1
|
Song Y, Gordon PC, Roy O, Metsomaa J, Belardinelli P, Rostami M, Ziemann U. Involvement of muscarinic acetylcholine receptor-mediated cholinergic neurotransmission in TMS-EEG responses. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111167. [PMID: 39383933 DOI: 10.1016/j.pnpbp.2024.111167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/11/2024]
Abstract
The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) is emerging as a valuable tool for investigating brain functions in health and disease. However, the detailed neural mechanisms underlying TMS-EEG responses, including TMS-evoked EEG potentials (TEPs) and TMS-induced EEG oscillations (TIOs), remain largely unknown. Combining TMS-EEG with pharmacological interventions provides a unique opportunity to elucidate the roles of specific receptor-mediated neurotransmissions in these responses. Here, we investigated the involvement of muscarinic acetylcholine receptor (mAChR)-mediated cholinergic neurotransmission in TMS-EEG responses by evaluating the effects of mAChR antagonists on TEPs and TIOs in twenty-four healthy participants using a randomized, placebo-controlled crossover design. TEPs and TIOs were measured before and after administering a single oral dose of scopolamine (a non-selective mAChR antagonist), biperiden (an M1 mAChR antagonist), or placebo, with TMS targeting the left medial prefrontal cortex (mPFC), angular gyrus (AG), and supplementary motor area (SMA). The results indicated that mAChR-mediated cholinergic neurotransmission played a role in TEPs, but not TIOs, in a target-specific manner. Specifically, scopolamine significantly increased the amplitude of a local TEP component between approximately 40 and 63 ms post-stimulus when TMS was applied to the SMA, but not the mPFC or AG. Biperiden produced a similar but less pronounced effect. Importantly, the effects of these mAChR antagonists on TEPs were independent of those on sensory-evoked EEG potentials caused by TMS-associated sensory stimulation. These findings expand our understanding of TMS-EEG physiology, providing insights for its application in physiological and clinical research.
Collapse
Affiliation(s)
- Yufei Song
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Olivier Roy
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CERVO Brain Research Centre, Quebec, Canada; Department of Psychiatry and Neurosciences, Université Laval, Quebec, Canada
| | - Johanna Metsomaa
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Finland
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Maryam Rostami
- Faculty of Electrical and Computer Engineering, University of Tehran, Iran
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
2
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Context-dependent reduction in corticomuscular coupling for balance control in chronic stroke survivors. Exp Brain Res 2024; 242:2093-2112. [PMID: 38963559 PMCID: PMC12066146 DOI: 10.1007/s00221-024-06884-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the functional coupling between the cortex and the muscle for balance control is affected following stroke remains to be known. We investigated the changes in coupling between the cortex and leg muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Fourteen participants with stroke and ten healthy controls performed a challenging balance task. They stood on a computerized support surface that was either fixed (low difficulty condition) or sway-referenced with varying gain (medium and high difficulty conditions). We computed corticomuscular coherence between electrodes placed over the sensorimotor area (electroencephalography) and leg muscles (electromyography) and assessed balance performance using clinical and laboratory-based tests. We found significantly lower delta frequency band coherence in stroke participants when compared with healthy controls under medium difficulty condition, but not during low and high difficulty conditions. These differences were found for most of the distal but not for proximal leg muscle groups. No differences were found at other frequency bands. Participants with stroke showed poor balance clinical scores when compared with healthy controls, but no differences were found for laboratory-based tests. The observation of effects at distal but not at proximal muscle groups suggests differences in the (re)organization of the descending connections across two muscle groups for balance control. We argue that the observed group difference in delta band coherence indicates balance context-dependent alteration in mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support surface for balance maintenance following stroke.
Collapse
Affiliation(s)
- Komal K Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Nishant Rao
- Yale Child Study Center, Yale University, New Haven, Connecticut, USA
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA
| | - Jose L Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, TX, USA
| | - Pranav J Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, 3875 Holman Street, suite 104R GAR, Houston, TX, 77204, USA.
| |
Collapse
|
3
|
Sabu S, Parmentier FBR, Horváth J. Involuntary motor responses are elicited both by rare sounds and rare pitch changes. Sci Rep 2024; 14:20235. [PMID: 39215115 PMCID: PMC11364668 DOI: 10.1038/s41598-024-70776-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Unpredictable deviations from an otherwise regular auditory sequence, as well as rare sounds following a period of silence, are detected automatically. Recent evidence suggests that the latter also elicit quick involuntary modulations of ongoing motor activity emerging as early as 100 ms following sound onset, which was attributed to supramodal processing. We explored such force modulations for both rare and deviant sounds. Participants (N = 29) pinched a force sensitive device and maintained a force of 1-2 N for periods of 1 min. Task-irrelevant tones were presented under two conditions. In the Rare condition, 4000 Hz tones were presented every 8-to-16 s. In the Roving condition, 4000 Hz and 2996 Hz tones were presented at rate of 1 s, with infrequent (p = 1/12) frequency changes. In the Rare condition, transient force modulations were observed with a significant increase at ~ 234 ms, and a decrease at ~ 350 ms. In the Roving condition with low frequency deviant tones, an increase in force was observed at ~ 277 ms followed by a decrease at ~ 413 ms. No significant modulations were observed during perception of high frequency deviants. These results suggest that both rare silence-breaking sounds and low-pitched deviants evoke automatic fluctuations of motor responses, which opens up the possibility that these force modulations are triggered by stimulus-specific change-detection processes.
Collapse
Affiliation(s)
- Simily Sabu
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary
| | - Fabrice B R Parmentier
- Department of Psychology and Research Institute of Health Sciences (IdISBa), University of the Balearic Islands, Ctra. De Valldemossa, Km 7.5, Palma de Mallorca, Balearic Islands, Spain
- School of Psychological Science, University of Western Australia, Perth, Australia
| | - János Horváth
- Institute of Cognitive Neuroscience and Psychology, HUN-REN Research Centre for Natural Sciences, P.O.B. 286, Budapest, 1519, Hungary.
- Institute of Psychology, Károli Gáspár University of the Reformed Church in Hungary, Budapest, Hungary.
| |
Collapse
|
4
|
Shukla PD, Burke JF, Kunwar N, Presbrey K, Balakid J, Yaroshinsky M, Louie K, Jacques L, Shirvalkar P, Wang DD. Human Cervical Epidural Spinal Electrogram Topographically Maps Distinct Volitional Movements. J Neurosci 2024; 44:e2258232024. [PMID: 38960719 PMCID: PMC11308355 DOI: 10.1523/jneurosci.2258-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 04/22/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Little is known about the electrophysiologic activity of the intact human spinal cord during volitional movement. We analyzed epidural spinal recordings from a total of five human subjects of both sexes during a variety of upper extremity movements and found that these spinal epidural electrograms contain spectral information distinguishing periods of movement, rest, and sensation. Cervical epidural electrograms also contained spectral changes time-locked with movement. We found that these changes were primarily associated with increased power in the theta (4-8 Hz) band and feature increased theta phase to gamma amplitude coupling, and this increase in theta power can be used to topographically map distinct upper extremity movements onto the cervical spinal cord in accordance with established myotome maps of the upper extremity. Our findings have implications for the development of neurostimulation protocols and devices focused on motor rehabilitation for the upper extremity, and the approach presented here may facilitate spatiotemporal mapping of naturalistic movements.
