications and FA. Obesity may add to brain alterations in BD and may play a role in effects of medications on the brain.
Collapse
Affiliation(s)
- Lorielle M F Dietze
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Sean R McWhinney
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Pauline Favre
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, Team Translational Neuropsychiatry, Créteil, France
| | - Christoph Abé
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Quantify Research Stockholm Sweden, Stockholm, Sweden
| | - Nina Alexander
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Carlotta Barkhau
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Francesco Benedetti
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Michael Berk
- Institute for Mental and Physical Health and Clinical Translation School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Erlend Bøen
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
| | - Birgitte Boye
- Unit for Psychosomatics and C-L psychiatry for adults, Oslo University Hospital, Oslo, Norway
- Department of Behavioural Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Katharina Brosch
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Erick J Canales-Rodríguez
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Sean P Carruthers
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
| | - Emily L V Corkum
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Udo Dannlowski
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Ana M Díaz-Zuluaga
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Katharina Dohm
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Torbjørn Elvsåshagen
- Department of Behavioural Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
- Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Neurology, Division of Clinical Neuroscience, Oslo University Hospital, Oslo, Norway
| | - Kira Flinkenflügel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Lydia Fortea
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Lisa S Furlong
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Benjamin I Goldstein
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Dominik Grotegerd
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Marius Gruber
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Goethe University, Goethe, Germany
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Fleur M Howells
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Hamidreza Jamalabadi
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Andreas Jansen
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
- Core-Facility Brainimaging, Faculty of Medicine, University of Marburg, Marburg, Germany
| | - James A Karantonis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Kody G Kennedy
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Tilo T J Kircher
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Anna Luisa Klahn
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
| | - Peter Kochunov
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Anna Kraus
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Mikael Landén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Gothenburg, Sweden
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Carlos López-Jaramillo
- Research Group in Psychiatry GIPSI, Department of Psychiatry, Faculty of Medicine, Universidad de Antioquia, Medellin, Colombia
| | - Bradley J MacIntosh
- Centre for Youth Bipolar Disorder, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Center for Brain Resilience & Recovery, Hurvitz Brain Sciences Program, Physical Sciences Platform, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Elena Mazza
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics, Clinical Neuroimaging Laboratory, Galway Neuroscience Centre, College of Medicine, Nursing, and Health Sciences, University of Galway, Galway, Ireland
| | - Andrew M McIntosh
- Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Hannah Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Susanne Meinert
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Institute for Translational Neuroscience, University of Münster, Münster, Germany
| | - Elisa M T Melloni
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milano, Italy
- University Vita-Salute San Raffaele, Milano, Italy
| | - Philip B Mitchell
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
- Black Dog Institute, Sydney, Sydney, NSW, Australia
| | - Igor Nenadić
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Nils Opel
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Jena, Jena, Germany
- German Center for Mental Health (DZPG), Jena, Germany
| | - Mary Phillips
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Camille Piguet
- Synapsy Center, Department of Psychiatry, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Mircea Polosan
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Edith Pomarol-Clotet
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
| | - Arnaud Pouchon
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, Grenoble, France
| | - Joaquim Radua
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Gloria Roberts
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alex J Ross
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
| | - Susan L Rossell
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
- Department of Psychiatry, St. Vincent's Hospital, Melbourne, Australia
| | - Raymond Salvador
- FIDMAG Germanes Hospitalàries Research Foundation, Barcelona, Spain
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
| | - Kang Sim
- West Region, Institute of Mental Health, Singapore, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jair C Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Giovana B Zunta-Soares
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Frederike Stein
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Benjamin Straube
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Chao Suo
- Institute for Mental and Physical Health and Clinical Translation School of Medicine, Deakin University, Geelong, VIC, Australia
| | - Lea Teutenberg
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | | | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paula Usemann
- Department of Psychiatry and Psychotherapy, Philipps-Universität Marburg, Marburg, Germany
| | - Tamsyn E Van Rheenen
- Centre for Mental Health and Brain Sciences, School of Health Sciences, Swinburne University, Melbourne, VIC, Australia
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, University of Melbourne, Melbourne, VIC, Australia
| | - Amelia Versace
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Eduard Vieta
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Bipolar Disorders Unit, Clinical Institute of Neurosciences, Hospital Clínic, Barcelona, Spain
| | - Enric Vilajosana
- Mental Health Research Networking Center (CIBERSAM), ISC III, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
| | - Benson Mwangi
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Wei Wen
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Heather C Whalley
- Department of Psychiatry, Royal Edinburgh Hospital, Edinburgh, UK
- Generation Scotland, Institute for Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Mon-Ju Wu
- Louis A. Faillace, MD, Department of Psychiatry and Behavioral Sciences, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Josselin Houenou
- Neurospin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- INSERM Unit U955, Team Translational Neuropsychiatry, Créteil, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), CHU Mondor, Psychiatry Department, Créteil, France
- Faculté de Médecine, Université Paris Est Créteil, Créteil, France
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada.
- National Institute of Mental Health, Klecany, Czech Republic.
| |
Collapse
|
3
|
Konwar S, Manca R, De Marco M, Soininen H, Venneri A. Interactive effects of APOE ɛ4 status and vascular burden on white matter microstructural integrity in aging with and without neurocognitive decline. J Alzheimers Dis 2025; 104:902-918. [PMID: 40129408 DOI: 10.1177/13872877251320660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
BackgroundCarrying the Apolipoprotein (APOE) ε4 allele lowers age of onset and increases Alzheimer's disease (AD) risk. Neuropathological findings suggest a mixed etiology in many AD patients, and vascular pathology is common.ObjectiveThis study tested the interactive effect of APOE status and multiple vascular comorbidities on white matter (WM) microstructure in aging and early AD.Methods195 participants from the VPH-DARE@IT dataset were stratified in low/high vascular burden based on the Framingham Risk Score (BMI version). Tract-based spatial statistics was used for WM analyses.ResultsThere was a main effect of APOE, with APOE ɛ4 carriers having higher fractional anisotropy (FA) and lower axial diffusivity (AxD), mean diffusivity (MD), and radial diffusivity (RD) than non-carriers. There was a main effect of vascular burden with lower FA and higher AxD, MD, and RD in the high-burden than the low-burden group. A significant interaction between APOE genotype and vascular burden was also found for all diffusion indices. Post-hoc comparisons revealed lower left hemisphere WM integrity when comparing the low risk group (i.e., non-carriers low burden) to intermediate risk groups (i.e., non-carriers high burden or ɛ4 carriers low burden). The contrasts between the two intermediate risk groups showed altered WM integrity bilaterally. Only the non-carriers high burden showed greater alterations in WM integrity when compared with the high risk group (i.e., ɛ4 carriers high burden) mainly in right hemisphere tracts.ConclusionsThese findings indicate an interactive effect of a risk gene and vascular comorbidities on WM integrity in aging and early AD.
Collapse
Affiliation(s)
- Srijan Konwar
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Riccardo Manca
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Matteo De Marco
- Department of Life Sciences, Brunel University London, Uxbridge, UK
| | - Hilkka Soininen
- Department of Neurology, University of Eastern Finland, Kuopio, Finland
| | - Annalena Venneri
- Department of Life Sciences, Brunel University London, Uxbridge, UK
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| |
Collapse
|
4
|
Schilling KG, Ramadass K, Sairanen V, Kim ME, Rheault F, Newlin N, Nguyen T, Barquero L, D'archangel M, Gao C, Topolnjak E, Khairi NM, Archer D, Beason‐Held LL, Resnick SM, Hohman T, Cutting L, Schneider J, Barnes LL, Bennett DA, Arfanakis K, Vinci‐Booher S, Albert M, Moyer D, Landman BA. Head Motion in Diffusion Magnetic Resonance Imaging: Quantification, Mitigation, and Structural Associations in Large, Cross-Sectional Datasets Across the Lifespan. Hum Brain Mapp 2025; 46:e70143. [PMID: 39935269 PMCID: PMC11814480 DOI: 10.1002/hbm.70143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/14/2024] [Accepted: 01/08/2025] [Indexed: 02/13/2025] Open
Abstract
Head motion during diffusion magnetic resonance imaging (MRI) scans can cause numerous artifacts and biases subsequent quantification. However, a thorough characterization of motion across multiple scans, cohorts, and consortiums has not been performed. To address this, we designed a study with three aims. First, we aimed to characterize subject motion across several large cohorts, utilizing 13 cohorts comprised of 16,995 imaging sessions (age 0.1-100 years, mean age = 63 years; 7220 females; 3175 cognitively impaired adults; 471 developmentally delayed children) to describe the magnitude and directions of subject movement. Second, we aimed to investigate whether state-of-the-art diffusion preprocessing pipelines mitigate biases in quantitative measures of microstructure and connectivity by taking advantage of datasets with scan-rescan acquisitions and ask whether there are detectable differences between the same subjects when scans and rescans have differing levels of motion. Third, we aimed to investigate whether there are structural connectivity differences between movers and non-movers. We found that (1) subjects typically move 1-2 mm/min with most motion as translation in the anterior-posterior direction and rotation around the right-left axis; (2) Modern preprocessing pipelines can effectively mitigate motion to the point where biases are not detectable with current analysis techniques; and (3) There are no apparent differences in microstructure or macrostructural connections in participants who exhibit high motion versus those that exhibit low motion. Overall, characterizing motion magnitude and directions, as well as motion correlates, informs and improves motion mitigation strategies and image processing pipelines.
Collapse
Affiliation(s)
- Kurt G. Schilling
- Department of Radiology & Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceNashvilleTennesseeUSA
| | - Karthik Ramadass
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Viljami Sairanen
- Baby Brain Activity Center, Children's Hospital, Helsinki University Hospital and University of HelsinkiHelsinkiFinland
- Department of RadiologyKanta‐Häme Central HospitalHämeenlinnaFinland
| | - Michael E. Kim
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Francois Rheault
- Medical Imaging and Neuroinformatic (MINi) LabUniversite de SherbrookeQuebecCanada
| | - Nancy Newlin
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Tin Nguyen
- Vanderbilt University Institute of Imaging ScienceNashvilleTennesseeUSA
- Department of Special EducationPeabody College of Education and Human Development, Vanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Kennedy CenterNashvilleTennesseeUSA
| | - Laura Barquero
- Department of Special EducationPeabody College of Education and Human Development, Vanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Kennedy CenterNashvilleTennesseeUSA
| | - Micah D'archangel
- Department of Special EducationPeabody College of Education and Human Development, Vanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Kennedy CenterNashvilleTennesseeUSA
| | - Chenyu Gao
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Ema Topolnjak
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | | | - Derek Archer
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Lori L. Beason‐Held
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on Aging, National Institutes of HealthBaltimoreMarylandUSA
| | - Timothy Hohman
- Vanderbilt Memory & Alzheimer's Center, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt Genetics Institute, Vanderbilt University Medical CenterNashvilleTennesseeUSA
- Department of NeurologyVanderbilt UniversityNashvilleTennesseeUSA
| | - Laurie Cutting
- Department of Special EducationPeabody College of Education and Human Development, Vanderbilt UniversityNashvilleTennesseeUSA
- Vanderbilt Kennedy CenterNashvilleTennesseeUSA
| | - Julie Schneider
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Lisa L. Barnes
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - David A. Bennett
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
| | - Konstantinos Arfanakis
- Rush Alzheimer's Disease Center, Rush University Medical CenterChicagoIllinoisUSA
- Department of Biomedical EngineeringIllinois Institute of TechnologyChicagoIllinoisUSA
- Department of Diagnostic RadiologyRush University Medical CenterChicagoIllinoisUSA
| | - Sophia Vinci‐Booher
- Department of Psychology and Human DevelopmentPeabody College, Vanderbilt UniversityNashvilleTennesseeUSA
| | - Marilyn Albert
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | | | | | | | - Daniel Moyer
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
| | - Bennett A. Landman
- Department of Radiology & Radiological SciencesVanderbilt University Medical CenterNashvilleTennesseeUSA
- Vanderbilt University Institute of Imaging ScienceNashvilleTennesseeUSA
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
5
|
Tian Q, Greig EE, Walker KA, Duggan MR, Yang Z, Moghekar A, Landman BA, Davatzikos C, Resnick SM, Ferrucci L. Longitudinal patterns of brain aging and neurodegeneration among older adults with dual decline in memory and gait. Alzheimers Dement 2025; 21:e14612. [PMID: 39988983 PMCID: PMC11848002 DOI: 10.1002/alz.14612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 02/25/2025]
Abstract
INTRODUCTION Dual cognitive and mobility decline is more strongly associated with dementia risk than cognitive decline only. It remains unknown whether this syndrome is associated with brain atrophy patterns, white matter (WM) damage, or pathology. METHODS In the Baltimore Longitudinal Study of Aging participants with and without dual decline, we used linear mixed-effects models to compare up to 13-year longitudinal changes in MRI-derived atrophy patterns, WM hyperintensities (n = 339), microstructure (n = 307), plasma glial fibrillary acidic protein (GFAP), neurofilament light chain (NfL), amyloid beta 42/40 (Aβ42/40) ratio (n = 349), and phosphorylated tau 181 (pTau181) (n = 258). RESULTS Those experiencing dual decline showed accelerated atrophy in medial temporal (p = .004), parietotemporal (p = .029), and perisylvian regions (p = .028), whereas gait decline only showed accelerated parietotemporal atrophy (p = .035) and memory decline only showed perisylvian atrophy (p = .021). Dual decline was also associated with unique microstructural deterioration in several WM tracts (p < .05), a greater decrease in Aβ42/40 ratio (p = .015), and greater increases in GFAP (p = .009) and NfL (p < .001). DISCUSSION Individuals experiencing dual decline are at an increased risk for regional brain atrophy, microstructural degradation, and biomarker-defined molecular changes underlying dementia. HIGHLIGHTS Those experiencing dual decline showed several accelerated brain atrophy patterns. Those experiencing dual decline showed unique microstructural deterioration. Dual decline showed a greater decline in plasma Aβ42/40 ratio. Dual decline showed greater increases in plasma GFAP and NfL. Dual decline may indicate brain and blood markers underlying dementia.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | - Erin E. Greig
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| | - Keenan A. Walker
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Michael R. Duggan
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Zhijian Yang
- Artificial Intelligence in Biomedical Imaging LabPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Abhay Moghekar
- Department of Neurology and NeurosurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Bennett A. Landman
- Department of Computer ScienceVanderbilt UniversityNashvilleTennesseeUSA
- Department of Electrical and Computer EngineeringVanderbilt UniversityNashvilleTennesseeUSA
| | - Christos Davatzikos
- Artificial Intelligence in Biomedical Imaging LabPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Susan M. Resnick
- Laboratory of Behavioral NeuroscienceNational Institute on AgingBaltimoreMarylandUSA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology BranchNational Institute on AgingBaltimoreMarylandUSA
| |
Collapse
|
6
|
Tian Q, Greig EE, Davatzikos C, Landman BA, Resnick SM, Ferrucci L. Higher skeletal muscle mitochondrial oxidative capacity is associated with preserved brain structure up to over a decade. Nat Commun 2024; 15:10786. [PMID: 39737971 DOI: 10.1038/s41467-024-55009-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/25/2024] [Indexed: 01/01/2025] Open
Abstract
Impaired muscle mitochondrial oxidative capacity is associated with future cognitive impairment, and higher levels of PET and blood biomarkers of Alzheimer's disease and neurodegeneration. Here, we examine its associations with up to over a decade-long changes in brain atrophy and microstructure. Higher in vivo skeletal muscle oxidative capacity via MR spectroscopy (post-exercise recovery rate, kPCr) is associated with less ventricular enlargement and brain aging progression, and less atrophy in specific regions, notably primary sensorimotor cortex, temporal white and gray matter, thalamus, occipital areas, cingulate cortex, and cerebellum white matter. Higher kPCr is also associated with less microstructural integrity decline in white matter around cingulate, including superior longitudinal fasciculus, corpus callosum, and cingulum. Higher in vivo muscle oxidative capacity is associated with preserved brain structure up to over a decade, particularly in areas important for cognition, motor function, and sensorimotor integration.