Collapse
Affiliation(s)
- Poojan D Shukla
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - John F Burke
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, Oklahoma 73104
| | - Nikhita Kunwar
- School of Medicine, University of California San Diego, San Diego, California 92093
| | - Kara Presbrey
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Jannine Balakid
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Maria Yaroshinsky
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Kenneth Louie
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Line Jacques
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| | - Prasad Shirvalkar
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
- Department of Anesthesia and Pain Management, University of California, San Francisco, California 94143
- Department of Neurology, University of California, San Francisco, San Francisco, California 94143
| | - Doris D Wang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California 94143
| |
Collapse
|
5
|
Rangel BO, Novembre G, Wessel JR. Measuring the nonselective effects of motor inhibition using isometric force recordings. Behav Res Methods 2024; 56:4486-4503. [PMID: 37550468 DOI: 10.3758/s13428-023-02197-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2023] [Indexed: 08/09/2023]
Abstract
Inhibition is a key cognitive control mechanism humans use to enable goal-directed behavior. When rapidly exerted, inhibitory control has broad, nonselective motor effects, typically demonstrated using corticospinal excitability measurements (CSE) elicited by transcranial magnetic stimulation (TMS). For example, during rapid action-stopping, CSE is suppressed at both stopped and task-unrelated muscles. While such TMS-based CSE measurements have provided crucial insights into the fronto-basal ganglia circuitry underlying inhibitory control, they have several downsides. TMS is contraindicated in many populations (e.g., epilepsy or deep-brain stimulation patients), has limited temporal resolution, produces distracting auditory and haptic stimulation, is difficult to combine with other imaging methods, and necessitates expensive, immobile equipment. Here, we attempted to measure the nonselective motor effects of inhibitory control using a method unaffected by these shortcomings. Thirty male and female human participants exerted isometric force on a high-precision handheld force transducer while performing a foot-response stop-signal task. Indeed, when foot movements were successfully stopped, force output at the task-irrelevant hand was suppressed as well. Moreover, this nonselective reduction of isometric force was highly correlated with stop-signal performance and showed frequency dynamics similar to established inhibitory signatures typically found in neural and muscle recordings. Together, these findings demonstrate that isometric force recordings can reliably capture the nonselective effects of motor inhibition, opening the door to many applications that are hard or impossible to realize with TMS.
Collapse
Affiliation(s)
- Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, IA, 52245, USA.
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA.
- University of Iowa, 444 Medical Research Center, Iowa City, IA, 52242, USA.
| | - Giacomo Novembre
- Neuroscience of Perception & Action Laboratory, Italian Institute of Technology, Rome, Italy
| | - Jan R Wessel
- Cognitive Control Collaborative, University of Iowa, Iowa City, IA, 52245, USA
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, 52245, USA
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, 52242, USA
| |
Collapse
|
6
|
Fong PY, Rothwell JC, Rocchi L. The Past, Current and Future Research in Cerebellar TMS Evoked Responses-A Narrative Review. Brain Sci 2024; 14:432. [PMID: 38790411 PMCID: PMC11118133 DOI: 10.3390/brainsci14050432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/24/2024] [Accepted: 04/25/2024] [Indexed: 05/26/2024] Open
Abstract
Transcranial magnetic stimulation coupled with electroencephalography (TMS-EEG) is a novel technique to investigate cortical physiology in health and disease. The cerebellum has recently gained attention as a possible new hotspot in the field of TMS-EEG, with several reports published recently. However, EEG responses obtained by cerebellar stimulation vary considerably across the literature, possibly due to different experimental methods. Compared to conventional TMS-EEG, which involves stimulation of the cortex, cerebellar TMS-EEG presents some technical difficulties, including strong muscle twitches in the neck area and a loud TMS click when double-cone coils are used, resulting in contamination of responses by electromyographic activity and sensory potentials. Understanding technical difficulties and limitations is essential for the development of cerebellar TMS-EEG research. In this review, we summarize findings of cerebellar TMS-EEG studies, highlighting limitations in experimental design and potential issues that can result in discrepancies between experimental outcomes. Lastly, we propose a possible direction for academic and clinical research with cerebellar TMS-EEG.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Branch, Taoyuan 333, Taiwan
- Medical School, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan
| | - John C. Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London WC1N 3BG, UK; (J.C.R.)
- Department of Medical Sciences and Public Health, University of Cagliari, 09124 Cagliari, Italy
| |
Collapse
|
7
|
König SD, Safo S, Miller K, Herman AB, Darrow DP. Flexible multi-step hypothesis testing of human ECoG data using cluster-based permutation tests with GLMEs. Neuroimage 2024; 290:120557. [PMID: 38423264 PMCID: PMC11268380 DOI: 10.1016/j.neuroimage.2024.120557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. METHODS We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. RESULTS First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. CONCLUSIONS We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.
Collapse
Affiliation(s)
- Seth D König
- Department of Psychiatry, University of Minnesota, USA; Department of Neurosurgery, University of Minnesota, USA
| | - Sandra Safo
- Department of Neurosurgery, Mayo Clinic, USA
| | - Kai Miller
- Department of Biostatistics, University of Minnesota, USA
| | | | | |
Collapse
|
8
|
Novembre G, Lacal I, Benusiglio D, Quarta E, Schito A, Grasso S, Caratelli L, Caminiti R, Mayer AB, Iannetti GD. A Cortical Mechanism Linking Saliency Detection and Motor Reactivity in Rhesus Monkeys. J Neurosci 2024; 44:e0422232023. [PMID: 37949654 PMCID: PMC10851684 DOI: 10.1523/jneurosci.0422-23.2023] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/05/2023] [Accepted: 10/10/2023] [Indexed: 11/12/2023] Open
Abstract
Sudden and surprising sensory events trigger neural processes that swiftly adjust behavior. To study the phylogenesis and the mechanism of this phenomenon, we trained two male rhesus monkeys to keep a cursor inside a visual target by exerting force on an isometric joystick. We examined the effect of surprising auditory stimuli on exerted force, scalp electroencephalographic (EEG) activity, and local field potentials (LFPs) recorded from the dorsolateral prefrontal cortex. Auditory stimuli elicited (1) a biphasic modulation of isometric force, a transient decrease followed by a corrective tonic increase, and (2) EEG and LFP deflections dominated by two large negative-positive waves (N70 and P130). The EEG potential was symmetrical and maximal at the scalp vertex, highly reminiscent of the human "vertex potential." Electrocortical potentials and force were tightly coupled: the P130 amplitude predicted the magnitude of the corrective force increase, particularly in the LFPs recorded from deep rather than superficial cortical layers. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to salient sensory events.Significance Statement Survival in the natural world depends on an animal's capacity to adapt ongoing behavior to abrupt unexpected events. To study the neural mechanisms underlying this capacity, we trained monkeys to apply constant force on a joystick while we recorded their brain activity from the scalp and the prefrontal cortex contralateral to the hand holding the joystick. Unexpected auditory stimuli elicited a biphasic force modulation: a transient reduction followed by a corrective adjustment. The same stimuli also elicited EEG and LFP responses, dominated by a biphasic wave that predicted the magnitude of the behavioral adjustment. These results disclose a phylogenetically preserved corticomotor mechanism supporting adaptive behavior in response to unexpected events.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience of Perception & Action Lab, Italian Institute of Technology, Rome 00161, Italy
| | - Irene Lacal
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Cognitive Neuroscience Laboratory, German Primate Center - Leibniz-Institute for Primate Research, 37077 Göttingen, Germany
| | - Diego Benusiglio
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- European Molecular Biology Laboratory (EMBL), Epigenetics and Neurobiology Unit, Rome 00015, Italy
| | - Eros Quarta
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Andrea Schito
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Stefano Grasso
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Ludovica Caratelli
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
| | - Roberto Caminiti
- Department of Physiology and Pharmacology, University of Rome 00185, Sapienza, Italy
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
| | | | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome 00161, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), London WC1E6BT, United Kingdom
| |
Collapse
|
9
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
10
|
Fong PY, Spampinato D, Michell K, Mancuso M, Brown K, Ibáñez J, Di Santo A, Latorre A, Bhatia K, Rothwell JC, Rocchi L. Reply to: "Reflecting the causes of variability of EEG responses elicited by cerebellar TMS". Neuroimage 2023; 281:120392. [PMID: 37769927 DOI: 10.1016/j.neuroimage.2023.120392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 09/25/2023] [Indexed: 10/01/2023] Open
Abstract
In their commentary on our recently published paper about electroencephalographic responses induced by cerebellar transcranial magnetic stimulation (Fong et al., 2023), Gassmann and colleagues (Gassmann et al., 2023b) try to explain the differences between our results and their own previous work on the same topic. We agree with them that many of the differences arise from our use of a different magnetic stimulation coil. However, two unresolved questions remain. (1) Which method is most likely to achieve optimal activation of cerebellar output? (2) To what extent are the evoked cerebellar responses contaminated by concomitant sensory input? We highlight the role of careful experimental design and of combining electrophysiological and behavioural data to obtain reliable TMS-EEG data.
Collapse
Affiliation(s)
- Po-Yu Fong
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Division of Movement Disorders, Department of Neurology and Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Medical School, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Danny Spampinato
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina 306/354, Rome 00142, Italy
| | - Kevin Michell
- UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Marco Mancuso
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Katlyn Brown
- Department of Kinesiology, University of Waterloo, Waterloo, ON, Canada
| | - Jaime Ibáñez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; BSICoS Group, I3A Institute, University of Zaragoza, IIS Aragón, Zaragoza, Spain; Department of Bioengineering, Imperial College, London, UK
| | - Alessandro Di Santo
- NEuroMuscular Omnicentre (NEMO), Serena Onlus, AOS Monaldi, Naples, Italy; Unit of Neurology, Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy
| | - Anna Latorre
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Kailash Bhatia
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - John C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Lorenzo Rocchi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, London, UK; Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
11
|
Parmigiani S, Ross JM, Cline CC, Minasi CB, Gogulski J, Keller CJ. Reliability and Validity of Transcranial Magnetic Stimulation-Electroencephalography Biomarkers. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:805-814. [PMID: 36894435 PMCID: PMC10276171 DOI: 10.1016/j.bpsc.2022.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/15/2022] [Accepted: 12/11/2022] [Indexed: 12/23/2022]
Abstract
Noninvasive brain stimulation and neuroimaging have revolutionized human neuroscience with a multitude of applications, including diagnostic subtyping, treatment optimization, and relapse prediction. It is therefore particularly relevant to identify robust and clinically valuable brain biomarkers linking symptoms to their underlying neural mechanisms. Brain biomarkers must be reproducible (i.e., have internal reliability) across similar experiments within a laboratory and be generalizable (i.e., have external reliability) across experimental setups, laboratories, brain regions, and disease states. However, reliability (internal and external) is not alone sufficient; biomarkers also must have validity. Validity describes closeness to a true measure of the underlying neural signal or disease state. We propose that these metrics, reliability and validity, should be evaluated and optimized before any biomarker is used to inform treatment decisions. Here, we discuss these metrics with respect to causal brain connectivity biomarkers from coupling transcranial magnetic stimulation (TMS) with electroencephalography (EEG). We discuss controversies around TMS-EEG stemming from the multiple large off-target components (noise) and relatively weak genuine brain responses (signal), as is unfortunately often the case in noninvasive human neuroscience. We review the current state of TMS-EEG recordings, which consist of a mix of reliable noise and unreliable signal. We describe methods for evaluating TMS-EEG biomarkers, including how to assess internal and external reliability across facilities, cognitive states, brain networks, and disorders and how to validate these biomarkers using invasive neural recordings or treatment response. We provide recommendations to increase reliability and validity, discuss lessons learned, and suggest future directions for the field.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Jessica M Ross
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher C Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Christopher B Minasi
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California
| | - Juha Gogulski
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California; Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Corey J Keller
- Department of Psychiatry and Behavioral Sciences, Stanford University Medical Center, Stanford, California; Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center, Palo Alto, California; Wu Tsai Neuroscience Institute, Stanford, California.
| |
Collapse
|
12
|
Kukkar KK, Rao N, Huynh D, Shah S, Contreras-Vidal JL, Parikh PJ. Task-dependent Alteration in Delta Band Corticomuscular Coherence during Standing in Chronic Stroke Survivors. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.07.17.23292472. [PMID: 37503096 PMCID: PMC10371181 DOI: 10.1101/2023.07.17.23292472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Balance control is an important indicator of mobility and independence in activities of daily living. How the changes in functional integrity of corticospinal tract due to stroke affects the maintenance of upright stance remains to be known. We investigated the changes in functional coupling between the cortex and lower limb muscles during a challenging balance task over multiple frequency bands in chronic stroke survivors. Eleven stroke patients and nine healthy controls performed a challenging balance task. They stood on a computerized platform with/without somatosensory input distortion created by sway-referencing the support surface, thereby varying the difficulty levels of the task. We computed corticomuscular coherence between Cz (electroencephalography) and leg muscles and assessed balance performance using Berg Balance scale (BBS), Timed-up and go (TUG) and center of pressure (COP) measures. We found lower delta frequency band coherence in stroke patients when compared with healthy controls under medium difficulty condition for distal but not proximal leg muscles. For both groups, we found similar coherence at other frequency bands. On BBS and TUG, stroke patients showed poor balance. However, similar group differences were not consistently observed across COP measures. The presence of distal versus proximal effect suggests differences in the (re)organization of the corticospinal connections across the two muscles groups for balance control. We argue that the observed group difference in the delta coherence might be due to altered mechanisms for the detection of somatosensory modulation resulting from sway-referencing of the support platform for balance control.
Collapse
Affiliation(s)
- Komal K. Kukkar
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Nishant Rao
- Haskins Laboratories, Yale University, New Haven, Connecticut
| | - Diana Huynh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Sheel Shah
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| | - Jose L. Contreras-Vidal
- Laboratory for Noninvasive Brain-Machine Interface Systems, Department of Electrical and Computer Engineering, University of Houston, Houston, Texas
| | - Pranav J. Parikh
- Center for Neuromotor and Biomechanics Research, Department of Health and Human Performance, University of Houston, Houston, Texas
| |
Collapse
|
13
|
Koul A, Ahmar D, Iannetti GD, Novembre G. Spontaneous dyadic behaviour predicts the emergence of interpersonal neural synchrony. Neuroimage 2023:120233. [PMID: 37348621 DOI: 10.1016/j.neuroimage.2023.120233] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/14/2023] [Accepted: 06/15/2023] [Indexed: 06/24/2023] Open
Abstract
Synchronization of neural activity across brains - interpersonal neural synchrony (INS) - is emerging as a powerful marker of social interaction that predicts success of multi-person coordination, communication, and cooperation. As the origins of INS are poorly understood, we tested whether and how INS might emerge from spontaneous dyadic behavior. We recorded neural activity (EEG) and human behavior (full-body kinematics, eye movements and facial expressions) while dyads of participants were instructed to look at each other without speaking or making co-verbal gestures. We made four fundamental observations. First, despite the absence of a structured social task, INS emerged spontaneously only when participants were able to see each other. Second, we show that such spontaneous INS, comprising specific spectral and topographic profiles, did not merely reflect intra-personal modulations of neural activity, but it rather reflected real-time and dyad-specific coupling of neural activities. Third, using state-of-art video-image processing and deep learning, we extracted the temporal unfolding of three notable social behavioral cues - body movement, eye contact, and smiling - and demonstrated that these behaviors also spontaneously synchronized within dyads. Fourth, we probed the correlates of INS in such synchronized social behaviors. Using cross-correlation and Granger causality analyses, we show that synchronized social behaviors anticipate and in fact Granger cause INS. These results provide proof-of-concept evidence for studying interpersonal neural and behavioral synchrony under natural and unconstrained conditions. Most importantly, the results suggest that INS could be conceptualized as an emergent property of two coupled neural systems: an entrainment phenomenon, promoted by real-time dyadic behavior.