Collapse
Affiliation(s)
- Qu Tian
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA.
| | - Erin E Greig
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| | - Christos Davatzikos
- Radiology Department, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bennett A Landman
- Department of Computer Science, Vanderbilt University, Nashville, TN, USA
- Department of Electrical and Computer Engineering, Vanderbilt University, Nashville, TN, USA
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD, USA
| | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, USA
| |
Collapse
|
7
|
Ye Z, Pan Y, McCoy RG, Bi C, Mo C, Feng L, Yu J, Lu T, Liu S, Carson Smith J, Duan M, Gao S, Ma Y, Chen C, Mitchell BD, Thompson PM, Elliot Hong L, Kochunov P, Ma T, Chen S. Contrasting association pattern of plasma low-density lipoprotein with white matter integrity in APOE4 carriers versus non-carriers. Neurobiol Aging 2024; 143:41-52. [PMID: 39213809 PMCID: PMC11514318 DOI: 10.1016/j.neurobiolaging.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Apolipoprotein E ε4 (APOE4) is a strong genetic risk factor of Alzheimer's disease and metabolic dysfunction. However, whether APOE4 and markers of metabolic dysfunction synergistically impact the deterioration of white matter (WM) integrity in older adults remains unknown. In the UK Biobank data, we conducted a multivariate analysis to investigate the interactions between APOE4 and 249 plasma metabolites (measured using nuclear magnetic resonance spectroscopy) with whole-brain WM integrity (measured by diffusion-weighted magnetic resonance imaging) in a cohort of 1917 older adults (aged 65.0-81.0 years; 52.4 % female). Although no main association was observed between either APOE4 or metabolites with WM integrity (adjusted P > 0.05), significant interactions between APOE4 and metabolites with WM integrity were identified. Among the examined metabolites, higher concentrations of low-density lipoprotein and very low-density lipoprotein were associated with a lower level of WM integrity (b=-0.12, CI=-0.14,-0.10) among APOE4 carriers. Conversely, among non-carriers, they were associated with a higher level of WM integrity (b=0.05, CI=0.04,0.07), demonstrating a significant moderation role of APOE4 (b =-0.18, CI=-0.20,-0.15, P<0.00001).
Collapse
Affiliation(s)
- Zhenyao Ye
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Yezhi Pan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Rozalina G McCoy
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| | - Chuan Bi
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Chen Mo
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Li Feng
- Department of Nutrition and Food Science, College of Agriculture & Natural Resources, University of Maryland, College Park, MD 20742, United States
| | - Jiaao Yu
- Department of Mathematics, University of Maryland, College Park, MD 20742, United States
| | - Tong Lu
- Department of Mathematics, University of Maryland, College Park, MD 20742, United States
| | - Song Liu
- School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, China
| | - J Carson Smith
- Department of Kinesiology, University of Maryland, College Park, MD 20742, United States
| | - Minxi Duan
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Si Gao
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Yizhou Ma
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Chixiang Chen
- Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States
| | - Braxton D Mitchell
- Division of Endocrinology, Diabetes, & Nutrition, Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, United States
| | - Paul M Thompson
- Imaging Genetics Center, Keck School of Medicine, University of Southern California, Marina del Rey, CA 90033, United States
| | - L Elliot Hong
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Peter Kochunov
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, United States
| | - Tianzhou Ma
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Department of Epidemiology and Biostatistics, School of Public Health, University of Maryland, College Park, MD 20742, United States.
| | - Shuo Chen
- Maryland Psychiatric Research Center, Department of Psychiatry, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; Division of Biostatistics and Bioinformatics, Department of Epidemiology and Public Health, School of Medicine, University of Maryland, Baltimore, MD 21201, United States; University of Maryland Institute for Health Computing, Bethesda, MD 20852, United States.
| |
Collapse
|
8
|
Damestani NL, Jacoby J, Michel CB, Rashid B, Salat DH, Juttukonda MR. MRI Assessment of Cerebral White Matter Microvascular Hemodynamics Across the Adult Lifespan. J Magn Reson Imaging 2024; 60:1549-1562. [PMID: 38179863 PMCID: PMC11224140 DOI: 10.1002/jmri.29217] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/18/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024] Open
Abstract
BACKGROUND Changes in cerebral hemodynamics with aging are important for understanding age-related variation in neuronal health. While many prior studies have focused on gray matter, less is known regarding white matter due in part to measurement challenges related to the lower vascular density in white matter. PURPOSE To investigate the impact of age and sex on white matter hemodynamics in a Human Connectome Project in Aging (HCP-A) cohort using tract-based spatial statistics (TBSS). STUDY TYPE Retrospective cross-sectional. POPULATION Six hundred seventy-eight typically aging individuals (381 female), aged 36-100 years. FIELD STRENGTH/SEQUENCE Multi-delay pseudo-continuous arterial spin labeling (ASL) and diffusion-weighted pulsed-gradient spin-echo echo planar imaging sequences at 3.0 T. ASSESSMENT A skeleton of mean fractional anisotropy (FA) was produced using TBSS. This skeleton was used to project ASL-derived cerebral blood flow (CBF) and arterial transit time (ATT) measures onto white matter tracts. STATISTICAL TESTS General linear models were applied to white matter FA, CBF, and ATT maps, while covarying for age and sex. Threshold-free cluster enhancement multiple comparisons correction was performed for the effects of age and sex, thresholded at PFWE < 0.05. CBF, ATT, and FA were compared between sex for each tract using analysis of covariance, with multiple comparisons correction for the number of tracts at PFDR < 0.05. RESULTS Significantly lower white matter CBF and significantly prolonged white matter ATTs were associated with older age. These effects were widespread across tracts for ATT. Significant (PFDR < 0.05) sex differences in ATT were observed across all tracts, and significant sex differences in CBF were observed in all tracts except the bilateral uncinate fasciculus. Females demonstrated significantly higher CBF compared to males across the lifespan. Few tracts demonstrated significant sex differences in FA. DATA CONCLUSION This study identified significant sex- and age-associated differences in white matter hemodynamics across tracts. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 3.
Collapse
Affiliation(s)
- Nikou L. Damestani
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - John Jacoby
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Christa B. Michel
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
| | - Barnaly Rashid
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - David H. Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston MA, USA
| | - Meher R. Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Shinto LH, Murchison CF, Silbert LC, Dodge HH, Lahna D, Rooney W, Kaye J, Quinn JF, Bowman GL. ω-3 PUFA for Secondary Prevention of White Matter Lesions and Neuronal Integrity Breakdown in Older Adults: A Randomized Clinical Trial. JAMA Netw Open 2024; 7:e2426872. [PMID: 39088212 PMCID: PMC11294966 DOI: 10.1001/jamanetworkopen.2024.26872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/07/2024] [Indexed: 08/02/2024] Open
Abstract
Importance Older adults with lower intake and tissue levels of long-chain ω-3 polyunsaturated fatty acids (PUFAs) eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) have more brain white matter lesions (WMLs), an association suggesting that small-vessel ischemic disease, a major contributor to the development of dementia, including Alzheimer disease, may be preventable through ω-3 treatment. Objective To determine whether ω-3 treatment reduces WML accumulation in older adults without dementia harboring WMLs and with suboptimal ω-3 status. Design, Setting, and Participants This quadruple-blinded, placebo-controlled, randomized clinical trial with treatment stratification by apolipoprotein E ε4 allele (APOE*E4) carrier status used linear mixed-effects models to estimate mean annual change between groups. The study was conducted at Oregon Health & Science University, a major academic medical center in the Pacific Northwest, from May 2014 to final participant visit in September 2019. Data analysis concluded in July 2022. Participants were adults without dementia aged 75 years and older with WMLs greater than or equal to 5 cm3 and plasma ω-3 PUFA less than 5.5 weight percentage of total. Intervention Three-year treatment with 1.65 g of ω-3 PUFA (975 mg of EPA and 650 mg of DHA) vs a soybean oil placebo matched for taste, smell, and appearance. Main Outcomes and Measures The primary outcome was annual WML progression measured using magnetic resonance imaging. Secondary outcomes included diffusion tensor imaging of fractional anisotropy (DTI-FA), representing neuronal integrity breakdown. Results A total of 102 participants (62 women [60.8%]; mean age, 81 years [range, 75-96 years]) were equally randomized, 51 per treatment group. Although the ω-3 group had less annual WML accumulation than the placebo group, the difference was not statistically significant (1.19 cm3 [95% CI, 0.64-1.74 cm3] vs 1.34 cm3 [95% CI, 0.80-1.88 cm3]; P = .30). Similarly, the ω-3 group had less annual DTI-FA decline than the placebo group, but the difference was not statistically significant (-0.0014 mm2/s [95% CI, -0.0027 to 0.0002 mm2/s] vs -0.0027 mm2/s [95% CI, -0.0041 to -0.0014 mm2/s]; P = .07). Among APOE*E4 carriers, the annual DTI-FA decline was significantly lower in the group treated with ω-3 than the placebo group (-0.0016 mm2/s [95% CI, -0.0032 to 0.0020 mm2/s] vs -0.0047 mm2/s [95% CI, -0.0067 to -0.0025 mm2/s]; P = .04). Adverse events were similar between treatment groups. Conclusions and Relevance In this 3-year randomized clinical trial, ω-3 treatment was safe and well-tolerated but failed to reach significant reductions in WML accumulation or neuronal integrity breakdown among all participants, which may be attributable to sample size limitations. However, neuronal integrity breakdown was reduced by ω-3 treatment in APOE*E4 carriers, suggesting that this treatment may be beneficial for this specific group. Trial Registration ClinicalTrials.gov Identifier: NCT01953705.
Collapse
Affiliation(s)
- Lynne H. Shinto
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - Charles F. Murchison
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Department of Biostatistics, University of Alabama, Birmingham
| | - Lisa C. Silbert
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Hiroko H. Dodge
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Interdisciplinary Brain Center, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| | - David Lahna
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
| | - William Rooney
- Advanced Imaging Research Center, Oregon Health & Science University, Portland
| | - Jeffrey Kaye
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
| | - Joseph F. Quinn
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- Portland VA, Portland, Oregon
- Parkinson’s Disease Center, Oregon Health & Science University, Portland
| | - Gene L. Bowman
- NIA-Layton Aging and Alzheimer’s Disease Center, Department of Neurology, Oregon Health & Science University, Portland
- McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston
| |
Collapse
|
10
|
Gao C, Bao S, Kim ME, Newlin NR, Kanakaraj P, Yao T, Rudravaram G, Huo Y, Moyer D, Schilling K, Kukull WA, Toga AW, Archer DB, Hohman TJ, Landman BA, Li Z. Field-of-view extension for brain diffusion MRI via deep generative models. J Med Imaging (Bellingham) 2024; 11:044008. [PMID: 39185475 PMCID: PMC11344266 DOI: 10.1117/1.jmi.11.4.044008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/27/2024] Open
Abstract
Purpose In brain diffusion magnetic resonance imaging (dMRI), the volumetric and bundle analyses of whole-brain tissue microstructure and connectivity can be severely impeded by an incomplete field of view (FOV). We aim to develop a method for imputing the missing slices directly from existing dMRI scans with an incomplete FOV. We hypothesize that the imputed image with a complete FOV can improve whole-brain tractography for corrupted data with an incomplete FOV. Therefore, our approach provides a desirable alternative to discarding the valuable brain dMRI data, enabling subsequent tractography analyses that would otherwise be challenging or unattainable with corrupted data. Approach We propose a framework based on a deep generative model that estimates the absent brain regions in dMRI scans with an incomplete FOV. The model is capable of learning both the diffusion characteristics in diffusion-weighted images (DWIs) and the anatomical features evident in the corresponding structural images for efficiently imputing missing slices of DWIs in the incomplete part of the FOV. Results For evaluating the imputed slices, on the Wisconsin Registry for Alzheimer's Prevention (WRAP) dataset, the proposed framework achievedPSNR b 0 = 22.397 ,SSIM b 0 = 0.905 ,PSNR b 1300 = 22.479 , andSSIM b 1300 = 0.893 ; on the National Alzheimer's Coordinating Center (NACC) dataset, it achievedPSNR b 0 = 21.304 ,SSIM b 0 = 0.892 ,PSNR b 1300 = 21.599 , andSSIM b 1300 = 0.877 . The proposed framework improved the tractography accuracy, as demonstrated by an increased average Dice score for 72 tracts ( p < 0.001 ) on both the WRAP and NACC datasets. Conclusions Results suggest that the proposed framework achieved sufficient imputation performance in brain dMRI data with an incomplete FOV for improving whole-brain tractography, thereby repairing the corrupted data. Our approach achieved more accurate whole-brain tractography results with an extended and complete FOV and reduced the uncertainty when analyzing bundles associated with Alzheimer's disease.