Collapse
Affiliation(s)
- Atesh Koul
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| | - Davide Ahmar
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy
| | - Gian Domenico Iannetti
- Neuroscience and Behavior Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Viale Regina Elena 291, Rome, Italy.
| |
Collapse
|
14
|
König SD, Safo S, Miller K, Herman AB, Darrow DP. Flexible Multi-Step Hypothesis Testing of Human ECoG Data using Cluster-based Permutation Tests with GLMEs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.31.535153. [PMID: 37034791 PMCID: PMC10081325 DOI: 10.1101/2023.03.31.535153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Background Time series analysis is critical for understanding brain signals and their relationship to behavior and cognition. Cluster-based permutation tests (CBPT) are commonly used to analyze a variety of electrophysiological signals including EEG, MEG, ECoG, and sEEG data without a priori assumptions about specific temporal effects. However, two major limitations of CBPT include the inability to directly analyze experiments with multiple fixed effects and the inability to account for random effects (e.g. variability across subjects). Here, we propose a flexible multi-step hypothesis testing strategy using CBPT with Linear Mixed Effects Models (LMEs) and Generalized Linear Mixed Effects Models (GLMEs) that can be applied to a wide range of experimental designs and data types. Methods We first evaluate the statistical robustness of LMEs and GLMEs using simulated data distributions. Second, we apply a multi-step hypothesis testing strategy to analyze ERPs and broadband power signals extracted from human ECoG recordings collected during a simple image viewing experiment with image category and novelty as fixed effects. Third, we assess the statistical power differences between analyzing signals with CBPT using LMEs compared to CBPT using separate t-tests run on each fixed effect through simulations that emulate broadband power signals. Finally, we apply CBPT using GLMEs to high-gamma burst data to demonstrate the extension of the proposed method to the analysis of nonlinear data. Results First, we found that LMEs and GLMEs are robust statistical models. In simple simulations LMEs produced highly congruent results with other appropriately applied linear statistical models, but LMEs outperformed many linear statistical models in the analysis of "suboptimal" data and maintained power better than analyzing individual fixed effects with separate t-tests. GLMEs also performed similarly to other nonlinear statistical models. Second, in real world human ECoG data, LMEs performed at least as well as separate t-tests when applied to predefined time windows or when used in conjunction with CBPT. Additionally, fixed effects time courses extracted with CBPT using LMEs from group-level models of pseudo-populations replicated latency effects found in individual category-selective channels. Third, analysis of simulated broadband power signals demonstrated that CBPT using LMEs was superior to CBPT using separate t-tests in identifying time windows with significant fixed effects especially for small effect sizes. Lastly, the analysis of high-gamma burst data using CBPT with GLMEs produced results consistent with CBPT using LMEs applied to broadband power data. Conclusions We propose a general approach for statistical analysis of electrophysiological data using CBPT in conjunction with LMEs and GLMEs. We demonstrate that this method is robust for experiments with multiple fixed effects and applicable to the analysis of linear and nonlinear data. Our methodology maximizes the statistical power available in a dataset across multiple experimental variables while accounting for hierarchical random effects and controlling FWER across fixed effects. This approach substantially improves power and accuracy leading to better reproducibility. Additionally, CBPT using LMEs and GLMEs can be used to analyze individual channels or pseudo-population data for the comparison of functional or anatomical groups of data.
Collapse
Affiliation(s)
- Seth D König
- Department of Psychiatry, University of Minnesota
- Department of Neurosurgery, University of Minnesota
| | | | - Kai Miller
- Department of Biostatistics, University of Minnesota
| | | | | |
Collapse
|
15
|
Interpersonal synchronization of spontaneously generated body movements. iScience 2023; 26:106104. [PMID: 36852275 PMCID: PMC9958360 DOI: 10.1016/j.isci.2023.106104] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/09/2023] [Accepted: 01/27/2023] [Indexed: 02/04/2023] Open
Abstract
Interpersonal movement synchrony (IMS) is central to social behavior in several species. In humans, IMS is typically studied using structured tasks requiring participants to produce specific body movements. Instead, spontaneously generated (i.e., not instructed) movements have received less attention. To test whether spontaneous movements synchronize interpersonally, we recorded full-body kinematics from dyads of participants who were only asked to sit face-to-face and to look at each other. We manipulated interpersonal (i) visual contact and (ii) spatial proximity. We found that spontaneous movements synchronized across participants only when they could see each other and regardless of interpersonal spatial proximity. This synchronization emerged very rapidly and did not selectively entail homologous body parts (as in mimicry); rather, the synchrony generalized to nearly all possible combinations of body parts. Hence, spontaneous behavior alone can lead to IMS. More generally, our results highlight that IMS can be studied under natural and unconstrained conditions.
Collapse
|
16
|
No evidence for interaction between TMS-EEG responses and sensory inputs. Brain Stimul 2023; 16:25-27. [PMID: 36567062 DOI: 10.1016/j.brs.2022.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
|
17
|
Choo Y, Matzke D, Bowren MD, Tranel D, Wessel JR. Right inferior frontal gyrus damage is associated with impaired initiation of inhibitory control, but not its implementation. eLife 2022; 11:e79667. [PMID: 36583378 PMCID: PMC9803357 DOI: 10.7554/elife.79667] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/14/2022] [Indexed: 12/31/2022] Open
Abstract
Inhibitory control is one of the most important control functions in the human brain. Much of our understanding of its neural basis comes from seminal work showing that lesions to the right inferior frontal gyrus (rIFG) increase stop-signal reaction time (SSRT), a latent variable that expresses the speed of inhibitory control. However, recent work has identified substantial limitations of the SSRT method. Notably, SSRT is confounded by trigger failures: stop-signal trials in which inhibitory control was never initiated. Such trials inflate SSRT, but are typically indicative of attentional, rather than inhibitory deficits. Here, we used hierarchical Bayesian modeling to identify stop-signal trigger failures in human rIFG lesion patients, non-rIFG lesion patients, and healthy comparisons. Furthermore, we measured scalp-EEG to detect β-bursts, a neurophysiological index of inhibitory control. rIFG lesion patients showed a more than fivefold increase in trigger failure trials and did not exhibit the typical increase of stop-related frontal β-bursts. However, on trials in which such β-bursts did occur, rIFG patients showed the typical subsequent upregulation of β over sensorimotor areas, indicating that their ability to implement inhibitory control, once triggered, remains intact. These findings suggest that the role of rIFG in inhibitory control has to be fundamentally reinterpreted.
Collapse
Affiliation(s)
- Yoojeong Choo
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
| | - Dora Matzke
- Department of Psychology, University of AmsterdamAmsterdamNetherlands
| | - Mark D Bowren
- Department of Clinical and Health Psychology, University of FloridaGainesvilleUnited States
| | - Daniel Tranel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- Cognitive Control Collaborative, University of IowaIowa CityUnited States
- Department of Neurology, University of Iowa Hospitals and ClinicsIowa CityUnited States
| |
Collapse
|
18
|
Abstract
In this reflective piece on visual working memory, I depart from the laboriously honed skills of writing a review. Instead of integrating approaches, synthesizing evidence, and building a cohesive perspective, I scratch my head and share niggles and puzzlements. I expose where my scholarship and understanding are stumped by findings and standard views in the literature.
Collapse
|
19
|
Echeverria-Altuna I, Quinn AJ, Zokaei N, Woolrich MW, Nobre AC, van Ede F. Transient beta activity and cortico-muscular connectivity during sustained motor behaviour. Prog Neurobiol 2022; 214:102281. [PMID: 35550908 PMCID: PMC9742854 DOI: 10.1016/j.pneurobio.2022.102281] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/13/2022] [Accepted: 05/02/2022] [Indexed: 12/15/2022]
Abstract
Neural oscillations are thought to play a central role in orchestrating activity states between distant neural populations. For example, during isometric contraction, 13-30 Hz beta activity becomes phase coupled between the motor cortex and the contralateral muscle. This and related observations have led to the proposal that beta activity and connectivity sustain stable cognitive and motor states - or the 'status quo' - in the brain. Recently, however, beta activity at the single-trial level has been shown to be short-lived - though so far this has been reported for regional beta activity in tasks without sustained motor demands. Here, we measured magnetoencephalography (MEG) and electromyography (EMG) in 18 human participants performing a sustained isometric contraction (gripping) task. If cortico-muscular beta connectivity is directly responsible for sustaining a stable motor state, then beta activity within single trials should be (or become) sustained in this context. In contrast, we found that motor beta activity and connectivity with the downstream muscle were transient. Moreover, we found that sustained motor requirements did not prolong beta-event duration in comparison to rest. These findings suggest that neural synchronisation between the brain and the muscle involves short 'bursts' of frequency-specific connectivity, even when task demands - and motor behaviour - are sustained.
Collapse
Affiliation(s)
- Irene Echeverria-Altuna
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,Corresponding authors at: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Andrew J. Quinn
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Nahid Zokaei
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Mark W. Woolrich
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Anna C. Nobre
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom,Corresponding authors at: Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Freek van Ede
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford, United Kingdom,Institute for Brain and Behavior Amsterdam, Department of Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
20
|
Ross JM, Sarkar M, Keller CJ. Experimental suppression of transcranial magnetic stimulation-electroencephalography sensory potentials. Hum Brain Mapp 2022; 43:5141-5153. [PMID: 35770956 PMCID: PMC9812254 DOI: 10.1002/hbm.25990] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/13/2022] [Accepted: 06/10/2022] [Indexed: 01/15/2023] Open
Abstract
The sensory experience of transcranial magnetic stimulation (TMS) evokes cortical responses measured in electroencephalography (EEG) that confound interpretation of TMS-evoked potentials (TEPs). Methods for sensory masking have been proposed to minimize sensory contributions to the TEP, but the most effective combination for suprathreshold TMS to dorsolateral prefrontal cortex (dlPFC) is unknown. We applied sensory suppression techniques and quantified electrophysiology and perception from suprathreshold dlPFC TMS to identify the best combination to minimize the sensory TEP. In 21 healthy adults, we applied single pulse TMS at 120% resting motor threshold (rMT) to the left dlPFC and compared EEG vertex N100-P200 and perception. Conditions included three protocols: No masking (no auditory masking, no foam, and jittered interstimulus interval [ISI]), Standard masking (auditory noise, foam, and jittered ISI), and our ATTENUATE protocol (auditory noise, foam, over-the-ear protection, and unjittered ISI). ATTENUATE reduced vertex N100-P200 by 56%, "click" loudness perception by 50%, and scalp sensation by 36%. We show that sensory prediction, induced with predictable ISI, has a suppressive effect on vertex N100-P200, and that combining standard suppression protocols with sensory prediction provides the best N100-P200 suppression. ATTENUATE was more effective than Standard masking, which only reduced vertex N100-P200 by 22%, loudness by 27%, and scalp sensation by 24%. We introduce a sensory suppression protocol superior to Standard masking and demonstrate that using an unjittered ISI can contribute to minimizing sensory confounds. ATTENUATE provides superior sensory suppression to increase TEP signal-to-noise and contributes to a growing understanding of TMS-EEG sensory neuroscience.
Collapse
Affiliation(s)
- Jessica M. Ross
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Manjima Sarkar
- Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| | - Corey J. Keller
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental IllnessResearch, Education, and Clinical Center (MIRECC)Palo AltoCaliforniaUSA,Department of Psychiatry and Behavioral SciencesStanford University Medical CenterStanfordCaliforniaUSA
| |
Collapse
|
21
|
Somervail R, Bufacchi RJ, Salvatori C, Neary-Zajiczek L, Guo Y, Novembre G, Iannetti GD. Brain Responses to Surprising Stimulus Offsets: Phenomenology and Functional Significance. Cereb Cortex 2022; 32:2231-2244. [PMID: 34668519 PMCID: PMC9113248 DOI: 10.1093/cercor/bhab352] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/15/2022] Open
Abstract
Abrupt increases of sensory input (onsets) likely reflect the occurrence of novel events or objects in the environment, potentially requiring immediate behavioral responses. Accordingly, onsets elicit a transient and widespread modulation of ongoing electrocortical activity: the Vertex Potential (VP), which is likely related to the optimisation of rapid behavioral responses. In contrast, the functional significance of the brain response elicited by abrupt decreases of sensory input (offsets) is more elusive, and a detailed comparison of onset and offset VPs is lacking. In four experiments conducted on 44 humans, we observed that onset and offset VPs share several phenomenological and functional properties: they (1) have highly similar scalp topographies across time, (2) are both largely comprised of supramodal neural activity, (3) are both highly sensitive to surprise and (4) co-occur with similar modulations of ongoing motor output. These results demonstrate that the onset and offset VPs largely reflect the activity of a common supramodal brain network, likely consequent to the activation of the extralemniscal sensory system which runs in parallel with core sensory pathways. The transient activation of this system has clear implications in optimizing the behavioral responses to surprising environmental changes.
Collapse
Affiliation(s)
- R Somervail
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| | - R J Bufacchi
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - C Salvatori
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - L Neary-Zajiczek
- Department of Computer Science, University College London (UCL), WC1E 6BT, London, UK
| | - Y Guo
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
| | - G D Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia, 00161, Rome, Italy
- Department of Neuroscience, Physiology and Pharmacology, University College London (UCL), WC1E 6BT, London, UK
| |
Collapse
|
22
|
Lapenta OM, Keller PE, Nozaradan S, Varlet M. Lateralised dynamic modulations of corticomuscular coherence associated with bimanual learning of rhythmic patterns. Sci Rep 2022; 12:6271. [PMID: 35428836 PMCID: PMC9012795 DOI: 10.1038/s41598-022-10342-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 03/28/2022] [Indexed: 11/09/2022] Open
Abstract
Human movements are spontaneously attracted to auditory rhythms, triggering an automatic activation of the motor system, a central phenomenon to music perception and production. Cortico-muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index of the synchronisation between cortical motor regions and the muscles. Here we investigated how learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC in the beta frequency band. Electroencephalography (EEG) and electromyography (EMG) from the left and right First Dorsal Interosseus and Flexor Digitorum Superficialis muscles were concurrently recorded during constant pressure on a force sensor held between the thumb and index finger while listening to the rhythmic pattern before and after a bimanual training session. During the training, participants learnt to produce the rhythmic pattern guided by visual cues by pressing the force sensors with their left or right hand to produce the low- and high-pitch sounds, respectively. Results revealed no changes after training in overall beta CMC or beta oscillation amplitude, nor in the correlation between the left and right sides for EEG and EMG separately. However, correlation analyses indicated that left- and right-hand beta EEG-EMG coherence were positively correlated over time before training but became uncorrelated after training. This suggests that learning to bimanually produce a rhythmic musical pattern reinforces lateralised and segregated cortico-muscular communication.
Collapse
Affiliation(s)
- Olivia Morgan Lapenta
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia. .,Center for Investigation in Psychology, University of Minho, Braga, Portugal.