Collapse
Affiliation(s)
- Chenyu Gao
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Shunxing Bao
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Michael E. Kim
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Nancy R. Newlin
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Praitayini Kanakaraj
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Tianyuan Yao
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Gaurav Rudravaram
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| | - Yuankai Huo
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Daniel Moyer
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
| | - Kurt Schilling
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Walter A. Kukull
- University of Washington, Department of Epidemiology, Seattle, Washington, United States
| | - Arthur W. Toga
- University of Southern California, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, Laboratory of Neuro Imaging, Los Angeles, California, United States
| | - Derek B. Archer
- Vanderbilt University Medical Center, Vanderbilt Memory and Alzheimer’s Center, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, Tennessee, United States
| | - Timothy J. Hohman
- Vanderbilt University Medical Center, Vanderbilt Memory and Alzheimer’s Center, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Vanderbilt Genetics Institute, Nashville, Tennessee, United States
| | - Bennett A. Landman
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
- Vanderbilt University, Department of Computer Science, Nashville, Tennessee, United States
- Vanderbilt University Medical Center, Department of Radiology and Radiological Sciences, Nashville, Tennessee, United States
| | - Zhiyuan Li
- Vanderbilt University, Department of Electrical and Computer Engineering, Nashville, Tennessee, United States
| |
Collapse
|
11
|
Fiscella AJ, Andel R. The Association Between Physical Activity, Obesity, and Cognition in Middle-Aged and Older Adults. J Aging Phys Act 2024; 32:397-407. [PMID: 38335949 DOI: 10.1123/japa.2022-0243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/22/2023] [Accepted: 11/21/2023] [Indexed: 02/12/2024]
Abstract
As rates of obesity continue to rise, so does the impact of obesity on cognitive function. Engaging in physical activity is one pathway through which individuals can help maintain cognitive function. This study examined whether any link between exercise and cognitive function was associated with weight characteristics. Data from 6,012 participants in the Health and Retirement Study were used. The association between participation in light or moderate physical activity and better cognitive function was particularly strong for overweight or obese adults and less so for those who were normal weight. Overall, the findings suggested that while being physically active is associated with better cognitive function regardless of weight, the associations were stronger for individuals who were overweight/obese compared with those who were normal weight. Given the results were particularly pronounced for waist circumference (relative to body mass index), further research should be conducted to examine if individuals with greater abdominal adiposity may benefit most from staying active in terms of their cognitive function.
Collapse
Affiliation(s)
- Andrew J Fiscella
- School of Aging Studies, University of South Florida, Tampa, FL, USA
| | - Ross Andel
- Edson College of Nursing & Health Innovation, Arizona State University, Phoenix, AZ, USA
- International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
- Department of Neurology, Charles University and Motol University Hospital, Prague, Czech Republic
| |
Collapse
|
12
|
Kraft JN, Matijevic S, Hoagey DA, Kennedy KM, Rodrigue KM. Differential Effects of Aging on Regional Corpus Callosum Microstructure and the Modifying Influence of Pulse Pressure. eNeuro 2024; 11:ENEURO.0449-23.2024. [PMID: 38719452 PMCID: PMC11106647 DOI: 10.1523/eneuro.0449-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 05/18/2024] Open
Abstract
The corpus callosum is composed of several subregions, distinct in cellular and functional organization. This organization scheme may render these subregions differentially vulnerable to the aging process. Callosal integrity may be further compromised by cardiovascular risk factors, which negatively influence white matter health. Here, we test for heterochronicity of aging, hypothesizing an anteroposterior gradient of vulnerability to aging that may be altered by the effects of cardiovascular health. In 174 healthy adults across the adult lifespan (mean age = 53.56 ± 18.90; range, 20-94 years old, 58.62% women), pulse pressure (calculated as participant's systolic minus diastolic blood pressure) was assessed to determine cardiovascular risk. A deterministic tractography approach via diffusion-weighted imaging was utilized to extract fractional anisotropy (FA), radial diffusivity (RD), and axial diffusivity (AD) from each of five callosal subregions, serving as estimates of microstructural health. General linear models tested the effects of age, hypertension, and pulse pressure on these cross-sectional metrics. We observed no significant effect of hypertensive diagnosis on callosal microstructure. We found a significant main effect of age and an age-pulse pressure interaction whereby older age and elevated pulse pressure were associated with poorer FA, AD, and RD. Age effects revealed nonlinear components and occurred along an anteroposterior gradient of severity in the callosum. This gradient disappeared when pulse pressure was considered. These results indicate that age-related deterioration across the callosum is regionally variable and that pulse pressure, a proxy of arterial stiffness, exacerbates this aging pattern in a large lifespan cohort.
Collapse
Affiliation(s)
- Jessica N Kraft
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Stephanie Matijevic
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
- Department of Psychology, University of Arizona, Tucson, Arizona 85721
| | - David A Hoagey
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Kristen M Kennedy
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| | - Karen M Rodrigue
- Center for Vital Longevity, Department of Psychology, School of Behavioral and Brain Sciences, The University of Texas at Dallas, Dallas, Texas 75235
| |
Collapse
|
13
|
Li S, Yang D, Zhou X, Chen L, Liu L, Lin R, Li X, Liu Y, Qiu H, Cao H, Liu J, Cheng Q. Neurological and metabolic related pathophysiologies and treatment of comorbid diabetes with depression. CNS Neurosci Ther 2024; 30:e14497. [PMID: 37927197 PMCID: PMC11017426 DOI: 10.1111/cns.14497] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 09/26/2023] [Accepted: 10/03/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND The comorbidity between diabetes mellitus and depression was revealed, and diabetes mellitus increased the prevalence of depressive disorder, which ranked 13th in the leading causes of disability-adjusted life-years. Insulin resistance, which is common in diabetes mellitus, has increased the risk of depressive symptoms in both humans and animals. However, the mechanisms behind the comorbidity are multi-factorial and complicated. There is still no causal chain to explain the comorbidity exactly. Moreover, Selective serotonin reuptake inhibitors, insulin and metformin, which are recommended for treating diabetes mellitus-induced depression, were found to be a risk factor in some complications of diabetes. AIMS Given these problems, many researchers made remarkable efforts to analyze diabetes complicating depression from different aspects, including insulin resistance, stress and Hypothalamic-Pituitary-Adrenal axis, neurological system, oxidative stress, and inflammation. Drug therapy, such as Hydrogen Sulfide, Cannabidiol, Ascorbic Acid and Hesperidin, are conducive to alleviating diabetes mellitus and depression. Here, we reviewed the exact pathophysiology underlying the comorbidity between depressive disorder and diabetes mellitus and drug therapy. METHODS The review refers to the available literature in PubMed and Web of Science, searching critical terms related to diabetes mellitus, depression and drug therapy. RESULTS In this review, we found that brain structure and function, neurogenesis, brain-derived neurotrophic factor and glucose and lipid metabolism were involved in the pathophysiology of the comorbidity. Obesity might lead to diabetes mellitus and depression through reduced adiponectin and increased leptin and resistin. In addition, drug therapy displayed in this review could expand the region of potential therapy. CONCLUSIONS The review summarizes the mechanisms underlying the comorbidity. It also overviews drug therapy with anti-diabetic and anti-depressant effects.
Collapse
Affiliation(s)
- Sixin Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Dong Yang
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Xuhui Zhou
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lu Chen
- Department of Gastroenterology, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of GastroenterologyBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Lini Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ruoheng Lin
- Department of Psychiatry, National Clinical Research Center for Mental DisordersThe Second Xiangya Hospital of Central South UniversityChangshaHunanChina
| | - Xinyu Li
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Ying Liu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Huiwen Qiu
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Hui Cao
- Department of Psychiatry, The School of Clinical MedicineHunan University of Chinese MedicineChangshaHunanChina
- Department of PsychiatryBrain Hospital of Hunan Province (The Second People's Hospital of Hunan Province)ChangshaHunanChina
| | - Jian Liu
- Center for Medical Research and Innovation, The First Hospital, Hunan University of Chinese MedicineChangshaHunanChina
| | - Quan Cheng
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaHunanChina
| |
Collapse
|
14
|
Du J, Pan Y, Jiang J, Lam BCP, Thalamuthu A, Chen R, Tsang IW, Sachdev PS, Wen W. White matter brain age as a biomarker of cerebrovascular burden in the ageing brain. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01758-3. [PMID: 38424358 DOI: 10.1007/s00406-024-01758-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 01/13/2024] [Indexed: 03/02/2024]
Abstract
As the brain ages, it almost invariably accumulates vascular pathology, which differentially affects the cerebral white matter. A rich body of research has investigated the link between vascular risk factors and the brain. One of the less studied questions is that among various modifiable vascular risk factors, which is the most debilitating one for white matter health? A white matter specific brain age was developed to evaluate the overall white matter health from diffusion weighted imaging, using a three-dimensional convolutional neural network deep learning model in both cross-sectional UK biobank participants (n = 37,327) and a longitudinal subset (n = 1409). White matter brain age gap (WMBAG) was the difference between the white matter age and the chronological age. Participants with one, two, and three or more vascular risk factors, compared to those without any, showed an elevated WMBAG of 0.54, 1.23, and 1.94 years, respectively. Diabetes was most strongly associated with an increased WMBAG (1.39 years, p < 0.001) among all risk factors followed by hypertension (0.87 years, p < 0.001) and smoking (0.69 years, p < 0.001). Baseline WMBAG was associated significantly with processing speed, executive and global cognition. Significant associations of diabetes and hypertension with poor processing speed and executive function were found to be mediated through the WMBAG. White matter specific brain age can be successfully targeted for the examination of the most relevant risk factors and cognition, and for tracking an individual's cerebrovascular ageing process. It also provides clinical basis for the better management of specific risk factors.
Collapse
Affiliation(s)
- Jing Du
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia.
| | - Yuangang Pan
- Centre for Frontier AI Research (CFAR), A*STAR, Singapore, 138623, Singapore
- Australian Artificial Intelligence Institute (AAII), UTS, Sydney, NSW, 2007, Australia
| | - Jiyang Jiang
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Ben C P Lam
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Anbupalam Thalamuthu
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Rory Chen
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
| | - Ivor W Tsang
- Centre for Frontier AI Research (CFAR), A*STAR, Singapore, 138623, Singapore
- Australian Artificial Intelligence Institute (AAII), UTS, Sydney, NSW, 2007, Australia
| | - Perminder S Sachdev
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia
- Neuropsychiatric Institute (NPI), Euroa Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
| | - Wei Wen
- Centre for Healthy Brain Aging (CHeBA), School of Psychiatry, UNSW Sydney, Kensington, New South Wales, 2052, Australia.
- Neuropsychiatric Institute (NPI), Euroa Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia.
| |
Collapse
|
15
|
Garcia P, Mendoza L, Padron D, Duarte A, Duara R, Loewenstein D, Greig-Custo M, Barker W, Curiel R, Rosselli M, Rodriguez M. Sex significantly predicts medial temporal volume when controlling for the influence of ApoE4 biomarker and demographic variables: A cross-ethnic comparison. J Int Neuropsychol Soc 2024; 30:128-137. [PMID: 37385978 PMCID: PMC11057967 DOI: 10.1017/s1355617723000358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
OBJECTIVE To explore the relationship between age, education, sex, and ApoE4 (+) status to brain volume among a cohort with amnestic mild cognitive impairment (aMCI). METHOD One hundred and twenty-three participants were stratified into Hispanic (n = 75) and White non-Hispanic (WNH, N = 48). Multiple linear regression analyses were conducted with age, education, sex, and ApoE4 status as predictor variables and left and right combined MRI volumes of the hippocampus, parahippocampus, and entorhinal cortex as dependent variables. Variations in head sizes were corrected by normalization with a total intracranial volume measurement. RESULTS Bonferroni-corrected results indicated that when controlling for ApoE4 status, education, and age, sex was a significant predictor of hippocampal volume among the Hispanic group (β = .000464, R2 = .196, p < .01) and the WNH group (β = .000455, R2 = .195, p < .05). Education (β = .000028, R2 = .168, p < .01) and sex (β = .000261, R2 = .168, p < .01) were significant predictors of parahippocampal volume among the Hispanic MCI group when controlling for the effects of ApoE4 status and age. One-way ANCOVAs comparing hippocampal and parahippocampal volume between males and females within groups revealed that females had significantly larger hippocampal volumes (p < .05). Hispanic females had significantly larger hippocampal (p < .001) and parahippocampal (p < .05) volume compared to males. No sex differences in parahippocampal volume were noted among WNHs. CONCLUSIONS Biological sex, rather than ApoE4 status, was a greater predictor of hippocampal volume among Hispanic and WNH females. These findings add to the mixed literature on sex differences in dementia research and highlight continued emphasis on ethnic populations to elucidate on neurodegenerative disparities.
Collapse
Affiliation(s)
- Patricia Garcia
- Department of Clinical Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | | | | | - Ranjan Duara
- Mount Sinai Medical Center, Miami Beach, FL, USA
| | - David Loewenstein
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | | | | | - Rosie Curiel
- University of Miami Leonard M. Miller School of Medicine, Miami, FL, USA
| | - Monica Rosselli
- Department of Psychology, Florida Atlantic University, Davie, FL, USA
| | - Miriam Rodriguez
- Department of Health & Wellness Design, Indiana University Bloomington School of Public Health, Bloomington, IN, USA
| |
Collapse
|
16
|
Riedel D, Lorke N, Fellerhoff T, Mierau A, Strüder HK, Wolf D, Fischer F, Fellgiebel A, Tüscher O, Kollmann B, Knaepen K. Interhemispheric transfer time correlates with white matter integrity of the corpus callosum in healthy older adults. Neuropsychologia 2024; 193:108761. [PMID: 38104856 DOI: 10.1016/j.neuropsychologia.2023.108761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/10/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
The corpus callosum (CC) has been identified as an important structure in the context of cognitive aging (Fling et al., 2011). Interhemispheric transfer time (IHTT) is regularly used in order to estimate interhemispheric integration enabled by the CC (Marzi, 2010; Nowicka and Tacikowski, 2011). However, only little is known with regards to the relationship between IHTT and the structural properties of the CC with only few studies with specific samples and methods available (Whitford et al., 2011). Thus, the present study aimed at investigating this relationship applying an event-related potentials (ERP) based approach of estimating IHTT as well as diffusion weighted imaging (DWI) with fractional anisotropy (FA) as an indicator of white matter integrity (WMI) of the genu, corpus and splenium of the CC. 56 healthy older adults performed a Dimond Task while ERPs were recorded and underwent DWI scanning. IHTT derived from posterior electrode sites correlated significantly with FA of the splenium (r = -0.286*, p = .03) but not the corpus (r = -0.187, p = .08) or genu (r = -0.189, p = .18). The present results support the notion that IHTT is related to WMI of the posterior CC. It may be concluded that ERP based IHTT is a suitable indicator of CC structure and function, however, likely specific to the interhemispheric transfer of visual information. Future studies may wish to confirm these findings in a more divers sample further exploring the precise interrelation between IHTT and structural or functional properties of the CC.