| | - Peter E Keller
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia
| | - Sylvie Nozaradan
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,Institute of Neuroscience, Catholic University of Louvain, Woluwe-Saint-Lambert, Belgium
| | - Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, Australia.,School of Psychology, Western Sydney University, Penrith, Australia
| |
Collapse
|
23
|
Ross JM, Ozdemir RA, Lian SJ, Fried PJ, Schmitt EM, Inouye SK, Pascual-Leone A, Shafi MM. A structured ICA-based process for removing auditory evoked potentials. Sci Rep 2022; 12:1391. [PMID: 35082350 PMCID: PMC8791940 DOI: 10.1038/s41598-022-05397-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 12/22/2021] [Indexed: 12/13/2022] Open
Abstract
Transcranial magnetic stimulation (TMS)-evoked potentials (TEPs), recorded using electroencephalography (EEG), reflect a combination of TMS-induced cortical activity and multi-sensory responses to TMS. The auditory evoked potential (AEP) is a high-amplitude sensory potential-evoked by the "click" sound produced by every TMS pulse-that can dominate the TEP and obscure observation of other neural components. The AEP is peripherally evoked and therefore should not be stimulation site specific. We address the problem of disentangling the peripherally evoked AEP of the TEP from components evoked by cortical stimulation and ask whether removal of AEP enables more accurate isolation of TEP. We hypothesized that isolation of the AEP using Independent Components Analysis (ICA) would reveal features that are stimulation site specific and unique individual features. In order to improve the effectiveness of ICA for removal of AEP from the TEP, and thus more clearly separate the transcranial-evoked and non-specific TMS-modulated potentials, we merged sham and active TMS datasets representing multiple stimulation conditions, removed the resulting AEP component, and evaluated performance across different sham protocols and clinical populations using reduction in Global and Local Mean Field Power (GMFP/LMFP) and cosine similarity analysis. We show that removing AEPs significantly reduced GMFP and LMFP in the post-stimulation TEP (14 to 400 ms), driven by time windows consistent with the N100 and P200 temporal characteristics of AEPs. Cosine similarity analysis supports that removing AEPs reduces TEP similarity between subjects and reduces TEP similarity between stimulation conditions. Similarity is reduced most in a mid-latency window consistent with the N100 time-course, but nevertheless remains high in this time window. Residual TEP in this window has a time-course and topography unique from AEPs, which follow-up exploratory analyses suggest could be a modulation in the alpha band that is not stimulation site specific but is unique to individual subject. We show, using two datasets and two implementations of sham, evidence in cortical topography, TEP time-course, GMFP/LMFP and cosine similarity analyses that this procedure is effective and conservative in removing the AEP from TEP, and may thus better isolate TMS-evoked activity. We show TEP remaining in early, mid and late latencies. The early response is site and subject specific. Later response may be consistent with TMS-modulated alpha activity that is not site specific but is unique to the individual. TEP remaining after removal of AEP is unique and can provide insight into TMS-evoked potentials and other modulated oscillatory dynamics.
Collapse
Affiliation(s)
- Jessica M Ross
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Recep A Ozdemir
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Shu Jing Lian
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
| | - Peter J Fried
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| | - Eva M Schmitt
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Sharon K Inouye
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
| | - Alvaro Pascual-Leone
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Hinda and Arthur Marcus Institute for Aging Research, and Deanna and Sidney Wolk Center for Memory Health, Hebrew SeniorLife, Boston, MA, USA
- Guttmann Brain Health Institute, Institut Guttmann, Institut Universitari de Neurorehabilitació adscrit a la UAB, Badalona, Barcelona, Spain
| | - Mouhsin M Shafi
- Berenson-Allen Center for Noninvasive Brain Stimulation, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, KS-423, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
24
|
Gordon PC, Jovellar DB, Song Y, Zrenner C, Belardinelli P, Siebner HR, Ziemann U. Recording brain responses to TMS of primary motor cortex by EEG - utility of an optimized sham procedure. Neuroimage 2021; 245:118708. [PMID: 34743050 PMCID: PMC8752966 DOI: 10.1016/j.neuroimage.2021.118708] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/31/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022] Open
Abstract
Optimized sham TMS-EEG is introduced and tested. Sham combined auditory and supramaximal electrical somatosensory stimulation. Subjects reported equal sensory perception during sham and real TMS. Subtraction revealed evoked EEG potentials and beta-band power specific to real TMS. The optimized sham procedure is relevant in research and therapeutic settings.
Introduction Electroencephalography (EEG) is increasingly used to investigate brain responses to transcranial magnetic stimulation (TMS). A relevant issue is that TMS is associated with considerable auditory and somatosensory stimulation, causing peripherally evoked potentials (PEPs) in the EEG, which contaminate the direct cortical responses to TMS (TEPs). All previous attempts to control for PEPs suffer from significant limitations. Objective/Hypothesis To design an optimized sham procedure to control all sensory input generated by subthreshold real TMS targeting the hand area of the primary motor cortex (M1), enabling reliable separation of TEPs from PEPs. Methods In 23 healthy (16 female) subjects, we recorded EEG activity evoked by an optimized sham TMS condition which masks and matches auditory and somatosensory co-stimulation during the real TMS condition: auditory control was achieved by noise masking and by using a second TMS coil that was placed on top of the real TMS coil and produced a calibrated sound pressure level. Somatosensory control was obtained by electric stimulation (ES) of the scalp with intensities sufficient to saturate somatosensory input. ES was applied in both the sham and real TMS conditions. Perception of auditory and somatosensory inputs in the sham and real TMS conditions were compared by psychophysical testing. Transcranially evoked EEG signal changes were identified by subtraction of EEG activity in the sham condition from EEG activity in the real TMS condition. Results Perception of auditory and somatosensory inputs in the sham vs. real TMS conditions was comparable. Both sham and real TMS evoked a series of similar EEG signal deflections and induced broadband power increase in oscillatory activity. Notably, the present procedure revealed EEG potentials and a transient increase in beta band power at the site of stimulation that were only present in the real TMS condition. Discussion The results validate the effectiveness of our optimized sham approach. Despite the presence of typical responses attributable to sensory input, the procedure provided evidence for direct cortical activation by subthreshold TMS of M1. The findings are relevant for future TMS-EEG experiments that aim at measuring regional brain target engagement controlled by an optimized sham procedure.
Collapse
Affiliation(s)
- Pedro C Gordon
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - D Blair Jovellar
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - YuFei Song
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Christoph Zrenner
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Paolo Belardinelli
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany; CIMeC, Center for Mind/Brain Sciences, University of Trento, Italy
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital - Amager and Hvidovre, Copenhagen, Denmark; Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark; Department of Neurology, Copenhagen University Hospital - Bispebjerg and Fredriksberg, Copenhagen, Denmark
| | - Ulf Ziemann
- Department of Neurology & Stroke, University of Tübingen, Hoppe-Seyler-Straße 3, Tübingen 72076, Germany; Hertie Institute for Clinical Brain Research, University of Tübingen, Germany.
| |
Collapse
|
25
|
Bao SC, Chen C, Yuan K, Yang Y, Tong RKY. Disrupted cortico-peripheral interactions in motor disorders. Clin Neurophysiol 2021; 132:3136-3151. [PMID: 34749233 DOI: 10.1016/j.clinph.2021.09.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/08/2021] [Accepted: 09/19/2021] [Indexed: 11/15/2022]
Abstract
Motor disorders may arise from neurological damage or diseases at different levels of the hierarchical motor control system and side-loops. Altered cortico-peripheral interactions might be essential characteristics indicating motor dysfunctions. By integrating cortical and peripheral responses, top-down and bottom-up cortico-peripheral coupling measures could provide new insights into the motor control and recovery process. This review first discusses the neural bases of cortico-peripheral interactions, and corticomuscular coupling and corticokinematic coupling measures are addressed. Subsequently, methodological efforts are summarized to enhance the modeling reliability of neural coupling measures, both linear and nonlinear approaches are introduced. The latest progress, limitations, and future directions are discussed. Finally, we emphasize clinical applications of cortico-peripheral interactions in different motor disorders, including stroke, neurodegenerative diseases, tremor, and other motor-related disorders. The modified interaction patterns and potential changes following rehabilitation interventions are illustrated. Altered coupling strength, modified coupling directionality, and reorganized cortico-peripheral activation patterns are pivotal attributes after motor dysfunction. More robust coupling estimation methodologies and combination with other neurophysiological modalities might more efficiently shed light on motor control and recovery mechanisms. Future studies with large sample sizes might be necessary to determine the reliabilities of cortico-peripheral interaction measures in clinical practice.
Collapse
Affiliation(s)
- Shi-Chun Bao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Cheng Chen
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Kai Yuan
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong
| | - Yuan Yang
- Stephenson School of Biomedical Engineering, University of Oklahoma, Tulsa, OK, USA; Laureate Institute for Brain Research, Tulsa, OK, USA; Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Raymond Kai-Yu Tong
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
26
|
Common and Unique Inhibitory Control Signatures of Action-Stopping and Attentional Capture Suggest That Actions Are Stopped in Two Stages. J Neurosci 2021; 41:8826-8838. [PMID: 34493541 DOI: 10.1523/jneurosci.1105-21.2021] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/03/2021] [Accepted: 08/26/2021] [Indexed: 11/21/2022] Open
Abstract
The ability to stop an already initiated action is paramount to adaptive behavior. Much scientific debate in the field of human action-stopping currently focuses on two interrelated questions. (1) Which cognitive and neural processes uniquely underpin the implementation of inhibitory control when actions are stopped after explicit stop signals, and which processes are instead commonly evoked by all salient signals, even those that do not require stopping? (2) Why do purported (neuro)physiological signatures of inhibition occur at two different latencies after stop signals? Here, we address both questions via two preregistered experiments that combined measurements of corticospinal excitability, EMG, and whole-scalp EEG. Adult human subjects performed a stop signal task that also contained "ignore" signals: equally salient signals that did not require stopping but rather completion of the Go response. We found that both stop- and ignore signals produced equal amounts of early-latency inhibition of corticospinal excitability and EMG, which took place ∼150 ms following either signal. Multivariate pattern analysis of the whole-scalp EEG data further corroborated that this early processing stage was shared between stop- and ignore signals, as neural activity following the two signals could not be decoded from each other until a later time period. In this later period, unique activity related to stop signals emerged at frontocentral scalp sites, reflecting an increased stop signal P3. These findings suggest a two-step model of action-stopping, according to which an initial, universal inhibitory response to the saliency of the stop signal is followed by a slower process that is unique to outright stopping.SIGNIFICANCE STATEMENT Humans often have to stop their ongoing actions when indicated by environmental stimuli (stop signals). Successful action-stopping requires both the ability to detect these salient stop signals and to subsequently inhibit ongoing motor programs. Because of this tight entanglement of attentional control and motor inhibition, identifying unique neurophysiological signatures of action-stopping is difficult. Indeed, we report that recently proposed early-latency signatures of motor inhibition during action-stopping are also found after salient signals that do not require stopping. However, using multivariate pattern analysis of scalp-recorded neural data, we also identified subsequent neural activity that uniquely distinguished action-stopping from saliency detection. These results suggest that actions are stopped in two stages: the first common to all salient events and the second unique to action-stopping.
Collapse
|
27
|
Diesburg DA, Wessel JR. The Pause-then-Cancel model of human action-stopping: Theoretical considerations and empirical evidence. Neurosci Biobehav Rev 2021; 129:17-34. [PMID: 34293402 PMCID: PMC8574992 DOI: 10.1016/j.neubiorev.2021.07.019] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/24/2021] [Accepted: 07/15/2021] [Indexed: 11/17/2022]
Abstract
The ability to stop already-initiated actions is a key cognitive control ability. Recent work on human action-stopping has been dominated by two controversial debates. First, the contributions (and neural signatures) of attentional orienting and motor inhibition after stop-signals are near-impossible to disentangle. Second, the timing of purportedly inhibitory (neuro)physiological activity after stop-signals has called into question which neural signatures reflect processes that actually contribute to action-stopping. Here, we propose that a two-stage model of action-stopping - proposed by Schmidt and Berke (2017) based on subcortical rodent recordings - may resolve these controversies. Translating this model to humans, we first argue that attentional orienting and motor inhibition are inseparable because orienting to salient events like stop-signals automatically invokes broad motor inhibition, reflecting a fast-acting, ubiquitous Pause process. We then argue that inhibitory signatures after stop-signals differ in latency because they map onto two sequential stages: the salience-related Pause and a slower, stop-specific Cancel process. We formulate the model, discuss recent supporting evidence in humans, and interpret existing data within its context.
Collapse
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA.
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA, USA; Department of Neurology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
28
|
Novembre G, Iannetti GD. Towards a unified neural mechanism for reactive adaptive behaviour. Prog Neurobiol 2021; 204:102115. [PMID: 34175406 PMCID: PMC7611662 DOI: 10.1016/j.pneurobio.2021.102115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 11/27/2022]
Abstract
Surviving in natural environments requires animals to sense sudden events and swiftly adapt behaviour accordingly. The study of such Reactive Adaptive Behaviour (RAB) has been central to a number of research streams, all orbiting around movement science but progressing in parallel, with little cross-field fertilization. We first provide a concise review of these research streams, independently describing four types of RAB: (1) cortico-muscular resonance, (2) stimulus locked response, (3) online motor correction and (4) action stopping. We then highlight remarkable similarities across these four RABs, suggesting that they might be subserved by the same neural mechanism, and propose directions for future research on this topic.
Collapse
Affiliation(s)
- Giacomo Novembre
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Istituto Italiano di Tecnologia (IIT), Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, UK.
| |
Collapse
|
29
|
Diesburg DA, Tatz JR. Unexpected Events Activate a Frontal-Basal-Ganglia Inhibitory Network: What Is the Role of the Pre-Supplementary Motor Area? J Neurosci 2021; 41:5135-5137. [PMID: 34135113 PMCID: PMC8211539 DOI: 10.1523/jneurosci.0565-21.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
| | - Joshua R Tatz
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa 52242
- Department of Neurology, University of Iowa Hospitals & Clinics, Iowa City, Iowa 52242
| |
Collapse
|
30
|
Soh C, Wessel JR. Unexpected Sounds Nonselectively Inhibit Active Visual Stimulus Representations. Cereb Cortex 2021; 31:1632-1646. [PMID: 33140100 DOI: 10.1093/cercor/bhaa315] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 08/31/2020] [Accepted: 09/25/2020] [Indexed: 11/13/2022] Open
Abstract
The brain's capacity to process unexpected events is key to cognitive flexibility. The most well-known effect of unexpected events is the interruption of attentional engagement (distraction). We tested whether unexpected events interrupt attentional representations by activating a neural mechanism for inhibitory control. This mechanism is most well characterized within the motor system. However, recent work showed that it is automatically activated by unexpected events and can explain some of their nonmotor effects (e.g., on working memory representations). Here, human participants attended to lateralized flickering visual stimuli, producing steady-state visual evoked potentials (SSVEPs) in the scalp electroencephalogram. After unexpected sounds, the SSVEP was rapidly suppressed. Using a functional localizer (stop-signal) task and independent component analysis, we then identified a fronto-central EEG source whose activity indexes inhibitory motor control. Unexpected sounds in the SSVEP task also activated this source. Using single-trial analyses, we found that subcomponents of this source differentially relate to sound-induced SSVEP changes: While its N2 component predicted the subsequent suppression of the attended-stimulus SSVEP, the P3 component predicted the suppression of the SSVEP to the unattended stimulus. These results shed new light on the processes underlying fronto-central control signals and have implications for phenomena such as distraction and the attentional blink.
Collapse
Affiliation(s)
- Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52245, USA.,Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242, USA
| |
Collapse
|
31
|
Hynd M, Soh C, Rangel BO, Wessel JR. Paired-pulse TMS and scalp EEG reveal systematic relationship between inhibitory GABA a signaling in M1 and fronto-central cortical activity during action stopping. J Neurophysiol 2021; 125:648-660. [PMID: 33439759 DOI: 10.1152/jn.00571.2020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
By stopping actions even after their initiation, humans can flexibly adapt ongoing behavior to changing circumstances. The neural processes underlying the inhibition of movement during action stopping are still controversial. In the 90s, a fronto-central event-related potential (ERP) was discovered in the human EEG response to stop signals in the classic stop-signal task, alongside a proposal that this "stop-signal P3" reflects an inhibitory process. Indeed, both amplitude and onset of the stop-signal P3 relate to overt behavior and movement-related EEG activity in ways predicted by the dominant models of action-stopping. However, neither EEG nor behavior allow direct inferences about the presence or absence of neurophysiological inhibition of the motor cortex, making it impossible to definitively relate the stop-signal P3 to inhibition. Here, we therefore present a multimethod investigation of the relationship between the stop-signal P3 and GABAergic signaling in primary motor cortex, as indexed by paired-pulse transcranial magnetic stimulation (TMS). In detail, we measured short-interval intracortical inhibition (SICI), a marker of inhibitory GABAa activity in M1, in a group of 41 human participants who also performed the stop-signal task while undergoing EEG recordings. In line with the P3-inhibition hypothesis, we found that subjects with stronger inhibitory GABA activity in M1 also showed both faster onsets and larger amplitudes of the stop-signal P3. This provides direct evidence linking the properties of this ERP to a true physiological index of motor system inhibition. We discuss these findings in the context of recent theoretical developments and empirical findings regarding the neural implementation of motor inhibition.NEW & NOTEWORTHY The neural mechanisms underlying rapid action stopping in humans are subject to intense debate, in part because recordings of neural signals purportedly reflecting inhibitory motor control are hard to directly relate to the true, physiological inhibition of motor cortex. For the first time, the current study combines EEG and transcranial magnetic stimulation (TMS) methods to demonstrate a direct correspondence between fronto-central control-related EEG activity following signals to cancel an action and the physiological inhibition of primary motor cortex.