Collapse
Affiliation(s)
- David Riedel
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany.
| | - Nicolai Lorke
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Tim Fellerhoff
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Andreas Mierau
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany; Department of Exercise and Sport Science, LUNEX International University of Health, Exercise and Sports, Address: 50, Avenue du Parc des Sports, L-4671, Differdange, Luxembourg
| | - Heiko K Strüder
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| | - Dominik Wolf
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Address: Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Florian Fischer
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Address: Untere Zahlbacher Str. 8, 55131, Mainz, Germany
| | - Andreas Fellgiebel
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Address: Untere Zahlbacher Str. 8, 55131, Mainz, Germany; Center for Mental Health in Old Age, Landeskrankenhaus (AöR), Address: Hartmühlenweg 2-4, 55122, Mainz, Germany
| | - Oliver Tüscher
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Address: Untere Zahlbacher Str. 8, 55131, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Address: Wallstraße 7, 55122, Mainz, Germany; Institute of Molecular Biology (IMB), Mainz, Address: Ackermannweg 4, 55128, Mainz, Germany
| | - Bianca Kollmann
- Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Address: Untere Zahlbacher Str. 8, 55131, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Address: Wallstraße 7, 55122, Mainz, Germany
| | - Kristel Knaepen
- Institute of Movement and Neurosciences, German Sport University Cologne, Address: Am Sportpark Müngersdorf 6, 50933, Cologne, Germany
| |
Collapse
|
17
|
Kaļva K, Zdanovskis N, Šneidere K, Kostiks A, Karelis G, Platkājis A, Stepens A. Whole Brain and Corpus Callosum Fractional Anisotropy Differences in Patients with Cognitive Impairment. Diagnostics (Basel) 2023; 13:3679. [PMID: 38132263 PMCID: PMC10742911 DOI: 10.3390/diagnostics13243679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/20/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
Diffusion tensor imaging (DTI) is an MRI analysis method that could help assess cognitive impairment (CI) in the ageing population more accurately. In this research, we evaluated fractional anisotropy (FA) of whole brain (WB) and corpus callosum (CC) in patients with normal cognition (NC), mild cognitive impairment (MCI), and moderate/severe cognitive impairment (SCI). In total, 41 participants were included in a cross-sectional study and divided into groups based on Montreal Cognitive Assessment (MoCA) scores (NC group, nine participants, MCI group, sixteen participants, and SCI group, sixteen participants). All participants underwent an MRI examination that included a DTI sequence. FA values between the groups were assessed by analysing FA value and age normative percentile. We did not find statistically significant differences between the groups when analysing CC FA values. Both approaches showed statistically significant differences in WB FA values between the MCI-SCI and MCI-NC groups, where the MCI group participants showed the highest mean FA and highest mean FA normative percentile results in WB.
Collapse
Affiliation(s)
- Kalvis Kaļva
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
| | - Nauris Zdanovskis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| | - Kristīne Šneidere
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
- Department of Health Psychology and Paedagogy, Riga Stradins University, LV-1007 Riga, Latvia
| | - Andrejs Kostiks
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia; (A.K.)
| | - Guntis Karelis
- Department of Neurology and Neurosurgery, Riga East University Hospital, LV-1038 Riga, Latvia; (A.K.)
- Department of Infectology, Riga Stradins University, LV-1007 Riga, Latvia
| | - Ardis Platkājis
- Department of Radiology, Riga Stradins University, LV-1007 Riga, Latvia; (K.K.)
- Department of Radiology, Riga East Clinical University Hospital, LV-1038 Riga, Latvia
| | - Ainārs Stepens
- Military Medicine Research and Study Centre, Riga Stradins University, LV-1007 Riga, Latvia
| |
Collapse
|
18
|
Ye Z, Pan Y, McCoy RG, Bi C, Chen M, Feng L, Yu J, Lu T, Liu S, Gao S, Hatch KS, Ma Y, Chen C, Mitchell BD, Thompson PM, Hong LE, Kochunov P, Ma T, Chen S. APOE4 poses opposite effects of plasma LDL on white matter integrity in older adults. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563796. [PMID: 37961161 PMCID: PMC10634787 DOI: 10.1101/2023.10.24.563796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
INTRODUCTION APOE4 is a strong genetic risk factor of Alzheimer's disease and is associated with changes in metabolism. However, the interactive relationship between APOE4 and plasma metabolites on the brain remains largely unknown. MEHODS In the UK Biobank, we investigated the moderation effects of APOE4 on the relationship between 249 plasma metabolites derived from nuclear magnetic resonance spectroscopy on whole-brain white matter integrity, measured by fractional anisotropy using diffusion magnetic resonance imaging. RESULTS The increase in the concentration of metabolites, mainly LDL and VLDL, is associated with a decrease in white matter integrity (b= -0.12, CI= [-0.14, -0.10]) among older APOE4 carriers, whereas an increase (b= 0.05, CI= [0.04, 0.07]) among non-carriers, implying a significant moderation effect of APOE4 (b= -0.18, CI= [-0.20,-0.15]). DISCUSSION The results suggest that lipid metabolism functions differently in APOE4 carriers compared to non-carriers, which may inform the development of targeted interventions for APOE4 carriers to mitigate cognitive decline.
Collapse
|
19
|
Schilling KG, Archer D, Yeh FC, Rheault F, Cai LY, Shafer A, Resnick SM, Hohman T, Jefferson A, Anderson AW, Kang H, Landman BA. Short superficial white matter and aging: a longitudinal multi-site study of 1293 subjects and 2711 sessions. AGING BRAIN 2023; 3:100067. [PMID: 36817413 PMCID: PMC9937516 DOI: 10.1016/j.nbas.2023.100067] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
It is estimated that short association fibers running immediately beneath the cortex may make up as much as 60% of the total white matter volume. However, these have been understudied relative to the long-range association, projection, and commissural fibers of the brain. This is largely because of limitations of diffusion MRI fiber tractography, which is the primary methodology used to non-invasively study the white matter connections. Inspired by recent anatomical considerations and methodological improvements in superficial white matter (SWM) tractography, we aim to characterize changes in these fiber systems in cognitively normal aging, which provide insight into the biological foundation of age-related cognitive changes, and a better understanding of how age-related pathology differs from healthy aging. To do this, we used three large, longitudinal and cross-sectional datasets (N = 1293 subjects, 2711 sessions) to quantify microstructural features and length/volume features of several SWM systems. We find that axial, radial, and mean diffusivities show positive associations with age, while fractional anisotropy has negative associations with age in SWM throughout the entire brain. These associations were most pronounced in the frontal, temporal, and temporoparietal regions. Moreover, measures of SWM volume and length decrease with age in a heterogenous manner across the brain, with different rates of change in inter-gyri and intra-gyri SWM, and at slower rates than well-studied long-range white matter pathways. These features, and their variations with age, provide the background for characterizing normal aging, and, in combination with larger association pathways and gray matter microstructural features, may provide insight into fundamental mechanisms associated with aging and cognition.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology & Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN
| | - Derek Archer
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Francois Rheault
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Leon Y Cai
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Andrea Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States of America
| | - Timothy Hohman
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Vanderbilt Genetics Institute, Vanderbilt University School of Medicine, Nashville, TN
| | - Angela Jefferson
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Adam W Anderson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, United States
| | - Hakmook Kang
- Department of Biostatistics, Vanderbilt University, Nashville, TN, United States
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
20
|
Dietze LMF, McWhinney SR, Radua J, Hajek T. Extended and replicated white matter changes in obesity: Voxel-based and region of interest meta-analyses of diffusion tensor imaging studies. Front Nutr 2023; 10:1108360. [PMID: 36960197 PMCID: PMC10028081 DOI: 10.3389/fnut.2023.1108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/03/2023] [Indexed: 03/09/2023] Open
Abstract
Introduction Obesity has become a global public health issue, which impacts general health and the brain. Associations between obesity and white matter microstructure measured using diffusion tensor imaging have been under reviewed, despite a relatively large number of individual studies. Our objective was to determine the association between obesity and white matter microstructure in a large general population sample. Methods We analyzed location of brain white matter changes in obesity using the Anisotropic Effect Size Seed-based d Mapping (AES-SDM) method in a voxel-based meta-analysis, with validation in a region of interest (ROI) effect size meta-analysis. Our sample included 21 742 individuals from 51 studies. Results The voxel-based spatial meta-analysis demonstrated reduced fractional anisotropy (FA) with obesity in the genu and splenium of the corpus callosum, middle cerebellar peduncles, anterior thalamic radiation, cortico-spinal projections, and cerebellum. The ROI effect size meta-analysis replicated associations between obesity and lower FA in the genu and splenium of the corpus callosum, middle cerebellar peduncles. Effect size of obesity related brain changes was small to medium. Discussion Our findings demonstrate obesity related brain white matter changes are localized rather than diffuse. Better understanding the brain correlates of obesity could help identify risk factors, and targets for prevention or treatment of brain changes.
Collapse
Affiliation(s)
- Lorielle M. F. Dietze
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Department of Medical Neuroscience, Dalhousie University, Halifax, NS, Canada
| | | | - Joaquim Radua
- Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), University of Barcelona, Barcelona, Spain
- Mental Health Research Networking Center (CIBERSAM), Madrid, Spain
- Department of Psychosis Studies, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, United Kingdom
- Department of Clinical Neuroscience, Center for Psychiatric Research and Education, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Prague, Czechia
- *Correspondence: Tomas Hajek,
| |
Collapse
|
21
|
Effects of the Mindfulness-Based Blood Pressure Reduction (MB-BP) program on depression and neural structural connectivity. J Affect Disord 2022; 311:31-39. [PMID: 35594968 DOI: 10.1016/j.jad.2022.05.059] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 05/05/2022] [Accepted: 05/12/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Hypertension-related illnesses are a leading cause of disability and death in the United States, where hypertension prevalence in adults is 46%, with only half of those afflicted having it under control. Due to the significant challenges in long-term efficacy and adverse effects associated with pharmacological interventions, there is an eminent need for complimentary approaches for treating hypertension. Although initial studies of the Mindfulness-Based Blood Pressure Reduction program (MB-BP) indicate that this novel 8-week intervention is effective at inducing lasting decreases in blood pressure, the neural correlates are unknown. METHODS The objectives of this study were to identify structural neural correlates of MB-BP using diffusion tensor magnetic resonance imaging (DTI) and assess potential correlations with key clinical outcomes. RESULTS In a subset of participants (14 MB-BP, 22 controls) from a larger stage IIa randomized controlled trial, MB-BP participants exhibited increased interoception and decreased depressive symptoms compared to controls. Analyses of DTI data revealed significant group differences in multiple white matter neural tracts associated with the limbic system and/or blood pressure. Specific changes in neural structural connectivity were significantly associated with measures of interoception and depression. LIMITATIONS Limitations include small sample size (leading to insufficient power in the analysis of blood pressure) and the study duration (3 months). The main MRI limitation is suboptimal resolution in areas of extensive neural tract crossings. CONCLUSIONS It is concluded that MB-BP induces alterations in brain structural connectivity which could mediate beneficial changes in depression and interoceptive awareness in individuals with hypertension.
Collapse
|
22
|
Longitudinal associations of absolute versus relative moderate-to-vigorous physical activity with brain microstructural decline in aging. Neurobiol Aging 2022; 116:25-31. [PMID: 35544996 PMCID: PMC9177705 DOI: 10.1016/j.neurobiolaging.2022.04.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/21/2022]
Abstract
Higher moderate-to-vigorous intensity (MVPA) may preserve brain structural integrity, but evidence is mostly cross-sectional and relies on absolute PA measures. We examined longitudinal associations of absolute MVPA using population-level activity count thresholds and relative MVPA using individual heart rate reserve (HRR) via Actiheart with subsequent changes in brain diffusion tensor imaging (DTI) over average of 3.8 years in 248 initially cognitively normal individuals (56-91 years). DTI markers included areas important for memory (temporal areas), executive (prefrontal cortex, superior longitudinal fasciculus), and motor function (precentral gyrus, putamen, caudate, body of corpus callosum). Associations of MVPA with changes in DTI markers were examined using linear mixed-effects models, adjusted for demographics and apolipoprotein e4 carrier status. Each additional 22 min of relative MVPA per day was significantly associated with less decline in fractional anisotropy of uncinate fasciculus and cingulum-hippocampal part and with less increase in mean diffusivity of entorhinal cortex and parahippocampal gyrus. Absolute MVPA was not associated with DTI changes. More time spent in relative MVPA by HRR may prevent brain microstructural decline in selected temporal areas.
Collapse
|
23
|
García-García I, Michaud A, Jurado MÁ, Dagher A, Morys F. Mechanisms linking obesity and its metabolic comorbidities with cerebral grey and white matter changes. Rev Endocr Metab Disord 2022; 23:833-843. [PMID: 35059979 DOI: 10.1007/s11154-021-09706-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/14/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a preventable risk factor for cerebrovascular disorders and it is associated with cerebral grey and white matter changes. Specifically, individuals with obesity show diminished grey matter volume and thickness, which seems to be more prominent among fronto-temporal regions in the brain. At the same time, obesity is associated with lower microstructural white matter integrity, and it has been found to precede increases in white matter hyperintensity load. To date, however, it is unclear whether these findings can be attributed solely to obesity or whether they are a consequence of cardiometabolic complications that often co-exist with obesity, such as low-grade systemic inflammation, hypertension, insulin resistance, or dyslipidemia. In this narrative review we aim to provide a comprehensive overview of the potential impact of obesity and a number of its cardiometabolic consequences on brain integrity, both separately and in synergy with each other. We also identify current gaps in knowledge and outline recommendations for future research.
Collapse
Affiliation(s)
- Isabel García-García
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain.
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain.
| | | | - María Ángeles Jurado
- Department of Clinical Psychology and Psychobiology, Universitat de Barcelona, Barcelona, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut de Recerca Sant Joan de Déu, Hospital Sant Joan de Déu, Esplugues de Llobregat, Spain
| | - Alain Dagher
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| | - Filip Morys
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
24
|
Dintica CS, Hoang T, Allen N, Sidney S, Yaffe K. The Metabolic Syndrome Is Associated With Lower Cognitive Performance and Reduced White Matter Integrity in Midlife: The CARDIA Study. Front Neurosci 2022; 16:942743. [PMID: 35924230 PMCID: PMC9339689 DOI: 10.3389/fnins.2022.942743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Background Cardiovascular disease risk factors play a critical role in brain aging. The metabolic syndrome (MetS), a constellation of cardiovascular risk factors, has been associated with poorer cognition in old age; however, it is unclear if it is connected to brain health earlier in life. Methods We investigated the association of MetS (n = 534, 18.5%) vs. no MetS (n = 2,346, 81.5%) with cognition in midlife within the prospective study, Coronary Artery Risk Development in Young Adults (CARDIA). At midlife (mean age 50), MetS was defined using National Cholesterol Education Program guidelines. At the 5-year follow-up, a cognitive battery was administered including tests of processing speed (Digit Symbol Substitution Test, DSST), executive function (the Stroop Test), verbal memory (Rey Auditory Verbal Learning Test, RAVLT), verbal fluency (category and letter fluency), and global cognitive function (Montreal Cognitive Assessment, MoCA). A sub-sample (n = 453) underwent brain MRI. Results Participants with MetS had worse performance on tests of verbal fluency, processing speed, executive function, and verbal memory (p < 0.05), but not on global cognition. MetS was also associated with lower frontal, parietal, temporal, and total white matter integrity (p < 0.05), as assessed with fractional anisotropy. Conclusions MetS is associated with lower cognition and microstructural brain alterations already at midlife, suggesting that MetS should be targeted earlier in life in order to prevent adverse brain and cognitive outcomes.
Collapse
Affiliation(s)
- Christina S. Dintica
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| | - Tina Hoang
- Northern California Institute for Research and Education, San Francisco, CA, United States
- San Francisco Veterans Affairs Medical Center, San Francisco, CA, United States
| | - Norrina Allen
- Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Stephen Sidney
- Kaiser Permanente Northern California, Oakland, CA, United States
| | - Kristine Yaffe
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
25
|
Xu W, Bai Q, Dong Q, Guo M, Cui M. Blood–Brain Barrier Dysfunction and the Potential Mechanisms in Chronic Cerebral Hypoperfusion Induced Cognitive Impairment. Front Cell Neurosci 2022; 16:870674. [PMID: 35783093 PMCID: PMC9243657 DOI: 10.3389/fncel.2022.870674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Chronic cerebral hypoperfusion (CCH) is a major cause of vascular cognitive impairment and dementia (VCID). Although the underlying mechanisms have not been fully elucidated, the emerging data suggest that blood–brain barrier (BBB) dysfunction is one of the pivotal pathological changes in CCH. BBB dysfunction appears early in CCH, contributing to the deterioration of white matter and the development of cognitive impairment. In this review, we summarize the latest experimental and clinical evidence implicating BBB disruption as a major cause of VCID. We discuss the mechanisms of BBB dysfunction in CCH, focusing on the cell interactions within the BBB, as well as the potential role of APOE genotype. In summary, we provide novel insights into the pathophysiological mechanisms underlying BBB dysfunction and the potential clinical benefits of therapeutic interventions targeting BBB in CCH.
Collapse
Affiliation(s)
- WenQing Xu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Qingke Bai
- Department of Neurology, Pudong People’s Hospital, Shanghai, China
| | - Qiang Dong
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Guo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Min Guo,
| | - Mei Cui
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- *Correspondence: Mei Cui,
| |
Collapse
|
26
|
Aging and white matter microstructure and macrostructure: a longitudinal multi-site diffusion MRI study of 1218 participants. Brain Struct Funct 2022; 227:2111-2125. [PMID: 35604444 DOI: 10.1007/s00429-022-02503-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/22/2022] [Indexed: 11/02/2022]
Abstract
Quantifying the microstructural and macrostructural geometrical features of the human brain's connections is necessary for understanding normal aging and disease. Here, we examine brain white matter diffusion magnetic resonance imaging data from one cross-sectional and two longitudinal data sets totaling in 1218 subjects and 2459 sessions of people aged 50-97 years. Data was drawn from well-established cohorts, including the Baltimore Longitudinal Study of Aging data set, Cambridge Centre for Ageing Neuroscience data set, and the Vanderbilt Memory & Aging Project. Quantifying 4 microstructural features and, for the first time, 11 macrostructure-based features of volume, area, and length across 120 white matter pathways, we apply linear mixed effect modeling to investigate changes in pathway-specific features over time, and document large age associations within white matter. Conventional diffusion tensor microstructure indices are the most age-sensitive measures, with positive age associations for diffusivities and negative age associations with anisotropies, with similar patterns observed across all pathways. Similarly, pathway shape measures also change with age, with negative age associations for most length, surface area, and volume-based features. A particularly novel finding of this study is that while trends were homogeneous throughout the brain for microstructure features, macrostructural features demonstrated heterogeneity across pathways, whereby several projection, thalamic, and commissural tracts exhibited more decline with age compared to association and limbic tracts. The findings from this large-scale study provide a comprehensive overview of the age-related decline in white matter and demonstrate that macrostructural features may be more sensitive to heterogeneous white matter decline. Therefore, leveraging macrostructural features may be useful for studying aging and could facilitate comparisons in a variety of diseases or abnormal conditions.
Collapse
|
27
|
Bonberg N, Wulms N, Dehghan-Nayyeri M, Berger K, Minnerup H. Sex-Specific Causes and Consequences of White Matter Damage in a Middle-Aged Cohort. Front Aging Neurosci 2022; 14:810296. [PMID: 35645786 PMCID: PMC9131069 DOI: 10.3389/fnagi.2022.810296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
Objective To evaluate potential sex-specific effects of multiple cardiovascular risk factors on white matter pathology in normal aging men and women, as well as potential sex-differences in the association of white matter pathology and cognitive functions. Methods We analyzed cross-sectional data of 581 participants (median age: 53 years, 54% women) of the population-based cohort of the BiDirect Study who completed clinical examinations, five neuropsychological tests, and an 3T MRI examination. White matter pathology was determined by the extent of white matter hyperintensities (WMH) on FLAIR images as well as the magnitude of global fractional anisotropy (FA) based on diffusion tensor imaging. Main effects, interaction as well as sex-stratified generalized linear regression models were used to evaluate the moderating effect of sex on the association of hypertension, diabetes mellitus, smoking, and obesity with WMH and FA, respectively. Associations of imaging markers with cognitive test results were determined with linear regression models. Results Hypertension showed stronger associations with more extensive WMH and less FA in women compared to men. Current smoking was associated with more severe WMH in women only. Adjusted for age and education, WMH were not significantly associated with cognitive tests, but higher FA was associated with better performance in motor function in both sexes and with executive functions in men, even after adjustment for cardiovascular risk factors. Conclusion We observed a stronger association of hypertension and smoking with white matter damage in women, suggesting a higher susceptibility for vascular pathology in women. However, there was no association of WMH with cognition, and FA was associated with executive function tests only in men, suggesting a higher cognitive reserve in women.
Collapse
Affiliation(s)
- Nadine Bonberg
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Niklas Wulms
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Mahboobeh Dehghan-Nayyeri
- Clinic of Radiology, Medical Faculty, University Hospital Münster, University of Münster, Münster, Germany
- Department of Psychosomatic Medicine and Psychotherapy, LVR Clinic, Medical Faculty of the Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Berger
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Heike Minnerup
- Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| |
Collapse
|
28
|
Shafer AT, Williams OA, Perez E, An Y, Landman BA, Ferrucci L, Resnick SM. Accelerated decline in white matter microstructure in subsequently impaired older adults and its relationship with cognitive decline. Brain Commun 2022; 4:fcac051. [PMID: 35356033 PMCID: PMC8963308 DOI: 10.1093/braincomms/fcac051] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 01/03/2022] [Accepted: 02/25/2022] [Indexed: 11/12/2022] Open
Abstract
Little is known about a longitudinal decline in white matter microstructure and its associations with cognition in preclinical dementia. Longitudinal diffusion tensor imaging and neuropsychological testing were performed in 50 older adults who subsequently developed mild cognitive impairment or dementia (subsequently impaired) and 200 cognitively normal controls. Rates of white matter microstructural decline were compared between groups using voxel-wise linear mixed-effects models. Associations between change in white matter microstructure and cognition were examined. Subsequently impaired individuals had a faster decline in fractional anisotropy in the right inferior fronto-occipital fasciculus and bilateral splenium of the corpus callosum. A decline in right inferior fronto-occipital fasciculus fractional anisotropy was related to a decline in verbal memory, visuospatial ability, processing speed and mini-mental state examination. A decline in bilateral splenium fractional anisotropy was related to a decline in verbal fluency, processing speed and mini-mental state examination. Accelerated regional white matter microstructural decline is evident during the preclinical phase of mild cognitive impairment/dementia and is related to domain-specific cognitive decline.
Collapse
Affiliation(s)
- Andrea T. Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence to: Andrea T. Shafer 251 Bayview Blvd., Baltimore MD 21224, USA E-mail:
| | - Owen A. Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Department of Experimental Psychology, University of Oxford, Oxford, UK
| | - Evian Perez
- San Juan Bautista School of Medicine, Caguas, Puerto Rico
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA
| | | | - Luigi Ferrucci
- Longitudinal Studies Section, Translational Gerontology Branch, National Institute on Aging, Baltimore, MD 21224, USA
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD 21224, USA,Correspondence may also be addressed to: Susan M. Resnick E-mail:
| |
Collapse
|
29
|
Plasma neurofilament light levels correlate with white matter damage prior to Alzheimer's disease: results from ADNI. Aging Clin Exp Res 2022; 34:2363-2372. [PMID: 35226303 DOI: 10.1007/s40520-022-02095-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 02/10/2022] [Indexed: 11/01/2022]
Abstract
BACKGROUND The blood biomarker neurofilament light (NFL) is one of the most widely used for monitoring Alzheimer's disease (AD). According to recent research, a higher NFL plasma level has a substantial predictive value for cognitive deterioration in AD patients. Diffusion tensor imaging (DTI) is an MRI-based approach for detecting neurodegeneration, white matter (WM) disruption, and synaptic damage. There have been few studies on the relationship between plasma NFL and WM microstructure integrity. AIMS The goal of the current study is to assess the associations between plasma levels of NFL, CSF total tau, phosphorylated tau181 (P-tau181), and amyloid-β (Aβ) with WM microstructural alterations. METHODS We herein have investigated the cross-sectional association between plasma levels of NFL and WM microstructural alterations as evaluated by DTI in 92 patients with mild cognitive impairment (MCI) provided by Alzheimer's Disease Neuroimaging Initiative (ADNI) participants. We analyzed the potential association between plasma NFL levels and radial diffusivity (RD), axial diffusivity (AxD), mean diffusivity (MD), and fractional anisotropy (FA) in each region of the Montreal Neurological Institute and Hospital (MNI) atlas, using simple linear regression models stratified by age, sex, and APOE ε4 genotype. RESULTS Our findings demonstrated a significant association between plasma NFL levels and disrupted WM microstructure across the brain. In distinct areas, plasma NFL has a negative association with FA in the fornix, fronto-occipital fasciculus, corpus callosum, uncinate fasciculus, internal capsule, and corona radiata and a positive association with RD, AxD, and MD values in sagittal stratum, corpus callosum, fronto-occipital fasciculus, corona radiata, internal capsule, thalamic radiation, hippocampal cingulum, fornix, and cingulum. Lower FA and higher RD, AxD, and MD values are related to demyelination and degeneration in WM. CONCLUSION Our findings revealed that the level of NFL in the blood is linked to WM alterations in MCI patients. Plasma NFL has the potential to be a biomarker for microstructural alterations. However, further longitudinal studies are necessary to validate the predictive role of plasma NFL in cognitive decline.
Collapse
|
30
|
Triebswetter C, Kiely M, Khattar N, Ferrucci L, Resnick SM, Spencer RG, Bouhrara M. Differential associations between apolipoprotein E alleles and cerebral myelin content in normative aging. Neuroimage 2022; 251:118988. [PMID: 35150834 PMCID: PMC8940662 DOI: 10.1016/j.neuroimage.2022.118988] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 01/20/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022] Open
Abstract
Mounting evidence indicates that myelin breakdown may represent an early phenomenon in neurodegeneration, including Alzheimer's disease (AD). Understanding the factors influencing myelin synthesis and breakdown will be essential for the development and evaluation of therapeutic interventions. In this work, we assessed associations between genetic variance in apolipoprotein E (APOE) and cerebral myelin content. Quantitative magnetic resonance imaging (qMRI) was performed on a cohort of 92 cognitively unimpaired adults ranging in age from 24 to 94 years. We measured whole-brain myelin water fraction (MWF), a direct measure of myelin content, as well as longitudinal and transverse relaxation rates (R1 and R2), sensitive measures of myelin content, in carriers of the APOE ε4 or APOE ε2 alleles and individuals with the ε33 genotype. Automated brain mapping algorithms and statistical models were used to evaluate the relationships between MWF or relaxation rates and APOE isoforms, accounting for confounding variables including age, sex, and race, in several cerebral structures. Our results indicate that carriers of APOE ε2 exhibited significantly higher myelin content, that is, higher MWF, R1 or R2 values, in most brain regions investigated as compared to noncarriers, while ε4 carriers exhibited trends toward lower myelin content compared to noncarriers. Finally, all qMRI metrics exhibited quadratic, inverted U-shape, associations with age; attributed to the development of myelination from young to middle age followed by progressive loss of myelin afterwards. Sex and race effects on myelination were, overall, nonsignificant. These findings suggest that individual genetic background may influence cerebral myelin maintenance. Although preliminary, this work lays the foundation for further investigations to clarify the relationship between APOE genotype and myelination, which may suggest potential targets in treatment or prevention of AD.
Collapse
Affiliation(s)
- Curtis Triebswetter
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Matthew Kiely
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Nikkita Khattar
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard G Spencer
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA
| | - Mustapha Bouhrara
- Magnetic Resonance Physics of Aging and Dementia Unit, Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, BRC 05C-222, 251 Bayview Blvd., Baltimore, MD 21224, USA.
| |
Collapse
|
31
|
Regy M, Dugravot A, Sabia S, Fayosse A, Mangin JF, Chupin M, Fischer C, Bouteloup V, Dufouil C, Chêne G, Paquet C, Hanseeuw B, Singh-Manoux A, Dumurgier J. Association of APOE ε4 with cerebral gray matter volumes in non-demented older adults: the MEMENTO cohort study. Neuroimage 2022; 250:118966. [PMID: 35122970 DOI: 10.1016/j.neuroimage.2022.118966] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 10/19/2022] Open
Abstract
Data on 2,045 non-demented individuals with memory complaints were drawn from the Memento cohort study to examine the association between Apolipoprotein E ε4 allele (APOE4) and regional brain gray matter volumes. Linear regression was used to examine the association of APOE4 and measures of regional gray matter volumes in cross-sectional analysis and change therein using longitudinal analyses based on two brain MRI performed at baseline and at two-year follow-up. Overall, in analyses adjusted for age, sex, and intracranial volume, the presence of APOE4 was associated with lower total gray matter volume at baseline and with a higher atrophy rate over the follow-up. The hippocampus and entorhinal cortex were the two gray matter regions most associated with APOE4. Further adjustment for cardiovascular risk factors had little impact on these associations. There was an interaction between age, APOE4 status and total brain volume atrophy rate, with evidence of an earlier age at onset of atrophy in hippocampal volume in APOE4 carriers compared to non-carriers. Those results are in accordance with the role of medial temporal structures in the greater risk of dementia observed in people carrying the APOE4 allele.