Collapse
Affiliation(s)
- Megan Hynd
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Cheol Soh
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa
| | - Benjamin O Rangel
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, Iowa.,Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa.,Department of Neurology, University of Iowa Hospital and Clinics, Iowa City, Iowa
| |
Collapse
|
32
|
Iacullo C, Diesburg DA, Wessel JR. Non-selective inhibition of the motor system following unexpected and expected infrequent events. Exp Brain Res 2020; 238:2701-2710. [PMID: 32948892 DOI: 10.1007/s00221-020-05919-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 09/02/2020] [Indexed: 01/16/2023]
Abstract
Motor inhibition is a key control mechanism that allows humans to rapidly adapt their actions in response to environmental events. One of the hallmark signatures of rapidly exerted, reactive motor inhibition is the non-selective suppression of cortico-spinal excitability (CSE): unexpected sensory stimuli lead to a suppression of CSE across the entire motor system, even in muscles that are inactive. Theories suggest that this reflects a fast, automatic, and broad engagement of inhibitory control, which facilitates behavioral adaptations to unexpected changes in the sensory environment. However, it is an open question whether such non-selective CSE suppression is truly due to the unexpected nature of the sensory event, or whether it is sufficient for an event to be merely infrequent (but not unexpected). Here, we report data from two experiments in which human subjects experienced both unexpected and expected infrequent events during a two-alternative forced-choice reaction time task while CSE was measured from a task-unrelated muscle. We found that expected infrequent events can indeed produce non-selective CSE suppression-but only when they occur during movement initiation. In contrast, unexpected infrequent events produce non-selective CSE suppression relative to frequent, expected events even in the absence of movement initiation. Moreover, CSE suppression due to unexpected events occurs at shorter latencies compared to expected infrequent events. These findings demonstrate that unexpectedness and stimulus infrequency have qualitatively different suppressive effects on the motor system. They also have key implications for studies that seek to disentangle neural and psychological processes related to motor inhibition and stimulus detection.
Collapse
Affiliation(s)
- Carly Iacullo
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Darcy A Diesburg
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA
| | - Jan R Wessel
- Department of Psychological and Brain Sciences, University of Iowa, 376 Psychological and Brain Sciences Building, 340 Iowa Avenue, Iowa City, IA, 52240, USA.
- Department of Neurology, University of Iowa Hospitals and Clinics, Iowa City, IA, USA.
| |
Collapse
|
33
|
Milner R, Lewandowska M, Ganc M, Nikadon J, Niedziałek I, Jędrzejczak WW, Skarżyński H. Electrophysiological correlates of focused attention on low- and high-distressed tinnitus. PLoS One 2020; 15:e0236521. [PMID: 32756593 PMCID: PMC7406215 DOI: 10.1371/journal.pone.0236521] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/07/2020] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVES The study aimed at determining the EEG correlates of concentration on either low or high-distressed tinnitus. METHODS Sixty-seven patients (36 women, mean age = 50.34 ± 12.94 years) with chronic tinnitus were assigned to either a high (HD) or low (LD) tinnitus-related distress group based on THI results. All participants took part in the EEG study comprising two 3-4 min blocks of focusing on either tinnitus (Tinnitus Focus Condition, TFC) or the sensations from one's own body (Body Focus Condition, BFC). The absolute power and current density of 8 frequency bands in 7 clusters were compared between conditions and groups. RESULTS The most pronounced differences were found in the HD patients in the TFC, relative to the BFC, i.e. reduced power of frontally distributed low alpha (8-10 Hz) and posterior high alpha (10-12 Hz) as well as lower current density of 8-10 Hz rhythm over the right frontal/anterior cingulate cortex and higher middle beta (15-18 Hz) density in the precuneus. The HD, relative to LD patients, in both conditions, exhibited increased low beta (12-15 Hz) power over the left middle area and greater higher beta (15-25 Hz) power in the left posterior region. CONCLUSIONS The present study contrasted bioelectrical activity, acquired when concentrating on tinnitus with EEG data collected whilst patients focused on their body. Decreased alpha power and current density in the frontal/cingulate cortex when listening to bothersome tinnitus might reflect greater cortical arousal whereas increased beta power and density in the precuneus/posterior cingulate activity in this condition could be indicative for elevated tension or augmented cognitive/emotional processing of tinnitus sound. Enhanced beta rhythm in patients with high versus low tinnitus distress, observed independently of the study condition, may be due to greater self-focused attention or more active processing of sensations derived from the own body.
Collapse
Affiliation(s)
- Rafał Milner
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Monika Lewandowska
- Institute of Psychology, Faculty of Philosophy and Social Sciences, Nicolaus Copernicus University, Toruń, Poland
| | - Małgorzata Ganc
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Jan Nikadon
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Iwona Niedziałek
- Audiology and Phoniatrics Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Wiesław Wiktor Jędrzejczak
- Department of Experimental Audiology, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| | - Henryk Skarżyński
- Oto-Rhino-Laryngology Surgery Clinic, World Hearing Center, Institute of Physiology and Pathology of Hearing, Kajetany/Warsaw, Poland
| |
Collapse
|
34
|
Nguyen AT, Albrecht MA, Lipp OV, Marinovic W. Motor output matters: Evidence of a continuous relationship between Stop/No-go P300 amplitude and peak force on failed inhibitions at the trial-level. Psychophysiology 2020; 57:e13558. [PMID: 32129505 DOI: 10.1111/psyp.13558] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 01/09/2020] [Accepted: 02/12/2020] [Indexed: 01/02/2023]
Abstract
Motor actions can be suppressed with varying degrees of success, but this variability is not often captured as responses are typically represented as binary (response vs. no-response). Although the Stop/No-go P300 has been implicated as an index of inhibitory-control, it is unclear how the range of motor outputs relates to the P300. We examined the nature of this association in two experiments using an Anticipatory Timing and a Go/No-go Task, while measuring peak force, movement onset time, and P300. In both experiments, our results showed that trial-by-trial P300 amplitude on Failed Inhibitions were continuously related to peak force, where higher force (reflecting a greater degree of error) was associated with smaller P300 amplitude. Compared to Successful Inhibitions, P300 amplitude and onset latency on Failed Inhibitions were significantly reduced and delayed. Although the binary categorization of inhibition-success (Successful vs. Failed) accounts for significant variance in the P300, it misses a reliable linear relationship that can be captured by continuous measures of motor output. Overall, the results provide evidence that P300 may reflect the continuously varying engagement of inhibitory-control. We present an activation model to visualize the P300-force association and to illustrate how motor output might be modeled in the context of inhibitory-control. Our results highlight the relevance of P300 amplitude and the importance of studying the spectrum of motor output and the need for future models to account for motor output.
Collapse
Affiliation(s)
- An T Nguyen
- School of Psychology, Curtin University, Perth, WA, Australia
| | | | - Ottmar V Lipp
- School of Psychology, Curtin University, Perth, WA, Australia
| | | |
Collapse
|