Collapse
Affiliation(s)
- Melina Regy
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France; Université catholique de Louvain, Louvain, Belgium.
| | - Aline Dugravot
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
| | - Séverine Sabia
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France; University College London, Department of Epidemiology and Public Health, London, United Kingdom
| | - Aurore Fayosse
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France
| | - Jean-Francois Mangin
- Université Paris-Saclay, CEA, CNRS, CATI, NeuroSpin, Baobab, Gif sur Yvette, France
| | - Marie Chupin
- Université Paris-Saclay, CEA, CNRS, CATI, NeuroSpin, Baobab, Gif sur Yvette, France
| | - Clara Fischer
- Université Paris-Saclay, CEA, CNRS, CATI, NeuroSpin, Baobab, Gif sur Yvette, France
| | - Vincent Bouteloup
- Université de Bordeaux, Bordeaux, France; Pôle de Santé publique Centre Hospitalier Universitaire de Bordeaux, Inserm, UMR 1219, Inserm, CIC1401-EC, Bordeaux, France
| | - Carole Dufouil
- Université de Bordeaux, Bordeaux, France; Pôle de Santé publique Centre Hospitalier Universitaire de Bordeaux, Inserm, UMR 1219, Inserm, CIC1401-EC, Bordeaux, France
| | - Geneviève Chêne
- Université de Bordeaux, Bordeaux, France; Pôle de Santé publique Centre Hospitalier Universitaire de Bordeaux, Inserm, UMR 1219, Inserm, CIC1401-EC, Bordeaux, France
| | - Claire Paquet
- GHU APHP Nord Université de Paris Lariboisiere - Fernand Widal Paris, France; Université de Paris, INSERMU1144, Paris France
| | - Bernard Hanseeuw
- Université catholique de Louvain, Louvain, Belgium; Cliniques Universitaires Saint-Luc, Bruxelles, Belgium
| | - Archana Singh-Manoux
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France; University College London, Department of Epidemiology and Public Health, London, United Kingdom
| | - Julien Dumurgier
- Université de Paris, Inserm U1153, Epidemiology of Ageing and Neurodegenerative diseases, Paris, France; GHU APHP Nord Université de Paris Lariboisiere - Fernand Widal Paris, France
| | | |
Collapse
|
32
|
Beck D, de Lange AG, Pedersen ML, Alnæs D, Maximov II, Voldsbekk I, Richard G, Sanders A, Ulrichsen KM, Dørum ES, Kolskår KK, Høgestøl EA, Steen NE, Djurovic S, Andreassen OA, Nordvik JE, Kaufmann T, Westlye LT. Cardiometabolic risk factors associated with brain age and accelerate brain ageing. Hum Brain Mapp 2022; 43:700-720. [PMID: 34626047 PMCID: PMC8720200 DOI: 10.1002/hbm.25680] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 09/02/2021] [Accepted: 09/25/2021] [Indexed: 11/17/2022] Open
Abstract
The structure and integrity of the ageing brain is interchangeably linked to physical health, and cardiometabolic risk factors (CMRs) are associated with dementia and other brain disorders. In this mixed cross-sectional and longitudinal study (interval mean = 19.7 months), including 790 healthy individuals (mean age = 46.7 years, 53% women), we investigated CMRs and health indicators including anthropometric measures, lifestyle factors, and blood biomarkers in relation to brain structure using MRI-based morphometry and diffusion tensor imaging (DTI). We performed tissue specific brain age prediction using machine learning and performed Bayesian multilevel modeling to assess changes in each CMR over time, their respective association with brain age gap (BAG), and their interaction effects with time and age on the tissue-specific BAGs. The results showed credible associations between DTI-based BAG and blood levels of phosphate and mean cell volume (MCV), and between T1-based BAG and systolic blood pressure, smoking, pulse, and C-reactive protein (CRP), indicating older-appearing brains in people with higher cardiometabolic risk (smoking, higher blood pressure and pulse, low-grade inflammation). Longitudinal evidence supported interactions between both BAGs and waist-to-hip ratio (WHR), and between DTI-based BAG and systolic blood pressure and smoking, indicating accelerated ageing in people with higher cardiometabolic risk (smoking, higher blood pressure, and WHR). The results demonstrate that cardiometabolic risk factors are associated with brain ageing. While randomized controlled trials are needed to establish causality, our results indicate that public health initiatives and treatment strategies targeting modifiable cardiometabolic risk factors may also improve risk trajectories and delay brain ageing.
Collapse
Affiliation(s)
- Dani Beck
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Ann‐Marie G. de Lange
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- LREN, Centre for Research in Neurosciences‐Department of Clinical NeurosciencesCHUV and University of LausanneLausanneSwitzerland
- Department of PsychiatryUniversity of OxfordOxfordUK
| | - Mads L. Pedersen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Dag Alnæs
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Bjørknes CollegeOsloNorway
| | - Ivan I. Maximov
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Department of Health and FunctioningWestern Norway University of Applied SciencesBergenNorway
| | - Irene Voldsbekk
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Geneviève Richard
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Anne‐Marthe Sanders
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Kristine M. Ulrichsen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Erlend S. Dørum
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Knut K. Kolskår
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- Sunnaas Rehabilitation Hospital HTNesodden
| | - Einar A. Høgestøl
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
| | - Nils Eiel Steen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Srdjan Djurovic
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
| | - Ole A. Andreassen
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| | | | - Tobias Kaufmann
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of Psychiatry and PsychotherapyUniversity of TübingenTubingenGermany
| | - Lars T. Westlye
- NORMENT, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical MedicineUniversity of OsloOslo
- Department of PsychologyUniversity of OsloOslo
- KG Jebsen Centre for Neurodevelopmental DisordersUniversity of OsloOsloNorway
| |
Collapse
|
33
|
Shafer AT, Beason-Held L, An Y, Williams OA, Huo Y, Landman BA, Caffo BS, Resnick SM. Default mode network connectivity and cognition in the aging brain: the effects of age, sex, and APOE genotype. Neurobiol Aging 2021; 104:10-23. [PMID: 33957555 PMCID: PMC12004503 DOI: 10.1016/j.neurobiolaging.2021.03.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
The default mode network (DMN) overlaps with regions showing early Alzheimer's Disease (AD) pathology. Age, sex, and apolipoprotein E ɛ4 are the predominant risk factors for developing AD. How these risk factors interact to influence DMN connectivity and connectivity-cognition relationships before the onset of impairment remains unknown. Here, we examined these issues in 475 cognitively normal adults, targeting total DMN connectivity, its anticorrelated network (acDMN), and the DMN-hippocampal component. There were four main findings. First, in the ɛ3 homozygous group, lower DMN and acDMN connectivity was observed with age. Second, sex and ɛ4 modified the relationship between age and connectivity for the DMN and hippocampus with ɛ4 vs. ɛ3 males showing sustained or higher connectivity with age. Third, in the ɛ3 group, age and sex modified connectivity-cognition relationships with the oldest participants having the most differential patterns due to sex. Fourth, ɛ4 carriers with lower connectivity had poorer cognitive performance. Taken together, our results show the three predominant risk factors for AD interact to influence brain function and function-cognition relationships.
Collapse
Affiliation(s)
- Andrea T Shafer
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| | - Lori Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD
| | - Yuankai Huo
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Bennett A Landman
- Department of Electrical Engineering & Computer Science, Vanderbilt University, Nashville, TN
| | - Brian S Caffo
- Department of Biostatistics, Johns Hopkins School of Public Health, Baltimore, MD
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, MD.
| |
Collapse
|
34
|
Herpes simplex virus, early neuroimaging markers and incidence of Alzheimer's disease. Transl Psychiatry 2021; 11:414. [PMID: 34333531 PMCID: PMC8325675 DOI: 10.1038/s41398-021-01532-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/27/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
While previous studies suggest the implication of herpes simplex virus (HSV) in the onset of Alzheimer's disease (AD), no study has investigated its association with early neuroimaging markers of AD. In the Three-City and the AMI cohorts, the associations between HSV infection and (i) hippocampal volume (n = 349), (ii) white matter alterations in the parahippocampal cingulum and fornix using diffusion tensor imaging (n = 260), and (iii) incidence of AD (n = 1599) were assessed according to APOE4 status. Regardless of APOE4 status, infected subjects presented (i) significantly more microstructural alterations of the parahippocampal cingulum and fornix, (ii) lower hippocampal volumes only when their anti-HSV IgG level was in the highest tercile-reflecting possibly more frequent reactivations of the virus (p = 0.03 for subjects with a high anti-HSV IgG level while there was no association for all infected subjects, p = 0.19), and (iii) had no increased risk of developing AD. Nevertheless, among APOE4 carriers, infected subjects presented lower hippocampal volumes, although not significant (p = 0.09), and a two or three times higher risk of developing AD (adjusted Hazard ratio (aHR) = 2.72 [1.07-6.91] p = 0.04 for infected subjects and aHR = 3.87 [1.45-10.28] p = 0.007 for infected subjects with an anti-HSV IgG level in the highest tercile) while no association was found among APOE4 noncarriers. Our findings support an association between HSV infection and AD and a potential interaction between HSV status and APOE4. This reinforces the need to further investigate the infectious hypothesis of AD, especially the associated susceptibility factors and the possibility of preventive treatments.
Collapse
|
35
|
Wooten T, Brown E, Sullivan DR, Logue MW, Fortier CB, Fonda JR, DeGutis J, Salat DH, McGlinchey R, Milberg W, Esterman M. Apolipoprotein E (APOE) ε4 moderates the relationship between c-reactive protein, cognitive functioning, and white matter integrity. Brain Behav Immun 2021; 95:84-95. [PMID: 33631288 DOI: 10.1016/j.bbi.2021.02.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 01/26/2021] [Accepted: 02/18/2021] [Indexed: 01/21/2023] Open
Abstract
Elevated serum C-reactive protein (CRP) and possessing an APOE ε4 allele are two of the most prominent risk factors for cognitive and neurological dysfunction in older adults, but little is known about the unique or cumulative effects of these risk factors in young-to-middle-aged adults. To further characterize these potential relationships, measures of cognition and microstructural white matter integrity were examined using data from a sample of 329 post-9/11 war veterans that was collected as part of a comprehensive evaluation that included assessment of neuropsychological functioning, MRI scanning, psychiatric diagnoses, health screening, markers of inflammation, and APOE genotypes. Hierarchical linear regression analyses revealed the CRP and APOE ε4 interaction was associated with global cognition (β = -0.633), executive functioning (β = -0.566), and global fractional anisotropy (β = -0.470), such that elevated CRP was associated with worse cognition and white matter integrity in APOE ε4 carriers. Diffusion tensor imaging (DTI) was used to determine if CRP × APOE ε4 presence was associated with regionally specific fractional anisotropy in white matter tracts. Tract-based spatial statistics revealed CRP × APOE ε4 presence was associated with fractional anisotropy in the corpus callosum, right superior longitudinal fasciculus, right posterior corona radiata, as well as the bilateral anterior and superior corona radiatas. This suggests that APOE ε4 carriers may be uniquely vulnerable to the potentially negative impact of elevated systematic inflammation to cognition and microstructural white matter integrity.
Collapse
Affiliation(s)
- Thomas Wooten
- Tufts University, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Healthcare System, Boston, MA, USA.
| | - Emma Brown
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA
| | - Danielle R Sullivan
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA; Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
| | - Catherine B Fortier
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Jennifer R Fonda
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Joseph DeGutis
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Healthcare System, Boston, MA, USA
| | - David H Salat
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Neuroimaging Research for Veterans (NeRVe) Center, VA Boston Healthcare System, Boston, MA, USA; Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - William Milberg
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Michael Esterman
- National Center for PTSD, VA Boston Healthcare System, Boston, MA, USA; Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA; Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Center (GRECC), VA Boston Healthcare System, Boston, MA, USA; Boston Attention and Learning Laboratory, VA Healthcare System, Boston, MA, USA
| |
Collapse
|
36
|
Armstrong NM, Williams OA, Landman BA, Deal JA, Lin FR, Resnick SM. Association of Poorer Hearing With Longitudinal Change in Cerebral White Matter Microstructure. JAMA Otolaryngol Head Neck Surg 2021; 146:1035-1042. [PMID: 32880621 DOI: 10.1001/jamaoto.2020.2497] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Importance There is a dearth of studies that examine the association between poorer hearing and change in cerebral white matter (WM) microstructure. Objective To examine the association of poorer hearing with baseline and change in WM microstructure among older adults. Design, Setting, and Participants This was a prospective cohort study that evaluated speech-in-noise, pure-tone audiometry, and WM microstructure, as measured by mean diffusivity (MD) and fractional anisotropy (FA), both of which were evaluated by diffusion tensor imaging (DTI) in 17 WM regions. Data were collected between October 2012 and December 2018 and analyzed between March 2019 and August 2019 with a mean follow-up time of 1.7 years. The study evaluated responses to the Baltimore Longitudinal Study of Aging among 356 cognitively normal adults who had at least 1 hearing assessment and DTI session. Excluded were those with baseline cognitive impairment, stroke, head injuries, Parkinson disease, and/or bipolar disorder. Exposures Peripheral auditory function was measured by pure-tone average in the better-hearing ear. Central auditory function was measured by signal-to-noise ratio score from a speech-in-noise task and adjusted by pure-tone average. Main Outcomes and Measures Linear mixed-effects models with random intercepts and slopes were used to examine the association of poorer peripheral and central auditory function with baseline and longitudinal DTI metrics in 17 WM regions, adjusting for baseline characteristics (age, sex, race, hypertension, elevated total cholesterol, and obesity). Results Of 356 cognitively normal adults included in the study, the mean (SD) age was 73.5 (8.8) years, and 204 (57.3%) were women. There were no baseline associations between hearing and DTI measures. Longitudinally, poorer peripheral hearing was associated with increases in MD in the inferior fronto-occipital fasciculus (β = 0.025; 95% CI, 0.008-0.042) and the body (β = 0.050; 95% CI, 0.015-0.085) of the corpus callosum, but there were no associations of peripheral hearing with FA changes in these tracts. Poorer central auditory function was associated with longitudinal MD increases (β = 0.031; 95% CI, 0.010-0.052) and FA declines (β = -1.624; 95% CI, -2.511 to -0.738) in the uncinate fasciculus. Conclusions and Relevance Findings of this cohort study suggest that poorer hearing is related to change in integrity of specific WM regions involved with auditory processing.
Collapse
Affiliation(s)
- Nicole M Armstrong
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland.,Department of Psychiatry and Human Behavior, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | | - Jennifer A Deal
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Frank R Lin
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Department of Otolaryngology-Head & Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
37
|
Wang YJ, Hu H, Yang YX, Zuo CT, Tan L, Yu JT. Regional Amyloid Accumulation and White Matter Integrity in Cognitively Normal Individuals. J Alzheimers Dis 2021; 74:1261-1270. [PMID: 32176644 DOI: 10.3233/jad-191350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Recent studies have shown that amyloid-β (Aβ) burden influenced white matter (WM) integrity before the onset of dementia. OBJECTIVE To assess whether the effects of Aβ burden on WM integrity in cognitively normal (CN) individuals were regionally specific. METHODS Our cohort consisted of 71 CNs from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database who underwent both AV45 amyloid-PET and diffusion tensor imaging. Standardized uptake value ratio (SUVR) was computed across four bilateral regions of interest (ROIs) corresponding to four stages of in vivo amyloid staging model (Amyloid stages I-IV). Linear regression models were conducted in entire CN group and between APOEɛ4 carriers and non-carriers. RESULTS Our results indicated that higher global Aβ-SUVR was associated with higher mean diffusivity (MD) in the entire CN group (p = 0.023), and with both higher MD (p = 0.015) and lower fractional anisotropy (FA) (p = 0.026) in APOEɛ4 carriers. Subregion analysis showed that higher Amyloid stage I-II Aβ-SUVRs were associated with higher MD (Stage-1: p = 0.030; Stage-2: p = 0.016) in the entire CN group, and with both higher MD (Stage-1: p = 0.004; Stage-2: p = 0.010) and lower FA (Stage-1: p = 0.022; Stage-2: p = 0.014) in APOEɛ4 carriers. No associations were found in APOEɛ4 non-carriers and in Amyloid stage III-IV ROIs. CONCLUSIONS Our results indicated that the effects of Aβ burden on WM integrity in CNs might be regionally specific, particularly in Amyloid stage I-II ROIs, and modulated by APOEɛ4 status.
Collapse
Affiliation(s)
- Ya-Juan Wang
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China
| | - Hao Hu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Yu-Xiang Yang
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Chuan-Tao Zuo
- PET Center, Huashan Hospital, Fudan University, Shanghai, China
| | - Lan Tan
- Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, China.,Department of Neurology, Qingdao Municipal Hospital, Qingdao University, China
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | | |
Collapse
|
38
|
Iriondo A, García-Sebastian M, Arrospide A, Arriba M, Aurtenetxe S, Barandiaran M, Clerigue M, Ecay-Torres M, Estanga A, Gabilondo A, Izagirre A, Saldias J, Tainta M, Villanua J, Mar J, Goñi FM, Martínez-Lage P. Plasma lipids are associated with white matter microstructural changes and axonal degeneration. Brain Imaging Behav 2021; 15:1043-1057. [PMID: 32748320 DOI: 10.1007/s11682-020-00311-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Dislipidemia is a risk factor for cognitive impairment. We studied the association between interindividual variability of plasma lipids and white matter (WM) microstructure, using diffusion tensor imaging (DTI) in 273 healthy adults. Special focus was placed on 7 regions of interest (ROI) which are structural components of cognitive neurocircuitry. We also investigated the effect of plasma lipids on cerebrospinal fluid (CSF) neurofilament light chain (NfL), an axonal degeneration marker. Low density lipoprotein (LDL) and triglyceride (TG) levels showed a negative association with axial diffusivity (AxD) in multiple regions. High density lipoproteins (HDL) showed a positive correlation. The association was independent of Apolipoprotein E (APOE) genotype, blood pressure or use of statins. LDL moderated the relation between NfL and AxD in the body of the corpus callosum (p = 0.041), right cingulum gyrus (p = 0.041), right fornix/stria terminalis (p = 0.025) and right superior longitudinal fasciculus (p = 0.020) and TG in the right inferior longitudinal fasciculus (p = 0.004) and left fornix/stria terminalis (p = 0.001). We conclude that plasma lipids are associated to WM microstructural changes and axonal degeneration and might represent a risk factor in the transition from healthy aging to disease.
Collapse
Affiliation(s)
- Ane Iriondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Maite García-Sebastian
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Arantzazu Arrospide
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Maria Arriba
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Sara Aurtenetxe
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Myriam Barandiaran
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Montserrat Clerigue
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mirian Ecay-Torres
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Ainara Estanga
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Alazne Gabilondo
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Andrea Izagirre
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.,Department of Nursing II, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Jon Saldias
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Mikel Tainta
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Jorge Villanua
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain
| | - Javier Mar
- Gipuzkoa Primary Care - Integrated Health Care Organizations Research Unit. Alto Deba Integrated Health Care Organisation, Arrasate, Spain.,Biodonostia Health Research Institute, Donostia-San Sebastian, Spain
| | - Felix M Goñi
- Departamento de Bioquímica, University of the Basque Country (UPV/EHU) and Instituto Biofisika (CSIC, UPV/EHU), Leioa, Spain
| | - Pablo Martínez-Lage
- Center for Research and Advanced Therapies, CITA-Alzheimer Foundation, Donostia-San Sebastian, Spain.
| |
Collapse
|
39
|
Matijevic S, Ryan L. Tract Specificity of Age Effects on Diffusion Tensor Imaging Measures of White Matter Health. Front Aging Neurosci 2021; 13:628865. [PMID: 33790778 PMCID: PMC8006297 DOI: 10.3389/fnagi.2021.628865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/11/2021] [Indexed: 11/13/2022] Open
Abstract
Well-established literature indicates that older adults have poorer cerebral white matter integrity, as measured through diffusion tensor imaging (DTI). Age differences in DTI have been observed widely across white matter, although some tracts appear more sensitive to the effects of aging than others. Factors like APOE ε4 status and sex may contribute to individual differences in white matter integrity that also selectively impact certain tracts, and could influence DTI changes in aging. The present study explored the degree to which age, APOE ε4, and sex exerted global vs. tract specific effects on DTI metrics in cognitively healthy late middle-aged to older adults. Data from 49 older adults (ages 54–92) at two time-points separated by approximately 2.7 years were collected. DTI metrics, including fractional anisotropy (FA) and mean diffusivity (MD), were extracted from nine white matter tracts and global white matter. Results showed that across timepoints, FA and MD increased globally, with no tract-specific changes observed. Baseline age had a global influence on both measures, with increasing age associated with lower FA and higher MD. After controlling for global white matter FA, age additionally predicted FA for the genu, callosum body, inferior fronto-occipital fasciculus (IFOF), and both anterior and posterior cingulum. Females exhibited lower global FA on average compared to males. In contrast, MD was selectively elevated in the anterior cingulum and superior longitudinal fasciculus (SLF), for females compared to males. APOE ε4 status was not predictive of either measure. In summary, these results indicate that age and sex are associated with both global and tract-specific alterations to DTI metrics among a healthy older adult cohort. Older women have poorer white matter integrity compared to older men, perhaps related to menopause-induced metabolic changes. While age-related alterations to white matter integrity are global, there is substantial variation in the degree to which tracts are impacted, possibly as a consequence of tract anatomical variability. The present study highlights the importance of accounting for global sources of variation in DTI metrics when attempting to investigate individual differences (due to age, sex, or other factors) in specific white matter tracts.
Collapse
Affiliation(s)
- Stephanie Matijevic
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| | - Lee Ryan
- Cognition and Neuroimaging Laboratory, Department of Psychology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
40
|
Additive and Synergistic Cardiovascular Disease Risk Factors and HIV Disease Markers' Effects on White Matter Microstructure in Virally Suppressed HIV. J Acquir Immune Defic Syndr 2021; 84:543-551. [PMID: 32692114 DOI: 10.1097/qai.0000000000002390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND It is unclear whether intermediate to high cardiovascular disease (CVD) risk and HIV disease status may have additive (ie, independent statistical effects concomitantly tested) or synergistic effects on white matter microstructure and cognition in virally suppressed HIV-infected (HIV+) men relative to sex and age-matched controls. SETTING Tertiary health care observational cohort. METHODS Eighty-two HIV+ men (mean age 55 ± 6 years, 10%-30% on various CVD drugs; 20% with previous CVD) and 40 HIV-uninfected (HIV-) men (none with previous CVD; 10%-20% on various CVD drugs) underwent diffusion tensor imaging and neuropsychological testing. A standard classification of intermediate to high CVD risk (CVD+ group) was based on the Framingham score ≥15% cutoff and/or a history of CVD. Fractional anisotropy (FA) and mean diffusivity (MD) were quantified in 11 white matter tracts. RESULTS Within the HIV- group, the CVD+ group had lower FA (P = 0.03) and higher MD (P = 0.003) in the corona radiata and higher MD in the corpus callosum (P = 0.02) and superior fasciculi (P = 0.03) than the CVD- group. Within the HIV+ group, the CVD+ group had lower FA in the superior fasciculi (P = 0.04) and higher MD in the uncinate fasciculus (P = 0.04), and lower FA (P = 0.01) and higher MD (P = 0.03) in the fornix than the CVD- group. The fornix alterations were also abnormal compared with the HIV- groups. The HIV+ CVD+ was more likely to have HIV-associated dementia. Older age, antihypertensive use, longer HIV duration, and higher C-reactive protein associated with lower FA and higher MD. Higher blood CD4 lymphocyte count and CD4/CD8 ratio associated with higher FA and lower MD. CONCLUSIONS In virally suppressed HIV, CVD risk factors have a mostly additive contribution to white matter microstructural alterations, leading to a different distribution of injury in HIV- and HIV+ persons with CVD. There was also evidence of a synergistic effect of CVD and HIV factors on the fornix white matter injury.
Collapse
|
41
|
Delvenne JF, Scally B, Bunce D, Burke MR. Splenium tracts of the corpus callosum degrade in old age. Neurosci Lett 2021; 742:135549. [PMID: 33285249 DOI: 10.1016/j.neulet.2020.135549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/25/2020] [Accepted: 11/30/2020] [Indexed: 10/22/2022]
Abstract
It is well established that the posterior region of the corpus callosum, known as the splenium, is relatively preserved during the course of normal ageing. However, the effect of age on its distinct interhemispheric tract bundles that project to bilateral occipital, parietal and temporal areas of the cortex, is largely unknown. In the present study, diffusion tensor imaging was used to directly examine the integrity of these distinct segregations and their diffusion metrics were compared between groups of young adults (n = 20, mean age = 30.75) and older adults (n = 19, mean age = 80.21). Results revealed that while occipital tracts were preserved in older adults, parietal and temporal segments were particularly impaired. These findings are the first to indicate the existence of selective alterations in the posterior region of the corpus callosum in older age.
Collapse
Affiliation(s)
- Jean-Francois Delvenne
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom.
| | - Brian Scally
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - David Bunce
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Melanie Rose Burke
- School of Psychology, Faculty of Medicine and Health, University of Leeds, Leeds, LS2 9JT, United Kingdom
| |
Collapse
|
42
|
Higher BMI, but not obesity-related genetic polymorphisms, correlates with lower structural connectivity of the reward network in a population-based study. Int J Obes (Lond) 2020; 45:491-501. [PMID: 33100325 PMCID: PMC7906899 DOI: 10.1038/s41366-020-00702-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 09/13/2020] [Accepted: 10/14/2020] [Indexed: 11/08/2022]
Abstract
BACKGROUND Obesity is of complex origin, involving genetic and neurobehavioral factors. Genetic polymorphisms may increase the risk for developing obesity by modulating dopamine-dependent behaviors, such as reward processing. Yet, few studies have investigated the association of obesity, related genetic variants, and structural connectivity of the dopaminergic reward network. METHODS We analyzed 347 participants (age range: 20-59 years, BMI range: 17-38 kg/m2) of the LIFE-Adult Study. Genotyping for the single nucleotid polymorphisms rs1558902 (FTO) and rs1800497 (near dopamine D2 receptor) was performed on a microarray. Structural connectivity of the reward network was derived from diffusion-weighted magnetic resonance imaging at 3 T using deterministic tractography of Freesurfer-derived regions of interest. Using graph metrics, we extracted summary measures of clustering coefficient and connectivity strength between frontal and striatal brain regions. We used linear models to test the association of BMI, risk alleles of both variants, and reward network connectivity. RESULTS Higher BMI was significantly associated with lower connectivity strength for number of streamlines (β = -0.0025, 95%-C.I.: [-0.004, -0.0008], p = 0.0042), and, to lesser degree, fractional anisotropy (β = -0.0009, 95%-C.I. [-0.0016, -0.00008], p = 0.031), but not clustering coefficient. Strongest associations were found for left putamen, right accumbens, and right lateral orbitofrontal cortex. As expected, the polymorphism rs1558902 in FTO was associated with higher BMI (F = 6.9, p < 0.001). None of the genetic variants was associated with reward network structural connectivity. CONCLUSIONS Here, we provide evidence that higher BMI correlates with lower reward network structural connectivity. This result is in line with previous findings of obesity-related decline in white matter microstructure. We did not observe an association of variants in FTO or near DRD2 receptor with reward network structural connectivity in this population-based cohort with a wide range of BMI and age. Future research should further investigate the link between genetics, obesity and fronto-striatal structural connectivity.
Collapse
|
43
|
Nicolas R, Hiba B, Dilharreguy B, Barse E, Baillet M, Edde M, Pelletier A, Periot O, Helmer C, Allard M, Dartigues JF, Amieva H, Pérès K, Fernandez P, Catheline G. Changes Over Time of Diffusion MRI in the White Matter of Aging Brain, a Good Predictor of Verbal Recall. Front Aging Neurosci 2020; 12:218. [PMID: 32922282 PMCID: PMC7456903 DOI: 10.3389/fnagi.2020.00218] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 06/19/2020] [Indexed: 11/13/2022] Open
Abstract
Objective: Extensive research using water-diffusion MRI reported age-related modifications of cerebral White Matter (WM). Moreover, water-diffusion parameter modifications have been frequently associated with cognitive performances in the elderly sample, reinforcing the idea of aging inducing microstructural disconnection of the brain which in turn impacts cognition. However, only few studies really assessed over-time modifications of these parameters and their relationship with episodic memory outcome of elderly. Materials and Methods: One-hundred and thirty elderly subjects without dementia (74.1 ± 4.1 years; 47% female) were included in this study. Diffusion tensor imaging (DTI) was performed at two-time points (3.49 ± 0.68 years apart), allowing the assessment of changes in water-diffusion parameters over time using a specific longitudinal pipeline. White matter hyperintensity (WMH) burden and gray matter (GM) atrophy were also measured on FLAIR and T1-weighted sequences collected during these two MRI sessions. Free and cued verbal recall scores assessed at the last follow-up of the cohort were used as episodic memory outcome. Changes in water-diffusion parameters over time were included in serial linear regression models to predict retrieval or storage ability of elderly. Results: GM atrophy and an increase in mean diffusivity (MD) and WMH load between the two-time points were observed. The increase in MD was significantly correlated with WMH load and the different memory scores. In models accounting for the baseline cognitive score, GM atrophy, or WMH load, MD changes still significantly predict free verbal recall, and not total verbal recall, suggesting the specific association with the retrieval deficit in healthy aging. Conclusion: In elderly, microstructural WM changes are good predictors of lower free verbal recall performances. Moreover, this contribution is not only driven by WMH load increase. This last observation is in line with studies reporting early water-diffusion modification in WM tissue during aging, resulting lately in the appearance of WMH on conventional MRI.
Collapse
Affiliation(s)
- Renaud Nicolas
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Bassem Hiba
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Bixente Dilharreguy
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Elodie Barse
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Marion Baillet
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Manon Edde
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Amandine Pelletier
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| | - Olivier Periot
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France
| | - Catherine Helmer
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Michele Allard
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Service de Médecine Nucléaire, CHU de Bordeaux, Bordeaux, France
| | - Jean-François Dartigues
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France.,CMRR, CHU de Bordeaux, Bordeaux, France
| | - Hélène Amieva
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Karine Pérès
- Université de Bordeaux, ISPED, Centre INSERM U1219-Bordeaux Population Health Research Center, Bordeaux, France.,INSERM, ISPED, Centre INSERM U1219-Bordeaux Population Heath Research Center, Bordeaux, France
| | - Philippe Fernandez
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Service de Médecine Nucléaire, CHU de Bordeaux, Bordeaux, France
| | - Gwénaëlle Catheline
- Université de Bordeaux, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,CNRS, INCIA, UMR 5287-équipe NeuroImagerie et Cognition Humaine, Bordeaux, France.,Laboratoire Neuroimagerie et vie quotidienne, EPHE-PSL University, Bordeaux, France
| |
Collapse
|
44
|
Elliott ML. MRI-based biomarkers of accelerated aging and dementia risk in midlife: how close are we? Ageing Res Rev 2020; 61:101075. [PMID: 32325150 DOI: 10.1016/j.arr.2020.101075] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 03/10/2020] [Accepted: 04/15/2020] [Indexed: 01/18/2023]
Abstract
The global population is aging, leading to an increasing burden of age-related neurodegenerative disease. Efforts to intervene against age-related dementias in older adults have generally proven ineffective. These failures suggest that a lifetime of brain aging may be difficult to reverse once widespread deterioration has occurred. To test interventions in younger populations, biomarkers of brain aging are needed that index subtle signs of accelerated brain deterioration that are part of the putative pathway to dementia. Here I review potential MRI-based biomarkers that could connect midlife brain aging to later life dementia. I survey the literature with three questions in mind, 1) Does the biomarker index age-related changes across the lifespan? 2) Does the biomarker index cognitive ability and cognitive decline? 3) Is the biomarker sensitive to known risk factors for dementia? I find that while there is preliminary support for some midlife MRI-based biomarkers for accelerated aging, the longitudinal research that would best answer these questions is still in its infancy and needs to be further developed. I conclude with suggestions for future research.
Collapse
Affiliation(s)
- Maxwell L Elliott
- Department of Psychology and Neuroscience, Duke University, 2020 West Main Street, Suite 030, Durham, NC, 27701, USA.
| |
Collapse
|
45
|
June D, Williams OA, Huang CW, An Y, Landman BA, Davatzikos C, Bilgel M, Resnick SM, Beason-Held LL. Lasting consequences of concussion on the aging brain: Findings from the Baltimore Longitudinal Study of Aging. Neuroimage 2020; 221:117182. [PMID: 32702483 PMCID: PMC7848820 DOI: 10.1016/j.neuroimage.2020.117182] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/30/2022] Open
Abstract
Studies suggest that concussions may be related to increased risk of
neurodegenerative diseases, such as Chronic Traumatic Encephalopathy and
Alzheimer’s Disease. Most neuroimaging studies show effects of
concussionsin frontal and temporal lobes of the brain, yet the long-term impacts
of concussions on the aging brain have not been well studied. We examined
neuroimaging data from 51 participants (mean age at first imaging visit =
65.1±11.23) in the Baltimore Longitudinal Study of Aging (BLSA) who
reported a concussion in their medical history an average of 23 years prior to
the first imaging visit, and compared them to 150 participants (mean age at
first imaging visit = 66.6 ± 10.97) with no history of concussion.
Participants underwent serial structural MRI overa mean of 5.17 ± 6.14
years and DTI over a mean of 2.92 ± 2.22 years to measure brain
structure, as well as 15O-water PET over a mean of 5.33 ± 2.19
years to measure brain function. A battery of neuropsychological tests was also
administered over a mean of 11.62 ± 7.41 years. Analyses of frontal and
temporal lobe regions were performed to examine differences in these measures
between the concussion and control groups at first imaging visit and in change
over time. Compared to those without concussion, participants with a prior
concussion had greater brain atrophy in temporal lobe white matter and
hippocampus at first imaging visit, which remained stable throughout the
follow-up visits. Those with prior concussion also showed differences in white
matter microstructure using DTI, including increased radial and axial
diffusivity in the fornix/stria terminalis, anterior corona radiata, and
superior longitudinal fasciculus at first imaging visit. In 15O-water
PET, higher resting cerebral blood flow was seen at first imaging visit in
orbitofrontal and lateral temporal regions, and both increases and decreases
were seen in prefrontal, cingulate, insular, hippocampal, and ventral temporal
regions with longitudinal follow-up. There were no significant differences in
neuropsychological performance between groups. Most of the differences observed
between the concussed and non-concussed groups were seen at the first imaging
visit, suggesting that concussions can produce long-lasting structural and
functional alterations in temporal and frontal regions of the brain in older
individuals. These results also suggest that many of the reported short-term
effects of concussion may still be apparent later in life.
Collapse
Affiliation(s)
- Danielle June
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Owen A Williams
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Chiung-Wei Huang
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Yang An
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA
| | - Christos Davatzikos
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Murat Bilgel
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Susan M Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA
| | - Lori L Beason-Held
- Laboratory of Behavioral Neuroscience, National Institute on Aging, 251 Bayview Blvd., Baltimore, MD, 21224-6825, USA.
| |
Collapse
|
46
|
Tian Q, Pilling LC, Atkins JL, Melzer D, Ferrucci L. The relationship of parental longevity with the aging brain-results from UK Biobank. GeroScience 2020; 42:1377-1385. [PMID: 32671621 DOI: 10.1007/s11357-020-00227-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 01/23/2023] Open
Abstract
A few studies report that parental longevity is associated with preserved cognition and physical function and lower risk of Alzheimer's disease. However, data on structural neuroimaging correlates of parental longevity and its spatial distribution are limited. This study aims to examine relationships of parental longevity with regional brain structure and to explore sex differences. We identified 12,970 UK Biobank participants (mean age = 64.4, 51.5%women) with data on parental longevity, regional gray matter volumes, and white matter microstructure. Participants were categorized based on whether at least one parent lived to age 85 or older or neither parent survived to age 85. Associations of parental longevity, maternal, and paternal longevity with each neuroimaging marker of interest were examined using linear regression, adjusted for demographics, APOE e4 status, lifestyle, and cardiometabolic conditions. Compared to participants whose both parents died before 85 (43%), those with at least one parent surviving to 85 (57%) had greater volumes in hippocampus, parahippocampal gyrus, middle temporal lobe, and primary sensorimotor cortex and had lower mean diffusivity in posterior thalamic radiation and uncinate fasciculus. Associations were prominent with maternal longevity. Adjustment for cardiometabolic conditions did not affect observed associations except mean diffusivity in posterior thalamic radiation. There were no structural differences in other areas. Parental longevity is associated with preserved brain structure localized in primary sensorimotor cortex and temporal areas including hippocampus. These relationships are prominent with maternal longevity. Longitudinal studies are needed to determine whether changes in these brain structures account for the association between parental longevity and dementia.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, RM 04B316, Baltimore, MD, USA.
| | - Luke C Pilling
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Janice L Atkins
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - David Melzer
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Luigi Ferrucci
- Translational Gerontology Branch Longitudinal Studies Section, National Institute on Aging, 251 Bayview Blvd., Suite 100, RM 04B316, Baltimore, MD, USA
| |
Collapse
|
47
|
Chi CH, Chiu YS, Chang YL. Apolipoprotein E ε4 Allele Is Associated with Reduced Retention of the "Where" Memory Component in Cognitively Intact Older Adults. Arch Clin Neuropsychol 2020; 35:143-154. [PMID: 31701118 DOI: 10.1093/arclin/acz047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Revised: 05/03/2019] [Accepted: 08/19/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVE The present study investigated the effect of the apolipoprotein E (ApoE) ε4 allele on the four memory components (i.e., who, when, where, and what) among cognitively intact older adults. METHODS Participants comprised 47 cognitively intact older adults, who were classified into 2 groups based on the presence or absence of at least 1 ApoE ε4 allele. All participants completed standardized neuropsychological tests, including the Logical Memory subtest of the Wechsler Memory Scale-III with a revised scoring method. RESULTS The results revealed that recollection for each component followed a pattern of who > what > when = where. Furthermore, a significant group-by-component-by-condition interaction indicated that the presence of the ApoE ε4 allele resulted in a disproportionately detrimental effect on the where component retention in the verbal episodic memory task; this finding was significantly correlated with hippocampal volumes. CONCLUSION These results highlighted the importance of evaluating the subcomponents of verbal episodic memory to detect subtle cognitive differences related to ApoE ε4 status, which could help elucidate the mechanism behind the cascades caused by ApoE ε4 in the trajectories of cognitive aging.
Collapse
Affiliation(s)
- Chia-Hsing Chi
- Department of Psychology, College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yen-Shiang Chiu
- Department of Psychology, College of Science, National Taiwan University, Taipei 10617, Taiwan
| | - Yu-Ling Chang
- Department of Psychology, College of Science, National Taiwan University, Taipei 10617, Taiwan.,Neurobiology and Cognitive Science Center, National Taiwan University, Taipei 10617, Taiwan.,Center for Artificial Intelligence and Advanced Robotics, National Taiwan University, Taipei 10617, Taiwan.,Department of Neurology, National Taiwan University Hospital, Taipei 10048, Taiwan
| |
Collapse
|
48
|
Li H, Sun D, Lu D, Zhang J, Zeng J. Low Hippocampal Dentate Gyrus Volume Associated With Hypertension-Related Cognitive Impairment. Am J Alzheimers Dis Other Demen 2020; 35:1533317520949782. [PMID: 33043683 PMCID: PMC10624078 DOI: 10.1177/1533317520949782] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hypertension increases the risk of cognitive impairment independent of detectable stroke or cerebral lesions. However, the principal pathophysiological basis of this increase has not been fully elucidated. The present study investigates the relationships among blood pressure, hippocampal subfields volume, and cognitive function in a relatively young non-stroke population. A total of 59 non-stroke non-dementia subjects (mean age, 57.2 ± 4.9 years) were enrolled. All subjects were subjected to complete assessment of vascular risk factors including 24-hour blood pressure monitoring, various neuropsychological tests, and 3D-T1 MR scan. Freesurfer V6.0 was used for segmentation of hippocampal subfields. Our analyses revealed that both 24-hour and daytime mean systolic blood pressure (SBP) were significantly associated with the low volume of the left DG. Higher coefficient of variation (CV) of daytime SBP was significantly associated with lower volume of the left Cornu Ammonis 4 and dentate gyrus (DG) region. Both higher CV of 24-hour mean SBP and daytime SBP were significantly associated with lower performance in both executive and linguistic function. The low volume of the left DG was significantly associated with the low performance in linguistic function. Our findings support that reduced DG volume and increased SBP variability associated with hypertension-related cognitive impairment.
Collapse
Affiliation(s)
- Huagang Li
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dong Sun
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dongwei Lu
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjian Zhang
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Junjie Zeng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
49
|
Salat DH, Kennedy KM. Current themes and issues in neuroimaging of aging processes: Editorial overview to the special issue on imaging the nonpathological aging brain. Neuroimage 2019; 201:116046. [PMID: 31376520 DOI: 10.1016/j.neuroimage.2019.116046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Affiliation(s)
- David H Salat
- Martinous Center for Biomedical Imaging, Massachusets General Hospital, Department of Radiology, Harvard University, USA
| | - Kristen M Kennedy
- School of Behavioral and Brain Sciences, Center for Vital Longevity, The University of Texas at Dallas, USA.
| |
Collapse
|
50
|
Wassenaar TM, Yaffe K, van der Werf YD, Sexton CE. Associations between modifiable risk factors and white matter of the aging brain: insights from diffusion tensor imaging studies. Neurobiol Aging 2019; 80:56-70. [PMID: 31103633 PMCID: PMC6683729 DOI: 10.1016/j.neurobiolaging.2019.04.006] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/26/2019] [Accepted: 04/05/2019] [Indexed: 01/13/2023]
Abstract
There is increasing interest in factors that may modulate white matter (WM) breakdown and, consequentially, age-related cognitive and behavioral deficits. Recent diffusion tensor imaging studies have examined the relationship of such factors with WM microstructure. This review summarizes the evidence regarding the relationship between WM microstructure and recognized modifiable factors, including hearing loss, hypertension, diabetes, obesity, smoking, depressive symptoms, physical (in) activity, and social isolation, as well as sleep disturbances, diet, cognitive training, and meditation. Current cross-sectional evidence suggests a clear link between loss of WM integrity (lower fractional anisotropy and higher mean diffusivity) and hypertension, obesity, diabetes, and smoking; a relationship that seems to hold for hearing loss, social isolation, depressive symptoms, and sleep disturbances. Physical activity, cognitive training, diet, and meditation, on the other hand, may protect WM with aging. Preliminary evidence from cross-sectional studies of treated risk factors suggests that modification of factors could slow down negative effects on WM microstructure. Careful intervention studies are needed for this literature to contribute to public health initiatives going forward.
Collapse
Affiliation(s)
- Thomas M Wassenaar
- Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroscience, FMRIB Centre, University of Oxford, John Radcliffe Hospital, UK
| | - Kristine Yaffe
- Departments of Psychiatry, Neurology, and Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Ysbrand D van der Werf
- Department of Anatomy and Neurosciences, VU University Medical Center, MC, Amsterdam, the Netherlands
| | - Claire E Sexton
- Department of Neurology, Global Brain Health Institute, Memory and Aging Center, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Wellcome Centre for Integrative Neuroscience, Oxford Centre for Human Brain Activity, University of Oxford, John Radcliffe Hospital, UK.
| |
Collapse
|